Fully Efficient Nonnegative Matrix Factorization

Mohammad Hossein Rohban

ISS Group, ECE Dept. Boston University

14 Dec. 2012

This presentation is some rephrasing of the 5^{th} section of the following paper :

 Arora, S., Ge, R., Kannan, R., and Moitra, A., "Computing a nonnegative matrix factorization, provably," In ACM Symposium on Theory of Computing (STOC), 2012.

2/15

Table of Contents

Preliminaries

Separability Assumption

Geometric Picture

Anchor Detection Algorithms

Noise Free Case Small Perturbation Case

Conclusions

Problem Definition

- Noise Free Case : Given a non-negative m × n matrix M, find m × r matrix A and r × n matrix W such that M = AW.
- Small Perturbation Case : Suppose M = AW, but instead of M, only a noisy version M' is given.
 - Assumption : $\|\mathbf{M}_i \mathbf{M}'_i\|_1 \le \epsilon$.
 - Goal : Find \mathbf{A}' and \mathbf{W}' such that $\|\mathbf{M}'_j (\mathbf{A}'\mathbf{W}')_j\|_1 \leq \mathcal{O}(\epsilon)$
- ▶ WLoG : Assume that **M** and **W** are row normalized.

Challenges

- The problem can be solved efficiently using SVD, if A and W are not required to be nonnegative.
- ► It has been recently shown by Vavasis that the problem is *NP*-hard.
- Under the mild separability assumption of A, Arora has shown that a very efficient algorithm exists to solve the problem.

Separability Assumption

Definition

Matrix **A** is a separable matrix, if for each column *i*, there exists some row f(i) for which the *i*th element is the only non-zero element in that row. These row indices are called *anchor rows*.

Picture Courtesy : A. Moitra, "Computing a Nonnegative Matrix Factorization - Provably," Dec. 2011.

Why Separability is important?

- After a proper permutation of its rows, A contains an identity matrix in itself.
- For each *i*, $f(i)^{\text{th}}$ row of **M** is just a copy of $f(i)^{\text{th}}$ row of **W**.
- ► If anchor rows are identified, **W** can be found exactly.
 - Hence we focus of anchor row detection in this presentation.
- Other rows of A can be identified easily using a linear program (under some assumption).

Picture Courtesy : A. Moitra, "Computing a Nonnegative Matrix Factorization - Provably," Dec. 2011.

Geometric Picture of the Problem

Definition

A nonnegative matrix \mathbf{W} is simplicial if no row in \mathbf{W} can be expressed as a linear convex combination of the remaining rows.

Lemma

If a nonnegative matrix M has a separable factorization $A\!W,$ then there is one in which W is simplicial.

This implies that anchor rows correspond to the extreme points of the convex hull containing other rows.

Geometric Picture of the Problem (cont.)

Picture Courtesy : A. Moitra, "Computing a Nonnegative Matrix Factorization - Provably," Dec. 2011.

Anchor Detection Algorithm (Noise Free Case)

Definition

The row \mathbf{M}_j is a *loner* if (ignoring other rows that are its copies), it is not in the convex hull of the remaining rows.

 Using Linear Programming, it is easy check whether a point is a loner.

Lemma

A row is a loner iff it is an anchor row (equal to some row \mathbf{W}_j).

Anchor Detection Algorithm (Small Perturbation Case)

- Why can't we just apply the previous algorithm?
 - There may be multiple copies of an extreme point.
 - Their distance to the convex hull the remaining rows may be indistinguishable with these distances for the ones on/near some face of the simplex.

Small Perturbation Case (cont.)

- ► Main idea : remove all points in an small ℓ₁ neighborhood of the point which is going to be tested, then check whether it is loner.
 - What should be the size of that neighborhood in order to guarantee a robust anchor row detection?
 - What is the right threshold for the distance of a loner to the convex hull of remaining rows?
 - How close would be the robust loners to the rows of W?

Mohammad Hossein Rohban, ISS Group, ECE Dept. Boston University

Small Perturbation Case (cont.)

Definition

W is called α -robust simplicial, if ℓ_1 distance of any row in **W** to the convex hull of the remaining rows is larger than α .

This condition holds (with high probability in terms of n) for many reasonable prior distributions on W.

Definition

A point \mathbf{M}'_j is called a *robust loner*, if ignoring rows that are within ℓ_1 distances of $d = 10\epsilon/\alpha + 2\epsilon$, its ℓ_1 distance to convex hull of the remaining rows be more than 2ϵ .

• Robust loners can be found using Linear Programming.

Main Facts about Robust Loners

Lemma

For all i, $\mathbf{M}'_{f(i)}$ will be a robust loner.

- Remind that $\|\mathbf{W}_i \mathbf{M}'_{f(i)}\|_1 \leq \epsilon$.
- Hence for this set of robust loners, the retrieved row is within $\epsilon \ \ell_1$ distance of the ground truth.

Lemma

If \mathbf{M}'_{j} has ℓ_{1} distance more than $d + \epsilon = 10\epsilon/\alpha + 3\epsilon$ to all $\mathbf{W}_{i}s$, then it can't be a robust loner.

- These two lemmas imply that
 - ► For all W_is, we retrieve at least one row of M' which is e close to it.
 - ► The other retrieved rows have distance less than O(ε/α) to some W_j.
 - $\blacktriangleright \ \epsilon$ should be small with respect to α to have reasonable estimation of ${\bf W}.$

Concluding Remarks

- Using row normalization + assuming simplicial second factor + Separability assumption implies the possibility of totally efficient NMF in the noise free case.
- Using same components as the previous one and assuming robust simplicial factor implies possibility of totally efficient approximate NMF in the small perturbation case.