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Abstract
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plication to teacher earning structure. To do so, we adjust the specification of
the model by varying the unobserved heterogeneity in individuals’ preferences
and earnings. We find that even a model with no unobserved heterogeneity
fits well within sample. Testing formally selects models with substantial unob-
served heterogeneity, suggesting that relying on in-sample fit is problematic. In
the application to teacher earnings, we show that a reform that adjusts teacher
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the model.
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1 Introduction

We make two contributions. On the methods side, we show that standard tests of in-

sample fit can lead us to accept models with inadequate allowance for heterogeneity.

On the substantive side, we examine the feasibility of a policy that makes the earnings

structure for teachers more closely resemble that outside of teaching.

One of the strengths of structural models is that they allow us to consider experi-

ments that lie outside the data. However, the validity of these experiments relies on

the correct specification of the model. To understand the effect of a reform in the earn-

ings structure of teachers, we estimate a dynamic model of occupation choice in which

individuals decide each year whether to work as a teacher, in some other occupation,

or not to be employed. The decision is dynamic because there are sector-specific

returns to experience and because there is a cost of moving among the sectors.1

Our model is closest in both format and spirit to (Stinebrickner, 2001a) and par-

ticularly (Stinebrickner, 2001b). There are, however, some important differences in

our treatment of uncertainty and of variation in the importance of earnings in the

utility function. In addition, unlike him, we do not limit our sample to individuals

who obtain their teaching qualification early on but consider all college graduates.

The policy changes of interest to us may affect the decision to obtain a teaching qual-

ification. We are also able to follow individuals much later into their careers which

allows us to consider exit from and reentry into teaching. Moreover, we estimate the

model with different degrees of unobserved heterogeneity (allowing for one “type” and

up to nine “types” of individuals that differ in their preferences and abilities).

To choose the ‘correct’ amount of heterogeneity we use both the Bayesian Infor-
1There is an enormous literature on the decisions to become a teacher and to leave teaching which

we will not attempt to review thoroughly. This literature is reviewed in Dolton (2006).
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mation Criterion (BIC) and cross-validation using different numbers of unobserved

types. The BIC favors using seven types out of the nine models compared, while the

cross-validation weakly favors nine types while strongly favoring seven over fewer than

seven types. In choosing the right amount of heterogeneity, we face two risks. If we

allow for insufficient heterogeneity, the model is misspecified. If we allow for excess

heterogeneity, although the estimates remain consistent, our counterfactual estimates

may suffer from overfitting the original model.

Strikingly even the model with no unobserved heterogeneity appears to fit the data

well in sample. Moreover, all models predict average teacher and non-teacher earnings

well in sample. But when we test their out-of sample accuracy on our test samples,

we need at least five types to fit average teacher and non-teacher earnings. And while,

again, all models fit the characteristics of workers changing jobs well in sample, none

does well out of sample.

The need for a large number of types does not arise in any obvious way from the

peculiarities of our model. Our model requires little, if any, unobserved heterogeneity

to fit well visually withing sample. It is only because we rely on formal mechanisms

for model selection that we ‘need’ so much unobserved heterogeneity.

We use the model estimated to assess the feasibility of a policy that would make

teachers earnings’ structure closer to that outside of teaching. Teacher salaries are

typically based on salary scales that depend only on education, experience and senior-

ity and not on measures of quality of achievement. Not surprisingly, among college

graduates, teachers have both low AFQT and high risk aversion. However, we know

that, at least in other settings (e.g., Lazear, 2000), tying compensation more closely

to performance can both increase the productivity of a fixed set of individuals and

attract more productive individuals. Hoxby and Leigh (2004) provide support for
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this hypothesis in teaching (see also Bacolod, 2007).2 As well, using a simulation

Rothstein (2015) suggests that salary increases help attract and retain high ability

teachers. Consequently, there is considerable interest in performance pay for teachers

(see for example, the National Research Council report, Hout and Elliott, 2011).

We do not examine performance pay, per se, but we ask how the composition of the

teaching profession would change if education and ability were compensated in the

same way as in the general labor market for college graduates, presumably making

teaching a similarly risky occupation. Like much of this literature, we look at the

effect on general ability as measured by test scores and/or potential earnings outside

teaching since we do not have a measure of teacher effectiveness. Our estimates of

a strong correlation between potential earnings in teaching and non-teaching sup-

port our assumption that ability within and outside teaching are correlated, albeit

imperfectly.

We find that rewarding measured and unmeasured ability within teaching as they

are outside teaching leads to a shift of the more skilled types to teaching and slightly

raises the average AFQT of teachers. But even this conclusion ignores the difficulty

of effecting a transition. Reform requires transitioning to a compensation system

that rewards characteristics differently from the current system and increases risk for

a population that is risk averse relative to other college graduates. The reform we

study would make a substantial proportion of experienced teachers worse off. Reforms

are therefore likely to be disruptive in the short run, regardless of whether they are

beneficial in the long run.3

Importantly, our results suggest strong caution about drawing policy conclusions
2Leigh (2012) finds evidence that higher pay increases the test scores of students in teacher

training programs in Australia and some evidence that greater earnings dispersion outside of teaching
lowers scores.

3See Biasi (2017) for a study of teacher mobility and exit following Wisconsin’s Act 10, which
radically overhauled the compensation system for teachers in that state.
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from models that fit well visually within sample. Our conclusions turn out to be very

sensitive to the extent to which we allow for unobserved individual heterogeneity.

With no formal tests for model selection, one could easily conclude that allowing for

two or three unobserved types is adequate. But the point estimates of the simulation

results are quite different if we allow for four types and dramatically different if we

allow for five or six types. With seven or more types, our point estimates from the

simulation results are again quite different from those with five or six.

2 Data and Some Empirical Regularities

We reverse the usual order of presentation and discuss the data before the model

because certain regularities will influence how we develop the model.

We use the National Longitudinal Survey of Youth 1979 (NLSY79). Since the

NLSY79 is well-known to labor economists, we skip a general description of the survey.

We restrict the sample to college graduates and drop observations for years in which

individuals report being self-employed, in the military or working fewer than 35 hours

a week. Finally, we drop individuals interviewed fewer than four times. Table 1

shows summary statistics for the 1,077 individuals in our sample, divided into three

categories: (1) teachers, (2) non-teachers and (3) not working. Note that an individual

might be in all three categories over the course of the panel.

