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Abstract. We consider here the class of probability mass-function (PMF)
based detectors of least significant bit (LSB) embedded steganography.
That is, in this paper we investigate the use of frequency counts of pixel
intensities as a statistic for tests detecting the presence of hidden mes-
sages. We focus on LSB replacement (though we briefly consider LSB
matching) embedding as it is a simple technique where the effect on the
true PMF of the resulting image can be understood mathematically. We
begin our study by considering the existing tests of Westfeld and Pfitz-
mann [11] and Dabeer et al. [1]. These tests assume that pixel intensi-
ties are random values that are independent and identically distributed
(i.i.d.). We generalize these tests by considering PMFs of neighboring
pixel intensities. We argue that consideration of higher order of correla-
tions provide only diminishing marginal returns, and thus we can make
general statements on the value of PMF based detectors. We measure
the performance of our tests by calculation of receiver operating curves
(ROC) over a corpus of 350 digital images. We then proceed to com-
pare to a non-PMF based test, in particular the RS tests of Fridrich et
al [3]. Although our generalized tests outperform existing PMF based
predecessors, they are outperformed by the RS tests. This indicates that
using PMFs as a statistic for detecting hidden messages is inherently
insufficient.

1 Introduction

Steganography is the practice of hiding a message in a covertext. Figure 1 shows
an example of least significant bit (LSB) image steganography. While the images
appear the same, the LSBs of each pixel in the image on the right have been
replaced with a hidden message. Figure 2 depicts a block diagram in which
message MSG is encoded into a string of length N (the length of the covertext
in pixels). Random variable MN denotes the encoded message. A stegoencoder
takes MN , a covertext image denoted XN , and outputs a stegotext denoted YN .
The aim of steganalysis is to distinguish images with hidden messages from those
without. Specifically, given a sample image zN from either XN or YN , we want
to decide whether zN contains a hidden message or not.

? infohide@taverner.eecs.berkeley.edu. This research was supported by NSF under
grant CCR-0325311.



In this paper we consider the class of probability mass function (PMF) based
steganography detectors for LSB embedding. We restrict ourselves to PMF-based
detectors of LSB embedding because it is possible to develop mathematically how
the embedding impacts the PMF. By considering existing tests, and then gener-
alizing new tests, we are able to make statements about the entire class of such
detectors. Existing LSB PMF-based tests rely on an i.i.d. assumption about the
observation. Our new tests use a first-order memory model in order to capture
spatial correlations between neighboring pixels of the covertext. The advantage
of considering memory is that it allows for greater separation between the em-
bedded and covertext distributions. It is natural to believe that the greatest
advantage in considering memory would be seen by this first-order generaliza-
tion, and that further order increases would produce diminishing marginal gains.
Note that this paper primarily focuses on LSB replacement embedding, though
we briefly consider LSB matching.

(a) Normal (b) Embedded

Fig. 1. Example Photograph With LSB Embedding.

Our main contribution is to develop intuitions of how a higher order covertext
model affects PMF-based steganalytic performance. To this end, we develop a
first order memory generalization of the PMF covertext model and present three
new tests based on our model. The first test is a generalization of the χ2 test
proposed by Westfeld and Pfitzmann and used by Provos and Honeyman in
StegDetect [11] [8]. This test has the advantages of being simple and intuitive.
Our next two tests are generalizations of the memoryless tests of Dabeer et al.
[1]. The first of these generalizations is a blind test using the Kullback-Leibler
(KL) divergence. The test is blind in that the test makes no assumptions about
the specific the covertext. Our final test is an informed test, also based on the
KL divergence. The informed test assumes knowledge (possibly only partial) of
the covertext statistics. We build on the hypothesis testing framework of Dabeer
et al. to obtain our tests. By developing this framework, we are able to show
that our blind test is optimal for the class of first order memory models.
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Fig. 2. Embedding message MSG into covertext X to obtain stegotext Y

Our empirical results suggest that first order memory can lead to significant
gains in the case of χ2 tests, but only minor gains in the case of our blind tests.
Since the gains from the consideration of the correlation are only marginal, this
suggests that PMF based tests are inherently limited. When further comparing
our tests against a non-PMF based test (the RS test of [3]), we see that the
non-PMF based test exhibits far superior results, further discouraging the use
of PMF based tests.

