
•  Quantum Monte Carlo 
–  Zero temperature methods 
–  Path Integral methods 

•  The “sign problem”  
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Variational Monte Carlo (VMC) 
(McMillan 1965) 

•  Put correlation directly into 
the wavefunction. 

•  Integrals are hard to do: need 
MC. 

•  VMC has no sign problem, 
and classical complexity 

•  Take sequence of increasingly 
better wavefunctions. 
Stochastic optimization is 
important!  

•  Progress in optimization, 
multiple determinants, tensor 
networks,…. 

•  Can we make arbitrarily 
accurate functions? Method 
of residuals says how to do 
this. 

•  Posit a wavefunction Ψ(R,a) 
•  sample |Ψ (R,a)|2 with           

random walk. 
• minimize energy or variance of 
Ψ (R,a) with respect to a 

•  Zero variance principle  

 e(R) ≡ Ψ(R)−1HΨ(R) = residual       
EV = e(R)

Ψ2    σ 2 = δe(R)2

Ψ2
 

Ψ2 (R) = Det{φi r j( )}e
− uij (rij )
i< j
∑

Ψn+1(R) ≈ Ψn (R)e
−<e(R)>

smoothing  



Dependence of energy on wavefunction 

 3d Electron fluid at a density rs=10 

    Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998 

•  Wavefunctions 
–  Slater-Jastrow (SJ) 
–  three-body (3) 
–  backflow (BF) 
–  fixed-node (FN) 

•  Energy <f |H| f> converges to 
ground state 

•  Variance <f [H-E]2 f> to zero. 
•  Temple inequality relates energy and  
    variance 
•  Using 3B-BF gains a factor of 4. 
•  Using DMC gains a factor of 4. 
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Bayesian methods can provide tight upper and lower bounds 



Projector Monte Carlo 
e.g. Diffusion Monte Carlo (DMC) 

•  Automatic way to get better wavefunctions. 
•  Project single state using the Hamiltonian 
 
•  This is a diffusion + branching operator. 
•   But is this a probability?   
•  Yes! for bosons since ground state can be made real 

and non-negative. But all excited states must have sign 
changes. 

•  In exact methods one carries along the sign as a weight 
and samples the modulus.  This leads to the famous 
sign problem 

•  Zero variance principle still applies: fluctuations only 
due to trial function error. 

Ψ(R, t) = e−(H−E)tΨ(R, 0)

|)0,(|))0,(sign()( tE)(H RRet φφφ −−=



Model fermion problem: Particle in a box 

Symmetric potential: V(r) =V(-r)   
Antisymmetric state:  Ψ(r)=-Ψ (-r) 

Initial (trial) state 
Positive walkers 

Negative walkers 

Final (exact) state 

Sign of walkers fixed by initial position. They are allowed to diffuse freely. 
Ψ(r)= number of positive-negative walkers.  
Node is dynamically established by cancellation of positive and negative 
walkers. 

Node 



Scaling in Released-Node 

•  At any point, positive and negative walkers will tend to 
cancel so the signal is overwhelmed by the fluctuations. 

•  Signal/noise ratio is :    t=projection time 

 EF and EB are Fermion, Bose energy (proportional to N) 
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Cancellation Methods 
•  Keep exactness and try to improve the scaling by coupling 

positive and negative walkers. 
•  Let plus and minus walkers annihilate when they are 

“close.” (Arnow, 1980)  
•  “Closeness” defined in 3N dimensions: 

  
•   The density is too low in many dimensions 

  growth rate >> death rate.    
•  The number of walkers needed to achieve dynamical stability 

grows exponentially in N. 
•  You do not both solve the sign problem and have a scalable 

algorithm.  
•  Alavi (2009) FCI-QMC:  Work in a finite second quantized 

basis.. 
•  Can we guide oppositely signed walkers together to 

annihilate? 
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Fixed-node method 
 
•  Impose the fixed-node BC 

condition: 

•  Will give an upper bound to the 
exact energy, the best upper 
bound consistent with the FNBC. 

φ(R) = 0  when ψ T (R) = 0.

EV ≥ EFN ≥ E0

EFN = E0   if  φ0 (R)ψ (R) ≥ 0  all R

• Φ(R,t) has a discontinuous gradient at the nodal location. 
• Accurate method because Bose correlations are done exactly.  
• Scales like the VMC method, as N3 or better. 
• But we need to know the nodes! 



Summary of T=0 methods: 
Variational(VMC),  
Fixed-node(FN),  

Released-node(RN) 

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

computer time (sec)

er
ro

r 
(a

u)

Simple trial function 

Better trial function 

VMC FN 

RN 



“Direct” Fermion Path Integrals 
•  Path integrals map quantum mechanics into a system of cross-

linking closed “polymers.” 
 
 
 
R0=PRM,  P permutation, 
S(Ri, Ri+1) is “boltzmannon action”  
 
•  Bosons are easy: simply sample P. 
•  Fermions: sample the “action” and carry (-1)P   as a weight. 
•  Observable is even P - odd P.  scales exponentially in N and T-1! 
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Generalizations of Fixed-Node method 

•  Positive temperature: restricted fermion path integrals. 
Similar to zero temperature method: Exact nodes imply exact 
answer.  

•  Lattices with auxiliary fields (Fahy, Zhang …). Requires 
projection on a Slater determinant to be always positive. 

Some methods require magnitude of trial function to be correct, 
not just the nodes: 

•  Magnetic fields or complex wavefunctions: fixed-phase 
method. (Ortiz et al., Carlson) Input phase and solve for 
modulus. 

•  Lattice fixed-node: (Bemmel et al). Requires trial function 
“near” the sign changes.  

Can we do quantum dynamics with fixed-node? 



General statement of the  
“fermion problem” 

•  Given a system with N fermions and a known Hamiltonian and a 
property O  (usually the energy): 
–  How much time T will it take to estimate O to an accuracy ε? 	


–  How does T scale with N and ε? 

•  If you can map the quantum system onto an equivalent problem 
in classical statistical mechanics then: 

T ∝Nαε −2 With 0 <α < 3  
This would be a “solved” quantum problem! 
• All approximations must be controlled.  
• Algebraic scaling in N. 

Materials problem:  “Solve” electronic structure problems 
with “chemical accuracy” (<<300K /atom) on systems 
containing thousands of electrons with available computer 
power. 


