Graphene as a lattice gauge theory

为
 Simon Hands (Swansea U.)

In this talk I will

- introduce a relativistic field theory for lowenergy electron excitations in graphene
- argue that at strong coupling there is a phase transition to a Mott insulator described by a quantum critical point (QCP)
- generalise to bilayer graphene with a non-zero inter-layer bias voltage (aka isopsin chemical potential).
- present simulation results probing degenerate matter in the presence of strong interactions

Relativity in Graphene

The electronic properties of graphene were first studied theoretically over 60 years ago
P.R.Wallace, Phys. Rev. 7I (I947) 622

$$
\begin{array}{r}
H=-t \sum_{\mathbf{r} \in \mathbf{B}} \sum_{i=1}^{3} b^{\dagger}(\mathbf{r}) a\left(\mathbf{r}+\mathbf{s}_{i}\right)+a^{\dagger}\left(\mathbf{r}+\mathbf{s}_{i}\right) b(\mathbf{r}) \\
\text { "tight -binding" Hamiltonian }
\end{array}
$$ describes hopping of electrons in π-orbitals from A to B sublattices and vice versa

$\begin{gathered}\text { In momentum } \\ \text { space }\end{gathered} H=\sum_{\vec{k}}\left(\Phi(\vec{k}) a^{\dagger}(\vec{k}) b(\vec{k})+\Phi^{*}(\vec{k}) b^{\dagger}(\vec{k}) a(\vec{k})\right)$
with $\Phi(\vec{k})=-t\left[e^{i k_{x} l}+2 \cos \left(\frac{\sqrt{3} k_{y} l}{2}\right) e^{-i \frac{k_{x} l}{2}}\right]$

Define states $\left|\vec{k}_{ \pm}\right\rangle=(\sqrt{2})^{-1}\left[a^{\dagger}(\vec{k}) \pm b^{\dagger}(\vec{k})\right]|0\rangle$

$$
\Rightarrow\left\langle\vec{k}_{ \pm}\right| H\left|\vec{k}_{ \pm}\right\rangle= \pm\left(\Phi(\vec{k})+\Phi^{*}(\vec{k})\right) \equiv \pm E(\vec{k})^{a 0}
$$

Energy spectrum is symmetric about $E=0$

Half-filling (neutral or "undoped" graphene) has zero energy at "Dirac points" at corners of first Brillouin Zone:

There are two independent Dirac points in BZ1

$$
\Phi(\vec{k})=0 \Rightarrow \vec{k}=\vec{K}_{ \pm}=\left(0, \pm \frac{4 \pi}{3 \sqrt{ } 3 l}\right)
$$

Taylor expand
@ Dirac point

$$
\Phi\left(\vec{K}_{ \pm}+\vec{p}\right)= \pm v_{F}\left[p_{y} \mp i p_{x}\right]+O\left(p^{2}\right)
$$

with "Fermi velocity" $\quad v_{F}=\frac{3}{2} t l$

Define modified operators $a_{ \pm}(\vec{p})=a\left(\vec{K}_{ \pm}+\vec{p}\right)$

Now combine them into a "4-spinor" $\Psi=\left(b_{+}, a_{+}, a_{-}, b_{-}\right)^{t r}$

$$
\left.\Rightarrow H \simeq v_{F} \sum_{\vec{p}} \Psi^{\dagger}(\vec{p})\left(\begin{array}{cc}
p_{y}-i p_{x}+i p_{x} \\
& -p_{y}+i p_{x}
\end{array}\right) \Psi p_{y}-i p_{x}\right) \Psi(\vec{p})
$$

$$
=v_{F} \sum_{\overrightarrow{\vec{x}}} \Psi^{\dagger}(\vec{p}) \vec{\alpha} \cdot \vec{p} \Psi(\vec{p}) \quad \text { Dirac Hamiltonian }
$$

$$
\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j}
$$

ie. low-energy excitations are relativistic massless fermions with velocity

$$
v_{F}=\frac{3}{2} t l \approx \frac{1}{300} c
$$

For monolayer graphene the number of flavors $N_{f}=2$
(2 C atoms/cell $\times 2$ Dirac points/zone $\times 2$ spins)

Interactions between electrons: an effective field theory

(Son, Khveshchenko,...)