This paper is organized as follows. We begin by discussing simple PMF image
models, define LSB replacement, and outline the hypothesis testing framework
in Section 2. In Section 3 we discuss our higher order empirical PMFs and we
introduce our covertext model and derive our new tests. Then, in Section 4, we
empirically evaluate our tests, the test of Westfeld and Pfitzmann, the tests of
Dabeer et al., and RS steganalysis. Finally, in Section 5 we consider LSB match-
ing embedding and provide an extension of our framework to this embedding
technique.

2 Background

In this paper, uppercase letters, such as X, refer to random variables, while low-
ercase letters, such as x, refer to instances of the corresponding random variable.
Boldface letters, such as p, refer to either vectors or matrices, with the meaning
clear from context. A superscript on a character indicates vector length. For ex-
ample, XN is a vector-valued random variable of length N , XN = (x1, . . . , xN ).

Throughout this work, we assume that images are 8-bit grayscale throughout,
with a set of pixel values from the alphabet A := {0, 1, . . . , 255}. Let P0 be the
set of all probability mass functions (PMF) on A. Let P ′ be the set of all joint
PMFs on A×A. Thus

P :=

{

p = (p0, p1, . . . , p255) ∈ R
256 : pi ≥ 0,

255
∑

i=0

pi = 1

}

P ′ :=











p =







p0,0 · · · p0,255

...
. . .

...
p255,0 · · · p255,255






∈ R

256×256 : pi,j ≥ 0,
255
∑

i=0

255
∑

j=0

pi,j = 1











We will often speak of the empirical PMF q(zN ) of a vector zN ∈ AN . The
empirical PMF q(zN ) on A is just the normalized histogram of the pixel values



in zN . Thus qi = ni
∑

nj
where nj is the number of occurrences of value j in zN ,

i.e. nj = #{k ∈ {1, . . . , N} : zk = j}. Given a matrix zN ∈ AN ×AN , the first

order empirical PMF q(zN ) on A×A is the normalized histogram of (N)(N−1)
2

pairs of pixel values in zN . We will omit the zN and write q when the meaning
is clear from context.

2.1 LSB Replacement

We now proceed to define LSB replacement embedding. While an image with
LSB replacement and the original image may be indistinguishable to the human
eye, the empirical statistics vary. One can see visual evidence of this by comparing
the histograms of pixel values between an original and a modified image; the
modified image displays a pronounced “stair-step” effect. Example histograms
for LSB replacement in which all pixels of an image have the least significant bit
replaced with message data are shown in Figure 3.
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(b) Zoomed 1D

Fig. 3. Histograms showing effect of LSB embedding at rate 1 in an 8-bit grayscale
image. Histograms from the original image are on the top row and histograms from the
embedded image are on the bottom row. The plateaus giving the “stair-step” effect its
name are pronounced in the embedded image.

When the LSB plane of the pixels are replaced with bits equally likely to be 0
or 1 (true at high rates), the probability of seeing the two pixel intensities whose
other bit planes are equivalent are averaged. This is responsible for the “stair-
step” character of embedded images. Though less pronounced at rates below one
embedded bit per pixel, the effect is still prominent enough to allow detection.
Below, we make this notion more precise by first defining LSB embedding of a
message and then giving properties that must hold for an embedded image.

Let mN be an encoded message, with mi ∈ {0, 1, ∅}. The special ∅ symbol
indicates a location of the message where no embedding is performed. For LSB re-
placement embedding at rate R, we define an encoding function FR : {0, 1}NR →



{0, 1, ∅}N ; this function “expands” an arbitrary message to N symbols with an
expected fraction 1−R of ∅ symbols. Let xN be an instance from the covertext
distribution XN . We then define the embedding function yN := E(mN ,xN ). In
the definition of this function below, we define only for the LSB plane, since all
other bit planes of yN are set equal to those of xN .

