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Abstract

We propose Mixed Membership Mallows Models (M4) to model noisy prefer-
ences of heterogenous and inconsistent users. In our model each Mallows com-
ponent accounts for noisy preferences; an inconsistent user is modeled by means
of a probabilistic mixture of latent Mallows components that are shared among
all users; and a user-specific mixture models heterogeneity. We propose methods
for estimating Mallows components from pairwise comparison data. The techni-
cal novelty of our approach is two-fold. We first establish an information-theoretic
connection between M4 and topic models. Second, we prove that for a broad class
of probabilistic mixtures and Mallows dispersion parameters M4 is inevitably ap-
proximately separable. This characterization leads us to propose algorithms based
on convex geometry for estimating Mallows components. We prove asymptotic
consistency, polynomial sample and computational complexity bounds for our es-
timates. As a by-product of our approach we also obtain the first provably consis-
tent and efficient algorithm for learning special cases considered before.

1 Introduction

We propose Mixed Membership Mallows Model (M4) to capture the preference behavior of a diverse
user-population who provide noisy and inconsistent comparisons [1–6] as seen in many applications
such as restaurants check-ins, clicks from Yelp, movie purchases, and reviews from Netflix [1, 4, 7,
8] data. In these applications, each user can be influenced by multiple ranking factors to different
extents at different times resulting in inconsistent and noisy behavior (see Fig 1). In addition, the
number of comparisons available from each user is typically very small.

Figure 1: An illustration of how M4 models noisy preferences of heterogenous and inconsistent users. Say

a set of ratings from Yelp for restaurants are obtained and anonymized from a local area (subplot (c)). Two

example latent factors, “expense” and “popularity” (subplot (d)), influence the three users’ behavior (subplot

(a)), with different weights (subplot (b)). This models heterogeneity. A > B means A is preferred over B.

The shading in subplot (a) indicates the most-likely influencing factor of each observation using the same color

coding as in other subplots. This accounts for inconsistency. A and C are very close in “Popularity” and both

C > A and A > C are possible when influenced by the same “Popularity” factor which accounts for noise.

A key conceptual contribution of the proposed work is our M4 model. It leverages existing mixed
membership ranking models[1, 2] and incorporates the popular Mallows model [5, 9] as shared la-
tent factors. Each user comparison is modeled as a probabilistic mixture of a few latent Mallows
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components that are shared among the population. M4 thus subsumes the popular Mixture of Mal-
lows model [4, 5, 10–12] as well as recent work on mixed membership ranking models [1] as special
cases. In doing so it not only accounts for noise in each latent ranking factor, which has been a pop-
ular choice in the mixture of ranking models [e.g., 4, 5] but also incorporates user-specific mixed
memberships (heterogeneity) which is demonstrably a better fit for real-world comparisons [1, 2].

Our technical contributions involve schemes that estimate Mallows components from noisy pairwise
comparison data with provable guarantees on their performance for a broad class of mixture prior
distributions. Informally,

Theorem 1. (Informal) Except for a set with vanishing probability, all the reference rankings in M4
can be estimated (a) consistently as the number of users scales, (b) with polynomial computation
complexity and sample complexity bounds.

As a by-product of our approach we also obtain the first provably consistent and efficient algorithm
to special cases considered before such as the popular mixture of Mallows models [4, 5, 10–12],
whose theoretical guarantees are not yet clear except in some special cases [5].

Our approach relies on establishing an information-theoretic connection between M4 and topic-word
matrix [13] by viewing distinct pairs as “words”, comparisons of each user as a “document” and each
latent Mallows component as a “topic”. This connection leads us to a surprising finding, namely,
the inevitability of approximate separability of Mallows components. Intuitively, approximate sep-
arability requires the existence of ordered pairs that have negligible probability in all-but-one of the
Mallows components, i.e., the row entries concentrate predominantly in one column. Formally, we
prove that most instances of the ranking matrix in M4, when appropriately sampled, are approxi-
mately separable when the number of items is large relative to the number of latent ranking factors.

This result leads us to a geometric approach that is inspired by the recent works in topic modeling
with a separable latent structure [e.g., 14–19]. However, we cannot directly apply results from
existing work since they rely on exact separabilty. In this context we non-trivially generalize the
geometry induced by the exact-separability [e.g., 14, 16] to handle the approximate-separability
property which holds for M4 (see Definition 1), and establish provable estimation guarantees (see
Theorem 3).

