# The Monte Carlo sign problem - a diagrammatic Monte Carlo perspective 

Emanuel Gull<br>University of Michigan, Ann Arbor

Boston, May 2014
G. Cohen, S. Fuchs, J. Le Blanc, N. Lin A. J. Millis, M. Troyer

## Poor man's introduction to the sign problem

Given: general positive weight function on domain

$$
Z=\int_{\Omega} p(x) d x
$$

$$
\langle A\rangle_{p}=\frac{1}{Z} \int_{\Omega} \mathcal{A}(x) p(x) d x
$$

We have a practical way of computing this integral: use a MC process

Wanted: weighted integral on domain, normalized.

CLT will make this converge with variance

$$
(\Delta A)^{2}=\left(\left\langle A_{\mathrm{MC}}-A_{p}\right)^{2}\right\rangle=\frac{\operatorname{var}(A)}{M}
$$

$\langle A\rangle_{p} \sim\langle A\rangle_{\mathrm{MC}}=\frac{1}{M} \sum_{i=1}^{M} \mathcal{A}\left(x_{i}\right)$
If the variance is small ( A is large where p is large), this will be a good method.

Usage scenario: Stat mech distribution functions, typically strongly peaked in a small part of phase space.

## Poor man's introduction to the sign problem



Given: general nonpositive weight function on domain

$$
p(x)
$$

$$
Z=\int_{\Omega} p(x) d x
$$

Domain $\Omega$

$$
\langle A\rangle_{p}=\frac{1}{Z} \int_{\Omega} \mathcal{A}(x) p(x) d x
$$

$$
\langle A\rangle_{p}=\frac{1}{Z_{p}} \int_{\Omega} \mathcal{A}(x) p(x) d x=\left[\frac{1}{Z_{|p|}} \int_{\Omega} \mathcal{A}(x) \operatorname{sgn}(x)|p(x)| d x\right] /\left[\frac{1}{Z_{|p|}} \int_{\Omega} \operatorname{sgn}(x)|p(x)| d x\right]
$$

## configurations and domains

What we have seen so far:

- Configurations are discretized path integrals in imaginary time.
- Domain consists of all possible paths.

Most of what l'll talk about:

- Configuration space is space of all Feynman diagrams.
- Configurations are diagrams.
- Random walk consists of sampling diagrams by adding and removing parts of it.


Feynman diagrams are Taylor expansion coefficient - no a priori reason for them to be positive (but sometimes we can find representations where they are).

## Sign problem: Lattice QMC

average sign lattice / auxiliary field


Inspired by a plot of F. Assaad, Würzburg

## With the sign:

system close to superconducting

## Let's ignore the sign problem!

transition?
1


- Ignoring the sign problem is an uncontrolled approximation.
- Is it a good approximation?
- NO!
with signs

$$
4 \times 4, \quad\langle n\rangle=0.875, \quad U=4
$$

RO.


Sign problem in the numerical simulation of many-electron systems,
Phys. Rev. B 41, 9301
(1990), E. Y. Loh, Jr., J. E. Gubernatis, R. T.

Scalettar, S. R. White,
D. J. Scalapino, and R.
L. Sugar

FIG. 7. The $d$-wave pairing susceptibility, $P_{d}$ as a function of temperature on a $4 \times 4$ lattice with $U=4$ and $\langle n\rangle=0.875$. The solid triangles (solid line) are for a correct Monte Carlo calculation, and the open squares (dashed line) are for the same configurations but neglecting the sign of the fermion determinant.

0 $\square$ 0.5

Not just minor quantitative differences but major -superconducting 0 Without the sign: system does not look close to qualitative ones!
T/t



## More physics for a small system: Selfenergy approximation, Dyson

## Lattice QMC:

Controlled approximation
Finite lattice, finite size errors, exact for number of sites $N_{c} \rightarrow \infty$

## Cluster DMFT:

Controlled approximation, Inifinite lattice with approximated self energy, approximation errors, exact for number of sites $N_{c} \rightarrow \infty$

Resulting lattice system mapped onto impurity model \& self-consistency

Approximation to self energy:

$$
\Sigma(k, \omega)=\sum_{n} \Sigma_{n}(\omega) \phi_{n}(k) \approx \sum_{\substack{\uparrow \\ \text { Basis functions }}}^{N_{c} \leftarrow \text { with cluster size } \mathrm{N}_{c}} \Sigma_{n}(\omega) \phi_{n}(k)
$$

$$
\text { Example tiling of the BZ: } 2 \mathrm{~d}, \mathrm{~N}_{\mathrm{c}}=2,4,4,8
$$



Example tiling of the BZ: $2 \mathrm{~d}, \mathrm{~N}_{\mathrm{c}}=16$


## Quantum Monte Carlo continuous-time impurity solvers (Fakher Assaad's talk)

$$
\begin{aligned}
& H=H_{1}+H_{2} \\
& A(\beta)=e^{\beta H_{1}} e^{-\beta H} \\
& A(\beta)=T \exp \left[-\int_{0}^{\beta} d \tau H_{2}(\tau)\right] \\
& Z=\operatorname{Tr}\left[e^{-\beta H_{1}} A(\beta)\right] .
\end{aligned}
$$

$$
Z=\operatorname{Tr}\left[e^{-\beta H_{1}} T e^{-\int_{0}^{\beta} d r H_{2}(\tau)}\right]
$$

$$
=\sum_{n=0}^{\infty} \int_{0}^{\beta} d \tau_{1} \ldots \int_{\tau_{n-1}}^{\beta} d \tau_{n} T r\left[e^{-\left(\beta-\tau_{n}\right) H_{1}}\left(-H_{2}\right) \ldots e^{-\left(\tau_{2}-\tau_{1}\right) H_{1}}\left(-H_{2}\right) e^{-\tau_{1} H_{1}}\right],
$$