Compensation over the Lifecycle: Table 1 shows that teachers, on average,

earn less than other college graduates. As shown in Figure 1(a), teachers’ and non-

teachers’ have similar earnings when 22 years old, but a gap emerges as they age. By

the time they are 55 years old, non-teachers earn almost 56 thousand dollars4 more

than teachers do. This pattern does not merely reflect the changing composition
4In 2012 dollars.
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of the various groups over the lifecycle. Controlling for individual fixed effects or

restricting the estimates to individuals who are only teachers or only non-teachers

does not substantially change the pattern.

Risk and Uncertainty: The standard deviation of earnings is initially small and

similar for teachers and non-teachers, but as age increases, the standard deviation

remains modest for teachers and grows dramatically for non-teachers (see Figure

1(b)). Since the residual could reflect factors known to the individual but not the

econometrician, this does not necessarily imply that teaching is less risky than other

occupations, but it is suggestive. And, in fact, if we regress log earnings on schooling,

experience, year fixed effects and individual fixed effects, residual earnings variation

is higher and grows faster among non-teachers.

Risk aversion: Therefore, we would expect risk-averse individuals to sort into

teaching. We construct a risk-aversion parameter using three questions that were

asked in each of four years:5 (1) Would you take a job that could double your income

or cut it by 1/2 with a 50-50 chance?, (2) Would you take a job that could double

your income or cut it by 1/3 with a 50-50 chance?, and (3) Would you take a job that

could double your income or cut it by 1/5 with a 50-50 chance? Using the responses to

these questions we construct a risk aversion parameter. We assign a “1” to individuals

who responded yes to the three questions, then a “2” to individuals who responded

no to question one but yes to the other two, then we assign a “3” to individuals who

responded no to questions one and two but yes to the last one, and finally we give a

“4” to the most risk averse individuals who responded no to all questions. Because the

same questions were asked in several years, the risk aversion parameter for a given

individual may change. To have a measure of risk aversion for every year we use the

most recent risk aversion parameter available for each individual.
51993, 2002, 2004 and 2006.
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As shown in Table 1, teachers are more risk averse than individuals working in

other occupations.

Measured skills: Since teachers are rewarded for their education, we would not

be surprised if they had higher average levels of education than workers in other

occupations even among college graduates. This is confirmed in Table 1. In fact, in

2000 (when our sample is between 35 and 43 years old) 72% of teachers had graduate

studies6 compared with only 43% of non-teachers and 17% of individuals out of the

labor force.

However, Table 1 shows that teachers generally have less skill as measured by the

AFQT, measured when the sample was 15-23 years old. The mean AFQT percentile,

adjusted for the age at which the individual took that test, for teachers in our sample is

67 while the mean percentile for non-teachers is 75. This “observable ability” measure

is lower for teachers of all age groups (not shown).

Occupational mobility: Table 2 shows that mobility between teaching and non-

teaching is modest. Fully 93.3% of individuals who are teachers in one year continue

as teachers the following year, while only 5.2% move to a non-teaching occupation

even though non-teachers account for 86% of the person-years in our sample. Mobility

from non-teaching to teaching is rarer. As can be seen from the second row of the

table, only 0.8% of non-teachers transition to teachers in an average year even though

teachers account for 11% of the person-years in our sample.
6Individuals that have at least 17 years of schooling.
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3 Model and estimation

3.1 Occupation choice

The one-period utility function depends on the decision made, on expected earn-

ings7 and on the nonpecuniary characteristics of the occupations. We do not model

these characteristics since we are modeling the choice of teaching versus non-teaching

rather than the choice among admittedly heterogeneous jobs within these broader

occupations. If all individuals valued the nonpecuniary components equally, we could

capture their value by adding occupation-specific constants to the utility function.

The teaching constant would capture the utility, net of earnings and risk, of working

as a teacher relative to not working and similarly for the non-teaching constant. The

difference between the coefficients would capture the utility of teaching relative to

non-teaching.

Of course, people with different characteristics may value the nonpecuniary char-

acteristics in systematically different ways. To capture these differences, we include

additional sociodemographic controls in the utility function. Since we specify differ-

ent utility functions for teaching and non-teaching except for the effect of earnings,

these sociodemographic controls are implicitly interacted with occupation.

Finally, we allow for the possibility that it is costly to transition between states. It

may, for example, take time to adjust to the different nature of the working environ-

ment in teaching or non-teaching.

Consequently, utility in each state d depends on the state variables sit =
{
Z̄d

it, ξ
d
it

}
7We assume that utility is quadratic in earnings and earnings equal expected earnings plus a

mean zero shock with a given variance. Thus, expected utility is a function of expected earnings
and expected earnings squared.
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as given by

Ud
it(sit) = u(d, Z̄d

it) + ξdit (1)

= θu1E[wd
it] + θu2(E[wd

it])
2 + θdu3zit + θdu4(1− di,t−1) + θdu5oi,t−1 + ξdit (2)

where Z̄d
it :=

{
E[wd

it], zit, di,t−1, oi,t−1

}
represents the observed state variables. E[wd

it]

is expected earnings and zit includes individuals’ characteristics such as gender, mari-

tal status, risk aversion, age, AFQT percentile, schooling8 and whether the individual

has children. di,t−1 is a dummy variable equal to one if individual i chose occupation

d in period t− 1 and zero otherwise. oi,t−1 is also a dummy variable, equal to one if

individual i chose not to work in period t − 1 and zero otherwise. Thus, θdu4 is the

cost of transitioning into occupation d from the other occupation and θdu5 is the cost

of transitioning into occupation d from non-employment. We normalize the utility

associated with non-employment to be 0.We also set the cost of transitioning to non-

employment at 0. Risk aversion is only measured in four surveys. We hold it fixed

between these and assume that individuals know their future risk aversion.

The individual’s unobserved preferences for each occupation (taste shocks) are given

by the ξdit. We assume the ξdit’s are taken from an extreme value type I distribution and

temporarily assume that the errors are serially uncorrelated. Later, we will address

serial correlation by allowing for multiple types.

We model the occupation choice process as consisting of (T − t̂) periods, where

T is the retirement date, which we will generally impose to be age 60, and t̂ is the

first year the individual enters the workforce. Each period, individuals can choose

among teaching, other jobs (non-teaching) and non-employment. If they decide to

work, their earnings depend on their occupation choice.
8As discussed in the next section, schooling is occupation specific.
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Individuals are forward-looking. When choosing an occupation in period t, they

take into account not only the one-period utilities associated with the choices but also

their effect on sector-specific experience and therefore on future earnings. In addition,

they may face a switching cost.

