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Solutions can give “physical insight”:
physics of the ground state
quantum entanglement(?)
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Important but  under-appreciated area of research

Most of us know that “it is exponentially hard!”

Some may be completely solvable,
while others may be amenable to an “expansion technique”?
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A “simple” Yukawa lattice model

standard
bosonic actionYukawa couplingfree staggered 

fermions

Euclidean Action

S(φ,ψ,ψ) =
�

x ,y

ψxD
0
xyψy − g ρx ei(−1)xθxψxψx + Sb(φ)

Theory of massless fermions interacting with
a complex scalar field!
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Traditional approach

S(φx ,ψ,ψ) =
�

x ,y

ψx (M([φ]))xy ψy + Sb(φ)

Det
�
M([φ])

�
is complex!

(M([φ]))xy = (D0)xy + ρxe
iεxθx δxy

D0 =

�
0 A

−AT 0

�

Severe sign problem!
But is it “difficult” or “easy” sign problem?
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We can then rewrite
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Fermion Bags

W0[n] is a (V-k) x (V-k) 
staggered fermion matrix 

 obtained by dropping sites z1 ... zk in D0 

S.C. Lattice 2008,2010
S.C, A.Li 2011,2012

fermion bag configuration

Fermion bagFermion k-point correlation function
�

[dψdψ] e−ψ D0 ψ ψz1ψz1 ...ψzkψzk

= Det(W 0
[n])

W 0
[n] =

�
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−BT ([n]) 0

�

Det(W 0
[n]) ≥ 0
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Thus, the partition function 
is given by

No sign problem!

[b,ρ,n] configurations

Z =

�
[dρ]

�

[n,b]
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What models can we solve?
A variety of Yukawa and Gross-Neveu Models

H =
�

�ij�

−t (c†i cj + c
†
jci) + V

�
ni − 1/2)(nj − 1/2)

Gross-Neveu models with Hamiltonian lattice fermions:
(minimal fermion doubling)

some SU(3) symmetric fermion models

Hubbard, t-J models of stacked graphene sheets

Spin-polarized systems at half filling on bi-partite lattices:
(the repulsive t-V model)

E. Huffman, SC PRB (2014)
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Combined fit results
(PRL 108, 140404, 2012)

Uc = 0.2608(2)
ν = 0.85(1)
η = 0.65(1)
ηψ = 0.37(1)
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Thirring

Hands, Debbio, Jersak,....
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Combined fit results
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Uc = 0.1560(4)
ν = 0.82(2)
η = 0.62(2)
ηψ = 0.37(1)
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Combined fit results
(PRD 88, 021701, 2013)

Uc = 0.0893(1)
ν = 0.83(1)
η = 0.62(1)
ηψ = 0.38(1)
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SU(2) x Z2 Gross-Neveu model results





Comparison with Fermion Bag Results



Staggered Fermion
Model Symmetry Work ν η ηψ

N=1 Lattice-GN SU(2) x Z2
Karkkainen,et.al.

(1994) 1.00(4) 0.756(8) -

N=1 Lattice GN SU(2) x Z2
SC & Li
(2012) 0.83(1) 0.62(1) 0.38(1)

N = 1 Lattice-Th SU(2)x U(1) Debbio, et.al.,
(1997) 0.80(15) 0.70(15) -

N = 1 Lattice-Th SU(2)x U(1) Barbour et. al.,
(1998) 0.80(20) 0.4(2) -

N=1 Lattice-(GN/Th) SU(2) x U(1) SC & Li
(2013) 0.849(8) 0.633(8) 0.373(3)

Comparison with Fermion Bag Results
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