
Payoff-Irrelevant Traits in Asymmetric Coordination

Games

1 Introduction

Traits that are irrelevant to people’s capabilities are often present in everyday life, from

physical traits like gender, race, appearance and height, personality traits like introver-

sion and extroversion, to social traits like professional affiliations, political groups, religious

groups. It is also often observed that people with different traits are treated differently on

matters that are unrelated to those traits.

This paper establishes an evolutionary game theoretical model to find the driving force

of such behavior. The methods applied in this paper are based on Kandori, Mailath and

Rob (1999) (henceforth KMR). I find that discriminative behavior may increase efficiency

within a certain population but from a broader perspective may result in loss of efficiency.

In section 2, I introduce a model with non-fixed traits. Then in section 3 I characterize

the set of long run equilibria of this model and show that it is the set of Pareto efficient

equilibria. In section 4 I introduce a model with fixed traits and two locations that are

different in payoffs. I show that there exists a Darwinian update rule such that the set of

long run equilbria is the set of separating equilibria, which results in inefficiency.
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2 Non-fixed Trait Model

In this section, I introduce the model where traits are not fixed. A group of N myopic

players are repeatedly matched to play a 2-by-2 asymmetric coordination game as follows,

where (x, y) is the set of actions feasible and a > b, d > c, a > d.

x y

x a, a c, b

y b, c d, d
Each player has a observable trait, taking values in {1, 2}. The set of pure strategies is

{xx, xy, yx, yy} where xy means taking action x if the player is matched with a player of trait

1 and taking action y if the player is matched with a player of trait 2. Based on strategies and

traits, the population can be divided into eight groups: {xx0, xy0, yx0, yy0, xx1, xy1, yx1, yy1}.

Each period, a player is matched with each o the rest of the population exactly once.

In each period, the size of these eight groups are adjusted according to a deterministic

update rule, b{·} : R8 → R8. Groups yielding better payoff grow in size. Note that both

strategies and traits can be adjusted. There are multiple ways to understand adjustment of

trait. For changeable trait like political opinions, hairstyle and etc., adjustment is fairly intu-

itive. For fixed traits like race, height and etc, adjustment can be considered as replacement.

A player may be replaced by a new player with a different trait.

In each period, mutations take place at a probability 8ε to each player. Each mutated

player becomes a member of one random group with equal probabilities. This mutation

can be considered as the player experimenting or being replaced by a newcomer who has no

information about the outcome of the previous period.

Let zt ∈ R8 be the vector of the sizes of the eight groups. Then the procedure above

yields the following set of nonlinear stochastic equations.

zt+1 = b(zt) + xt − yt (1)

where random vectors xt and yt have the following distribution:
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each yit ∼ Bin(bi(zt), 8ε) and xt ∼Mult(
∑8

i=1 y
i
t, (ε, ε, ε, ε, ε, ε, ε, ε)).

The dynamical system described by (1) defines a Markov chain on a finite state space,

Z = {z ∈ N8|
∑

i z
i = N}. The transition probabilities are given by pz1,z2 = Prob(zt+1 =

z2|zt = z1} and P = (pij) is the Markov matrix. Since it is possible to mutate a state to any

state, all pz1,z2 ’s are positive. Then the Markov chain has a unique stationary distribution.

This stationary distribution, µ(ε), satisfies µ(ε) = µ(ε)P .

Here I refer to the definition of the limit distribution from KMR.

Definition. The limit distribution µ∗ is defined by µ∗ = limε→0µ(ε), if it exists. The set

of long run equilibria is C = {z ∈ Z|µ∗z > 0}.

3 Long Run Equilibria

Since it is too complicated to explicitly to solve µP = µ, I utilize the method due to

Freidlin and Wenzell (1984), which is also used in KMR.

Definition. A z-tree h on a finite Z is a collection of ordered pairs of (or arrows between)

elements of Z, denoted as (i→ j), such that every state in Z/{z} is the initial point of exactly

one arrow and from any state in Z/{z} there is a sequence of arrows leading to z. Let the

set of all such z-trees be Hz.

Definition. Let cz1z2 be the speed of pz1z2 converges to zero as ε tends to zero, i.e.

pz1z2 = O(εcz1z2 ).

Lemma. cz1z2 = |b(z1)− z2|/2, where |z| =
∑

i |zi|.

Proof. Consider the term of pz1z2 with the smallest power of ε. Q.E.D.

Theorem from KMR. Let vz = minh∈Hz

∑
(z1→z2)∈h cz1z2 be the minimal cost of all

z-trees of a state z. Then C = Argminz∈Zvz.

In this section, I characterize the set of long run equilibria, with certain assumptions on

the update rule, b(·) and payoffs.

