Thoughts/lnsights about sign problems

Thoughts/lnsights about sign problems

Important but under-appreciated area of research

Thoughts/lnsights about sign problems

Important but under-appreciated area of research
Most of us know that "it is exponentially hard!"

Thoughts/lnsights about sign problems

Important but under-appreciated area of research
Most of us know that "it is exponentially hard!" but, no systematic approach yet to try to solve it

Thoughts/lnsights about sign problems

Important but under-appreciated area of research
Most of us know that "it is exponentially hard!" but, no systematic approach yet to try to solve it

Some may be completely solvable,

Thoughts//nsights about sign problems

Important but under-appreciated area of research
Most of us know that "it is exponentially hard!"
but, no systematic approach yet to try to solve it
Some may be completely solvable,
while others may be amenable to an "expansion technique"?

Thoughts//nsights about sign problems

Important but under-appreciated area of research
Most of us know that "it is exponentially hard!"
but, no systematic approach yet to try to solve it
Some may be completely solvable,
while others may be amenable to an "expansion technique"?
At the moment no clear distinction between
Difficult (unsolvable) vs. easy (solvable)

Thoughts//nsights about sign problems

Important but under-appreciated area of research
Most of us know that "it is exponentially hard!"
but, no systematic approach yet to try to solve it
Some may be completely solvable, while others may be amenable to an "expansion technique"?

At the moment no clear distinction between
Difficult (unsolvable) vs. easy (solvable)
Solutions can give "physical insight": physics of the ground state quantum entanglement(?)

A "simple" Yukawa lattice model

A "simple" Yukawa lattice model

Euclidean Action

$$
S(\phi, \bar{\psi}, \psi)=\sum_{x, y} \bar{\psi}_{x} D_{x y}^{0} \psi_{y}-g \rho_{x} \mathrm{e}^{i(-1)^{x} \theta_{x}} \bar{\psi}_{x} \psi_{x}+S_{b}(\phi)
$$

A "simple" Yukawa lattice model

Euclidean Action

$$
S(\phi, \bar{\psi}, \psi)=\sum_{x, y} \bar{\psi}_{x} D_{x y}^{0} \psi_{y}-g \rho_{x} e^{i(-1)^{x} \theta_{x}} \bar{\psi}_{x} \psi_{x}+S_{b}(\phi)
$$

free staggered fermions

A "simple" Yukawa lattice model

Euclidean Action

$$
S(\phi, \bar{\psi}, \psi)=\sum_{x, y} \bar{\psi}_{x} D_{x y}^{0} \psi_{y}-g \rho_{x} e^{i(-1)^{x} \theta_{x} \bar{\psi}_{x} \psi_{x}+S_{b}(\phi)} \begin{gathered}
\text { free staggered } \\
\text { fermions }
\end{gathered} \quad \text { Yukawa coupling }
$$

A "simple" Yukawa lattice model

Euclidean Action

$$
S(\phi, \bar{\psi}, \psi)=\sum_{x, y} \bar{\psi}_{x} D_{x y}^{0} \psi_{y}-g \rho_{x} e^{i(-1)^{x} \theta_{x}} \bar{\psi}_{x} \psi_{x}+S_{b}(\phi)
$$

A "simple" Yukawa lattice model

Euclidean Action

$$
S(\phi, \bar{\psi}, \psi)=\sum_{x, y} \bar{\psi}_{x} D_{x y}^{0} \psi_{y}-g \rho_{x} e^{i(-1)^{x} \theta_{x}} \bar{\psi}_{x} \psi_{x}+S_{b}(\phi)
$$

Theory of massless fermions interacting with a complex scalar field!

