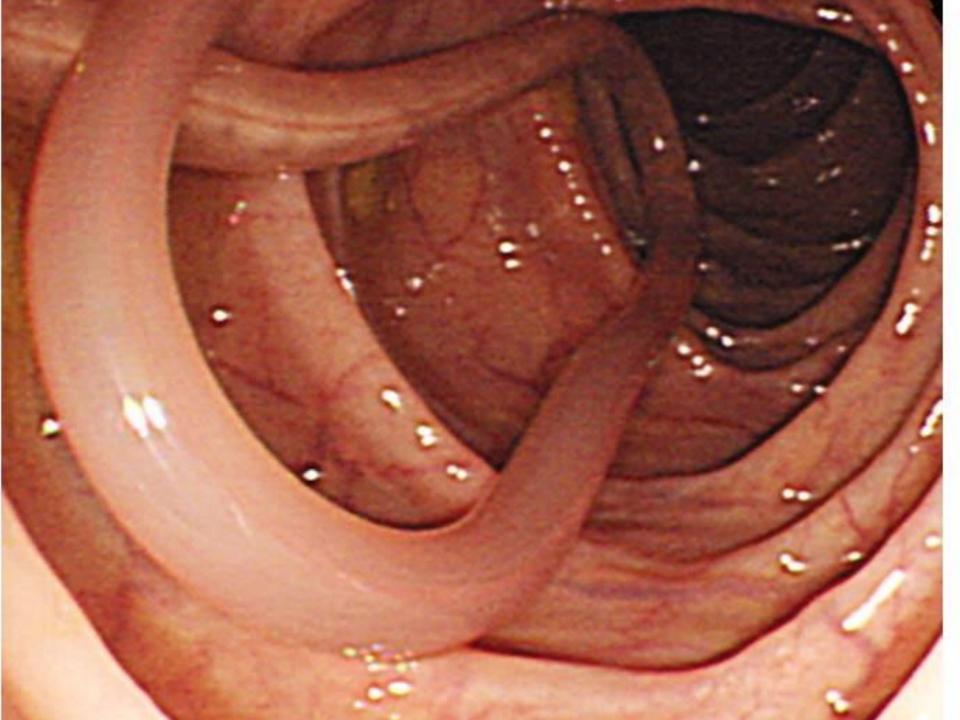
Worms: Identifying Impacts on Education and Health in the Presence of Treatment Externalities

Edward Miguel and Michael Kremer

Presented by: Jake Morgan


Miguel, Edward, and Michael Kremer. "Worms: identifying impacts on education and health in the presence of treatment externalities." *Econometrica* 72, no. 1 (2004): 159-217

Background

- Worms (hookworm, roundworm, whipworm, schistosomiasis) infect 1 in 4 people world wide
- Reinfection common
- Intervention in schools
 - Is cost justified? How?

Setting

- Kenya random treatment of schools over several years (1998-2001)
 - Groups 2 and 3 (treated in 1999 and 2001) serve as control in 1998 when group 1 is treated.
- Groups are similar
- Treatment plan: dose every 6 mos or 1 year depending on worm type to prevent reinfection. Also education

Simple Deworming Results

	Group 1	Group 2	Group 1 – Group 2
Panel A: Helminth Infection Rates			
Any moderate-heavy infection, January–March 1998	0.38	_	_
Any moderate-heavy infection, 1999	0.27	0.52	-0.25^{***}
			(0.06)
Hookworm moderate-heavy infection, 1999	0.06	0.22	-0.16^{***}
			(0.03)
Roundworm moderate-heavy infection, 1999	0.09	0.24	-0.15^{***}
			(0.04)
Schistosomiasis moderate-heavy infection, 1999	0.08	0.18	-0.10^{*}
			(0.06)
Whipworm moderate-heavy infection, 1999	0.13	0.17	-0.04
			(0.05)