While these technical advances are of independent interest and provide a framework for learning
general mixed membership models, for concreteness, we focus on M4 models. Finally, we point out
that our results only require the number of users to scale and allow the number of comparisons per
user to be a small constant, which is well adapted to sparse real-world data.

Related Work: We describe several research topics that are related to proposed work.
Mixture of Rankings Models: The family of mixture of rankings models have demonstrated superior
modeling power to capture a heterogeneous and noisy user-population in both full and partial rank-
ings [6, 20]. Here each user is associated with one of the multiple latent ranking components and the
population can be clustered into heterogeneous preference types. The popular mixture of Mallows
models is closely related to our setting where the latent factors are Mallows components [4, 5, 10–
12]. Approximation methods such as MCMC have been used for estimation from pairwise compar-
isons [4], full rankings [11], and in a non-parametric Bayes setting [12]. Only recently, [5] proposed
a provable algorithm based on tensor decomposition that can handle a mixture of 2 Mallows com-
ponents using the top-3 ranked items as the observations which is restrictive and impractical within
the context of the target web-scale applications. We note that mixture of Bradley-Terry-Luce (BTL)
models [6] and Plackett-Luce (PL) models [21] have also been studied.

Table 1: Comparison of M4 to closely related works.

Method Observation Ranking component Prior Consistency Computation

M4 Pairwise Mallows General Provable Polynomial
[1] Pairwise Total Ranking General Provable Polynomial

[2] Full Plackett-Luce Dirichlet Not Available Not Available

[3] Pairwise Bradely-Terry-Luce Dirichlet Not Available Not Available
[4] Pairwise Mallows Mixture Not Available Not Available

[5] Top-3 rank Mallows Mixture Provable Polynomial
Mixed Membership Ranking Models: M4 shares the same mixed membership modeling perspective
as the recent efforts in [1–3]. [2] and [3] proposed to model the latent ranking factors using score-
based PL and BTL models respectively. Approximation based methods are used in estimation with
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no theoretical guarantees. It is also unclear how the MCMC based approach in [2] can scale to the
targeted web-scale applications. [1] proposed to model the latent ranking factors as total rankings
and gave an algorithm with provable efficiency guarantees. It is closely related to M4 in the motivat-
ing geometry but with fundamental differences. Foremost, [1] is a special case of M4 by suppressing
the dispersion of Mallows components to zero. Intuitively, while both [1] and M4 can capture the
inconsistency as stemming from the influence of multiple latent factors, M4 can further account for
the consequence of the randomness in each latent factor. In addition, our new results on approximate
separability subsumes the exact separable geometry exploited in[1] as a special instance. Table 1
provides a summarized comparison of M4 with the closely related works.

Separable Topic Discovery: The recent work on consistent and efficient topic discovery with an
exact separability property [14, 16] forms the starting point of our work. Our result allows the latent
factors to be approximately separable, i.e., with a small but finite deviation from exact separability.
Recent works in [17, 18] considered similar settings but require much stronger assumptions. [17]
requires a significant portion of users to be influenced almost by only one of the latent factors. [18]
requires a strict initialization and it is not clear how it can be achieved using only the observations.
In contrast, we do not depend on initialization.

Rating-based Approaches: Considerable work in modeling user preferences and choices has fo-
cused on numerical and start ratings.[22, 23] The prevalent idea there is also to view the user ratings
as being influenced by a small number of latent factors shared by the population [e.g., 8]. This
modeling perspective is similar to M4 although it focuses on a different feature space.

2 Mixed Membership Mallows Models

This section introduces the Mixed Membership Mallows Model (M4) and the associated learning
problem. It also discusses how M4 is related to other ranking models and an information-equivalent
topic model.

Consider a population of M users in which, for simplicity, each user compares N pairs of items.
Assume that items are numbered 1, . . . , Q. The result of the n-th comparison made by user m is an
ordered pair of items wm,n = (i, j) if items i, j are compared and user m prefers i over j. Assume
that the two items to be compared are sampled according to some distribution µ on all pairs with
µi,j = µj,i > 0 being the probability of comparing items i and j. The ordered pairs produced by
all M users can be represented using a W ×M matrix X whose W = Q(Q− 1) rows correspond
to all the ordered pairs (i, j) and M columns correspond to all the users. The number of times that
user m compares and prefers item i over j is then given by X(i,j),m.