LSB(yi) =







1 if mi = 1
0 if mi = 0
xi if mi = ∅

If XN has PMF p ∈ P and we apply embedding yN = E(mN ,xN ) at rate
R, then Y will have the PMF pR ∈ PR given by

pR,2l = (1− R
2 )p2l + R

2 p2l+1

pR,2l+1 = R
2 p2l + (1− R

2 )p2l+1
, for l = 0, 1, . . . , 127 (1)

Notice that the larger the embedding rate R, the “smaller” the set of possible
PMFs PR (as shown by Dabeer et al. [1]). An alternative view of averaging over
groups of consecutive pixel intensities is to see that it limits the ratio between
those PMF values. The following relationships are derived.

R

2−R
≤

pR,2l

pR,2l+1
≤

2−R

R
, for l = 0, 1, . . . , 127 (2)

Thus we see that for all pR ∈ PR the ratio of pixel pairs is bounded. These
bounds explain the “stair-step” effect observed in the histograms, since they
limit how much pixels intensities within a group can deviate.

2.2 Hypothesis Testing

We now set up a hypothesis testing framework for tests to detect steganographic
embedding. First we define the hypothesis that data is not embedded as H0 and
the hypothesis that data is embedded at rate R as H1.

H0 : p ∈ P \ PR, H1 : p ∈ PR

A detector dN is characterized by the acceptance region A ⊆ AN :

d(zN ) =

{

H0 if zN ∈ A,
H1 otherwise.

We denote the false negative probability of a detector by P1 and the false
positive probability by P2. These probabilities are defined as follows

P1 := Pr[xN ← XN ,YN = E(xN ,mN ), zN ← YN : d(zN ) = H0]

P2 := Pr[zN ← XN : d(zN ) = H1]

Notice that the random variable MN depends on the message encoding used. For
detection to be nontrivial, the distribution over XN must not be in the set PR.



We do not model XN as a “random” distribution, thus we do not need to consider
a distribution over distributions; instead we assume that the distribution of XN

is not in PR. This assumption is one we must make for this class of tests to work,
and empirical results indicate that it is reasonable.

Now fix a constant λ > 0 and consider a sequence of detectors {d1, d2, . . .}.
The value of λ represents the false negative probability we are willing to tolerate,
while simultaneously wishing to minimize the false positive probability.

We seek a sequence of detectors that minimizes lim infN→∞−
1
N

log(P2) sub-
ject to the constraint lim infN→∞−

1
N

log(P1) ≥ λ . Let q be the empirical PMF
of a sample zN . Let D(q||p) be the Kullback-Leibler divergence between PMFs
p and q. Define D(q||PR) := minp∈PR

D(q||p). We consider a sequence of detec-
tors because by a result of Hoeffding we can specify a test which is asymptotically
optimal as N goes to infinity [5]. The optimal test is the following

dOPT (λ)(q) =

{

H0 if D(q||PR) ≥ λ,
H1 otherwise.

where q is the empirical PMF derived from a sample zN .

3 Steganography Tests

Name Threshold Condition PMF Type

Memoryless blind D(q||PR) ≥ λ Derived
StegDetect χ2(q||P1) ≥ λ Derived

Memoryless informed D(q||pR)−D(q||p) ≥ λ Provided
RS Steganalysis See [3] Not Applicable

(a) Existing Tests

Name Threshold Condition PMF Type

First-order blind D(q||PR) ≥ λ Derived
First-order χ2 χ2(q||P1) ≥ λ Derived

First-order informed D(q||pR)−D(q||p) ≥ λ Provided

(b) New Tests

Fig. 4. Summary of tests. In the charts above, the middle column gives the threshold
condition under which the tests outputs H0. In the last column in the charts above,
an explanation of which type of PMF the input is compared to is given.

In this section we present both existing tests and our extensions of them, a
summary is given in Figure 4. Note that each of these tests compares a derived
statistic to a threshold value λ. Specifically, in the following tests we compute a
statistic α ∈ R. Given a statistic α, the derived test dλ works as follows:

dλ =

{

H0 if α ≥ λ,
H1 otherwise.



Each of the tests below takes the empirical PMF q as an input. Further note
throughout this section we define 0/0 = 1 for convenience.

