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Poor man’s introduction to the sign
problem

Given: general positive ( )
weight function on domain p L

Z = [ p(x)dx
Q

Domain Q

- 1
e i (A = /QA@?)P(fE)de

We have a practical way of computing CLT will make this converge with
this integral: use a MC process variance
generate p-distributed random numbers (AA)Z _ (<A L A )2> L V&I’(A)
(select M points x; with probability p(x)/Z) T MC p o M
and compute

If the variance is small (A is large where p is large), this

M
]- will be a good method.
(A)p ~ (A)nic = 37 > A

Usage scenario: Stat mech distribution functions, typically
strongly peaked in a small part of phase space.



Poor man's introduction to the sign
problem

Given: general non-

positive weight p(aj‘)

function on domain

Z:/ p(z)dx
/ Az
Ay =5 [ Aty = | 7= [ Asen@ipelas] /| 5 [ senwlp)is

L This works well if the average sign is close to one.
<A>p o <A8gﬂ> |p| /<Sgn> |p| Does not work well if average sign goes to zero: noise

amplification error!

Domain Q

problem, average
no pb, average sign close to zero

sign large



configurations and domains

What we have seen so far:

e Configurations are discretized path
Integrals in imaginary time.
 Domain consists of all possible paths.

Domain Q)
Most of what I'll talk about:

« Configuration space is space of all Feynman
diagrams.
e Configurations are diagrams.
 Random walk consists of sampling diagrams by
adding and removing parts of it.
otr
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In a hybridization
(‘hopping’) expansion
of a quantum impurity

For a real-time
‘Keldysh’ problem

In an interaction
expansion on a lattice

Feynman diagrams are Taylor expansion coefficient — no a priori reason for them to
be positive (but sometimes we can find representations where they are).



<sign>

Sign problem: Lattice QMC

average sign lattice / auxiliary field
U/t = 4, 32-site cluster
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With the sign:
system close to
superconducting

ransition? Let's ignore the sign problem!
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Let's beat the sign problem!
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Remember Amdahl’s law!
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More physics for a small system: Selt-
energy approximation, Dyson

Lattice QMC: Cluster DMFT:

Controlled approximation Controlled approximation, Inifinite lattice with
Finite lattice, finite size errors, approximated self energy, approximation errors,
exact for number of sites N¢g = oo exact for number of sites Ng = oo

Resulting lattice system mapped onto impurity model & self-consistency

Example tiling of the BZ: 2d, Nc = 16

]

Systematic truncation
kVVI’[h cluster size Ne

=) Tn(w)on E P (k)
n
Basis funchons
Example tiling of the BZ: 2d, Nc = 2, 4, 4, 8 ®

Approximation to self energy:

1 W3 0>

\{
ol

Metzner, Vollhardt, Georges, Kotliar, Jarrell, Lichtenstein, Katsnelson, Maier, etc. See e.g. Rev. Mod. Phys. 77, 1027 (2005).




Quantum Monte Carlo continuous-time
impurity solvers (Fakher Assaad’s talk)

H=H,+ Hsy Z = Tr|e e i)
o0 J&; 3

A(B) = eMhePHt =2 / d“"'/ A7, Tr e O (1) e emts ( ppemmitts],
n=0 0 Tn—1

A(B) = T exp|— [, drHy(7)
Use Wick’s theorem to write Trace of operators as determinant of matrix, then
use importance sampling for sampling the diagram series.

Z = Trle P11 A(3)].
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— U/t=8, pt=2 | T1 T2
0.04 half filling ! g
» 0.03F diagrams with diagrams with ] ‘ ? ? i ‘
—g order <25 order = I.OO 1 0 - T3 To 3
2002 exponentially exponentially ]
: suppressed suppressed
- Rubtsov, Savkin, and Lichtenstein, Continuous-time
001 7 quantum Monte Carlo method for fermions, Phys. Rev. B
72, 035122 (2005)
- Gull, Werner, Parcollet, and Troyer, Continuous-time

00 | 2|5 | 5|() | 75 | 100 auxiliary-field Monte Carlo for quantum impurity models,
expansion order EPL 82, 57003 (2008)



http://dx.doi.org/10.1103/PhysRevB.72.035122
http://stacks.iop.org/0295-5075/82/57003
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Cluster DMFT in the TD limit

Solve a correlated guantum impurity system self—consistently for a range of system sizes.
Then extrapolate in system size.
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Convergence to TD Limit

A Cluster DMFT perspective

Plot: Gull et al., Phys. Rev. B 82, 155101 (2010)
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The easiest part of phase space:
accurate without a sign problem using
the simplest single site DMFT method.