First I define the basin of attraction.
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Definition. The basin of attraction of a state z is B(z) = {i : limk→∞b
k(i) = z}.

Assumption. (1) if a group’s payoff is strictly larger than the population median, its

size strictly increases if possible. If a group’s payoff is strictly smaller than the population

median, its size strictly decreases if possible.

(2) If a group has maximum payoff in population, its size does not decrease. If a group

has minimum payoff in population, its size does not increase.

(3) If i ∈ B(z), then |i− z| > |b(i)− z|.

(4) If B(z) is not empty, then there must exist z′ ∈ B(z) such that 1
2
|z − z′| = 1.

(5) At least one of (d−b)(d−c)n−(a−c)(a−d)
a2−ab−ac−bc+2bd+2cd−2d2 ,

(a−d)(a+c−2d−cn+dn)
a2−ab−ac−bc+2bd+2cd−2d2 ,

(a−d)(2d−2a+(a−b)n)
a2−ab−ac−bc+2bd+2cd−2d2

is not an integer.

(6) At least one of (a−b)(a−c)n−(a−d)(b−d)
2a2−2ab−2ac+bc+bd+cd−d2 ,

(a−d)(d−c)n+(2a−2d)(a−d)
2a2−2ab−2ac+bc+bd+cd−d2 ,

(a−b)(a−d)n−(a−d)(2a−b−d)
2a2−2ab−2ac+bc+bd+cd−d2

is not an integer.

Theorem 1. If assumption (1) to (6) are satisfied, then

C = {z : zxx0 + zxy0 = N} ∪ {z : zxx0 + zxx1 = N} ∪ {z : zyx1 + zxx1 = N}.

Proof.

First, I solve for the set of the steady states, i.e. Z∗ = {z|b(z) = z}. There are many

elements in Z∗ and Z∗ can be partitioned into four subsets, I1 to I4. I examine them one by

one.

I1 = {z : zxx0 + zxy0 = N} ∪ {z : zxx0 + zxx1 = N} ∪ {z : zyx1 + zxx1 = N}.

I2 = {z : zyx0+zyy0 = N, zyx0 ≤ d−c
a−c}∪{z : z

yy0+zyy1 = N}∪{z : zxy1+zyy1 = N, zxy1 ≤
d−c
a−c}

I3 = {z : zxy0 = zyx1 =
N
2
} ∪ {z : zyx0 = zxy1 =

N
2
}

A detailed characterization of I4 is available in the appendix.

First, I show that for any z1, z2 ∈ I1, vz1 = vz2 . Take any z-tree h of z1, and make the

following change: z′ → b(z′) for z′ ∈ B(I1)− I1, z′ → immediate neighbour (towards z) for
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z
′ ∈ I1 − z2. h becomes a z-tree of z2. Note that cz′ ,b(z′ ) = 0 and any arrow from a steady

state costs at least one. Therefore this change does not increase the cost of the z-tree. Hence

all z ∈ I1 has equal vz. Similarly, for any z1, z2 ∈ I2, vz1 = vz2 .

Now I show that I3 ∩ C = ∅. Take z0 = (zxy0 =
N
2
, zyx1 =

N
2
) and consider z1 = (zxy0 =

N
2
+ 1, zyx1 = N

2
− 1). By the assumptions, z1 ∈ B({z|zxy0 = N}) ⊂ B(I1). Notice that

∀z′ ∈ I1s.t |z − z
′| = 1}, z′ ∈ B(I1).

If there exists z∗ whose arrow costs at least 2, fix this z∗. Otherwise, there must exists

z∗, z′ such that z∗ → z′ and z′ ∈ B(I1) − I1 since the minimum cost of an arrow from any

z ∈ I1 to any state z′′ /∈ B(I1) is at least 2. Now make the following change:z0 → z1,

z → b(z) for z ∈ B(I1) − I1, z → immediate neighbour (towards z∗) for z ∈ I1. Then the

original z-tree of z0 becomes a z-tree of z∗, and its cost is lowered by at least 1. Therefore

z0 /∈ C. Similarly, (zyx0 = N
2
, zxy1 =

N
2
) /∈ C.

Now I show that I2 ∩C = ∅. Take ze = (zyx0 =
⌊
a−d+(d−c)n

a−c

⌋
, zyy0 = N −

⌊
a−d+(d−c)n

a−c

⌋
) ∈

I2 and consider z′e = (zyx0 =
⌊
a−d+(d−c)n

a−c

⌋
+1, zyy0 = N−

⌊
a−d+(d−c)n

a−c

⌋
−1). Then z′e ∈ B(z3)

where z3 = (zxx1 = N). Then by similar procedure as shown above, I can construct a z-tree

of z3 with strictly lower cost. Since all z ∈ I2 have equal vz, ∀z1 ∈ I1, z2 ∈ I2, vz1 < vz1 thus

I2 ∩ C = ∅.

