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Transport without Quasiparticles

The classical picture of transport in a QFT in d spatial
dimensions by long-lived quasiparticles breaks down
at a quantum critical point, often described with the
language of conformal field theory (CFT). A famous
example is the 2d Bose-Hubbard superfluid-insulator
transition [1], whose low energy theory is described by
the d = 2 O(2) Wilson-Fisher fixed point.
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Although field theory at finite temperature T is ac-
cessible by compactifying imaginary time with period
T−1, only a discrete set of Matsubara frequencies are
accessible, and determining transport coefficients and
real-time dynamics at all frequencies is a major chal-
lenge. Novel techniques such as AdS/CFT are finally
allowing for dynamical computations consistent with
conformal symmetry.

A “Thermalization Quench”

Consider placing two semi-infinite CFTs in d = 1 of
central charge c together at temperatures TL, TR. As
they interact, a universal steady state develops, with
energy flow: [2]
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This equation is often understood in linear response as
〈T tx〉 = cgTav∆T where g is the quantum of thermal
conductance, which can be measured experimentally
[3], though it is more general. This universal formula
has been observed numerically and is approximately
valid even when conformal symmetry is broken [4].
It is easy to understand where it comes from; holo-
morphic factorization implies that left/right-moving
sectors do not interact. The steady state is formed by
left movers from right bath, and right movers from left
bath, overlapping. This steady state forms instanta-
neously: the ends of the steady-state region propagate
at the speed of light. The full probability distribution
of energy transfer can be obtained from effective fluc-
tuation relations on 〈T tx〉.
Higher Dimensions: We generalize this set-up to
higher dimensions, which is unexplored in the liter-
ature. The theory is strongly interacting and there
is no integrability, meaning that previous techniques
are not applicable. Momentum conservation suggests
that the energy current has a ballistic component; so
we postulate steady-states do emerge dynamically. We
will show this naturally follows from hydrodynamics.

Emergent Steady States

A CFT in d spatial dimensions at finite temperature T
breaks both Lorentz invariance by picking out a pre-
ferred rest frame (denote by time-like vector uµ) and
scale invariance. The resulting stress-energy tensor is
then completely constrained by symmetry to have the
form

〈Tµν〉 = adT
d+1 (ηµν + (d+ 1)uµuν) .

ad is proportional to the degrees of freedom of the
CFT; e.g. a1 = cπ/12. A strongly-coupled CFT
should have no other steady states (up to additional
conservation laws).
Thermodynamics: This can be understood by noting
that the only generic conserved quantity is Pµ. The
most generalized Gibbs ensemble is exp[βµP

µ], where
βµ = uµT

−1.
AdS/CFT: More generally, we expect to encode
dynamics of energy-momentum sector in Einstein-
Hilbert gravity in AdSd+2, if ad ∼ Ld/GN � 1. Grav-
ity can derive this thermodynamic insight – the only
regular t, x-independent solutions to Einstein’s equa-
tions are black branes dual to finite T states:
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where f = 1− (4πTz/(d+ 1))d+1. Anisotropic geome-
tries are not regular: this is a geometric encoding of
the fact that perfect conformal fluids do not support
shear stress. [5] The possibility for excitations to fall
past the event horizon of this black brane at z = z0
allows for a dual description of thermalizing systems.
The metric above is an approximately a solution of
Einstein’s equations with uµ, T allowed arbitrary vari-
ations in xµ that obey the equations of perfect hy-
drodynamics; correcting this solution leads to higher
orders (e.g., viscosity at first order) in a hydrodynamic
gradient expansion.
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Steady-state energy transport is universally governed
by Lorentz-boosted thermal states. Exceptions are the-
ories with pathologically many conserved quantities:
e.g., free particles or de-coupled sectors. Adding con-
served charges adds chemical potentials that charac-
terize emergent steady-states.
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Dynamics of Interacting Heat Baths

We extend the d = 1 set-up to arbitrary d. For times
t & λ/(TL + TR), with λ = η/adT

d the dimensionless
viscosity, perfect conformal hydrodynamics is a good
approximation for an interacting field theory. The
equations of motion are simply ∂µ〈Tµν〉 = 0. Domain
walls propagate at known, non-symmetric, velocities
into heat baths leaving behind a universal steady state
with Lorentz boost and temperature fixed by TL, TR.
[6]
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The full counting statistics of the energy transfer Q
from left to right across interface area A in a time
span t � λ/(TL + TR) are also expected to follow an
extended fluctuation relation:
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with χ = (TL/TR)(d+1)/2. We derive this relation by
appealing to the rapid appearance, and PT-symmetry,
of the emergent steady-state. This is the first result
for heat transfer between baths out of equilbrium in
a model in d > 1, where theories are not integrable.
This result passes non-trivial consistency checks.
d = 1: Although hydrodynamics is not applicable,
the above results still hold and can be derived in
full rigor from CFT technology [2], or a solution of
Einstein’s equations. The geometry of merging black
branes, dual to interacting heat baths, is well-defined
and the black hole partition function recovers the re-
sult above for 〈Qn〉 [5].
Stability: The fate of the steady-state to pos-
sible instabilities such as turbulence is unknown.
In d = 2, zeroth-order conservation of enstrophy∫

dxdy ut(εµνρuµ∂νuρ)
2 rules out the possibility of

turbulence; the steady-state should be robust.

Momentum Relaxation

Impurities or lattices break microscopic translation
(and Lorentz) invariance and momentum is not
conserved. Modifying momentum conservation to
∂µ〈Tµi〉 = −τ−1〈T ti〉, for t � τ , 〈T tx〉 is suppressed
and energy diffuses: ∂t〈Tµν〉 ≈ (τ/d)∂2x〈Tµν〉. [5]
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