$$
\begin{aligned}
& N_{f} \quad \text { fermions live on two-dimensional "braneworld" interact with photons living in the 3d bulk } \\
& S=\sum_{a=1}^{N f} \int d x_{0} d^{2} x\left(\bar{\psi}_{a} \gamma_{0} \partial_{0} \psi_{a}+v_{F} \bar{\psi}_{a} \vec{\gamma} \cdot \vec{\nabla} \psi_{a}+i V \bar{\psi}_{a} \gamma_{0} \psi_{a}\right) \\
& +\frac{1}{2 e^{2}} \int d x_{0} d^{3} x\left(\partial_{i} V\right)^{2}, \stackrel{\text { "instantaneous" Coulomb potential }}{\longleftrightarrow} \\
& \text { ie. this is not } \text { QED }_{3}
\end{aligned}
$$

Number of "flavors" $N_{f}=2$ for monolayer graphene

quantum screening due

$$
\lambda=\frac{e^{2} N_{f}}{16 \varepsilon \varepsilon_{0} \hbar v_{F}} \simeq \frac{1.4 N_{f}}{\varepsilon \longleftarrow} \quad \begin{aligned}
& \text { (i) parametrises quantum vs. classical }
\end{aligned}
$$

For sufficiently large e^{2}, or sufficiently small N_{f}, the Fock vacuum may be disrupted by a particle-hole "excitonic" condensate $\quad\langle\bar{\psi} \psi\rangle \neq 0$

spontaneously breaks $\mathrm{U}\left(2 \mathrm{~N}_{\mathrm{f}}\right) \rightarrow \mathrm{U}\left(\mathrm{N}_{\mathrm{f}}\right) \otimes \mathrm{U}\left(\mathrm{N}_{\mathrm{f}}\right)$

In particle physics this is "chiral symmetry breaking" (XSB) leading to dynamical mass (gap) generation

In condensed matter physics this phase is a Mott insulator Hypothesis: the xSB transition at $e^{2}\left(N_{f}\right)$ defines a Quantum Critical Point (QCP) whose universal properties characterise the low-energy excitations of graphene D.T. Son, Phys. Rev. B75 (2007) 235423
QCP characterised by anomalous scaling e.g. $\left.\langle\bar{\psi} \psi\rangle\right|_{e^{2}=e_{c}^{2}} \propto m^{\frac{1}{\delta}}$
Physically corresponds to a metal-insulator transition

Numerical Lattice Approach

$$
\begin{aligned}
S_{l a t t} & =\frac{1}{2} \sum_{x \mu i} \bar{\chi}_{x}^{i} \eta_{\mu x}\left(1+i \delta_{\mu 0} V_{x}\right) \chi_{x+\hat{\mu}}^{i}-\bar{\chi}_{x}^{i} \eta_{\mu x}\left(1-i \delta_{\mu 0} V_{x-\hat{0}}\right) \chi_{x-\hat{\mu}}^{i} \\
& +m \sum_{x i} \bar{\chi}_{x}^{i} \chi_{x}^{i}+\frac{N}{4 g^{2}} \sum_{x} V_{x}^{2} \quad i=1, \ldots
\end{aligned}
$$

$\chi_{x}^{i}, \bar{\chi}_{x}^{i}$ single spin-component fermion fields defined at sites of a cubic lattice
V_{x} bosonic auxiliary field defined on link between x and $x+0$

Relation between coupling g^{2} and e^{2}, λ not known a priori

$$
\eta_{\mu x} \equiv(-1)^{x_{0}+\cdots+x_{\mu-1}}
$$

Kawamoto-Smit phases
ensure covariant continuum limit for $g^{2}=0$

Chiral symmetry: $\mathrm{U}(N) \otimes \mathrm{U}(N) \rightarrow \mathrm{U}(N)$ (if $m \neq 0$)
In weak coupling continuum limit, can show $\mathrm{U}\left(2 N_{f}\right)$ and Lorentz symmetries are recovered, with $N_{f}=2 N$

EoS results

Physical graphene $N_{f}=2$ $g_{c}{ }^{-2}=0.609(2)$ $\delta\left(N_{f}=2\right)=2.66(3)$
So δ depends on N_{f}
Cf Drut \& Lähde Phys. Rev. B79(2009) 24। 405(R)

Bilayer graphene

Coupling $\gamma_{3} \neq 0$ results in trigonal distortion of band and doubles number of Dirac points (McCann \& Fal'ko PRL96(2006)086805)

$\mathrm{N}_{\mathrm{f}}=4$ EFT description plausible for $\mathrm{ka} \leqslant \gamma_{1} \gamma_{3} / \gamma_{0}{ }^{2}$

Introduction of a bias voltage μ between the layers induces electrons on one, holes on the other.