3.1 Properties of Neighboring Pixel PMFs

Before proceeding to the tests, we present background on first order memory
PMFs. The relation between a first order PMF p ∈ P ′ and an embedded first
order pR ∈ P

′
R is

pR,2l,2k = (1− R
4 )p2l,2k + R

4 p2l,2k+1 + R
4 p2l+1,2k + R

4 p2l+1,2k

pR,2l,2k+1 = R
4 p2l,2k + (1− R

4 )p2l,2k+1 + R
4 p2l+1,2k + R

4 p2l+1,2k

pR,2l+1,2k = R
4 p2l,2k + R

4 p2l,2k+1 + (1− R
4 )p2l+1,2k + R

4 p2l+1,2k

pR,2l+1,2k+1 = R
4 p2l,2k + R

4 p2l,2k+1 + R
4 p2l+1,2k + (1− R

4 )p2l+1,2k

(3)

for l = 0, 1, . . . , 127, k = 0, 1, . . . , 127

As in the memoryless case (Eq. (1)), where pixel intensities were considered in
groups of two, from Eq. (3) it is clear we now consider pixel intensities in blocks
of four (2×2). As with the memoryless case, bounds on the ratios between pixel
intensity frequencies can be generated for PMFs residing in PR.

R
4−3R

≤
pR,2l,2k+1

pR,2l,2k
≤ 4−3R

R
R

4−3R
≤

pR,2l+1,2k

pR,2l,2k
≤ 4−3R

R
R

4−3R
≤

pR,2l+1,2k+1

pR,2l,2k
≤ 4−3R

R

R
4−3R

≤
pR,2l+1,2k

pR,2l,2k+1
≤ 4−3R

R
R

4−3R
≤

pR,2l+1,2k+1

pR,2l,2k+1
≤ 4−3R

R
R

4−3R
≤

pR,2l+1,2k+1

pR,2l+1,2k
≤ 4−3R

R

(4)

As in the memoryless case, examining histograms of images with high rate LSB
embedding gives visual evidence that empirical statistics differ. Figure 5 exhibits
the “blockiness” induced by the PMF averaging of high rate embedding.

3.2 Chi-Squared Tests

In order to obtain a PMF for the basis of comparison, χ2 tests calculate p∗. p∗

is by applying Equations 1 and 3 (respective of PMF dimension) at rate R = 1.
Once p∗ is generated, a χ2 distance from the empirical PMF is measured. The
formula for a χ2 distance is

χ2(p,q) =
255
∑

i=0

(qi − p∗i )
2

p∗i

In this section, we also discuss the Westfeld and Pfitzmann statistic used by
StegDetect here [11] [8]. StegDetect does not explicitly generate a comparison
PMF but, as we show, is equivalent to the χ2 test.

The StegDetect test of Westfeld and Pfitzmann[8] is defined here.

α =
127
∑

k=0

(q2k+1 − q2k)2

q2k+1 + q2k
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Fig. 5. Two-dimensional histograms of normal and embedded images. Note the “block-
iness” effect in the histogram for the embedded image.

The memoryless χ2 test is defined as follows.

α = χ2(p
∗,q) =

255
∑

i=0

(qi − p∗i )
2

p∗i

p∗2k = p∗2k+1 =
q2k+1 + q2k

2
, for k = 0, 1, . . . , 127

Finally, the first order χ2 test is as follows.

α = χ2(p
∗,q) =

255
∑

i=0

255
∑

j=0

(qi,j − p∗i,j)
2

p∗i,j

p∗2l,2k = p∗2l+1,2k = p∗2l,2k+1 = p∗2l+1,2k+1 = (q2l,2k+q2l+1,2k+q2l,2k+1+q2l+1,2k+1)/4

for l = 0, 1, . . . , 127, k = 0, 1, . . . , 127

As can be seen above, the first order χ2 test is the natural extension of its
memoryless χ2 counterpart. All three tests have the advantage of being compu-
tationally simple and easy to implement. Since these tests do not consider rate,
however, they suffer when lower embedding rates are employed.

The StegDetect and the memoryless χ2 test are in fact the same test, as
proven mathematically below.