Traditional approach

Traditional approach

$$
S\left(\phi_{x}, \bar{\psi}, \psi\right)=\sum_{x, y} \bar{\psi}_{x}(M([\phi]))_{x y} \psi_{y}+S_{b}(\phi)
$$

Traditional approach

$$
\begin{gathered}
S\left(\phi_{x}, \bar{\psi}, \psi\right)=\sum_{x, y} \bar{\psi}_{x}(M([\phi]))_{x y} \psi_{y}+S_{b}(\phi) \\
(M([\phi]))_{x y}=\left(D^{0}\right)_{x y}+\rho_{x} \mathrm{e}^{i \varepsilon_{x} \theta_{x}} \delta_{x y}
\end{gathered}
$$

Traditional approach

$$
\begin{gathered}
S\left(\phi_{x}, \bar{\psi}, \psi\right)=\sum_{x, y} \bar{\psi}_{x}(M([\phi]))_{x y} \psi_{y}+S_{b}(\phi) \\
(M([\phi]))_{x y}=\left(D^{0}\right)_{x y}+\rho_{x} \mathrm{e}^{i \varepsilon_{x} \theta_{x}} \delta_{x y} \\
D^{0}=\left(\begin{array}{cc}
0 & A \\
-A^{T} & 0
\end{array}\right)
\end{gathered}
$$

Traditional approach

$$
\begin{gathered}
S\left(\phi_{x}, \bar{\psi}, \psi\right)=\sum_{x, y} \bar{\psi}_{x}(M([\phi]))_{x y} \psi_{y}+S_{b}(\phi) \\
(M([\phi]))_{x y}=\left(D^{0}\right)_{x y}+\rho_{x} \mathrm{e}^{i \varepsilon_{x} \theta_{x}} \delta_{x y} \\
D^{0}=\left(\begin{array}{cc}
0 & A \\
-A^{T} & 0
\end{array}\right)
\end{gathered}
$$

$$
\operatorname{Det}(M([\phi])) \text { is complex! }
$$

Traditional approach

$$
\begin{gathered}
S\left(\phi_{x}, \bar{\psi}, \psi\right)=\sum_{x, y} \bar{\psi}_{x}(M([\phi]))_{x y} \psi_{y}+S_{b}(\phi) \\
(M([\phi]))_{x y}=\left(D^{0}\right)_{x y}+\rho_{x} e^{i \varepsilon_{x} \theta_{x}} \delta_{x y} \\
D^{0}=\left(\begin{array}{cc}
0 & A \\
-A^{T} & 0
\end{array}\right) \\
\operatorname{Det}(M([\phi])) \text { is complex! }
\end{gathered}
$$

Severe sign problem!
But is it "difficult" or "easy" sign problem?

Fermion Bag solution

Fermion Bag solution

S.C PRD(R)(2012)

Fermion Bag solution

S.C PRD(R)(2012)

Rewrite the partition function as

$$
Z=\int[d \phi] \mathrm{e}^{-S_{b}([\phi])} \int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \prod_{x}\left(\mathrm{e}^{g \rho_{x} \mathrm{e}^{i \varepsilon_{x} \theta_{x}} \bar{\psi}_{x} \psi_{x}}\right)
$$

Fermion Bag solution

S.C PRD(R)(2012)

Rewrite the partition function as

$$
Z=\int[d \phi] \mathrm{e}^{-S_{b}([\phi])} \int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \prod_{x}\left(\mathrm{e}^{g \rho_{x} \mathrm{e}^{i \varepsilon_{x} \theta_{x}} \bar{\psi}_{x} \psi_{x}}\right)
$$

Due to the Grassmann nature

$$
\mathrm{e}^{g \rho_{x} \mathrm{e}^{i \varepsilon_{x} \theta_{x}}} \bar{\psi}_{x} \psi_{x}=1+g \rho_{x} \mathrm{e}^{i \varepsilon_{x} \theta_{x}} \bar{\psi}_{x} \psi_{x}=\sum_{n_{x}=0,1}\left(g \rho_{x} \mathrm{e}^{i \varepsilon_{x} \theta_{x}} \bar{\psi}_{x} \psi_{x}\right)^{n_{x}}
$$

Fermion Bag solution

S.C PRD(R)(2012)

Rewrite the partition function as

$$
Z=\int[d \phi] \mathrm{e}^{-S_{b}([\phi])} \int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \prod_{x}\left(\mathrm{e}^{g \rho_{x} \mathrm{e}^{i \varepsilon_{x} \theta_{x}} \bar{\psi}_{x} \psi_{x}}\right)
$$