Some of the ‘uncorrelated’ ‘easy’
systems, e.g. good Fermi liquids or
Mott insulators with a large gap, are
accessible without a sign problem:
convergence within the system size
accessible.

Some of the more interesting
parameter regimes are not accessible:
larger systems (prohibited by sign

FIG. 3: Main panel: total electron density n as a function of problem) would be needed to simulate

chemical potential i for clusters considered in this paper at
inverse temperature gt = 20 for all clusters except 16, where
pt = 7.5 is shown. Inset: expanded view of small chemical-
potential region, highlighting region of Mott gap where n = 1
independent of pu.

them.



More physics for a small system: vertex
functions, vertex approximation

In the spirit of getting more out of a small system:

DGammaA
. Cluster
Lattice DMET (and related
methods)
> >
Self energy

Green’s function vertex discretized
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See also: Dual Fermions /
Cluster Dual Fermions

Methods seem to suffer from instabilities, require self-consistent solution of Dyson, Bethe-
Salpeter, Parquet equations. Methods still under investigation! (Held, Toschi, Rubtsoy, ...)



Sign problem: quantum impurity model

average sign impurity model / auxiliary field
U/t = 4, 36-site cluster

1
-
B e—e 3t = 3 impurity —
e—e (3t = 4 impurity
0.8 o—o [ft=5 ]
average sign lattice / auxiliary field Bt=6
B | U/t = 4, 32-site cluster ﬁt =77 T
- =—a 3t=38
A 0.6 Y .
(- 0.8} o oBt=3 ]
—offt=4
. 20 B § o ft=5 \“: -
92 0.6 j, pr=6 |
v A

- —a t=8 —

04 =

v o.4l
0.2
0.2 ! _
0 . | . | . | .
B 0 0.2 04 0.6 0.8 -
doping x
O | | | |
0 0.2 0.4

doping x



A look on the sign problem from a real-
time / dynamics point of view

Expand observables into Feynman diagrams, sample . iHt _iHt
them in a Monte Carlo process. (A) = Tre*"" Ae

Obtain estimates for currents, occupations, Green’s
functions, etc as a function of (real) time

Everything is exponential!
Everything oscillates — severe sign problem
Lost cause? 0.81

salU =5T
E—E U_ - 10 r

0.6

Marco Schird, Real-time dynamics in
quantum impurity models with
diagrammatic Monte Carlo, Phys. Rev. B
81, 085126 (2010)

(sign)
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D. Goldhaber-Gordon et al.,
B IR Kondo effect in a single-electron 0)
SHoM1S. SRS ORI transistor, Nature 391, 156-159 (1998) o
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Bold: Combine MC and analytical methods!

1. start from uncontrolled partial
summation techniques (think RPA):

obtain propagators that contain an infinite

subset of diagrams.

lines,

diagrams.

2. use Bold Diagrammatic MC procedure
to sum up ALL remaining diagrams:

obtain propagators with all diagrams,
compute observables. Numerically exact.

e.g. 1. integral equations for diagrams without crossing

followed by 2. a procedure to sample all remaining

Delegating diagrams to the integral equations decreases the sampling space,
increases the sign by an order of magnitude!
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Spectral functions with error bars obtained from a real-time
evolution of a quantum dot (AIM) with a voltage applied.



Analytic Continuation: Sign problem is
not the only exponential barrier

 Statics can only tell us so much...
e Experiment cares about dynamics: spectral functions, optical response functions
(Raman, optical conductivities, ...), self energies!

(0,0) x=0.05 x=0.10 x=0.12

ARPES: Shen et al., Science 307,901 (2005)

 Equilibrium quantum statistical mechanics / imaginary time formulation of algorithm has
a ‘bug’: small fluctuations in our simulation data cause large variations in the
experimentally relevant quantities: Analytic continuation!

 Maximum entropy method, Pade, stochastic analytic continuation, etc use additional
assumptions to generate appealing plots.

- Do we have to give up the Matsubara formulation to obtain unbiased estimates of
response functions? What can replace it?



Does a generic solution to the sign
problem eX|st’7

Troyer and Wiese,
Phys. Rev. Lett. 94,
170201 (2005)

Die Eierlegende Wollmilchsau
(egg laying wool milk pig)

Some sign problems are NP hard, i.e. a general solution of all sign problems
implies P=NP. The sign problems that are NP hard are not necessarily the ones we
care about. Is there a large enough subset of sign problems for which we can

find a practical polynomial-in-time solution?



Thank you!

Many thanks to my collaborators, in particular
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