
The first identity is the statement of the replica trick, while the second one 
provides concrete instructions on how to evaluate the expression. We 
need two systems with rather peculiar boundary conditions in imaginary 
time. One is completely replicated in the direction of imaginary time but 
remains     periodic, while in the other system only part B is     periodic 
and part A is       periodic.
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Consider a many-body system 
described by ⇢ = | i h |

Only if there is no entanglement

Is it possible to write ⇢ = ⇢A ⌦ ⇢B ?

How entangled is a system?
Look at the reduced density 
matrices ⇢A = TrB⇢

S(A) = �Tr (⇢A log (⇢A))

And calculate the von Neumann 
entropy of subsystem A

The entanglement entropy depends on the form of the cut and often scales as 
some function of the length of its boundary l. Listed below are a few prominent 
examples for two dimensional systems:

• area law e.g. valence bond crystal
• gapless spin liquid
• topological spin liquid
• and many more …

The entanglement entropy can thus be viewed as a resource, namely a 
diagnostic tool to classify quantum matter

S(l) = al

S(l) = c · log(l) + . . .
S(l) = al � �

Measuring Entanglement
Having established that the entanglement entropy is a useful quantity, we 
need to figure out how to measure it in our simulation. We do not have 
direct access to the von Neumann-Entropy itself, but we can calculate a 
generalized version of it, the Renyi Entropy.

Sn =

1

1� n
log (Tr⇢nA)

n!1�! S(A) = �Tr (⇢A log (⇢A))

Most notably, the second Renyi entropy is the fastest to calculate in QMC. 
To do so, we employ a calculational scheme called Replica Trick   . For 
finite temperature simulations, the entropy takes the form
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The fraction appearing in the entanglement entropy can be evaluated by 
switching back and forth between the configuration spaces of the 
numerator and denominator, respectively. We then only count the number 
of configurations visited in each of the spaces.

Entangled Fermions
For fermions in more than one dimension, the method of choice is 
Determinantal Quantum Monte Carlo (DQMC), a powerful technique 
applicable to a wide range of problems. However, a direct implementation of 
the modified partition sum would result in a factorial scaling.
One can show that the partition sum can be rewritten in such a way that the 
boundary conditions are taken care of by an imaginary time dependence of 
the Hamiltonian which is again efficiently tractable using the full machinery 
of DQMC:
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The corresponding worldline picture is the same as before but unfolded:

To benchmark our algorithm, we study the one dimensional Hubbard chain:

H = �t
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In one dimensional systems, there is an intimate connection to conformal field 
theories through the central charge

• gapped

• gapless
S(l) = const

We compare with reference data obtained using DMRG calculations and with an 
alternative approach based on an expansion in free fermion Green’s functions.
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We observe good agreement with DMRG. Also, in the strongly interacting 
regime our approach gives superior results compared to the alternative 
algorithm that deviates significantly from the exact diagonalization result.
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