Due to the Grassmann nature

$$
\mathrm{e}^{g \rho_{x} \mathrm{e}^{i \varepsilon_{x} \theta_{x}}} \bar{\psi}_{x} \psi_{x}=1+g \rho_{x} \mathrm{e}^{i \varepsilon_{x} \theta_{x}} \bar{\psi}_{x} \psi_{x}=\sum_{n_{x}=0,1}\left(g \rho_{x} \mathrm{e}^{i \varepsilon_{x} \theta_{x}} \bar{\psi}_{x} \psi_{x}\right)^{n_{x}}
$$

We can then rewrite

$$
Z=\sum_{\left[n_{x}\right]} \int[d \phi] \mathrm{e}^{-S_{b}([\phi])} \int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \prod_{x}\left(g \rho_{x} \mathrm{e}^{i \varepsilon_{x} \theta_{x}} \bar{\psi}_{x} \psi_{x}\right)^{n_{x}}
$$

For a given configuration [n]
let $z_{1} z_{2} \ldots z_{k}$ be the k sites
where $n_{x}=1$
at all other sites $\mathrm{n}_{\mathrm{x}}=0$

For a given configuration [n] let $\mathbf{z}_{1} \mathbf{z}_{2} \ldots \mathrm{z}_{\mathrm{k}}$ be the k sites where $n_{x}=1$ at all other sites $\mathbf{n}_{\mathrm{x}}=0$

For a given configuration [n] let $z_{1} z_{2} \ldots z_{k}$ be the k sites where $n_{x}=1$ at all other sites $n_{x}=0$

$$
Z=\sum_{\left[n_{x}\right]} g^{k}\left\{\int[d \phi] \mathrm{e}^{-S_{b}([\phi])} \rho_{z_{1}} \mathrm{e}^{i \varepsilon_{z_{1}} \theta_{z_{1}}} \ldots \rho_{z_{k}} \mathrm{e}^{i \varepsilon_{z_{k}} \theta_{z_{k}}}\right\}
$$

$$
\left\{\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}}\right\}
$$

For a given configuration [n] let $z_{1} z_{2} \ldots z_{k}$ be the k sites where $n_{x}=1$ at all other sites $\mathbf{n}_{\mathrm{x}}=0$

$Z=\sum_{\left[n_{x}\right]} g^{k}\left\{\int[d \phi] \mathrm{e}^{-S_{b}([\phi])} \rho_{z_{1}} \mathrm{e}^{i \varepsilon_{z_{1}} \theta_{z_{1}}} \ldots \rho_{z_{k}} \mathrm{e}^{i \varepsilon_{z_{k}} \theta_{z_{k}}}\right\}$

$$
\left\{\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}}\right\}
$$

Bosonic term
(k-point correlation function)

For a given configuration [n] let $z_{1} z_{2} \ldots z_{k}$ be the k sites where $n_{x}=1$ at all other sites $\mathbf{n}_{\mathrm{x}}=0$

$Z=\sum_{\left[n_{x}\right]} g^{k}\left\{\int[d \phi] \mathrm{e}^{-S_{b}([\phi])} \rho_{z_{1}} \mathrm{e}^{i \varepsilon_{z_{1}} \theta_{z_{1}}} \ldots \rho_{z_{k}} \mathrm{e}^{i \varepsilon_{z_{k}} \theta_{z_{k}}}\right\}$

$$
\left\{\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}}\right\}
$$

Bosonic term
(k-point correlation function)
Fermionic term
(k-point correlation function)

Fermion Bags

Fermion Bags
S.C. Lattice 2008,2010
S.C, A.Li 2011,2012

Fermion Bags

S.C. Lattice 2008,2010
S.C, A.Li 2011,2012

Fermion k-point correlation function

$$
\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0}} \psi \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}}
$$

Fermion Bags

S.C. Lattice 2008,2010 S.C, A.Li 2011,2012

Fermion k-point correlation function $\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0}} \psi \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}}$

fermion bag configuration

Fermion Bags

S.C. Lattice 2008,2010 S.C, A.Li 2011,2012

Fermion k-point correlation function

$$
\begin{array}{r}
\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}} \\
=\operatorname{Det}\left(W_{[n]}^{0}\right)
\end{array}
$$

fermion bag configuration

Fermion Bags

S.C. Lattice 2008,2010 S.C, A.Li 2011,2012

Fermion k-point correlation function

$$
\begin{array}{r}
\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}} \\
=\operatorname{Det}\left(W_{[n]}^{0}\right)
\end{array}
$$

