Stability Analysis of Data and Image Domain Learning-based Reconstruction Approaches

M. Usman Ghani and W. Clem Karl

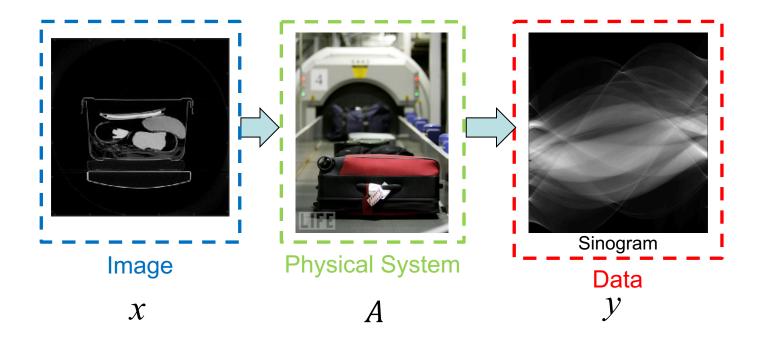
{mughani,wckarl}@bu.edu

Department of Electrical and Computer Engineering Boston University

Overview and Outline

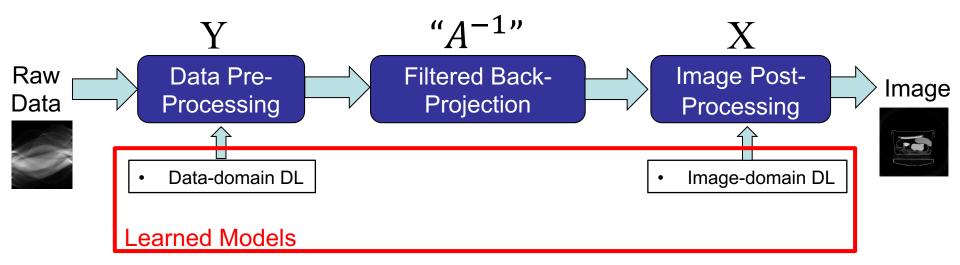
- Goal: Gain insight into robustness of some deep-learningbased reconstruction approaches
- Image Reconstruction and Learning
 - Data-domain Learning (DDL)
 - Image-domain Learning (IDL)
 - Data and Image-domain Learning (DIDL)
- Stability Analysis
 - Adversarial Perturbations
 - Random Perturbations
 - Structural Perturbations
- Summary

Image Reconstruction

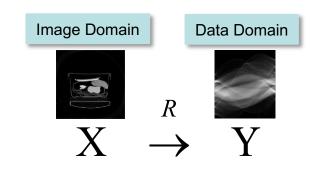


■ Model: y = Ax → Goal: make an image x from y

Deep Learning for Computational Imaging

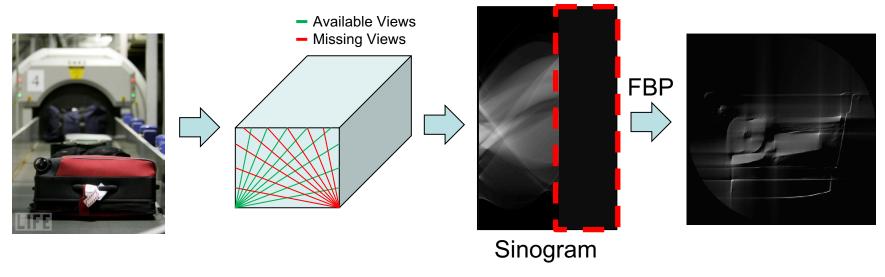


- Image Domain Learning: X→X mappings
- Data Domain Learning: Y→Y mappings
- Approaches considered:
 - Data-domain Learning (DDL)
 - Image-domain Learning (IDL)
 - Data and Image-domain Learning (DIDL)