Mallows Model A Mallows model for rankings is a pmf over permutations (rankings) σ over Q
items. A Mallows pmf pM(σ|σk, φk) is parameterized by a reference ranking σk and a dispersion
parameter φk ∈ [0, 1). Under this pmf, the probability of σ decays exponentially with its Kendall’s

tau distance1 d(σ, σk) to σk at a rate governed by φk [9]. Specifically, pM(σ|σk, φk) = φ
d(σ,σk)
k /Zk

where Zk is the normalization constant. The closer φk is to 1, the more spread the Mallows pmf is.2

M4 then views the ordered pairs produced by each user as a probabilistic mixture of K latent
component Mallows pmfs which capture heterogeneous influencing factors. The preferences of M
users are characterized by mixing weights θm’s. The pmf of wm,n conditioned on θm is given by

p(wm,n = (i, j)|θm, µ) = µi,j

K∑

k=1

∑

σ: σ(i)<σ(j)

pM(σ|σk , φk)θk,m (1)

In M4, since each user can be influenced by multiple latent factors to different extents, the com-
parisons produced by each users can potentially be inconsistent. In addition, the use of a Mallows
model for each latent factor allows one to capture potential randomness in the outcomes of item
comparisons for items that are very similar. This is because in a realization σ of each Mallows
component, item pairs that are close in the reference ranking σk are more likely to be reversed in
the realization due to nonzero dispersion φk. Figure 2 summarizes the generative process and its
graphical representation.

Learning problem Given X and K , our primary objective is to develop an algorithmq that can learn
the parameters of the shared latent Mallows components, i.e., the reference rankings σk’s and the

1The total number of ordered pairs on which two rankings differ.
2A Mallows pmf with φk = 1 is the uniform distribution over all permutations and is unidentifiable.
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For each user m = 1, . . . ,M ,

1) Sample a ranking weight vector θm ∈ △K

from some prior distribution Pr(θ)

2) For each comparison n = 1, . . . , N ,

a. Sample unordered item pair {i, j} ∼ µ

b. Sample ranking token z ∈ {1, . . . ,K}
∼ Multinomial(θm)

(c) Sample ranking σm,n ∼ z-th Mallows
component with parameters (σz, φz)

d. Output ordered pair wm,n = (i, j) if
σm,n(i) < σm,n(j); Otherwise output
wm,n = (j, i)

Figure 2: Generative process of the Mixed Membership Mallows Model and its Graphical representation. The

boxes represent replicates (the outer as users, and the inner as comparisons). σ(i) is the position of item i in a

ranking σ. We adopt the convention that item i is preferred over j if σ(i) < σ(j).

dispersion parameters φk’s, with polynomial sample and computational complexity guarantees. For
the problem of inferring θm [24] and predicting preferences for new observations, we use standard
tools [25]. Establishing guarantees for the inference and prediction problems is not addressed in this
work and remains an open question.

Connection to other ranking models M4 subsumes, as special cases, two important ranking models
that have been studied in the literature:

Proposition 1. a) If φk → 0 for all k = 1, . . . ,K , then each Mallows component reduces to a
pmf with all its mass concentrated on the (single) reference permutation σk, i.e., then M4 reduces
to the model in [1]. b) If the topic prior Pr(θ) has non-zero probability only on the vertices of the
probability simplex in K dimensions, then M4 reduces to the mixture of Mallows model in [4, 5]

Therefore, all learning guarantees for M4, to be discussed, also hold for the mixture of Mallows
model in [4, 5] and the mixed membership ranking model in [1]. This leads to the first asymptotic
consistency and polynomial sample and computational complexity learning guarantees for the mix-
ture of Mallows model from pairwise comparisons in a general setting. Also, unlike related work
in Table 1 which are all tied to one specific prior on the ranking weights θm’s, our approach can be
applied to all priors on θm’s that have a full-rank correlation matrix.