From entry into the workforce until retirement (T ), individuals weigh the conse-

quences of their decisions for future utility. A full solution of the dynamic program-

ming problem consists of finding E[max(V 1
t (sit), V

2
t (sit), V

3
t (sit))] at all values of zit,

E(wd
it), di,t−1 and oi,t−1 for all t, where the choice-specific value function is:

V d
t (sit) =

 Ud
it + δE[Vt+1(si,t+1)|sit, dit = d] if t < T

Ud
it if t = T

(3)

The choice-specific value function V d
t (sit) can be decomposed as vdit + ξdit, where vdit

is the expected choice-specific value function that has a closed form solution. We

set the discount factor δ equal to 0.95.9 Given the extreme value assumption for the

distribution of taste shocks, the probability of an individual choosing occupation d in

period t takes a logit form:

P (dit = d|Z̄it, θu) =
exp(vdit)∑
d exp(v

d
it)

(4)

where the sums are taken over the three possible options available to the individual.

Since we have a finite time horizon, and taste shocks are distributed as an extreme

value type I, expected value functions have a closed form analytical expression and can

be calculated by backward induction. For a more detailed discussion on estimation

of discrete choice dynamic programming models see Aguirregabiria and Mira (2010)
9As commented by Aguirregabiria and Mira (2010) the discount factor in most applications is

not estimated because it is poorly identified (e.g., see Rust (1987)).
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and Arcidiacono and Ellickson (2011).

3.2 Earnings

Earnings depend on the occupation chosen and are a function of a time trend which

also captures linear age effects, individual characteristics, and experience in the teach-

ing and non-teaching sectors. Thus log earnings for a given decision d = {teacher,

non-teacher} in year t for individual i are given by:

log(wd
it) = θdwX̄

d
it + εdit (5)

= θdw1f(trend) + θdw2xi + θdw3g
d
it + θdw4f(expTit) + ...

θdw5f(expNit) + εdit (6)

where xi includes gender, marital status, race, AFQT score and whether the individual

has children.

Schooling, git, is occupation specific. For any observed decision, schooling is just

the number of years of education that individual i has, but for the alternative choices

we assume individuals would have at least the same schooling as the contemporaneous

average individual in that occupation, that is

g = max {actual education, average education in occupation} . For instance, if indi-

vidual i decides to be a non-teacher in period t and has sixteen years of schooling

then git for her non-teaching log earnings equation is sixteen. However, if the aver-

age schooling of teachers of her age is higher, say eighteen years, then schooling for

individual i at time t for her teaching log earnings equation is eighteen. This implies

that individual i would get more schooling if she decided to be a teacher. Since we

are not modeling schooling decisions and education is explicitly rewarded in teacher
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compensation contracts, allowing for education to be higher for off-path decisions is

an important feature of a teacher-occupation-choice model.

The occupation-specific experience terms, experience as a teacher (expTit) and ex-

perience as a non-teacher (expNit), evolve depending on the individual’s choices. f(.)

is a quadratic function. Finally, the shocks (the εdit’s) are unknown to the individual

at the time of the decision and are assumed to be normally distributed with mean zero

and variance σ2
d. We want to capture the fact that the variance of earnings increases

with age (or experience). This is particularly true for the non-teaching occupation.

Therefore, we model the σd’s as linear functions of age. For identification of the co-

efficient on earnings in the utility function it is crucial that an exclusion restriction

exists, a variable appearing in the earnings equation and only affecting utility through

earnings. We use the sector-specific experience terms as the exclusion restriction.

3.3 Heterogeneity, serial correlation and selection

So far, we have assumed that unobserved preferences and unobserved ability are

both uncorrelated over time and uncorrelated with each other. Thus an intense

unobservable preference for teaching in period t would not be related with having

an intense unobservable preference for teaching in period t + 1. Similarly, there is

no persistent unobserved ability which is known to the individual but not to the

econometrician.

To address these concerns, suppose that there are L types of people that differ in

their preferences for each occupation and in their unobserved abilities.10 We allow the

constant terms of the utility functions and log earnings equations, and the coefficients

on the expected earnings terms in the utility functions to vary among types. Thus,
10See Keane and Wolpin (1997), Eckstein and Wolpin (1999) and Arcidiacono (2004) for other

papers that control for unobserved heterogeneity in dynamic discrete choice models. Stinebrickner
(2001a) uses this approach in a closely related model of occupational choice by qualified teachers.
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the utility and log earnings equations for type l in occupation d are:

Ud
it,l(sit) = ωd

u,l + θu1,lE[wd
it,l] + θu2,l(E[wd

it,l])
2 + θdu3zit + ... (7)

θdu4(1− di,t−1) + θdu5oi,t−1 + ξdit

log(wd
it,l) = ωd

w,l + θdwX̄
d
it + εdit. (8)

Note that, for a given type, we restrict the coefficients on the expected earnings

terms in the utility functions to be the same in teaching and non-teaching. Thus

expected earnings in teaching and non-teaching occupations give type l the same

utility.

3.4 Estimation

We calculate the parameters using maximum likelihood. Without unobserved hetero-

geneity, the contribution of individual i to the likelihood function is the product of the

likelihood contribution of occupation decisions P (.) and the likelihood contribution

of earnings fw(.):

Li(θ) ≡
Ti∏
t=1

P (dit|Z̄it, θ)fw(log(wit)|dit, X̄it, θ). (9)

To estimate the parameters when we include unobserved heterogeneity we use a

mixture distribution, where πl is the proportion of the lth type in the population.

These proportions and the unobservable preferences and abilities are fixed over time,

allowing us to control for serial correlation and selection. With unobserved hetero-

12



geneity the contribution of individual i to the finite mixture of likelihoods is:

li(θ,Ω, π) = log(
L∑
l=1

Li(θl, ωl) · πl). (10)

The set of structural parameters to estimate consists of 64 coefficients when there

is no unobservable heterogeneity. For each additional type we include there are seven

extra parameters. We estimate the model for one through nine types.

In the remainder of the paper, we primarily present the results without heterogene-

ity and with seven types since this is the number chosen using the BIC and since the

results for seven, eight and nine types are similar.