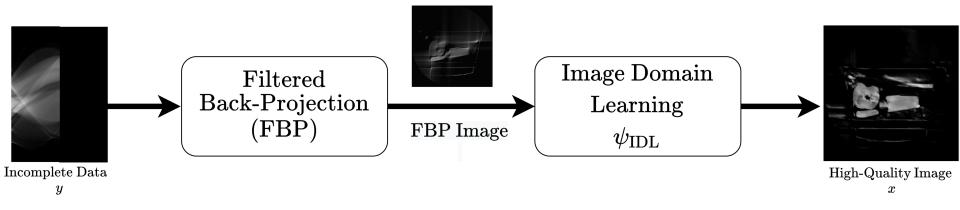
Limited Angle CT Example

- Security Systems with Non-rotational Scanning
- Imaging highly-dynamic scenes



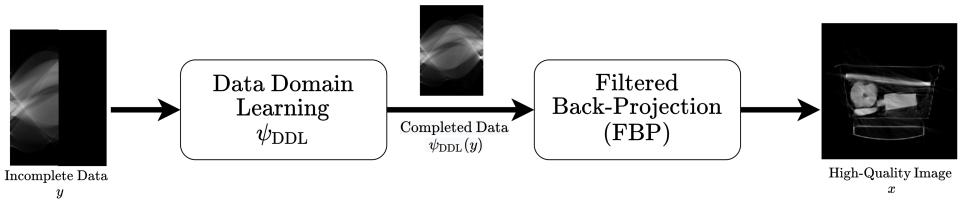
- Available Views: [0⁰, 90⁰]
- x = Reconstructed Image
- y = Incomplete sinogram data

Image-Domain Learning (IDL)



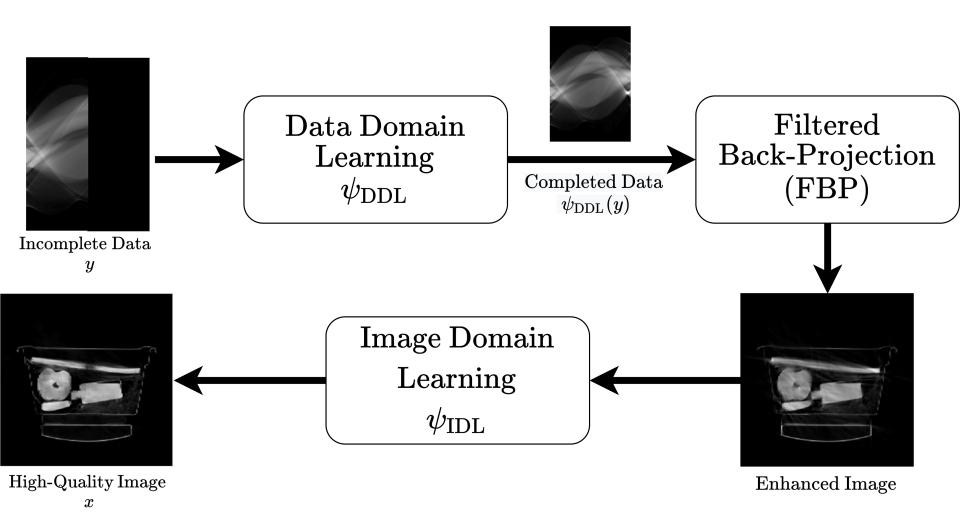
- Conventional reconstruction using incomplete data
- Image-domain post-processing using DL

Data-Domain Learning (DDL)



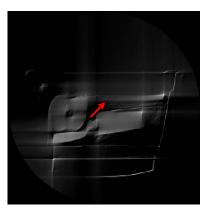
- Data-domain pre-processing using DL
- Conventional reconstruction using completed data

Data and Image-Domain Learning (DIDL)



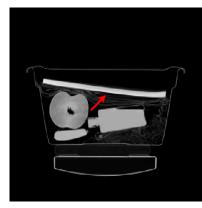
Limited-angle CT Results

FBP



Limited Angle Conventional Image

Reference

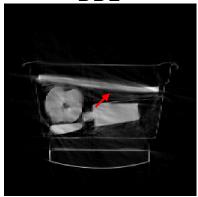


Full-view MBIR Reconstruction

IDL

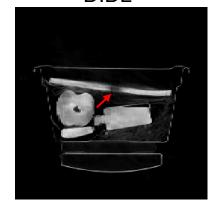
Post-processing Imagedomain Learning Only