Use Wick's theorem to write Trace of operators as determinant of matrix, then



- Rubtsov, Savkin, and Lichtenstein, Continuous-time quantum Monte Carlo method for fermions, Phys. Rev. B 72, 035122 (2005)
- Gull, Werner, Parcollet, and Troyer, Continuous-time auxiliary-field Monte Carlo for quantum impurity models, EPL 82, 57003 (2008)


## Cluster DMFT in the TD limit

Solve a correlated quantum impurity system self-consistently for a range of system sizes. Then extrapolate in system size.


$$
\Sigma(k, \omega)=\sum_{n}^{\substack{\uparrow \\ \text { Basis function }}} \Sigma_{n}(\omega) \phi_{n}(k) \approx \sum_{n}^{N_{c}} \Sigma_{n}(\omega) \phi_{n}(k)
$$



Finite size extrapolation

validation against other methods

## Convergence to TD Limit



The easiest part of phase space: accurate without a sign problem using the simplest single site DMFT method.

Some of the 'uncorrelated' 'easy' systems, e.g. good Fermi liquids or Mott insulators with a large gap, are accessible without a sign problem: convergence within the system size accessible.

Some of the more interesting parameter regimes are not accessible: larger systems (prohibited by sign
FIG. 3: Main panel: total electron density $n$ as a function of problem) would be needed to simulate chemical potential $\mu$ for clusters considered in this paper at them. inverse temperature $\beta t=20$ for all clusters except 16, where $\beta t=7.5$ is shown. Inset: expanded view of small chemicalpotential region, highlighting region of Mott gap where $n=1$ independent of $\mu$.

# More physics for a small system: vertex functions, vertex approximation 

in the spirit of getting more out of a small system:


See also: Dual Fermions / Cluster Dual Fermions
Methods seem to suffer from instabilities, require self-consistent solution of Dyson, BetheSalpeter, Parquet equations. Methods still under investigation! (Held, Toschi, Rubtsov, ...)

## Sign problem: quantum impurity model

average sign impurity model / auxiliary field


## A look on the sign problem from a realtime / dynamics point of view

Expand observables into Feynman diagrams, sample them in a Monte Carlo process.

$$
\langle A\rangle=\operatorname{Tr} e^{i H t} A e^{-i H t}
$$

Obtain estimates for currents, occupations, Green's functions, etc as a function of (real) time


Everything is exponential!
Everything oscillates - severe sign problem Lost cause?

Marco Schiró, Real-time dynamics in quantum impurity models with diagrammatic Monte Carlo, Phys. Rev. B 81, 085126 (2010)
D. Goldhaber-Gordon et al.,

Kondo effect in a single-electron
transistor, Nature 391, 156-159 (1998)

## Bold: Combine MC and analytical methods!

1. start from uncontrolled partial summation techniques (think RPA):
obtain propagators that contain an infinite subset of diagrams.
2. use Bold Diagrammatic MC procedure to sum up ALL remaining diagrams:
obtain propagators with all diagrams, compute observables. Numerically exact.

e.g. 1. integral equations for diagrams without crossing lines,
followed by 2. a procedure to sample all remaining diagrams.

Delegating diagrams to the integral equations decreases the sampling space, increases the sign by an order of magnitude!



Spectral functions with error bars obtained from a real-time evolution of a quantum dot (AIM) with a voltage applied.

## Analytic Continuation: Sign problem is not the only exponential barrier

- Statics can only tell us so much...
- Experiment cares about dynamics: spectral functions, optical response functions (Raman, optical conductivities, ...), self energies!


ARPES: Shen et al., Science 307, 90I (2005)

- Equilibrium quantum statistical mechanics / imaginary time formulation of algorithm has a 'bug': small fluctuations in our simulation data cause large variations in the experimentally relevant quantities: Analytic continuation!
- Maximum entropy method, Padé, stochastic analytic continuation, etc use additional assumptions to generate appealing plots.
- Do we have to give up the Matsubara formulation to obtain unbiased estimates of response functions? What can replace it?


## Does a generic solution to the sign problem exist?



Troyer and Wiese,
Phys. Rev. Lett. 94, 170201 (2005)

Die Eierlegende Wollmilchsau (egg laying wool milk pig)

Some sign problems are NP hard, i.e. a general solution of all sign problems implies $P=N P$. The sign problems that are NP hard are not necessarily the ones we care about. Is there a large enough subset of sign problems for which we can find a practical polynomial-in-time solution?

## Thank you!

Many thanks to my collaborators, in particular
G. Cohen, S. Fuchs, J. Le Blanc, N. Lin A. J. Millis, M. Troyer