$\mathrm{W}^{0}{ }_{[\mathrm{nj}]}$ is a (V-k) $\mathrm{x}(\mathrm{V}-\mathrm{k})$
staggered fermion matrix
obtained by dropping sites $\mathrm{z}_{1} \ldots \mathrm{z}_{\mathrm{k}}$ in D^{0}

fermion bag configuration

Fermion Bags

S.C. Lattice 2008,2010 S.C, A.Li 2011,2012

Fermion k-point correlation function

$$
\begin{array}{r}
\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \bar{\psi}_{z_{1}} \psi_{z_{1} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}}} \\
=\operatorname{Det}\left(W_{[n]}^{0}\right)
\end{array}
$$

$\mathrm{W}^{0}{ }_{[n]}$ is a (V-k) $\mathrm{x}(\mathrm{V}-\mathrm{k})$
staggered fermion matrix obtained by dropping sites $z_{1} \ldots z_{k}$ in D^{0}

$$
W_{[n]}^{0}=\left(\begin{array}{cc}
0 & B([n]) \\
-B^{T}([n]) & 0
\end{array}\right)
$$

fermion bag configuration

Fermion Bags

S.C. Lattice 2008,2010 S.C, A.Li 2011,2012

Fermion k-point correlation function

$$
\begin{array}{r}
\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}} \\
=\operatorname{Det}\left(W_{[n]}^{0}\right)
\end{array}
$$

$\mathrm{W}^{0}{ }_{[n]}$ is a (V-k) $\mathrm{x}(\mathrm{V}-\mathrm{k})$
staggered fermion matrix obtained by dropping sites $z_{1} \ldots z_{k}$ in D^{0}

$$
W_{[n]}^{0}=\left(\begin{array}{cc}
0 & B([n]) \\
-B^{T}([n]) & 0
\end{array}\right)
$$

fermion bag configuration
$\operatorname{Det}\left(W_{[n]}^{0}\right) \geq 0$

Dual Fermion Bags

Dual Fermion Bags

$$
\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0}} \psi \bar{\psi}_{z_{1}} \psi_{z_{1} \ldots} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}}
$$

Dual Fermion Bags

$$
\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}}
$$

Dual Fermion Bag

Dual Fermion Bags

$$
\begin{array}{r}
\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi}} D^{0} \psi \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}} \\
=\operatorname{Det}\left(D^{0}\right) \operatorname{Det}\left(G_{[n]}\right)
\end{array}
$$

Dual Fermion Bag

Dual Fermion Bags

$$
\begin{array}{r}
\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi}} D^{0} \psi \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}} \\
=\operatorname{Det}\left(D^{0}\right) \operatorname{Det}\left(G_{[n]}\right)
\end{array}
$$

where $G_{[n]}$ is a ($k_{x k}$) matrix of propagators

Dual Fermion Bag

Dual Fermion Bags

$$
\begin{array}{r}
\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi}} D^{0} \psi \bar{\psi}_{z_{1}} \psi_{z_{1} \ldots} \bar{\psi}_{z_{k}} \psi_{z_{k}} \\
=\operatorname{Det}\left(D^{0}\right) \operatorname{Det}\left(G_{[n]}\right)
\end{array}
$$

where $G_{[n]}$ is a ($\mathbf{k x k}^{\text {) matrix }}$ of propagators

Dual Fermion Bag
Similar to the CT diagrammatic determinantal Monte Carlo
Rubtsov, Savkin, Lichtenstein, Prokofev, Svistunov, Troyer,

Dual Fermion Bags

$$
\begin{array}{r}
\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}} \\
=\operatorname{Det}\left(D^{0}\right) \operatorname{Det}\left(G_{[n]}\right)
\end{array}
$$

where $G_{[n]}$ is a $\left(k_{x k}\right)$ matrix of propagators

Duality Relation
$\operatorname{Det} W^{0}=\operatorname{Det} D^{0} \operatorname{Det} G_{[n]}$

Dual Fermion Bag

Similar to the CT diagrammatic determinantal Monte Carlo
Rubtsov, Savkin, Lichtenstein, Prokofev, Svistunov, Troyer,