Inter-layer exciton condensation driven by enhanced density of (e, h) states at Fermi surface leads to gap formation?

Bilayer effective theory ($\mathrm{N}=2$ staggered flavors)

$$
\begin{aligned}
\mathcal{L} & =(\bar{\psi}, \bar{\phi})\left(\begin{array}{cc}
D[A ; \mu]+m & i j \\
-i j & D[A ;-\mu]-m
\end{array}\right)\binom{\psi}{\phi}+\frac{1}{2 g^{2}} A^{2} \\
& \equiv \bar{\Psi} \mathcal{M} \Psi \cdot+\frac{1}{2 g^{2^{2}} A^{2}}
\end{aligned}
$$

Bias voltage μ couples to layer fields ψ, φ with opposite sign (Cf. isospin chemical potential in QCD)

Intra-layer ($\psi \psi$) and inter-layer ($\psi \varphi$) interactions have same strength
"Gap parameters" m, j are IR regulators
$D^{\dagger}[A ; \mu]=-D[A ;-\mu]$. inherited from gauge theory

$$
\operatorname{det} \mathcal{M}=\operatorname{det}\left[(D+m)^{\dagger}(D+m)+j^{2}\right]>0
$$

No sign problem!

In practice no problem with setting $\mathrm{m}=0$

Details of the simulation

- Simulate using hybrid Monte Carlo (HMC) algorithm
- no sign problem even with $\mu \neq 0$
- lattice sizes $32^{3}, 48^{3}$
- $1 / \mathrm{g}^{2} \mathrm{a}=0.4$ throughout - close to QCP on chirally symmetric side
- $\mathrm{ja}=0.01, \ldots ., 0.07$ enables polynomial extrapolation to $\mathrm{j}=0$
- $\mu \mathrm{a}=0.0, \ldots, 0.6$

Main observables:

- carrier density $\quad n_{c} \equiv \frac{\partial \ln Z}{\partial \mu}=\left\langle\bar{\psi} D_{0} \psi\right\rangle-\left\langle\bar{\phi} D_{0} \phi\right\rangle$.
- exciton condensate (interlayer) $\langle\Psi \Psi\rangle \equiv \frac{\partial \ln Z}{\partial j}=i\langle\bar{\psi} \phi-\bar{\phi} \psi\rangle$
- chiral condensate (intralayer)

$$
\langle\bar{\Psi} \Psi\rangle \equiv \frac{\partial \ln Z}{\partial m}=\langle\bar{\psi} \psi\rangle-\langle\bar{\phi} \phi\rangle
$$

Carrier Density

Fit small- μ data:
$\mathrm{n}_{\mathrm{c}}(\mathrm{j}=0) \propto \mu^{3.32(1)}$
Cf. free-field $\mathrm{n}_{\mathrm{c}} \propto \mu^{\mathrm{d}} \propto \mu^{2}$

Observe premature saturation at $\mu \mathrm{a} \approx 0.5$
(other lattice models typically saturate at $\mu \mathrm{a} \gtrsim 1$)
$\Rightarrow \quad \mu \approx E_{F}<k_{F}$
system is strongly self-bound, no discernable onset $\mu_{0}>0$

Exciton Condensate

Fit small- μ data: $\langle\Psi \Psi(\mathrm{j}=0)\rangle \propto \mu^{2.39(2)}$

Cf. weak BCS pairing
$\langle\Psi \Psi\rangle \propto \Delta \mu^{d-1} \propto \mu$?
rapid rise with μ to exceed free-field value, peak at $\mu \mathrm{a} \approx 0.3$, then fall to zero in saturation region

Exciton condensation, with no discernable onset $\mu_{0}>0$

Chiral Condensate

exceeds free-field value for small μ, indicative of nearby QCP, then rapidly falls to zero as μ increases.