Simple Spillover Results

Panel B: Other Nutritional and Health Outcomes			
Sick in past week (self-reported), 1999	0.41	0.45	-0.04^{**}
			(0.02)
Sick often (self-reported), 1999	0.12	0.15	-0.03^{**}
\ 1 //			(0.01)
Height-for-age Z-score, 1999	-1.13	-1.22	0.09^{*}
(low scores denote undernutrition)			(0.05)
Weight-for-age Z-score, 1999	-1.25	-1.25	-0.00
(low scores denote undernutrition)			(0.04)
Hemoglobin concentration (g/L), 1999	124.8	123.2	1.6
(8, _),			(1.4)
Proportion anemic (Hb < 100g/L), 1999	0.02	0.04	-0.02^{**}
((0.01)
			(3132)
Panel C: Worm Prevention Behaviors			
Clean (observed by field worker), 1999	0.59	0.60	-0.01
			(0.02)
Wears shoes (observed by field worker), 1999	0.24	0.26	-0.02
			(0.03)
Days contact with fresh water in past week	2.4	2.2	0.2
(self-reported), 1999			(0.3)

Econometric Specification

- Comparing across school, ability to control for withinschool externalities (peer effects, etc).
- Innovation across school externalities (sibling attend different schools)

Estimation Results

	helminth infection, 1999		
	(1)	(2)	(3)
Indicator for Group 1 (1998 Treatment) School	-0.25^{***}	-0.12^*	-0.09
	(0.05)	(0.07)	(0.11)
Group 1 pupils within 3 km (per 1000 pupils)	-0.26^{***}	-0.26^{***}	-0.11
	(0.09)	(0.09)	(0.13)
Group 1 pupils within 3–6 km (per 1000 pupils)	-0.14^{**}	-0.13^{**}	-0.07
	(0.06)		(0.14)
Total pupils within 3 km (per 1000 pupils)	0.11^{***}	0.11^{***}	0.10^{**}
	(0.04)		(0.04)
Total pupils within 3–6 km (per 1000 pupils)	0.13^{**}	0.13^{**}	0.12^{*}
	(0.06)	(0.06)	(0.07)
Received first year of deworming treatment, when		-0.06^{*}	
offered (1998 for Group 1, 1999 for Group 2)		(0.03)	
(Group 1 Indicator) * Received treatment, when offered		-0.14^{*}	
		(0.07)	
(Group 1 Indicator) * Group 1 pupils within 3 km			-0.25^*
(per 1000 pupils)			(0.14)
(Group 1 Indicator) * Group 1 pupils within 3–6 km			-0.09
(per 1000 pupils)			(0.13)
Grade indicators, school assistance controls, district exam score control	Yes	Yes	Yes

Any moderate-heavy

Implications

- Authors suggest that deworming reduces absenteeism by 25%
 - Literature has been mixed
- Measure of interest was attendence measured by NGO
 - How good is this?
- No effect on test scores

School Attendance

OLS	OLS	OLS
(1)	(2)	(3)

```
Moderate-heavy
  infection, early 1999
                              0.051^{***}
Treatment school (T)
                              (0.022)
                                         0.062^{***}
                                                   0.060^{***}
First year as treatment
  school (T1)
                                        (0.015)
                                                   (0.015)
Second year as treatment
                                         0.040^*
                                                   0.034^*
  school (T2)
                                        (0.021)
                                                   (0.021)
                                                   0.044^{**}
Treatment school pupils
  within 3 km
                                                   (0.022)
  (per 1000 pupils)
```


What does it all mean

- Cheap way to increase attendance (\$0.50/child – 0.14 of a year)
 - Human capital investment. With this magnitude?
 U.S. did it in the South
 - Net present wages up by \$30 (at a cost of \$9 w/teacher)
 - Externalities = \$15

Behavioral Economist

- How heavy is the cost of infection when many treatments (prevention) are free?
 - And what does this say about the education we want to increase?
- Is there some underweighting of the future? Influence of lower life expectancy? Inertia?

Worms: Identifying Impacts on Education and Health in the Presence of Treatment Externalities

Edward Miguel and Michael Kremer

Presented by: Jake Morgan

Miguel, Edward, and Michael Kremer. "Worms: identifying impacts on education and health in the presence of treatment externalities." *Econometrica* 72, no. 1 (2004): 159-217

