Deconfinement transition as black hole formation by the condensation of QCD strings

(and toward real-time simulation)

Masanori Hanada (Stanford/Kyoto)

M.H.-Maltz-Susskind, 1405.****[hep-th]

Berkowitz-M.H.-Hayden-Susskind, in progress

Field Theoretic Computer Simulations for Particle Physics and Condensed Matter@ BU May 2014

· interaction (joining/splitting) is 1/N-suppressed

"large-N limit is the theory of free string"

- It is true when L is O(N⁰). (→confining phase)
- is $O(N^2) \rightarrow$ number of intersections is

gauge/gravity duality claims deconfinement phase = Black hole

Quantitative test: D0-brane matrix model vs. black 0-brane

as the density of strings increase,

interaction between strings

becomes important, and...

confining phase

= gas of short strings

U₁, U₂ O O O

looks correct, even at quantum gravity level

long and winding string, which is interpreted as BH,

D-dim square lattice at string coupling

deconfining phase = long string

huge mass and entropy are packed in a small region → BH E = L(T)/2, $S = L(T) \times log(2D-1)$

- · In deconfinement phase, total length of the strings O(N²)→interaction is **not** negligible

large-N limit is still very dynamical!

Real-time study for BH thermalization

eigenstate \sim "thermal state

Hei=Eiei

 $\overrightarrow{e}_i = c_{ii} \overrightarrow{v}_i$

k-string state is observed

"thermal distribution"

- generic state is indistinguishable from "thermal state"
- Does it satisfy Sekino-Susskind's fast scrambling bound?

... but why??

Understand it by using the Hamiltonian formulation of lattice gauge theory (Kogut-Susskind, 1974)

$$H = \frac{\lambda N}{2} \sum_{\mathcal{I}} \sum_{\mu} \sum_{\alpha=1}^{N^2} (E_{\mu, \mathcal{I}}^{\alpha})^2 + \frac{N}{\lambda} \sum_{\mathcal{I}} \sum_{\mu < \nu} \left(N - \text{Tr}(U_{\mu, \mathcal{I}} U_{\nu, \mathcal{I} + \hat{\mu}} U_{\mu, \mathcal{I} + \nu}^{\dagger} U_{\nu, \mathcal{I}}^{\dagger}) \right)$$

$$\sum_{\alpha=1}^{N^2} \tau_{ij}^{\alpha} \tau_{kl}^{\alpha} = \frac{\delta_{il} \delta_{jk}}{N^2}$$

Hilbert space is expressed by

matrix models at string coupling

strong coupling limit H =

thermalization= formation of *generic* string

- (# of U_i) (# of U_i†) is fixed.
- In the strong coupling limit, number of link variables does not increase. The Hilbert space can be truncated to finite dimensions.
- · When there is no Uit in the initial condition, simply the combinatorics of fixed numbers of U₁,...,U_d.

time evolution can be studied!

the simplest case: 1-link model

$$\begin{split} \overrightarrow{\nabla}_1 = & (\text{Tr } U^L) \rightarrow \text{ 1-string state} \\ \overrightarrow{\nabla}_2 = & (\text{Tr } U)(\text{Tr } U^{L-1}) \\ \overrightarrow{\nabla}_3 = & (\text{Tr } U^2)(\text{Tr } U^{L-2}) \\ \overrightarrow{\nabla}_4 = & (\text{Tr } U^3)(\text{Tr } U^{L-3}) \\ \vdots \\ \overrightarrow{\nabla}_d = & (\text{Tr } U)^L \rightarrow \text{ L-string state} \\ \end{aligned}$$

H e = E e