Dual Fermion Bags

$$
\begin{array}{r}
\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}} \\
=\operatorname{Det}\left(D^{0}\right) \operatorname{Det}\left(G_{[n]}\right)
\end{array}
$$

where $G_{[n]}$ is a ($\mathrm{kxk}^{\text {) matrix }}$ of propagators

Duality Relation
$\operatorname{Det} W^{0}=\operatorname{Det} D^{0} \operatorname{Det} G_{[n]}$
strong coupling
fermion bag

Dual Fermion Bag

Similar to the CT diagrammatic determinantal Monte Carlo
Rubtsov, Savkin, Lichtenstein, Prokofev, Svistunov, Troyer,

Dual Fermion Bags

$$
\begin{array}{r}
\int[d \bar{\psi} d \psi] \mathrm{e}^{-\bar{\psi} D^{0} \psi} \bar{\psi}_{z_{1}} \psi_{z_{1}} \ldots \bar{\psi}_{z_{k}} \psi_{z_{k}} \\
=\operatorname{Det}\left(D^{0}\right) \operatorname{Det}\left(G_{[n]}\right)
\end{array}
$$

where $G_{[n]}$ is a ($\mathrm{kxk}^{\text {) matrix }}$ of propagators

Duality Relation
$\operatorname{Det} W^{0}=\operatorname{Det} D^{0} \operatorname{Det} G_{[n]}$
strong coupling \quad weak coupling
fermion bag
fermion Bag

Dual Fermion Bag

Similar to the CT diagrammatic determinantal Monte Carlo
Rubtsov, Savkin, Lichtenstein, Prokofev, Svistunov, Troyer,

Bosonic k-point correlation function

Bosonic k-point correlation function

We will assume that we can write

$$
\begin{aligned}
\int[d \phi] \mathrm{e}^{-S_{b}([\phi])} & \rho_{z_{1}} \mathrm{e}^{i \varepsilon_{z_{1}} \theta_{z_{1}}} \ldots \rho_{z_{k}} \mathrm{e}^{i \varepsilon_{z_{k}} \theta_{z_{k}}} \\
= & \sum_{[b]} \int[d \rho] \Omega([b, \rho, n])
\end{aligned}
$$

where $\Omega([b, \rho, n]) \geq 0$

Bosonic k-point correlation function

We will assume that we can write

$$
\begin{aligned}
\int[d \phi] \mathrm{e}^{-S_{b}([\phi])} & \rho_{z_{1}} \mathrm{e}^{i \varepsilon_{z_{1}} \theta_{z_{1}}} \ldots \rho_{z_{k}} \mathrm{e}^{i \varepsilon_{z_{k}} \theta_{z_{k}}} \\
= & \sum_{[b]} \int[d \rho] \Omega([b, \rho, n])
\end{aligned}
$$

where $\Omega([b, \rho, n]) \geq 0$

Bosonic k-point correlation function

We will assume that we can write

$$
\begin{aligned}
\int[d \phi] \mathrm{e}^{-S_{b}([\phi])} & \rho_{z_{1}} \mathrm{e}^{i \varepsilon_{z_{1}} \theta_{z_{1}}} \ldots \rho_{z_{k}} \mathrm{e}^{i \varepsilon_{z_{k}} \theta_{z_{k}}} \\
= & \sum_{[b]} \int[d \rho] \Omega([b, \rho, n])
\end{aligned}
$$

where $\Omega([b, \rho, n]) \geq 0$

For the standard action this is nothing but the
"worldline" approach to bosons

Bosonic k-point correlation function

We will assume that we can write

$$
\begin{aligned}
\int[d \phi] \mathrm{e}^{-S_{b}([\phi])} & \rho_{z_{1}} \mathrm{e}^{i \varepsilon_{z_{1}} \theta_{z_{1}}} \ldots \rho_{z_{k}} \mathrm{e}^{i \varepsilon_{z_{k}} \theta_{z_{k}}} \\
= & \sum_{[b]} \int[d \rho] \Omega([b, \rho, n])
\end{aligned}
$$

where $\Omega([b, \rho, n]) \geq 0$

For the standard action this is nothing but the
"worldline" approach to bosons

Thus, the partition function
is given by

Thus, the partition function is given by

$$
Z=\int[d \rho] \sum_{[n, b]} g^{k} \operatorname{Det}\left(W_{[n]}^{0}\right) \Omega([b, \rho, n])
$$

Thus, the partition function is given by

$$
Z=\int[d \rho] \sum_{[n, b]} g^{k} \operatorname{Det}\left(W_{[n]}^{0}\right) \Omega([b, \rho, n])
$$

[b, $\rho, n]$ configurations

Thus, the partition function is given by

$$
Z=\int[d \rho] \sum_{[n, b]} g^{k} \operatorname{Det}\left(W_{[n]}^{0}\right) \Omega([b, \rho, n])
$$

No sign problem!