χ2(p
∗,q) =

255
∑

i=0

(qi − p∗i )
2

p∗i
=

127
∑

k=0

(

(q2k − p∗2k)2

p∗2k

+
(q2k+1 − p∗2k+1)

2

p∗2k+1

)

(5)



=
127
∑

k=0

(q2k −
q2k+q2k+1

2 )2 + (q2k+1 −
q2k+q2k+1

2 )2

q2k+q2k+1

2

(6)

=

127
∑

k=0

(q2k − q2k+1)
2 + (q2k+1 − q2k)2

2(q2k + q2k+1)
=

127
∑

k=0

(q2k − q2k+1)
2

q2k+1 + q2k

(7)

3.3 Blind Tests

Unlike the test above, our “blind” tests (blind of the covertext PMF) require
knowledge of the rate R. Following our hypothesis testing framework, this test
finds the distance between the observed PMF and the set of rate R embedded
PMFs Pi

R. Our memoryless Blind tests uses the statistic α = D(q||PR) while
our first order Blind test uses α = D(q||P ′

R).
The difficulty of computing these statistics efficiently lies in finding the PMF

p ∈ PR (or p ∈ P ′
R) that is closest to the observed PMF in PR or PR respectively.

For the memoryless case, Dabeer et al. gave an algorithm for calculating the PMF
p∗ that minimizes this distance [1]. Pseudocode is given in Figure 6. Intuitively,
this algorithm checks each set of PMF values to see if they violate Eq. (2). In
the case that the conditions are not violated, the values of p∗ are set equal to
q. If the conditions are violated though, the ratio of the two values are set equal
to the violated bound while their sum is held constant.

For the first order memory test, the algorithmics become more involved. Let
q denote the observed first order PMF. Pseudocode for computing p∗ is shown
in Figure 7.

Algorithm 3.1: FindPStarMemoryless(q)

for l← 0 to 127
if

q2l+1

q2l
> 2−R

R

then p∗

2l = R

2
(q2l + q2l+1)andp∗

2l+1 = (1− R

2
)(q2l + q2l+1)

else if
q2l+1

q2l
< R

2−R

then p∗

2l = (1− R

2
)(q2l + q2l+1)andp∗

2l+1 = R

2
(q2l + q2l+1)

else p∗

2l = q2l and p∗

2l+1 = q2l+1

Fig. 6. Algorithm for computing p∗ for memoryless sources.

In this code, if a 2×2 block of pixels does not violate the conditions of Eq. (4),
then the block is transferred to the p∗. If the conditions of Eq. (4) are violated,
then the values of q are scaled so that the block satisfies those conditions while
maintaining the same summation and relative scale. By following this procedure,
the distance between the observed PMF q and the set PR is found.

These tests have two significant advantages over the simple χ2 tests presented
earlier. First, they are able to exploit knowledge of the rate R. This allows for
strong performance at all rates. Second, the KL divergence is a more complete
“distance” then the χ2 metric.



Algorithm 3.2: FindPStarMemory(q):
for l← 0 to 127
for k ← 0 to 127

Q← {q2l,2k, q2l,2k+1, q2l+1,2k, q2l+1,2k+1}
{w1, w2, w3, w4} ← SortHighToLow(Q)
if w1

w4
> 4−3R

R
then

w̃i ← 4
(

wi−w4

w1−w4

)

(

1−R

R

)

+ 1

ŵi ← w̃i

∑4
j=1 wj

∑

4
j=1

w̃j

W̃ ← {w1, w2, w3, w4}

{p∗

2l,2k, p∗

2l,2k+1, p
∗

2l+1,2k, p∗

2l+1,2k+1} ← InvertOrderOfSortOperation(W̃ )
else {p∗

2l,2k, p∗

2l,2k+1, p
∗

2l+1,2k, p∗

2l+1,2k+1} ← {q2l,2k, q2l,2k+1, q2l+1,2k, q2l+1,2k+1}

Fig. 7. Algorithm for computing p∗ for first-order sources.

3.4 Informed Tests

In addition to the empirical PMF and target rate, “informed” tests take in
information on the covertext PMF p. These tests compare the KL distances from
both the given distribution and the rate R expected embedded distribution. For
the memoryless case, the test takes in an input PMF p and observed PMF q

and then runs as follows.