For all states in I4, by the assumptions, each has a singleton basin of attraction. Fix a

state zs ∈ I4 and let z′s be a neighbour of zs. Now z′s ∈ B(I1) ∪ B(I2) ∪ B(z0) ∪ B(z′0) since

each state in I4 has a singleton basin of attraction. By similar analysis, vz′x > min{vz|z ∈

I1 ∪ I2 ∪ I3} = vz|z ∈ I1. Therefore I4 ∩ C = ∅.

Since C is nonempty and ∀z1, z2 ∈ I1, vz1 = vz2 , I have

C = I1 = {z : zxx0 + zxy0 = N} ∪ {z : zxx0 + zxx1 = N} ∪ {z : zyx1 + zxx1 = N}.

Q.E.D.

Note that in KMR, the long run equilibrium is the risk dominant one. In this model, the
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set of long run equilibria is the set of Pareto efficient equilibria. Even though the existence

of payoff-irrelevant trait leads to efficiency, in majority of long run equilibria, one trait is

completely been eliminated. In reality, this can be represented by, for example, groups and

organizations eventually sharing the same political opinions, dress code or even race (people

of different race are edged out and replaced).

4 Fixed Trait Model

In this section, I introduce a variation of the model of non-fixed trait. A group of N

players reside at two locations, {0, 1}. Each period, a player is matched with each of the

players (including self) at the same location for exactly once, to play the same asymmetric

coordination as described above. I include interaction with self to avoid the situation where

a player is alone at one location and his payoff becomes zero since there is no other player at

that location. Each player gets the average payoff of all the games he plays in each period.

Each player has an observable trait and this trait cannot be adjusted or mutated. Each

period, adjustment and mutation occurs to players’ strategies and locations. All players at

location 2 receive payoffs discounted by δ.

Definition. An update rule is defined ’Darwinian’ if under this update rule, if a group

has maximum payoff in population, its size does not decrease, and if a group has minimum

payoff in population, its size does not increase.

Theorem 2. If ab−b2−bc+bd−ad+ac
a(a−b−c+d) > δ, there exists a Darwinian update rule such that

in all long run equilibria, players of different traits are completely separated into the two

locations.

Proof. Consider the following dynamics. Starting from any separating state, all players

with trait 0 reside at location 0 and all players of trait 1 reside at location 1 and all players

choose x when matched to another player with the same trait. Whenever zxy0,0 < a(1−δ)
a−c ,

players of trait 1 will start to move to location 0. Consider the update rule that facilities
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the following dynamics.

For any s ≤ a(1−δ)
a−c ,

(zxx0,0 =
N

2
(1− a(1− δ)

a− c
+ s), zxy0,0 =

N

2
· (a(1− δ)

a− c
− s), zxx1,1 =

N

2
)

→ (zxx0,0 =
N

2
(1−a(1− δ)

a− c
+s), zxy0,0 =

N

2
·(a(1− δ)

a− c
−s), zxx1,0 =

N

2
· d− c
a− b− c+ d

, zxx1,1 =
N

2
· a− b
a− b− c+ d

)

→ (zxx0,0 =
N

2
(1−a(1− δ)

a− c
+s), zxy0,0 =

N

2
·(a(1− δ)

a− c
−s), zxx1,0 =

N

2
· d− c
a− b− c+ d

, zyx1,0 =
N

2
· a− b
a− b− c+ d

)

→ (zxy0,0 =
N

2
, zxx1,0 =

N

2
· d− c
a− b− c+ d

, zyx1,0 =
N

2
· a− b
a− b− c+ d

→ (zxy0,0 =
N

2
, zyx1,0 =

N

2
)

→ (zxy0,0 =
N

2
, zxx1,1 =

N

2
)

By similar analysis as in the proof of theorem 1, all separating steady states z’s have

equal vz. From the analysis above, the set of such steady states is absorbing and therefore

those are the only long run equilibria. Q.E.D.

5 Conclusion

This paper explores the influence of payoff-irrelevant traits on the evolutionary outcome

of asymmetric coordination games. I show that with non-fixed traits, Pareto efficiency is

always achieved and in majority of the long run equilibria, one trait is eliminated from

population. Here a population can be represented by simply a group or an organization, for

example a company. It is often observed that the employees in one firm can be rather united
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on political opinions and some firms have a nearly unified racial makeup.

This paper also shows that with fixed traits and two different locations, there can be

situations where separation is always present, in spite of efficiency loss. Such behavior can

be often observed, such as black and white residential communities.
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