[b, p, n] configurations

What models can we solve?

What models can we solve?

A variety of Yukawa and Gross-Neveu Models

What models can we solve?

A variety of Yukawa and Gross-Neveu Models

Spin-polarized systems at half filling on bi-partite lattices:
(the repulsive t-V model)
E. Huffman, SC PRB (2014)

What models can we solve?

A variety of Yukawa and Gross-Neveu Models

Spin-polarized systems at half filling on bi-partite lattices:
(the repulsive t-V model)
E. Huffman, SC PRB (2014)
$H=\sum_{\langle i j\rangle}-t\left(c_{i}^{\dagger} c_{j}+c_{j}^{\dagger} c_{i}\right)+V\left(n_{i}-1 / 2\right)\left(n_{j}-1 / 2\right)$

What models can we solve?

A variety of Yukawa and Gross-Neveu Models

Spin-polarized systems at half filling on bi-partite lattices:
(the repulsive t-V model)
E. Huffman, SC PRB (2014)
$H=\sum_{\langle i j\rangle}-t\left(c_{i}^{\dagger} c_{j}+c_{j}^{\dagger} c_{i}\right)+V\left(n_{i}-1 / 2\right)\left(n_{j}-1 / 2\right)$
Gross-Neveu models with Hamiltonian lattice fermions:
(minimal fermion doubling)

What models can we solve?

A variety of Yukawa and Gross-Neveu Models

Spin-polarized systems at half filling on bi-partite lattices:
(the repulsive t-V model)
E. Huffman, SC PRB (2014)
$H=\sum_{\langle i j\rangle}-t\left(c_{i}^{\dagger} c_{j}+c_{j}^{\dagger} c_{i}\right)+V\left(n_{i}-1 / 2\right)\left(n_{j}-1 / 2\right)$
Gross-Neveu models with Hamiltonian lattice fermions:
(minimal fermion doubling)
Hubbard, t-J models of stacked graphene sheets

What models can we solve?

A variety of Yukawa and Gross-Neveu Models

Spin-polarized systems at half filling on bi-partite lattices:
(the repulsive t-V model)
E. Huffman, SC PRB (2014)
$H=\sum_{\langle i j\rangle}-t\left(c_{i}^{\dagger} c_{j}+c_{j}^{\dagger} c_{i}\right)+V\left(n_{i}-1 / 2\right)\left(n_{j}-1 / 2\right)$
Gross-Neveu models with Hamiltonian lattice fermions:
(minimal fermion doubling)
Hubbard, t-J models of stacked graphene sheets
some $\operatorname{SU}(3)$ symmetric fermion models

Some Results with new solutions

$S U(2) \times U(1)$ Thirring model results

$S U(2) \times U(1)$ Thirring model results

Hands, Debbio, Jersak,....

$S U(2) \times U(1)$ Thirring model results

Hands, Debbio, Jersak,....

Thirring

$S U(2) \times U(1)$ Thirring model results

Hands, Debbio, Jersak,....

$S U(2) \times U(1)$ Thirring model results

Hands, Debbio, Jersak,....