– Calculate the PMF pR ∈ PR which would result if we applied rate R em-
bedding (with a random message) to a covertext with PMF p ∈ P. This can
be done according to Equation 1.

– Calculate α = D(q||pR)−D(q||p).

The first order memory case can be described similarly to the memoryless case.
The test takes in an input PMF p and observed PMF q and then runs as follows.

– Calculate the PMF pR ∈ P
′
R which would result if we applied rate R em-

bedding (with a random message) to a covertext with PMF p ∈ P ′. This
can be done according to Equation 3.

– Calculate α = D(q||pR)−D(q||p).

Note that these tests opperate even if p is only an approximation to the true
distribution of the covertext. The tests are robust to small errors in p; however,
the quality of the test is limited by the quality of the supplied distribution.
Careful choice of distribution is crucial when using an informed test.

4 Empirical Results for LSB Replacement

We calculated these tests on a set of 350 images chosen from a larger corpus of
2977 Portable Network Graphics (png) images obtained from Sullivan et al. [2].
We embed at 3 rates; R = 0.05, R = 0.5, and R = 1.0. The messages were



generated randomly according to a Bernoulli(1/2) i.i.d. random process. We ran
each of the tests given in Section 3 on the embedded images.

Based on this data, receiver operating curves (ROC) were generated by calcu-
lating false negative and positive rates from a variety of thresholds. We provide
the resulting ROCs in Figure 9. In the ROC plots, the results for the χ2 tests (on
the left) and the blind tests (on the right) at Rates 0.5 and 0.05 are presented.
The memoryless tests are plotted with solid lines while the memory model tests
are plotted with dashed lines. The R = 0.05 results are always higher in the plot.
For every test on the rate R = 1 embedded data, the ROC curves are nearly
ideal. Since these would be difficult to see in the plots, they have been omitted.

As expected, StegDetect and the memoryless χ2 tests resulted in the same
parameter value. As a result, the StegDetect lines are omitted below. Further, we
see that the memory version of the χ2 square test outperforms the memoryless
version at rate R = 0.5. Since R = 0.05 is such a low rate both tests perform very
poorly, though moderate performance gain from the memory test is observed.

The memory blind test outperforms the memoryless blind test at rate R =
0.5. Here, the improvement in performance is less significant though, and they
perform nearly identically for large false negative rates. As with the χ2 tests,
both blind tests perform nearly identically for R = 0.05, with the memoryless test
slightly outperforming the memory test. Both tests perform poorly though due
to the low rate. Note that at each rate, the blind tests outperform the χ2 tests.
This agrees with intuitions, since the χ2 tests assume rate R = 1 embedding.

The prior distributions we chose were obtained by averaging all the PMFs
within our image corpus. Unfortunately, because our corpus is large, the re-
sulting prior PMF did not match any single image well. In Figure 8 we show
histograms of the prior distribution used for the informed test and the histogram
of a particular image file to illustrate these differences. As a result of the choice
of prior distribution we made (though it was the natural choice), each informed
tests performed very poorly at every rate. Each time, the test results were nearly
equivalent to random guessing. This suggests that proper choice of prior distri-
bution for the informed test is essential.

Finally, we comment on the results of RS steganalysis. Our results showed RS
steganalysis performing well in all cases, showing ideal or near ideal performance.
We were able to draw two tentative conclusions from this result. First, the RS
test has an advantage by trying to estimate the rate at which the embedding
occurred as opposed to a parameter off which to make a decision. Second, there
seems to be an advantage in working off the true data instead of the PMF as
a summary statistic. This would suggest that a better model for steganalysis
would be to include even higher order relationships, as the RS test does.