4 Results

4.1 Choosing the number of types

The most obvious approach to model selection, a likelihood ratio (or similar) test,

cannot be used because mixture models violate the requisite regularity conditions;

some parameters are not identified under the null. An obvious alternative, Schwarz’s

Bayesian Information Criterion (BIC),11 tends to require a very large number of types,

perhaps beyond what is numerically feasible in some contexts.

In our case, as shown in section 5, visually our model fits the data well regardless

of the number of types. We use two formal approaches to choose among the models.

First, we calculate the BIC for each specification (see Table 3). The BIC continues

to improve up to the seven-type model, but it is worse for the eight and nine-type

models.
11BIC = −2 · loglikelihood+ d · log(N), where N is the sample size and d is the total number of

parameters.
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Second, we use a cross-validation approach. Our approach is based on the following

logic. A properly specified maximum likelihood model minimizes out of sample pre-

diction error (Hansen and Dumitrescu, 2016). Therefore, if we believe that one of our

models is correctly specified, it should be the one that predicts best out of sample.

Thus, we randomly divide our sample into two groups, consisting of 80% and 20% of

individuals. We re-estimate the models using the larger sub-sample. Then, we use

the new coefficients and the data from the other 20% of individuals and calculate the

log-likelihoods for each of the nine models. We repeat this exercise twenty times and

compare the out-of-sample log-likelihoods.

As with the BIC, this cross-validation approach suggests that we require a large

number of unobservable types to address heterogeneity adequately. However, when

comparing the seven and eight-type models the cross-validation approach suggests

eight types is better. And when comparing the eight and nine-type models this

approach also suggests that nine types is preferred. Still, there is some evidence that

we are approaching the requisite number of types. In all twenty replications, four

types does better out-of-sample than three types which in turn fits better than the

model with two types which outperforms the model with one type. When we compare

seven versus six, the model with more types predicts better out of sample in a clear

majority of replications and averaged across replications, but there are replications

that give the opposite result. The same is true when comparing six versus five and

five versus four. However, when comparing eight and seven types, eight types does

better out-of-sample in only 13 of the 20 sub-samples. If the two models fit equally

well out of sample, and if the parameters were independent across draws (which they

are not, because there is roughly 80 percent overlap), the probability of one model

outperforming the other at least thirteen times would be 12 percent, suggesting little

difference in the predictive power of the two models. Finally, the nine-type model
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does better out-of-sample in only 11 of the 20 sub-samples when comparing it to the

eight-type model.12

Consequently, we present the results of the model with seven types. For purposes

of comparison, we also show the results without unobserved heterogeneity.

4.2 Estimates of the utility function

Table 4 displays estimates of the utility function parameters that are common to

all types. Relative to non-employment, being risk averse increases the utility from

teaching and reduces the utility from non-teaching. When we control for unobserved

heterogeneity with the seven-type model, the point estimates for risk aversion in

teachers’ and non-teachers’ utility functions still suggest that risk averse individu-

als tend to prefer teaching. In the absence of unobserved heterogeneity, among single

individuals, conditional on the other controls, being male strongly increases the prefer-

ence for nonemployment relative to both teaching and non-teaching with only a small

difference between the two types of occupations. Their preference for non-teaching

relative to teaching is more pronounced in the model with seven types.

Being married or with children seems to increase the preference for non-employment

over teaching, and for teaching over other occupations for both females and males.

These coefficients do not change substantially when controlling for unobserved het-

erogeneity.

Switching occupations and returning to employment is costly. Controlling for un-

observed heterogeneity has very little effect on these coefficients. Using the estimates

from the model with no unobserved heterogeneity, at average teacher earnings (of

$51,100) switching from non-teacher to teacher is comparable to a decrease of $18,100
12We did not get convergence on two of the 20 subsamples for the nine-type model, so we drew

two additional subsamples, converged all nine models with the two new samples and used those to
compare the nine-type model with the other models.
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in earnings that year and the cost of returning to employment is equivalent to $35,130

in that year’s earnings. At average non-teacher earnings (of $76,600) switching occu-

pation from teacher to non-teacher is comparable to a decrease of $21,800 in earnings

and the cost of returning to employment is equivalent to $39,300 in that year’s earn-

ings.

Age, age squared, AFQT and schooling were also included in the estimation. The

coefficients on AFQT are very similar for teachers and non-teachers. Whereas, more

educated individuals prefer to work as a non-teacher.

The panels labeled Type x in Table 5 show the relation between types and utility.

Each type except the first has an additional utility it receives relative to the first type

from each of the occupations. These panels also show the full utility that each type

receives from expected earnings (in 10,000’s of 2012 dollars) and its square. With

only one type, the marginal utility of earnings is increasing up to almost $200,000,

which covers 95% of our observations. When we allow for unobserved heterogeneity,

all types except the first and fourth put more weight on earnings at low values than

the single type does. The second type only values earnings up to about $118,000

and the sixth only up to about $117,000 while the other types have positive marginal

utility of earnings up to $200,000 or higher.13

4.3 Estimates of the log earnings equation

Table 6 shows the estimates of the log earnings equations. When we do not consider

other forms of heterogeneity, the coefficient on AFQT percentile is lower for teachers.

This is still true when we control for unobserved heterogeneity but the difference
13We do not take the concept of type literally but as a way of accounting for correlation among

equation errors and over time. Each individual has a posterior probability of being each type
based on the prior probabilities and her earnings and occupation choices. Using these weighted
averages only 12 observations are estimated to have negative marginal utility of earnings (0.08% of
the observations that have earnings data).
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between the coefficients on AFQT for teachers and non-teachers is smaller in the

seven-type model than in the one-type model.

Not surprisingly returns to schooling are higher for teachers. As previously dis-

cussed, teachers with more years of education receive a higher salary. These coeffi-

cients are very similar when we increase the number of types. Also, for both occupa-

tion groups, among single and childless individuals, males’ earnings are higher. The

gender earnings gap for teachers increases and for non-teachers decreases with seven

types, and is similar for both occupations in this specification.

Married individuals in the non-teaching occupation have higher earnings than non-

married individuals. This difference is not statistically significant for teachers. Not

surprisingly, females with children have lower earnings in both occupations than fe-

males with no children. However, earnings for males with children are not different

for teachers and are even higher for non-teachers compared to males with no children.

These coefficients are qualitatively similar in both models presented.

