Classical and Quantum Simulation of Gauge Theories

D. Banerjee, M. Bögli, M. Dalmonte, D. Marcos, M. Müller, S. Montangero, T. Pichler, G. Pupillo, P. Rabl, E. Rico, P. Stebler, P. Widmer, U.-J. Wiese, P. Zoller

We show how to simulate models with gauge symmetry in the lattice using atomic and quantum optics tools and tensor network methods. The construction is based on *quantum links* that realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model that can be quantum simulated. These systems share qualitative features with quantum chromodynamics, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. This allows us to investigate *string breaking* as well as the *real-time evolution* after a quench in gauge theories.

The study of *Gauge* theories is the study of *Nature*.

Gauge symmetry as a fundamental principle Standard model: For every force, there is a gauge boson Gauge symmetry as an emergent phenomenon Better understanding of spin-liquids and quantum magnetism **Gauge symmetry as a resource**

Use the low-energy properties of these systems to implement any quantum information task.

Feynman's universal quantum simulator: controlled quantum device which efficiently reproduces the dynamics of any other many-particle quantum system.

How?... cold atoms, ions, photons, superconducting circuit, etc.

Bose + Fermi Hubbard model

$$H_{\text{microscopic}} = \Delta \sum_{x} G_{x}^{2} + \cdots$$

 Δ (large) - $\tilde{G}_x |\text{physical states}\rangle = 0$

Tensor network methods: variational ansatz for quantum many-body states describing the local degrees of freedom in real space **Direct access to entanglement** Dynamics of quantum many-body states inand-out of equilibrium **Control of global and local (gauge) symmetry**

Quantum link models

Emergent lattice gauge theory

Exact description of the gauge invariant subspace with tensor networks

$$H = \frac{g^2}{2} \sum_{x} E_{x,x+1}^2 - t \sum_{x} \left[\psi_x^+ U_{x,x+1} \psi_{x+1} + \text{h.c.} \right] + m \sum_{x} (-1)^x \psi_x^+ \psi_x \qquad H = \frac{g^2}{2} \sum_{x} (S^z_{x,x+1})^2 - t \sum_{x} \left[\psi_x^+ S_{x,x+1}^+ \psi_{x+1} + \text{h.c.} \right] + m \sum_{x} (-1)^x \psi_x^+ \psi_x \qquad H = \frac{g^2}{2} \sum_{x} (S^z_{x,x+1})^2 - t \sum_{x} \left[\psi_x^+ S_{x,x+1}^+ \psi_{x+1} + \text{h.c.} \right] + m \sum_{x} (-1)^x \psi_x^+ \psi_x \qquad H = \frac{g^2}{2} \sum_{x} (S^z_{x,x+1})^2 - t \sum_{x} \left[\psi_x^+ S_{x,x+1}^+ \psi_{x+1} + \text{h.c.} \right] + m \sum_{x} (-1)^x \psi_x^+ \psi_x \qquad H = \frac{g^2}{2} \sum_{x} (S^z_{x,x+1})^2 - t \sum_{x} \left[\psi_x^+ S_{x,x+1}^+ \psi_{x+1} + \text{h.c.} \right] + m \sum_{x} (-1)^x \psi_x^+ \psi_x \qquad H = \frac{g^2}{2} \sum_{x} (S^z_{x,x+1})^2 - t \sum_{x} \left[\psi_x^+ S_{x,x+1}^+ \psi_{x+1} + \text{h.c.} \right] + m \sum_{x} (-1)^x \psi_x^+ \psi_x \qquad H = \frac{g^2}{2} \sum_{x} (S^z_{x,x+1})^2 - t \sum_{x} \left[\psi_x^+ S_{x,x+1}^+ \psi_{x+1} + \text{h.c.} \right] + m \sum_{x} (-1)^x \psi_x^+ \psi_x \qquad H = \frac{g^2}{2} \sum_{x} (S^z_{x,x+1})^2 - t \sum_{x} \left[\psi_x^+ S_{x,x+1}^+ \psi_{x+1} + \text{h.c.} \right] + m \sum_{x} (-1)^x \psi_x^+ \psi_x \qquad H = \frac{g^2}{2} \sum_{x} (S^z_{x,x+1})^2 - t \sum_{x} \left[\psi_x^+ S_{x,x+1}^+ \psi_{x+1} + \text{h.c.} \right] + m \sum_{x} (-1)^x \psi_x^+ \psi_x \qquad H = \frac{g^2}{2} \sum_{x} (S^z_{x,x+1})^2 - t \sum_{x} \left[\psi_x^+ S_{x,x+1}^+ \psi_{x+1} + \text{h.c.} \right] + m \sum_{x} (-1)^x \psi_x^+ \psi_x \qquad H = \frac{g^2}{2} \sum_{x} (S^z_{x,x+1})^2 - t \sum_{x} \left[\psi_x^+ S_{x,x+1}^+ \psi_{x+1} + \text{h.c.} \right] + m \sum_{x} (-1)^x \psi_x^+ \psi_x \qquad H = \frac{g^2}{2} \sum_{x} (S^z_{x,x+1})^2 - t \sum_{x} \left[\psi_x^+ S_{x,x+1}^+ \psi_{x+1} + \text{h.c.} \right] + m \sum_{x} (-1)^x \psi_x^+ \psi_x \qquad H = \frac{g^2}{2} \sum_{x} (S^z_{x,x+1})^2 - t \sum_{x} \left[\psi_x^+ S_{x,x+1}^+ \psi_x + 1 + \text{h.c.} \right] + m \sum_{x} (-1)^x \psi_x^+ \psi_x \qquad H = \frac{g^2}{2} \sum_{x} (S^z_{x,x+1})^2 - t \sum_{x} \left[\psi_x^+ S_{x,x+1}^+ \psi_x + 1 + \frac{g^2}{2} + \frac{g^2}{2$$

TU

 $\beta =$

ALBERT EINSTEIN CENTER

pressure or chemical potential (μ_B)

Preparation of many body states (Mott phase)

Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench, Phys. Rev. Lett. 109, 175302 (2012) Atomic quantum simulation of U(N) and SU(N) non-abelian lattice gauge theories, Phys. Rev. Lett. 110, 125303 (2013) Superconducting circuits for quantum simulation of dynamical gauge fields, Phys. Rev. Lett. 111, 110504 (2013) **Tensor networks for Lattice Gauge Theories and Atomic Quantum Simulation,** arXiv:1312.3127 (2013) Related works at ICFO, Barcelona (M. Lewenstein's group) and MPQ, Munich (I. Cirac's group)