Interlayer pairing

suppressed as E_{F} grows

$$
|\langle\bar{\Psi} \Psi\rangle| \approx 1 / 3|\langle\Psi \Psi\rangle|_{\text {peak }}
$$

ie. particle-hole pairing is promoted by the large Fermi surface induced by $\mu \neq 0$
the two condensates compete: $\langle\bar{\Psi} \Psi\rangle\left\langle\langle\bar{\Psi} \Psi\rangle_{\text {free }}\right.$ when $\langle\Psi \Psi\rangle$ peaks

For a BCS-style condensation - ie. pairing at Fermi surface leading to gap generation $\Delta>0$

expect $\quad\langle\Psi \Psi\rangle \propto \Delta k_{F}^{d-1} \propto \Delta n^{\frac{d-1}{d}}$

where last step follows from Luttinger's theorem
Thus $\Delta(\mu) \propto\langle\Psi \Psi\rangle / \sqrt{\mathrm{n}_{\mathrm{c}}}$
Find near-linear dependence $\Delta \propto \mu$ at small μ : expected for conformal behaviour near QCP symon."

Cf. NJL model: $\Delta=\mathrm{O}\left(\Lambda_{\mathrm{uv}}\right)$ (SJH \& D.N.Walters PRD69 (2004) 0760II)
$Q C_{2} \mathrm{D}: \quad \Delta=\mathrm{O}\left(\Lambda_{\mathrm{QCD}}\right)$
(S. Cotter et al PRD87 (2013) 034507)

in both cases (roughly) μ-independent

Quasiparticle Dispersion for $\mu \mathrm{a}=0.2$ (preliminary)

 $<\Psi(\mathrm{k}) \bar{\Psi}(\mathrm{k})>\sim \mathrm{e}^{-\mathrm{E}(\mathrm{k}) \mathrm{t}} \quad \begin{gathered}\text { partially twisted spatial b.c.s improve } \\ \text { momentum resolution - no gauge fixing needed! }\end{gathered}$

Fit functions:
$k_{F} a \approx \pi / 8 \approx 0.4>\mu \mathrm{a}$
$\Rightarrow \quad \mathrm{n}_{\mathrm{c}} \mathrm{a}^{2}=\mathrm{k}_{\mathrm{F}}^{2} / 2 \pi \approx 0.063$
Cf. directly measured value 0.09
$" N o r m a l " \operatorname{Re}\left(C_{N}(\vec{k}, t)\right)=A e^{-E t}+B e^{-E\left(L_{t}-t\right)}$,
"Anomalous" $\operatorname{Im}\left(C_{A}(\vec{k}, t)\right)=C\left(e^{-E t}-e^{-E\left(L_{t}-t\right)}\right)$,
Amplitudes show crossover from holes to particles

Note $\mu=\mathrm{E}_{\mathrm{F}}<\mathrm{k}_{\mathrm{F}}$ consistent with a self-bound system

And the gap?....

Again, consistent with a gapped Fermi surface with $\Delta / \mu=\mathrm{O}(1)$

Cf. $\Delta / \mu \sim 10^{-7}$ found in diagrammatic approach Kharitonov \& Efetov Semicond. Sci. Technol. 25034004 (20IO)

Summary

A new, interesting member of the small class of models permitting MC study with $\mu \neq 0$
Behaviour very different from previous ($Q C_{2} D, N J L$) \Leftrightarrow residual interactions at Fermi surface are strong

Densities and condensates scale anomalously with μ Quasiparticle dispersion E(k) exposes Fermi surface

$$
\text { Strongly-interacting } Q C P \Leftrightarrow \Delta=\Delta(\mu), \Delta / \mu=\mathrm{O}(1)
$$

Future: Examine helicity modulus Y to compare with

$$
\mathrm{Y}_{\mathrm{GMOR}}=4 \mathrm{j}\langle\Psi \Psi\rangle / \mathrm{M}_{\mathrm{Goldstone}}
$$

Move to overlap fermions to better reproduce global

$$
\mathrm{U}(8) \xrightarrow{\substack{\text { symmetry pattern? }}} \mathrm{U}(4) \otimes \mathrm{U}(4) \xrightarrow{i \neq 0} \mathrm{U}(4)
$$