A key to identification of the coefficient on earnings in the utility function is to

have a variable which is only in the log earnings regression. We use sector-specific

experience as the exclusion restriction. The coefficients on experience basically do

not change when including more types. Not surprisingly, teaching experience is par-

ticularly relevant for teachers. Teacher earnings increase with teaching experience

and continue to do so beyond the range of experience found in our data. Small levels

of teaching experience provide little benefit outside of teaching. However, our point

estimates suggest that teachers with considerable experience benefit in other jobs.14

Overall, an extra year of teaching increases yearly earnings around $1,600 for the

average teacher, while it has an insignificant negative effect on yearly earnings for the
14We expect that this reflects very experienced teachers transitioning to other well-paid jobs in

education.
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average non-teacher.

Experience in other occupations increases earnings for both teachers and non-

teachers at a decreasing rate but throughout the relevant experience range non-

teaching experience is more valuable outside of teaching.

Finally, the standard deviations are modeled as linear functions of age (i.e., σ =

σA + σB · age). The estimates suggest that the variance of teachers’ earnings is lower

than the variance of non-teachers’ earnings for all age groups.

The distribution of types across occupations (not shown) plays a modest role in the

earnings gap between teachers and non-teachers. Most of the difference is due to how

the types are rewarded. If the distribution of teachers by type were the distribution

among non-teachers, their mean earnings would be roughly 13 percent higher. If the

type distribution of non-teachers were that of teachers, their mean earnings would be

11 percent lower.

However, there is more variation in earnings across types outside of teaching than

within teaching. The weighted standard deviation of the type effect in teaching

is about 0.28 while it is about 0.36 outside of teaching. Types that are good at

non-teaching also tend to have high earnings in teaching. The correlation is about

0.87 using the distribution of teachers across types and 0.72 using the non-teachers’

distribution. In short, there is a strong positive correlation between the (to us)

unmeasured skills that raise earnings within and outside teaching,15 but these skills

are rewarded more generously outside teaching.
15Interestingly, using a different model and data set Wiswall (2007) also finds a strong positive

correlation between unmeasured skills outside and within teaching; and that there is more variation
in earnings across types outside than within teaching.
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5 Goodness of fit

It is common in structural papers to examine how well the model matches the data

by displaying figures that compare predicted and observed averages. Some papers

also calculate in-sample goodness-of-fit statistics. We show that, using these compar-

isons and statistics, all of our models seem to fit most data patterns well: occupation

choices, earnings and characteristics of transitioning individuals. Then, we test the

accuracy of out-of-sample predictions using the 80-20 cross-validation division ex-

plained in Section 4.1.

5.1 In-sample fit

We begin by describing the goodness of fit in-sample. Figures 2 and 3 show, for

the one and seven-type models, the percentage of teachers and non-teachers by age.

Visually both models fit well. As is evident from the figures, the fits of the models

with one and seven types are essentially indistinguishable; this also applies to the

models for which fit is not shown.

The seven-type model matches the average earnings of both teachers ($51,100) and

non-teachers ($76,600) well in the sense that the predicted means lie within the 95

percent confidence interval of the estimated population means from the data ($51,500

and $75,400). This is also true for the other models; the average earnings predicted

lie within the confidence interval of the population means.16 Figure 4 depicts the log

earnings by age for both groups, for the one and seven-type models. And, as is also

evident, the fit of the model with one type is barely distinguishable from that with

seven types. Using the seven-type model, the absolute deviations from the data for
16Using standard errors clustered at the individual level to account for possible correlation of

observations.
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different ages go from 0.0005 to 0.3984 for non-teachers and from 0.0005 to 0.3027 for

teachers. These numbers are not very different for the other models.17 With Table

7, we see that the seven-type model replicates well transitions for non-teachers and

not employed individuals. However, it over-predicts teachers’ transitions into non-

employment and under-predicts teachers’ transition to non-teaching occupations.

Finally, Table 8 shows the average characteristics of transitioning individuals. The

model does a good job at matching observed averages in every cell. For every average,

the model prediction is within the 95 percent confidence interval for the population

average. The same applies for the other models estimated. An interesting pattern,

well replicated by the models, is that individuals who are teachers in one year and

continue as teachers the following year are very risk averse and have low cognitive

skills. As for non-teachers who do not change occupation, both the observed and

predicted averages show that they are not particularly risk averse and have an AFQT

score slightly above average.

5.2 Cross-Validation

While, except for underestimating teachers transitions into other occupations, our

models fit well, at least visually, within sample, a fairer test is their ability to predict

out-of-sample in a cross-validation exercise. We take twenty random samples con-

sisting of eighty percent of the individuals in our sample, reestimate the models and

calculate how accurately we predict log earnings for that part of the sample that was

not used in the estimation.

To assess how well our models predict earnings we calculate average earnings for
17The surprising ability to fit the sawtooth pattern at older ages reflects the fact that older workers

are only observed in later surveys which were conducted only every other year. Thus the sample
for 42 and 44 year olds is roughly constant and disjoint from the one for 43 and 45 year olds. The
predictions in each case rely on the observations from in the relevant age group.
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both groups, teachers and non-teachers, in every sub-sample and compare these av-

erages with the out-of-sample predictions of our models. In the model with no unob-

servable heterogeneity, in fourteen of the twenty sub-samples for at least one of the

two occupations, we reject the hypothesis that the predicted average is within the

confidence interval of the observed population average of that group. For the two and

three-type models, for seven of the twenty sub-samples we reject the hypothesis that

predicted teachers’ average earnings is within the confidence interval of the observed

population average. For four types we reject this hypothesis in five of the twenty

sub-samples, and for five types only in two of the twenty sub-samples. For every

other model, with six, seven, eight or nine types, we reject this hypothesis in one or

none of the twenty sub-samples. Thus we need at least five types to match average

earnings out of sample.

Additionally, we analyze the deviations of predicted from observed earnings by age

for the twenty sub-samples. We summarize this information in Figure 5. These are

unconventional graphs; they show the root mean squared error (square root of the

mean of deviations squared for the twenty sub-samples) from the one, two, five and

seven-type models. There is little difference between the models shown and the seven-

type model; so we do not present results from all models. We also omit ages below 23

and above 53 years where deviations are larger due to a small number of observations.

The “average deviations” depicted by age show a moderate decrease when comparing

the one-type model and any of the models with unobservable heterogeneity.

