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e Quantum Monte Carlo
— Zero temperature methods
— Path Integral methods

e The “sign problem”




Variational Monte Carlo (VMC)

(McMillan 1965)
Put correlation directly into

the wavefunction. * Posit a wavefunction ¥(R,a)
Integrals are hard to do: need e sample |¥ (R,a)|> with

MC. random walk.

VMC has no sign problem,  minimize energy or variance of
and classical complexity ¥ (R,a) with respect to a
Take sequence of increasingly e Zero variance principle
better wavefunctions.

isntq(:)%r}?asﬁitc! optimization Is e(R)=Y(R)" HY(R) = residual

Progress in optimization, R)>‘T2‘ 0> =(8e(R)’)

multiple determinants, tensor ‘\112‘
networks,....

Can we make arbitrarily ~24 )
accurate functions? Method Y, (R)= Det{¢. (l’j )}8 /

of residuals says how to do "
. —<e >
this. ¥ (R)=¥ (R)e

smoothing



Dependence of energy on wavefunction

3d Electron fluid at a density r,=10
Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998

Wavefunctions -0.107
— Slater-Jastrow (SJ) ]
— three-body (3) -0.1075 A
- backflow (BF) >
— fixed-node (FN) \w
Energy <f |[H| f> conve to H
ground state _0.1085 -
Variance <f [H-E]2 f> t:gj:N
Temple inequality relates energy and -0.109 E |
variance 0 0.05
Using 3B-BF gains a factor of 4. .
Variance

Using DMC gains a factor of 4.
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Bayesian methods can provide tight upper and lower bounds



Projector Monte Carlo
e.g. Diffusion Monte Carlo (DMC)

Automatic way to get better wavefunctions.
Project single state using the Hamiltonian
W(R,t)=e "P"P(R,0)
This is a diffusion + branching operator.
But is this a probability?

Yes! for bosons since ground state can be made real
and non-negative. But all excited states must have sign
changes.

In exact methods one carries along the sign as a weight
and samples the modulus. This leads to the famous

sign problem o(t) = e P sign(@(R,0)) | #(R,0) |

Zero variance principle still applies: fluctuations only
due to trial function error.




Model fermion problem: Particle in a box

Symmetric potential: V(r) =V(-r)
Antisymmetric state: ¥(r)=-¥(-r)

Initial (trial) state Final (exact) state

Negative walkers

Sign of walkers fixed by initial position. They are allowed to diffuse freely.

Y (r)= number of positive-negative walkers.
Node 1s dynamically established by cancellation of positive and negative

walkers.



Scaling in Released-Node
Initial distribution Later distribution

e At any point, positive and negative walkers will tend to
cancel so the signal is overwhelmed by the fluctuations.

e Signal/noise ratio is : e ‘Fr-Fel t=projection time

E: and E; are Fermion, Bose energy (proportional to N)
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Cancellation Methods

Keep exactness and try to improve the scaling by coupling
positive and negative walkers.

Let plus and minus walkers annihilate when they are
“close.” (Arnow, 1980)

“Closeness” defined in 3N dimensions:
N

|R_R'|2= (l‘i_ri')2 <N

The density is too low in many dimensions
growth rate >> death rate.

The number of walkers needed to achieve dynamical stability
grows exponentially in N.

You do not both solve the sign problem and have a scalable
algorithm.

Alavi (2009) FCI-QMC: Work in a finite second quantized
basis..

Can we guide oppositely signed walkers together to
annihilate?



Fixed-node method

e Impose the fixed-node BC

condition: ¢(R)=0 when v (R)=0.

e Will give an upper bound to the
exact energy, the best upper E, 2k, 2k

bound consistent with the FNBC. E, =E, if ¢ (Rw(R)=0 allR

e®(R,t) has a discontinuous gradient at the nodal location.
eAccurate method because Bose correlations are done exactly.
eScales like the VMC method, as N2 or better.

eBut we need to know the nodes!



Summary of T=0 methods:

Variational(VMQC),
Fixed-node(FN),
Released-node(RN)
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“"Direct” Fermion Path Integrals

e Path integrals map quantum mechanics into a system of cross-

linking closed “polymers. 4 quantum paths

ES<R Ri,p)

Z= E‘ ~[dR,..dR e 7 >

Ro= PRM, P permutation,
S(R;, R, ) is "boltzmannon action”

e Bosons are easy: simply sample P.
e Fermions: sample the “action” and carry (-1)F as a weight.
e Observable is even P - odd P. scales exponentially in N and T-1!

CPUtime o< g 2N #rHelksl



Generalizations of Fixed-Node method

e Positive temperature: restricted fermion path integrals.
Similar to zero temperature method: Exact nodes imply exact
answer.

e Lattices with auxiliary fields (Fahy, Zhang ...). Requires
projection on a Slater determinant to be always positive.

Some methods require magnitude of trial function to be correct,
not just the nodes:

e Magnetic fields or complex wavefunctions: fixed-phase
method. (Ortiz et al., Carlson) Input phase and solve for
modulus.

e Lattice fixed-node: (Bemmel et al). Requires trial function
“near” the sign changes.

Can we do quantum dynamics with fixed-node?



General statement of the
“fermion problem”

e Given a system with N fermions and a known Hamiltonian and a
property O (usually the energy):

- How much time T will it take to estimate O to an accuracy &?
— How does T scale with N and €?

e If you can map the quantum system onto an equivalent problem
in classical statistical mechanics then:

T < N%™ With 0 <o < 3

This would be a “solved” quantum problem!

All approximations must be controlled.
*Algebraic scaling in N.

Materials problem: “Solve” electronic structure problems
with “chemical accuracy” (<<300K /atom) on systems
containing thousands of electrons with available computer
power.