Approach – Reduction to Topic Model via Ranking Matrix Our solution strategy is to formally
associate M4 with a topic model whose topic matrix provides an information-equivalent representa-
tion of the parameters of M4. To do this, it is convenient to define a W ×K ranking matrix β with

β(i,j),k :=
∑

σ: σ(i)<σ(j)

pM(σ|σk, φk) (2)

We note that β is completely determined by the σk’s and the φk’s. Statistically, β(i,j),k is the
probability that a user prefers item i over j in a ranking sampled from the k-th Mallows component.
The ranking matrix β is analogous to the topic matrix in a topic modeling problem [13]. The
set of all possible pairwise comparisons form the “vocabulary”, each user’s comparisons form a
“document”, and the shared Mallows components the “topics”. The following proposition shows
that the underlying σk’s and φk’s can be recovered from β.

Proposition 2. Let the ranking matrix β be defined as in Eq. (2). Then, ∀(i, j) and ∀k, we have,

a) If σk(i) < σk(j), then β(i,j),k > 0.5 > β(j,i),k ≥ 0 and β(i,j),k + β(j,i),k = 1

b) If σk(j) = σk(i) + 1, then 1/β(i,j),k = 1 + φk.

Prop. 2 a) shows that σk’s can be recovered from β by rounding its entries to the nearest integer.
Prop. 2 b) shows that the dispersion parameter φk can be recovered from. Thus, β does indeed
provide an information-equivalent representation of M4.

3 Overview of Algorithm, Key Insights, and Theoretical Results

We have just reduced the learning problem of M4 to the estimation the ranking matrix β (Eq. (2)),
which plays the same role as the topic matrix in a topic modeling problem. Algorithms for learn-
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ing the topic matrix with polynomial sample and computational complexity guarantees have been
recently developed for topic matrices that are exactly separable [14, 16]: in β, if for every column
there is at least one row whose occurrence probability is nonzero only in that topic, i.e., it is exactly
zero in all other topics. Unfortunately, these results can not be directly applied since the entries of
β of M4 is strictly positive.

As highlighted in the introduction, two nontrivial technical innovations are needed to overcome this
difficulty. First, we consider a general “approximate separability” property (Definition 1) and prove
that most instances of the ranking matrix in M4, when appropriately sampled, are approximately
separable when Q ≫ K Second, we generalize the results based on the solid angle (Eq. (5)) for
learning β from exact to approximate separability. We introduce these key technical advances in
this section and summarize the analysis for our algorithm.

3.1 Approximate Separable Ranking Matrix

Our first conceptual innovation is the following notion of an approximately separable ranking matrix:

Definition 1. (λ-Approximate Separability) A W ×K non-negative matrix β is λ-approximately
separable for some constant λ ∈ [0, 1), if ∀ k = 1, . . . ,K , there exists at least one row (i.e., ordered
pair) (i, j) such that β(i,j),k > 0 and β(i,j),l ≤ λβ(i,j),k , ∀l 6= k.

Figure 3: An example of approximate separable β with K = 3, and the underlying geometry of the row
vectors of E. Pair 1, 2, 3 are approximate novel pairs for three Mallows components. The shaded dash circles
represent the ideal extreme points with exact separable β and the shaded regions depict their solid angles.

Intuitively, λ-approximate separability requires the existence of ordered pairs that have negligible
probability in all-but-one of the Mallows components, i.e., the row entries concentrate predomi-
nantly in one column. We call such pairs (rows of β) as λ-approximately novel pairs (rows) for each
latent factor. Exact separability studied in [14, 16] corresponds to λ = 0 and is incompatible with
the strict positivity of β in M4. Approximate separability is the key.

Figure 3 shows an example where the pairs 1, 2, 3 are, respectively, novel for the first, second,
and third Mallows components. Since β(i,j),k is a pairwise comparison probability, row (i, j) being
approximately novel means that i is preferred over j in only one factor and iis mostly likely to be
preferred below j in the remaining. To achieve this in the Mallows setting, the position of item i
should come before j in one reference ranking (say, σ1(i) < σ1(j)) while σk(i) is after σk(j) in all
the other reference rankings and L = σk(i)− σk(j) are large for k = 2, . . . ,K .

Most ranking matrices of M4 are approximately separable The approximately separability ap-
pears to be restrictive. However, it is in fact an inevitable property of M4 when the number of items
Q ≫ K . Concretely, we impose the following prior on the K Mallows components: the K ref-
erence rankings σk are i.i.d uniformly sampled from the set of all permutations, and the dispersion
parameters φk ≤ φ < 1, ∀k are strictly less than 1. We have,

Lemma 1. Let the reference rankings σ1, . . . , σK be sampled i.i.d uniformly from the set of all
permutations, and the dispersion parameters φk ≤ φ < 1, k = 1, . . . ,K . Then, the probability that
the corresponding ranking matrix β being λ-approximately separable for any λ ∈ (0, 1) is at least

1−K exp(−
Q

L(φ, λ)2K−1
) (3)

where L(φ, λ) = ceil
(
2 log(λ)
log(φ)

)
, and ceil(x) is the minimum integer no smaller than x.