Finally, we apply our approach to predicting the characteristics of transitioning

individuals. In each case, we ask whether the prediction from the model matches

the population mean allowing for the confidence interval around the estimate of the

population mean but not the imprecision of the model estimate. We calculate the

t-statistic for the hypothesis that the population average equals the model point
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estimate.18 Table 9 shows the maximum t-statistic of the twenty draws for every cell

for the seven-type model. Since we are performing multiple tests, we use Bonferroni’s

correction. If there is no correlation among the tests, the adjusted critical value at the

5 percent confidence level is 3.0233. Since the tests are calculated with sub-samples

drawn from the same master sample there should be some correlation among tests,

so we can use 3.0233 as an upper bound and 1.96 as a lower bound. That is, we

definitely reject the hypothesis that model and data averages are the same for cells

with a t-statistic higher than 3.0233, and we definitely cannot reject (at the 0.05

level) the hypothesis that model and data averages are statistically equal for cells

with a t-statistic lower than 1.96. In the diagonal cells we definitely do not reject

that predicted and observed averages are equivalent. On the other hand we can clearly

reject the null for average AFQT and risk aversion of transitioning individuals. The

results are almost identical for all models.

6 Simulation

While structural modeling enables us to perform counterfactual experiments, the cred-

ibility of such experiments relies on the model being a ‘good enough’ approximation

of reality. When allowing for unobserved individual heterogeneity there are two risks.

If we do not allow for sufficient heterogeneity, the model is misspecified. If we allow

for excess heterogeneity, although the estimates remain consistent, our counterfac-

tual estimates may suffer from overfitting the original model. Therefore, choosing the

correct number of types is crucial, particularly if the results from simulations differ

depending on the number of types.

In this section we show that the conclusions from our counterfactual experiment
18Using standard errors clustered at the individual level.
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are highly sensitive to the number of types. Using our nine specifications we simulate

how teachers’ characteristics, in particular AFQT and risk aversion, would vary if a

different contract were offered. To assess the experiment’s ‘cost’ we also calculate

average earnings given the new environment. We are interested in analyzing the

change in teacher composition keeping quantity constant, that is we want to keep

average probabilities of being a teacher and a non-teacher unchanged. To achieve

this we adjust the constant terms in the log earnings equations for each simulation.

To be clear, we are not simulating an ideal policy. Such a policy would require

objective and/or subjective measures of teaching performance that are not available

in our data for teachers, let alone non-teachers. Instead we rely on the positive

relation between teaching and other skills to justify this experiment.

Our simulation considers a world in which salaries for teachers reward measured and

unmeasured abilities in the same way as those of non-teachers. These changes imply

an increase in the riskiness of the teaching occupation; there is much more variation

in earnings across types outside of teaching than within teaching. To replicate this

scenario we adjust several coefficients. First, we adjust teacher salaries so that they

are as responsive to AFQT (our measure of “observable ability”) and to schooling as

those for non-teachers. Then, we replace the coefficients on the unobservable types in

the log earnings equation for teachers with those from the non-teaching log earnings

equation. Finally, we set the coefficient on risk aversion in the teacher utility equation

equal to its value in the utility equation for non-teaching. We also adjust the constant

term so that the utility from teaching for individuals with the lowest risk aversion

measure is unaffected by the increased riskiness.19 We also raise teachers’ earnings
19We make this adjustment because we would not anticipate that the expected utility of risk-

neutral individuals to be affected by the increased riskiness. Given the phrasing of the question,
we know only that this group has a low degree of risk aversion and not that its members are risk
neutral.
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variance by setting the σA and σB parameters equal to the parameters estimated in

the non-teaching earnings equation. Due to the conversion from logs to levels, this

increases expected earnings in the selection equations.

In summary, we are changing: the risk aversion parameter in the teacher utility

equation and the AFQT, schooling, variance coefficients and types coefficients in the

teacher log earnings equation. Finally, we adjust the constant terms from log earnings

equations so that there is only a change in the composition of teachers and not in the

quantity (or average probability).

Table 10 shows the average effect of the simulation using the nine models. The re-

sults shown are the predicted averages of the simulation minus the predicted averages

of each model. Although we cannot compare whether the policy effects are statis-

tically different among models,20 the point estimates differ dramatically depending

on the number of types used, and the effects are not necessarily monotonic in the

number of types.

Average AFQT basically remains unchanged using the three-type model and in-

creases 0.36 standard deviations using the five-type model. The model with no un-

observed heterogeneity and the eight-type model suggest the policy would increase

average AFQT by 0.12 standard deviations.

Risk aversion, in turn, decreases by around 0.02 standard deviations with the one,

two, and three-type models and around 0.05 standard deviations with the seven, eight

and nine-type models. Yet, it decreases by more than 0.15 standard deviations with

the five and six-type models.

The changes in age, gender and race are negligible for the one through four-type

models and for the seven and eight-type models. With five types, the change in
20For instance, a Hausman test comparing the effects of the policy using the model with N and

N+1 types does not have the usual chi-squared distribution.
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average age is nontrivial. It is particularly striking that the share of males increases

dramatically in the simulation using the five and six-type models. And we see a very

notable decline in minority representation with five types and, to a lesser degree, with

six types. Interestingly, the differences in the simulation results when using the seven,

eight and nine-type models are rather small.

How much would such a change in policy cost? Here, again, the answer depends in

important ways on the amount of heterogeneity we allow. The smallest ‘cost’ occurs

when there are seven types, in which case average teaching salaries increase by $2,500

per year or 5.0%. The estimated costs are also modest with one type (5.4%) and

grow somewhat large with two (7.2%), three (6.8%), four (8.4%), eight (7.5%) or nine

types (6.2%). Our conclusions are strikingly different with five (18.4%) or six types

(20.3%).

What accounts for these differences? Once we have more than one type, a large

part of the change in the structure of earnings comes from the way that unobservable

types are rewarded. As we include more types, the magnitude of the largest earnings

gap for the type with the largest gap will tend to increase. This increases the value

of switching from non-teaching to teaching for the group that benefits most from the

change. Of course, this is not always the case, and the effect is partially offset by the

tendency for the proportion of individuals in each type to fall. Thus the effect need

not be monotonic. In our estimates and simulations with five and six types, we see a

large shift of the most highly paid group into teaching.

Consistent with this explanation, the disruption required to effect such a policy

is much greater in the simulations with five or six types. With one to three types

we estimate that 12% - 13% of teachers (weighted by teaching years) would leave

teaching. When juxtaposed with an annual turnover rate of about 7%, this strikes

us as manageable if the policy were phased in over an extended period. The level
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of turnover becomes somewhat more problematic (17% or higher) in the simulations

with four or more types.