Thirring

$S U(2) \times U(1)$ Thirring model results

Thirring

Combined fit results (PRL 108, 140404, 2012)

$$
\begin{aligned}
U_{c} & =0.2608(2) \\
v & =0.85(1) \\
\eta & =0.65(1) \\
\eta_{\psi} & =0.37(1)
\end{aligned}
$$

$S U(2) \times U(1)$ Gross-Neveu model results

$S U(2) \times U(1)$ Gross-Neveu model results

U(1) Gross-Neveu

$S U(2) \times U(1)$ Gross-Neveu model results

$S U(2) \times U(1)$ Gross-Neveu model results

$S U(2) \times U(1)$ Gross-Neveu model results

Combined fit results (PRD 88, 021701, 2013)

$$
\begin{aligned}
U_{c} & =0.1560(4) \\
v & =0.82(2) \\
\eta & =0.62(2) \\
\eta_{\Psi} & =0.37(1)
\end{aligned}
$$

$S U(2) \times Z_{2}$ Gross-Neveu model results

$S U(2) \times Z_{2}$ Gross-Neveu model results

Z_{2} Gross-Neveu

$S U(2) \times Z_{2}$ Gross-Neveu model results

Z_{2} Gross-Neveu

Combined fit results

$$
\begin{aligned}
&(P R D ~ 88,021701,2013) \\
& U_{c}=0.0893(1) \\
& v=0.83(1) \\
& \eta=0.62(1) \\
& \eta_{\psi}=0.38(1)
\end{aligned}
$$

$S U(2) \times Z_{2}$ Gross-Neveu model results

Z_{2} Gross-Neveu

Combined fit results

$$
\begin{gathered}
(P R D 88,021701,2013) \\
U_{c}=0.0893(1) \\
v=0.83(1) \\
\eta=0.62(1) \\
\eta_{\Psi}=0.38(1)
\end{gathered}
$$

$S U(2) \times Z_{2}$ Gross-Neveu model results

Z_{2} Gross-Neveu

Combined fit results (PRD 88, 021701, 2013)

$$
\begin{aligned}
U_{c} & =0.0893(1) \\
v & =0.83(1) \\
\eta & =0.62(1) \\
\eta_{\Psi} & =0.38(1)
\end{aligned}
$$

Comparison with Fermion Bag Results

Comparison with Fermion Bag Results

Staggered Fermion Model	Symmetry	Work	v	η	η_{ψ}
$N=1$ Lattice-GN	$S U(2) \times Z_{2}$	Karkkainen,et.al. (1994)	$1.00(4)$	$0.756(8)$	-
$\mathrm{N}=1$ Lattice GN	$\mathrm{SU}(2) \times \mathrm{Z}_{2}$	SC \& Li (2012)	$0.83(1)$	$0.62(1)$	$0.38(1)$
$\mathrm{N}=1$ Lattice-Th	$\mathrm{SU}(2) \times \mathrm{U}(1)$	Debbio, et.al., (1997)	$0.80(15)$	$0.70(15)$	-
$\mathrm{N}=1$ Lattice-Th	$\mathrm{SU}(2) \times \mathrm{U}(1)$	Barbour et. al., (1998)	$0.80(20)$	$0.4(2)$	-
$\mathrm{N}=1$ Lattice-(GN/Th)	$\mathrm{SU}(2) \times \mathrm{U}(1)$	SC \& Li (2013)	$0.849(8)$	$0.633(8)$	$0.373(3)$

Backup Slide

Bosonic k-point correlation function in the non-linear $x y$ model

Backup Slide

Bosonic k-point correlation function in the non-linear xy model
Using the identity

$$
\mathrm{e}^{\beta \cos \left(\theta_{\mathbf{x}}-\theta_{\mathbf{x}+\alpha}\right)}=\sum_{\mathbf{k}_{\mathbf{x}, \alpha}} \mathbf{I}_{\mathbf{k}_{\mathbf{x}, \alpha}}(\beta) \mathrm{e}^{\mathbf{i}\left(\theta_{\mathbf{x}}-\theta_{\mathbf{x}+\alpha}\right)}
$$

Backup Slide
 Bosonic k-point correlation function in the non-linear $x y$ model

Using the identity

$$
\begin{aligned}
& \qquad \mathrm{e}^{\beta \cos \left(\theta_{\mathbf{x}}-\theta_{\mathbf{x}+\alpha}\right)}=\sum_{\mathbf{k}_{\mathbf{x}, \alpha}} \mathbf{I}_{\mathbf{k}_{\mathbf{x}, \alpha}}(\beta) \mathrm{e}^{\mathbf{i}\left(\theta_{\mathbf{x}}-\theta_{\mathbf{x}+\alpha}\right)} \\
& \text { can show } \quad \text { D.Banerjee, S.C PRD(2010) }
\end{aligned}
$$