By Eq. 3, the probability of β being approximately separable converges to 1 exponentially in Q.
Noting the logarithm dependency of L on λ, for very small λ, a reasonably small L would satisfy
the convergence in Eq. 3. We further note that the result in Eq. (3) is a loose lower bound on the
probability of being separable as evidenced by Table 1 in the appendix.

5



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

3.2 Robust Novel Pair Detection with Approximate Separable Ranking Matrix

Our second innovation is to generalize the geometric results [16] from exact to approximate separa-
bility. We discuss the representation space, the geometric insights, and our algorithm and results in
this section.

Comparison Co-occurrence Matrix We construct a W×W comparison co-occurrence matrixE as
the representation space in which we develop the geometric intuitions. This statistic can be estimated
consistently as M →∞. Specifically, we split each user’s comparisons into two independent halves
and denote them as the empirical observation matrices X and X

′. For simplicity, we define a W×K
matrix B as B(i,j),k = µi,jβ(i,j),k . We have,

Lemma 2. Re-scale the rows of X and X
′ to obtain X̃ and X̃

′ so that they are row-stochastic, then

MX̃
′
X̃

⊤ M→∞
−−−−−−−−−→
almost surely

B̄R̄B̄⊤ =: E, (4)

where B̄ = diag−1(Ba)B diag(a), R̄ = diag−1(a)R diag−1(a). a = E(θm) and R =
E(θmθ⊤

m) are the expectation and correlation matrix of the topic prior.

We assume that R has full rank K which is satisfied by many important priors [14]. We note that E
is not explicitly constructed in our projection-based algorithm.

Exact Separability – Novel Pairs are exact extreme points We focus on the rows of E. In the
example in Figure 3, if β is exactly separable (i.e., the 0.01 terms of first three rows are ideally 0),
the corresponding rows of E are exactly the extreme points of the convex hull formed by all the row
of E (the gray circles in Figure 3). The normalized solid angle proposed in [16] formally captures
this property by defining,

q(i,j) , p{∀(s, t) : ‖E(i,j) −E(s,t)‖ ≥ ζ,E(i,j)d > E(s,t)d},d ∈ R
W ∼ Isotropic (5)

When β is exact separable, one can show that q(i,j) is strictly positive iff (i, j) is a novel pair.
Statistically, this solid angle is also the probability that a row vector E(i,j) has the maximum pro-
jection value along an isotropically distributed direction d. This definition provides an algorithm to
efficiently approximate the solid angles by first projecting rows of E onto a few i.i.d isotropic d’s
and then calculating the frequency of each row being maximum. The novel pairs are therefore the
distinct K points with non-zero solid angle [16].

Approximate Separability – Novel Pairs are the most robust extreme points We still focus on
the rows of E. Consider now that β is λ-approximate separable with small enough λ > 0. The rows
of E (empty circles in Figure 3) can be viewed as a small perturbation from the ideal case. As a
consequence, (a) The rows of approximately novel pairs – Epair1, Epair2, and Epair3 in empty circle
– are inside the ideal convex hull and are close to the ideal extreme points. The corresponding solid
angles subtended will be close to that of the ideal extreme points which are lower bounded away
from 0. (b) The non-novel rows could become extreme points but would be close to the convex hull
formed by the approximate novel rows (e.g., Epair4 in Figure 3). But in this case the associated solid
angles will be very close to 0.

To sum up, the solid angle in Eq. (5) can measure the “robustness” of an extreme point. If we sort
the non-zero solid angles for all the rows in E, the distinct K rows with largest solid angles must
correspond to cλ-approximate novel pairs for some constant c and a properly defined ζ in Eq. (5).