While the degree of disruption varies dramatically among the simulations, all sug-

gest to varying degrees significant teacher resistance. In the homogeneous model,

34% of teachers (again weighted by years teaching) would be made worse off. With

four types this grows to a majority, and with six types almost reaches 80%. Even

though results are less extreme when we consider seven, eight or nine types, these

three models also estimate the majority of teachers would be made worse off. Even in

settings where teachers are not unionized, this would make a transition to this policy

difficult.

7 Conclusion

This paper contributes both to our substantive understanding of reforming teacher

compensation and to the practice of structural modeling.

With respect to the latter, it is widely recognized that the strength of structural

modeling is that it allows us to consider experiments that lie outside the data. It

is equally widely recognized that the validity of the experiment relies on the model

being (at least approximately) correct. We show that establishing that a model

fits well within sample is, at best, weak evidence that it is approximately correct.

Even showing by way of cross-validation that it fits well out-of-sample should not

be convincing. In our case, even a model with no unobserved heterogeneity appears

to fit well within sample and does reasonably well in cross-validation. It would be

easy to conclude that allowing for two or three types is adequate to fit the data.

But more formal methods do not support this conclusion. The Bayesian Information

Criterion favors seven types. When we rank models in terms of their performance in

26



cross-validation, we also conclude that we need many types. Even though we cannot

reject that eight types is better than seven or that nine types is better than eight,

in an informal sense, the differences between the two pairs of models are not large.

As we show, the conclusions we draw from our experiment can depend crucially on

choosing among models, all of which appear to fit well both within and out-of-sample.

Interestingly, the simulations with seven or more types (i.e., when approaching what

we believe is the requisite number of types) provide similar results.

On occasion, we have been asked why our model requires so much unobserved

heterogeneity. Our first response is that we only appear to require an unusually large

number of types because researchers have typically stopped when they were no longer

able to converge their models with more unobserved heterogeneity or when the in-

sample fit looked ‘good enough.’ Had we used the latter rule, we could easily have

concluded our search for a satisfactory model with far fewer than seven or nine types.

Our second response is that in some ways it should be surprising that we can fit the

data well with so few types. After all, we are trying to capture covariance among

four equation errors and serial correlation for these four errors. We might expect that

we would need at least ten types. And by some measures, we have indeed found that

even nine types is inadequate and have not shown that nine types performs better

out of sample than ten types would. While any strong conclusion must await similar

exercises with other structural models, our working hypothesis is that many policy

simulations rely on models that would not be ‘good enough’ if they were subjected

to the type of out-of-sample testing that is common in big data.

With respect to reforming teacher compensation, we establish that, among college

graduates, teachers are not only drawn disproportionately from the lower part of the

AFQT distribution, but they are also more risk-averse than their counterparts outside

teaching. When we allow for unobserved heterogeneity, the low mean AFQT score
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among teachers reflects not a low return to cognitive skill within teaching but low

returns to other skills, correlated with AFQT. The compression of earnings within

teaching attracts relatively risk-averse individuals.

We show that if it were possible to revise compensation in teaching to mimic the

return to skills and riskiness of the non-teaching sector, there would be a modest

increase in average teachers’ AFQT and a modest decrease in average risk aversion.21

However, such a shift would adversely affect many of those who are currently in

teaching and who would suffer large utility losses if they shifted out of teaching. This

makes the process of reform challenging.

21Both effects are statistically insignificant for models with enough heterogeneity.
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Table 1: Summary statistics

Teachers Non-teachers Not working
(1) (2) (3)

Earnings 51.1 76.6 -
in $1,000 (1.3) (1.4) -

Risk aversion 0.3008 -0.0389 0.0197
standardized (0.0178) (0.0071) (0.0346)

Schooling 17.4 16.8 16.7
in years (0.0) (0.0) (0.0)

AFQT -0.3061 0.0367 0.0518
standardized (0.0205) (0.0069) (0.0343)

Individuals 220 1050 371
Observations 2,591 20,464 825
Notes: Standard errors in parenthesis. An individual might be in all three
categories.

Table 2: Transition matrix (percentages)

t
Teacher Non-teacher Not working

t− 1
Teacher 93.3 5.2 1.5
Non-teacher 0.8 98.3 0.9
Not working 4.8 23.5 71.6

Table 3: Bayesian Information Criterion

BIC Difference

One type 24,880 -4,958
Two types 19,922 -1,765
Three types 18,157 -617
Four types 17,540 -142
Five types 17,398 -156
Six types 17,242 -138
Seven types 17,104 1
Eight types 17,014 118
Nine types 17,132
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Table 4: Occupation specific utility function parameters

One type Seven types
Coefficient Stand. Error Coefficient Stand. Error

All types Risk aversion Teachers 0.1042* (0.0600) 0.0960 (0.0732)
Non-teachers -0.0061 (0.0396) 0.0151 (0.0473)

Male dummy Teachers -1.1840*** (0.2853) -1.9248*** (0.4268)
Non-teachers -1.3417*** (0.2075) -1.1990*** (0.2651)

Age Teachers -0.3627*** (0.1014) -0.5071*** (0.1170)
Non-teachers -0.6878*** (0.0821) -0.8743*** (0.0985)

Age2 Teachers 0.0055*** (0.0014) 0.0075*** (0.0016)
Non-teachers 0.0091*** (0.0011) 0.0114*** (0.0013)

AFQT Teachers 0.0000 (0.0034) -0.0180*** (0.0048)
Non-teachers -0.0342*** (0.0028) -0.0382*** (0.0041)

Schooling Teachers -1.3067*** (0.0690) -1.6577*** (0.0771)
Non-teachers -0.8234*** (0.0491) -1.0115*** (0.0547)

Married dummy Teachers -0.4823** (0.2315) -0.0660 (0.3370)
Non-teachers -0.9525*** (0.1436) -0.7105*** (0.2294)

Married × male Teachers 1.0247** (0.5155) 1.3943** (0.6537)
Non-teachers 0.8969*** (0.3199) 0.5662 (0.3737)

Children dummy Teachers -0.5902** (0.2315) -0.1275 (0.2758)
Non-teachers -0.7278*** (0.1436) -0.6901*** (0.1841)

Children × male Teachers 0.6946 (0.4808) 0.3260 (0.5763)
Non-teachers -0.0254 (0.2981) -0.4097 (0.3470)