DDL



Pre-Processing Data-Domain Learning Only

DIDL



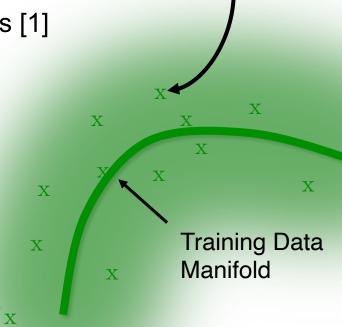
Decoupled Data and Image-Domain Learning

Stability Analysis

Stability Analysis

- 3 Perturbations Considered:
 - Adversarial: worst-case perturbations [1]
 - Random Perturbations [2]
 - Structural: small, significant structures [1]
- 90⁰ Limited-angle CT problem
- Analyzed approaches
 - Data-domain Learning (DDL)
 - Image-domain Learning (IDL)
 - Data and Image-domain Learning (DIDL)

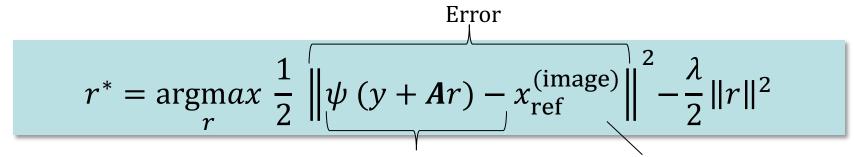
Evaluate at points away from training set Manifold



X

Adversarial Perturbations – Optimization

Finding the worst-case via optimization:



Perturbations

Perturbed Input to network

Reference Image



Reference

r_{IDL} Image-Domain Learning

r_{DDL}

Data-Domain

Learning

r_{DIDL}

Data and Image

Learning

Interpolate Nominal Input and Perturbation

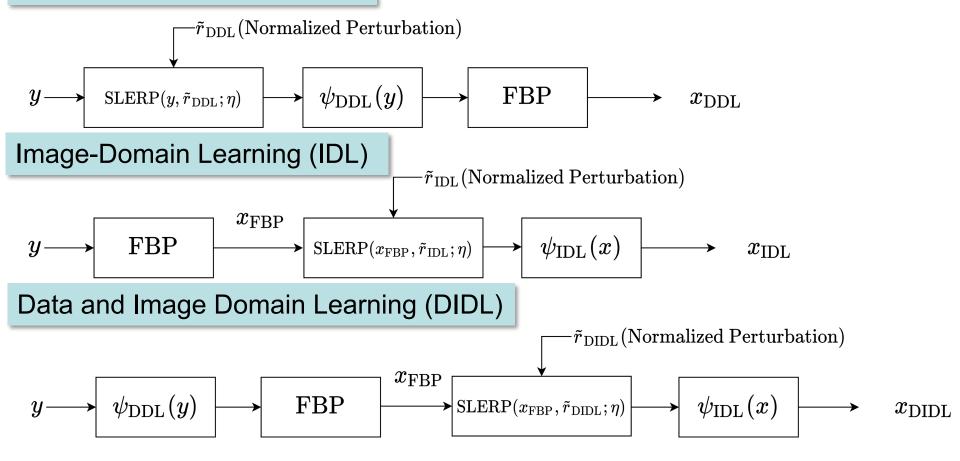


SLERP
$$(x, r; \eta) = \frac{\sin[(1 - \eta)\Omega]}{\sin \Omega} x + \frac{\sin[\eta\Omega]}{\sin \Omega} r$$

• η : relative perturbation contribution

Adversarial Perturbations – Application

Data-Domain Learning (DDL)



Random and Structural Perturbations

Random

- 100 instances of Gaussian Noise ~ N(0, I)
- Fix directions, normalize such that $\|\tilde{r}\| = \|x_{ref}\|$
- Perturb original image $\tilde{x} = SLERP(x_{ref}, \tilde{r}; \eta)$