Backup Slide

Bosonic k-point correlation function

 in the non-linear xy modelUsing the identity

$$
\mathrm{e}^{\beta \cos \left(\theta_{\mathbf{x}}-\theta_{\mathbf{x}+\alpha}\right)}=\sum_{\mathbf{k}_{\mathbf{x}, \alpha}} \mathbf{I}_{\mathbf{k}_{\mathbf{x}, \alpha}}(\beta) \mathrm{e}^{\mathbf{i}\left(\theta_{\mathbf{x}}-\theta_{\mathbf{x}+\alpha}\right)}
$$

can show

> D.Banerjee, S.C PRD(2010)

$$
\begin{aligned}
& \int[\mathbf{d} \theta]\left(\prod_{\langle\mathbf{x}, \alpha\rangle} \mathrm{e}^{\beta \cos \left(\theta_{\mathbf{x}}-\theta_{\mathbf{x}+\alpha}\right)}\right. \\
& =\sum_{[\mathbf{k}]}\left(\mathrm{e}^{\mathbf{i} \varepsilon_{\mathbf{z}_{1}} \theta_{\mathbf{z}_{\mathbf{1}}}} \mathrm{e}^{\left.\mathbf{i} \varepsilon_{\mathbf{z}_{\mathbf{2}}} \theta_{\mathbf{z}_{2}} \ldots \mathrm{e}^{\mathbf{i} \varepsilon_{\mathbf{z}_{\mathbf{k}}} \theta_{\mathbf{z}_{\mathbf{k}}}}\right)}\right. \\
& \quad\left\{\prod_{\langle\mathbf{x}, \alpha\rangle} \mathbf{I}_{\mathbf{k}_{\mathbf{x}, \alpha}}\right) \\
& \quad\left\{\prod_{\mathbf{x}} \delta\left(\varepsilon_{\mathbf{x}} \mathbf{n}_{\mathbf{x}}+\sum_{\alpha}\left(\mathbf{k}_{\mathbf{x}, \alpha}-\mathbf{k}_{\mathbf{x}-\alpha, \alpha}\right)\right)\right\}
\end{aligned}
$$

Backup Slide

Bosonic k-point correlation function

 in the non-linear $x y$ modelUsing the identity

$$
\mathrm{e}^{\beta \cos \left(\theta_{\mathbf{x}}-\theta_{\mathbf{x}+\alpha}\right)}=\sum_{\mathbf{k}_{\mathbf{x}, \alpha}} \mathbf{I}_{\mathbf{k}_{\mathbf{x}, \alpha}}(\beta) \mathrm{e}^{\mathbf{i}\left(\theta_{\mathbf{x}}-\theta_{\mathbf{x}+\alpha}\right)}
$$

can show
D.Banerjee, S.C PRD(2010)

$$
\begin{aligned}
& \int[\mathbf{d} \theta]\left(\prod_{\langle\mathbf{x}, \alpha\rangle} \mathrm{e}^{\beta \cos \left(\theta_{\mathbf{x}}-\theta_{\mathbf{x}+\alpha}\right)}\right. \\
& =\sum_{[\mathbf{k}]}\left(\mathrm{e}^{\mathbf{i} \varepsilon_{\mathbf{z}_{1}} \theta_{\mathbf{z}_{1}}} \mathrm{e}^{\left.i \varepsilon_{\mathbf{z}_{\mathbf{2}}} \theta_{\mathbf{z}_{\mathbf{2}}} \ldots \mathrm{e}^{\mathbf{i} \varepsilon_{\mathbf{z}_{\mathbf{k}}} \theta_{\mathbf{z}_{\mathbf{k}}}}\right)}\right. \\
& \quad\left\{\prod_{\langle\mathbf{x}, \alpha\rangle} \mathbf{I}_{\mathbf{k}_{\mathbf{x}, \alpha}}\right) \\
& \quad\left\{\prod_{\mathbf{x}} \delta\left(\varepsilon_{\mathbf{x}} \mathbf{n}_{\mathbf{x}}+\sum_{\alpha}\left(\mathbf{k}_{\mathbf{x}, \alpha}-\mathbf{k}_{\mathbf{x}-\alpha, \alpha}\right)\right)\right\}
\end{aligned}
$$

example of a [k] configuration consistent with [n]