Overall Algorithm We first detect approximately novel pairs for K distinct Mallows components
by sorting the solid angles of all pairs using a few i.i.d isotropic random projections. Once the
approximate novel pairs for K distinct Mallows components are identified, B hence β can be es-
timated using constrained linear regression [14, 16]. We then post-process β to get σk, φk’s of the
shared Mallows components by Prop. 2. These steps are outlined in Algorithm 1. We expand the
random projection steps in Algorithm 2. The linear regression steps uses the same strategy as in
[14, 16] and are deferred in appendix. In Algorithm 3: step 1 estimates all the pairwise relations
σ(i,j),k = I(σk(i) < σk(j)) in σk. Step 2 aggregates them to the positions of each item in σk. Step
3 estimates φk.

Computation and Sample Complexity Bounds We summarize the guarantees of our approach.
Recall that M,N,Q,K is the number of user, comparisons per user, the number of items, and the
number of Mallows components respectively. P is the number of random projections. First, the
computation complexity is polynomial in all parameters,
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Algorithm 1 M4 Estimation (Main Steps)

Input: Pairwise comparisons X̃, X̃′(W ×M) (defined in Lemma 2); Number of latent components
K; Number of projections P ; Tolerance parameters ζ, ǫ > 0

Output: Reference ranking σ̂k and dispersion φ̂k, k = 1, . . . ,K

1: Novel Pairs I ←DetectNovelPair(X̃, X̃′,K, P, ζ)

2: B̂←EstimateRankingMatrix(I,X, ǫ)

3: σ̂1, . . . , σ̂K , φ̂1, . . . , φ̂K ←PostProcess(B̂)

Algorithm 2 DetectNovelPair (via Random Projections)

Input: X̃, X̃′; number of rankings K; number
of projections P ; tolerance ζ;

Output: I: The set of all novel pairs of K dis-
tinct rankings.

1: Ê←MX̃
′
X̃

⊤

2: ∀(i, j), J(i,j) ← {(s, t) : ‖Ê(i,j) −

2Ê(s,t)‖ ≥ ζ/2},
3: for r = 1, . . . , P do
4: Sample dr ∈ R

W from an isotropic prior

5: q̂(i,j),r ← I{∀(s, t) ∈ J(i,j), Ê(s,t)dr ≤

Ê(i,j)dr} , ∀(i, j)

6: end for
7: q̂(i,j) ←

1
P

∑P

r=1 q̂(i,j),r , ∀(i, j)
8: k ← 0,l← 1, and I ← ∅
9: while k ≤ K do

10: (s, t) ← index of the lth largest value
among q̂(i,j)’s

11: if (s, t) ∈
⋂

(i,j)∈I J(i,j) then

12: I ← I ∪ {(s, t)}, k ← k + 1
13: end if
14: l← l + 1
15: end while

Algorithm 3 PostProcess

Input: B̂ as the estimate of B Output: σ̂k, φ̂k, k = 1, . . . ,K

1: σ̂(i,j),k ← Round

[
B̂(i,j),k

B̂(i,j),k+B̂(j,i),k

]
, ∀i, j ∈ U , ∀k

2: σ̂k(i)← Position of ith item when sorting {
∑

j 6=i σ̂(i,j),k}i=1,...,Q in descending order, ∀ k

3: φ̂k ←
1

Q−1

∑Q−1
i=1 1/β̂(σ−1

k
(i),σ−1

k
(i+1)),k − 1, ∀k

Theorem 2. The running time of Algorithm 1 is O(MNP +Q2P +Q2K3).

We note that this bounds, although being the first polynomial result, can be further improved but it
is not the main focus of this paper. Next, we show consistency and sample complexity bounds in
estimating all the reference rankings, Formally,

Theorem 3. Let the ranking matrix β be λ-approximate separable and the second order moments
R of ranking prior to be full rank. If

λ ≤
aminκ(1− φ)q∧

8K2a0
√
log(W/q∧)

(6)

and M,P → ∞, then, Algorithm 1 can consistently recover all the reference rankings of the latent
Mallows distributions. Moreover, ∀δ > 0, if

M ≥ max

{
640W 2 log(3W/δ)

Nη4d2q2∧
,

320W log(3W/δ)

Nη4λ2
mina

2
min(1 − φ)2

}
P ≥ 32

log(3W/δ)

q2∧
(7)

the proposed algorithm fails with probability at most δ. The other model parameters are defined as
follows: η = min1≤w≤W [Ba]w; amax, amin are the max/min of entries of a; a0 = maxi,j ai/aj;

Y = R̄B̄; κ = λmin/λmax is the condition number of R̄; q∧ be the minimum normalized solid
angle formed by row vectors of Y; d = 6κ/K; φk ≤ φ < 1.