Structural

Study learned biases by using anomalous structures

Structure from similar dataset	Shepp-Logan Phantom	Card suit symbols
Small text	 Large text 	Add two images

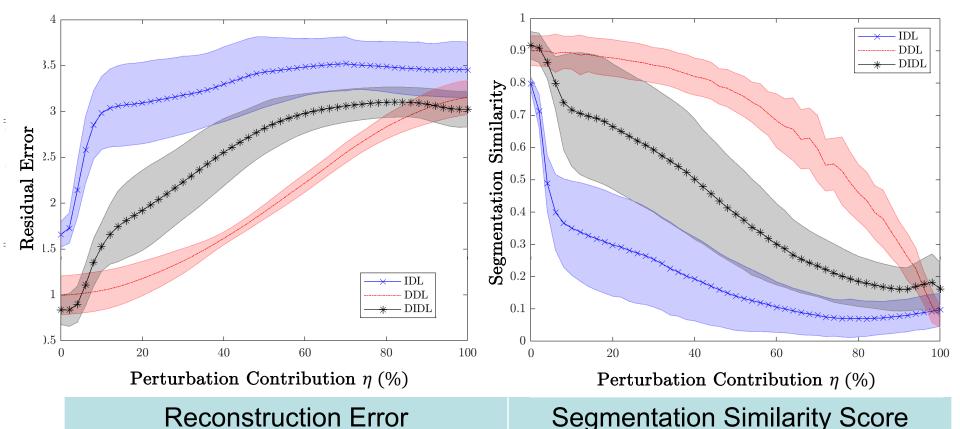
- Generated simulated observations $y = A \tilde{x}$
- K-means-based Segmentation with k=2

Results

Quantitative Results – Adversarial Perturbations

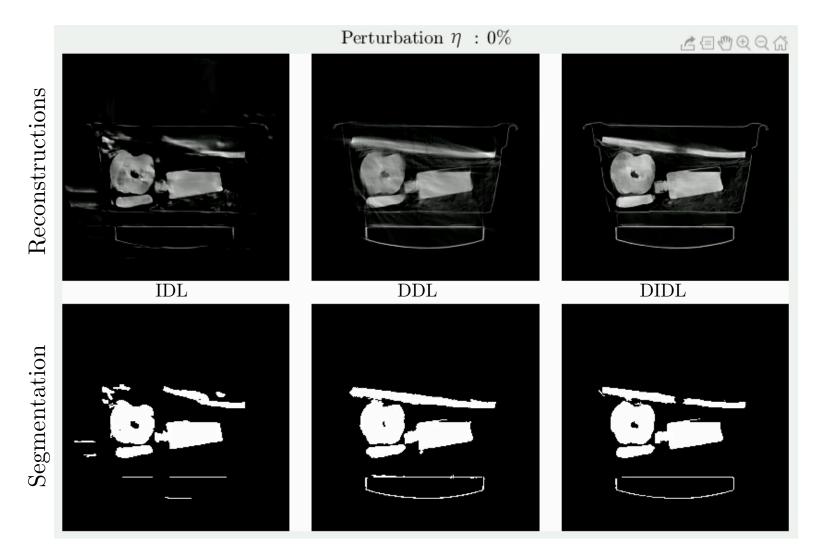
- Mean and STD computed over 10 examples
- Image-domain DL appears more sensitive

(Lower is better)



(Larger is better)