Occupation Teachers -2.2528*** (0.1621) -2.2169*** (0.1756)
switching cost Non-teachers -2.2973*** (0.1722) -2.2521*** (0.1816)

Cost of returning Teachers -4.6064*** (0.2328) -4.5773*** (0.2821)
to employment Non-teachers -4.4184*** (0.1126) -4.3267*** (0.1231)
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Table 5: Occupation specific utility function parameters by type

One type Seven types
Coefficient Stand. Error Coefficient Stand. Error

Type 1 constant Teachers 24.1067*** (1.9166) 28.9967*** (2.6967)
Non-teachers 23.7474*** (1.5050) 31.6067*** (2.2058)

E[w] 1.5810*** (0.1088) 0.9897*** (0.2626)
E[w]2 -0.0402*** (0.0041) -0.0061 (0.0092)

Type 2 interaction Teachers 1.6479 (2.1350)
Non-teachers -2.6042 (2.0928)

E[w] 3.2084*** (0.5728)
E[w]2 -0.1363*** (0.0516)

Type 3 interaction Teachers 6.4219*** (2.2981)
Non-teachers 1.0854 (2.4902)

E[w] 1.9310** (0.9432)
E[w]2 0.0298 (0.1094)

Type 4 interaction Teachers 4.5618** (2.0874)
Non-teachers -2.4229 (2.3522)

E[w] 0.8402*** (0.2367)
E[w]2 -0.0065 (0.0063)

Type 5 interaction Teachers -1.7169 (2.4202)
Non-teachers -8.8825*** (2.5508)

E[w] 2.4700*** (0.3433)
E[w]2 -0.0618*** (0.0118)

Type 6 interaction Teachers -2.4901 (1.8972)
Non-teachers -7.4707*** (1.8423)

E[w] 3.8278*** (0.3536)
E[w]2 -0.1642*** (0.0232)

Type 7 interaction Teachers -0.7483 (1.9378)
Non-teachers -6.1109*** (1.9234)

E[w] 2.4667*** (0.3142)
E[w]2 -0.0574*** (0.0165)

35



Table 6: Log earnings parameters

One type Seven types
Coefficient Stand. Error Coefficient Stand. Error

AFQT Teachers -0.0005** (0.0002) 0.0017*** (0.0003)
percentile Non-teachers 0.0041*** (0.0001) 0.0034*** (0.0003)

Schooling Teachers 0.1053*** (0.0046) 0.0878*** (0.0045)
Non-teachers 0.0689*** (0.0014) 0.0633*** (0.0025)

Male dummy Teachers 0.0332* (0.0180) 0.0906*** (0.0295)
Non-teachers 0.1590*** (0.0066) 0.0896*** (0.0140)

Married dummy Teachers 0.0186 (0.0209) -0.0223 (0.0225)
Non-teachers 0.0692*** (0.0090) 0.0296*** (0.0109)

Married × male Teachers 0.0665 (0.0543) -0.0123 (0.0497)
Non-teachers 0.0354*** (0.0118) 0.0493*** (0.0133)

Children dummy Teachers -0.1131*** (0.0215) -0.1511*** (0.0176)
Non-teachers -0.0507*** (0.0089) -0.0565*** (0.0098)

Children × male Teachers 0.0857 (0.0570) 0.1186*** (0.0446)
Non-teachers 0.1326*** (0.0112) 0.1469*** (0.0116)

Experience Teachers 0.0372*** (0.0036) 0.0397*** (0.0028)
teaching Non-teachers -0.0031 (0.0024) 0.0066*** (0.0017)

Experience Teachers -0.0004*** (0.0002) -0.0006*** (0.0001)
teaching2 Non-teachers 0.0011*** (0.0002) 0.0006*** (0.0001)

Experience Teachers 0.0266*** (0.0021) 0.0274*** (0.0020)
non-teaching Non-teachers 0.0811*** (0.0018) 0.0760*** (0.0016)

Experience Teachers -0.0008*** (0.0001) -0.0007*** (0.0001)
non-teaching2 Non-teachers -0.0016*** (0.0001) -0.0015*** (0.0000)

σA Teachers 0.2272*** (0.0163) 0.3743*** (0.0146)
Non-teachers 0.1948*** (0.0084) 0.2651*** (0.0052)

σB Teachers 0.0030*** (0.0004) -0.0042*** (0.0004)
Non-teachers 0.0083*** (0.0002) 0.0018*** (0.0001)

constant Teachers 8.5231*** (0.0835) 9.5617*** (0.0895)
Non-teachers 8.7513*** (0.0255) 9.1146*** (0.0450)

Notes: Trend, trend squared and race dummies were also included. Interactions for the the other six types
are not shown. 36



Table 7: Transition matrix of real and predicted choices (percentages)

t
Teacher Non-teacher Not working

t− 1

Teacher Data 93.3 5.2 1.5
Model 93.8 3.9 2.3

Non-teacher Data 0.8 98.3 0.9
Model 0.7 98.4 0.9

Not working Data 4.8 23.5 71.6
Model 4.3 23.9 71.8

Table 8: Average standardized risk aversion and AFQT transitions

t
Teacher Non-teacher Not working

t− 1

Teacher Risk aversion Data 0.3183 0.1624 0.1417
Model 0.3286 0.1729 0.2199

AFQT Data -0.3078 -0.4177 -0.3878
Model -0.3119 -0.2717 -0.1338

Non-teacher Risk aversion Data 0.1220 -0.0310 -0.1173
Model 0.1703 -0.0305 -0.0542

AFQT Data -0.3819 0.0413 0.0357
Model -0.2277 0.0382 0.0917

Not working Risk aversion Data 0.2488 -0.2116 0.0715
Model 0.2035 -0.0574 0.0512

AFQT Data -0.3660 0.0618 0.0601
Model -0.2962 0.1266 0.0472

Note: * means the population average is statistically different from the point estimate using SE
clustered at the individual level.
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Table 9: Maximum t-statistic of the 20 draws

t
Teacher Non-teacher Not working

t− 1

Teacher Risk aversion 0.3502 3.5865** 2.9524*
AFQT 0.6178 8.0887** 3.2988**

Non-teacher Risk aversion 3.3524** 0.3805 6.4889**
AFQT 6.5224** 0.4223 6.2087**

Not working Risk aversion 3.8296** 4.0250** 1.8906
AFQT 3.3307** 3.5502** 0.7637

Note: ** denotes cells where averages are statistically different, * denotes cells where aver-
ages could be statistically different.
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