All proofs are deferred in supplementary. In Theorem 3, the Eq. (6) provides an explicit sufficient
condition on the required λ. In this bound, λ is inverse polynomial in K . Therefore, in the Eq. 3, the
margin L required to achieve a high separable probability would scale as L(φ, λ) = c1 + c2 log(K)
which is small.
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4 Experimental Validation

We conduct semi-synthetic simulation to validate our approach when M4 is true. We also conduct
real-world experiments to demonstrate that M4 can effectively capture real-world preference. Star
rating datasets are used for its large public availability. We used the suggested settings by [16].
Specifically, P = 150×K , ζ = 0.05 in Alg. 2. More detailed settings are in supplementary.

Semi-synthetic Simulation We validate the performance of proposed on semi-synthetic dataset.
The ground-truth reference rankings are obtained from a real world movie rating dataset, Movielens,
3 using the same approach as in [1] over the Q = 100 most rated items and K = 10. We set the same
dispersion parameters φk = φ ∈ {0, 0.1, 0.2, 0.5}. The ground-truth β is λ = 0, 0.01, 0.05, 0.20
approximate separable. We use a symmetric Dirichlet prior with concentration α0 = 0.1 on θm’s.

N = 300. µi,j = 1/
(
Q

2

)
, ∀i, j is uniform. We evaluate the performance using Kendall’s tau

distance between the estimated σ̂k and the ground-truth after a bipartite matching. The error is
normalized by W = Q(Q− 1) and averaged across the K rankings.
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Figure 4: Left: the normalized Kendall’s tau distance of the estimated reference rankings, as functions of M ,

from the semi-synthetic dataset with Q = 100, N = 300, K = 10 and different φ. Right: the normalized

predictive log-likelihood for various K on the truncated Movielens dataset.

Fig. 4 (left) depicts how the estimation error varies with the number of users M for dispersion φ.
We can see that the reconstruction error converges to zero at different rates in M when λ is small
(φ = 0, 0.1, 0.2), and converges to a small but non-zero number when λ is mild (φ = 0.5).

Comparison Prediction on Movielens We predict pairwise comparisons in the real-world Movie-
lens dataset. The star rating based dataset is selected due to public availability and widespread use,
but we convert it to pairwise comparisons as suggested in the ranking literature [1, 4, 7]. We focus
on the Q = 200 most frequently rated movies in the Movielens, split the first M = 4000 users for
training, and use the remaining users for testing [4]. We convert the training and test ratings into
comparisons independently: for all pairs of movies i, j user m rating, wm,n = (i, j) is added if the
star ratings for i is higher than j, and all ties are ignored. The prior is set to be Dirichlet. We evaluate

the performance by the held-out log-likelihood, i.e., Pr(wtest|β̂) using standard tools in [25]. We
compared our new model (M4) against the model in [1] (TM) with closest settings to our model. As
shown in Figure 4 (right), M4 improves the prediction accuracy of TM for different choice of K .

Table 2: Testing RMSE on the Movielens dataset

K PMF BPMF BPMF-int TM M4

10 1.0491 0.8254 0.8723 0.8840 0.8509
15 0.9127 0.8236 0.8734 0.8780 0.8296

20 0.9250 0.8213 0.8678 0.8721 0.8241

Rating prediction via ranking model on Movielens We consider a standard task in recommenda-
tion system, star rating prediction, to illustrate our model can better capture real-world behavior [22].
The same training/testing rating split in [8] is used, and we focus on the Q = 100 most rated movies
following [1]. We train our M4 model on the training comparisons and use that to predict the testing
star ratings which induces the most likely testing comparisons. The same K is used for different
algorithms since it is the number of latent factors in all the models considered. Detailed settings are
in supplementary. We evaluate the performance using the standard root-mean-square-error (RMSE)
metric [22]. As shown in Table 2, M4 improves upon TM and matches the rating-based benchmarks
BPMF [8], PMF[26] although they are coming from a different feature space. We note that the
BPMF typically provides robust and benchmark results on real-world problems. This demonstrates
that our approach can accommodate noisy real-world user behavior.

3
http://grouplens.org/datasets/movielens/
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