Qualitative Results – Adversarial Perturbations



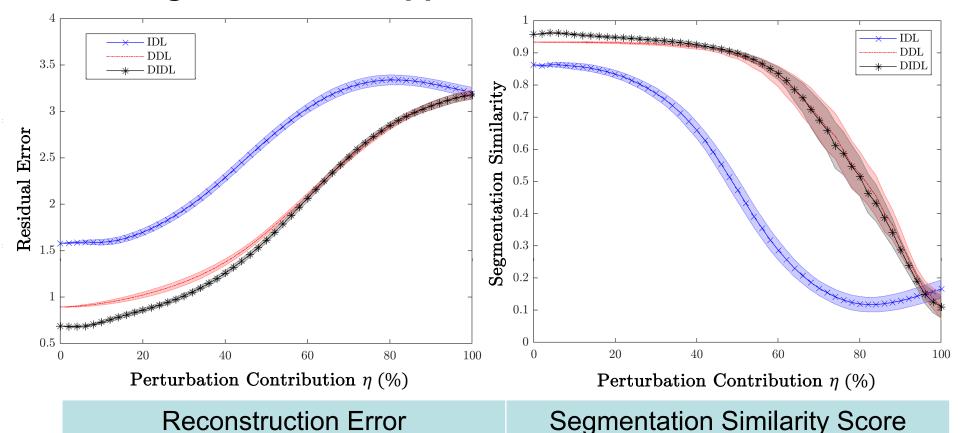
Quantitative Results – Random Perturbations

- Mean and STD computed over 100 noise instances
- Image-domain DL appears more sensitive

(Lower is better)

BOS

UNIVERSIT



(Larger is better)

Qualitative Results – Random Perturbations

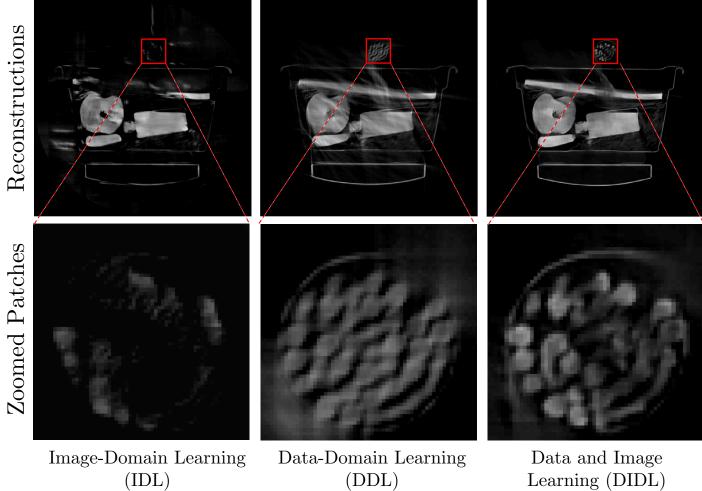
• Worst 1 out of 100 noise instances for each η

Perturbation η : 0% $\overline{\mathrm{DDL}}$ IDL DIDL

Reconstructions

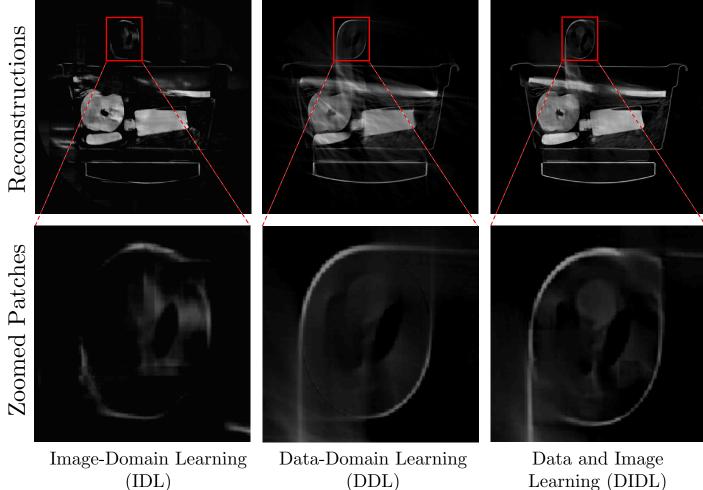
Segmentation

Structural Perturbations (1)



21

Structural Perturbations (2)



22

Summary

- Image post-processing
 - Gets severely damaged by adversarial perturbations
 - Produces ghost features in response to random Gaussian perturbations
 - Fails to reconstruct new structural features
- Performance of data-domain learning method seems to degrade more gracefully in face of all perturbations
- Combined Data and Image domain method have superior performance when perturbations (η) are contained

Thank You!