5 LSB Matching

Above, we have focused exclusively on LSB replacement embedding. An alternate
form of LSB embedding is LSB matching [7]. In this section we briefly describe
LSB matching and describe some results of our steganalysis framework against
LSB matching on a corpus of digital camera images. As before, we encode a
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Fig. 8. Comparison of PMF used for informed test (a) and a sample PMF for a natural
image (b). As can be seen in the image on the left, by averaging over the entire corpus
of images a roughly flat PMF is achieved, significantly differing from the empirical
PMF of any actual image.

message MSG into mN at rate R with mi ∈ {0, 1, ∅}. LSB matching is defined
as follows:

yi =







xi ± 1 if LSB(yi) 6= mi

xi if LSB(yi) = mi

xi if mi = ∅

Whenever xi is not one of the extreme values (i.e., xi ∈ {0, 255}) the choice
between addition and subtraction is made at random (each option being equally
likely).

The effect of LSB matching on the PMF of an image contrasts with that
of LSB replacement. Instead of the “stair-step” effect induced by replacement,
LSB matching has a smoothing effect. Ignoring the “edge-effects” due to the
embedding rule at the extreme values of the PMF, we can write pR as a filtered
version of p.

For memoryless PMFs pR = p ∗ f
For neighboring pixel PMFs pR = p ∗ f ∗ fT

where f = (R/4, 1−R/2, R/4)

In these equations, the symbol ∗ denotes convolution and the superscript fT in-
dicates transpose. Since embedding is done on a pixel by pixel basis, the neigh-
boring pixel PMF equation consists of a convolution on each dimension. As can
be seen by examining this filter, the filter is a moving average filter and thus has
a smoothing effect. As with LSB replacement, as the rate increases the space of
possible PMFs shrinks.

It is clear that simply applying the tests above designed for LSB replacement
will be sub-optimal. In Figure 10 we demonstrate the results of applying our
tests to 50 digital camera images. We note that the RS steganalysis offers no
performance advantage at rate 1 and performs slightly worse than our tests at
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Fig. 9. ROC Curves for our tests applied to LSB replacement, over 350 digital camera
images. In each of these plots, the rate R = 0.5 are plotted in a darker shade while the
rate R = 0.05 are plotted in a lighter shade (and are consistently higher in the plot). In
addition, memoryless tests are plotted with solid lines while memory tests are plotted
in dashed lines. Results for all other tests are omitted for clarity.

rate 0.5. This is because RS steganalysis takes advantage of structural properties
that are present only with LSB replacement and not LSB matching. Ker gives a
more detailed overview of these properties [6]. Developing optimal tests for LSB
matching (particularly in the blind case) is a part of ongoing work.

6 Related Work
Early work in detection of LSB embedding was done by Westfeld and Pfitzmann,
who proposed a χ2 test for detection [11]. Later, Westfeld introduced a general-
ization of the χ2 test that succeeds even at low embedding rates; this test works
by “hashing” parts of the image into different combinations, then running a test
on each individual combination [10]. Westfeld also pointed out the possibility of
estimating the length of embedded data, which our tests do not provide.

Provos and Honeyman created the StegDetect system and searched millions
of pictures from the Internet looking for steganographic embedding using the
Westfeld and Pfitzmann test [8]. Dabeer et al. introduced the hypothesis test-
ing framework and proved the KL divergence test is the optimal LSB detector
for memoryless covertext distributions [1]. Fridrich et al. analyzed the RS test,
which takes into account spatial correlations of individual pixels [3]. Fridrich and
Goljan later proposed another method based on local estimators that has similar
performance to the RS test, but admits a cleaner theoretical derivation [4].

7 Conclusions and Future Directions

The gains achieved by considering the first order memory model over a mem-
oryless assumption suggest that the extensions to higher-order memory models
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Fig. 10. ROC Curves for our tests on LSB matching, over 50 digital camera images.
All embedding was performed at rate 1 and rate 0.5. Memoryless tests are plotted with
solid lines while memory tests are plotted in dashed lines. The RS test curve for each
rate is included on all graphs.



for images would be of only limited value. Although offering the advantage of a
rigorous mathematical framework, PMF based steganalysis seems inferior to RS
steganography, at least on the class of test images we have considered. One area
to explore would be other cover text models, such as the graphical Wainwright-
Simoncelli-Willsky wavelet tree model [9]. Such a model may offer advantages in
generating sufficient statistics for steganography since the model is not restricted
to pixel intensity frequency counts.
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