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Outline 

§  Introduc/on	  
•  Standard	  Model	  of	  Par/cle	  Physics	  
•  Beyond	  the	  Standard	  Model	  
•  The	  role	  of	  La>ce	  

§  Computa/onal	  Issues:	  Past,	  Present	  and	  Future	  
•  General	  issues	  
•  Past:	  viability	  of	  technicolor	  theories	  
•  Present:	  searching	  for	  Higgs	  imposters	  
•  Future:	  ?	  

§  Summary	  and	  Outlook	  
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Standard Model of Particle Physics 

§  Standard	  Model	  of	  par/cle	  physics	  describes	  the	  strong	  and	  electroweak	  
interac/ons	  of	  the	  elementary	  par/cles.	  	  
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Image from Wikipedia 

§  Quantum	  chromodyanmics	  
(QCD)	  is	  the	  theory	  of	  the	  
strong	  interac/ons	  between	  
quarks	  and	  gluons.	  SU(3)	  
gauge	  symmetry.	  	  

§  The	  electroweak	  sector	  is	  
described	  by	  SU(2)L	  x	  U(1)Y	  	  
symmetry.	  	  

§  Inputs	  to	  the	  SM:	  par/cle	  
masses	  and	  the	  gauge	  
couplings	  è	  19	  parameters.	  
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The SM Higgs Mechanism  

§  What	  gives	  fermions	  and	  gauge	  bosons	  mass?	  In	  the	  Standard	  Model,	  this	  is	  
achieved	  by	  the	  Higgs	  mechanism.	  

§  A	  complex	  scalar	  SU(2)L	  doublet	  is	  introduced	  by	  hand,	  	  

	  	  	  	  	  	  	  with	  the	  poten/al	  (λ	  >	  0)	  
	  
	  
§  When	  μ2	  <	  0,	  a	  non-‐zero	  vacuum	  expecta/on	  value	  (vev)	  develops	  and	  

spontaneously	  breaks	  the	  electroweak	  symmetry.	  	  

	  
§  The	  scalar	  doublet	  can	  be	  wriden	  in	  terms	  of	  a	  physical	  Higgs	  field	  h	  
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where

Wi
µν = ∂νWi

µ −∂µWi
ν −gε i jkW j

µWk
ν

Bµν = ∂νBµ −∂µBν . (2)

A mass term for the W and B gauge bosons would break the SU(2)L×U(1) gauge
symmetry.
Coupled to the gauge fields is a complex scalar SU(2)L doublet, Φ,

Φ=

(

φ+

φ0

)

, (3)

with a scalar potential given by

V (Φ) = µ2 |Φ†Φ | +λ
(

|Φ†Φ |
)2

, (4)

(λ > 0). This is the most general renormalizable and SU(2)L invariant potential.
The state of minimum energy for µ2 < 0 is not at φ0 = 0 and hence the scalar field

develops a vacuum expectation value (VEV). The direction of the minimum in SU(2)L
space is not determined since the potential depends only on the combination Φ†Φ and
we arbitrarily choose

⟨Φ⟩ =
1√
2

(

0
v

)

. (5)

With this choice the scalar doublet has U(1)Y charge (hypercharge) YΦ = 1 and the
electromagnetic charge is2

Qem =
(τ3+Y )

2
, (6)

yielding an unbroken electromagnetic charge symmetry:

Qem⟨Φ⟩ = 0 . (7)

The contribution of the scalar doublet to the Lagrangian is,

Ls = (DµΦ)†(DµΦ)−V (Φ) , (8)

where
Dµ = ∂µ − i

g
2
τ ·Wµ− i

g′

2
BµY. (9)

In unitary gauge, the scalar doublet can be written in terms of a physical scalar Higgs
field, h, as

Φ=
1√
2

(

0
v+h

)

, (10)

2 The τi are the Pauli matrices with Tr(τiτ j) = 2δi j.
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remains massless. Hence a single scalar Higgs doublet not only generates masses for
the gauge bosons, but also for fermions. Unfortunately, the size of the fermion masses
remains unexplained.
The couplings of the Higgs boson to the fermions and gauge bosons are directly

proportional to their masses (by construction), which has the implication that the Higgs
boson decays primarily to the heaviest particles kinematically allowed. At tree level, the
Higgs couplings to photons and gluons vanish since the photon and gluon are massless.
These couplings first arise at 1-loop and hence are sensitive to new non-SM particles
which may propagate in the loops. The Higgs boson branching ratios are shown in Figs.
1 and 2 and they can easily be calculated including higher order corrections using the
programs HDECAY[9] or FEYNHIGGS[10].
One of the most important points about the Higgs mechanism is that all of the

couplings of the Higgs boson to fermions and gauge bosons are completely determined
in terms of gauge coupling constants and fermion masses. The potential of Eq. 4 has two
free parameters, µ and λ . We can trade these for

v2 = −
µ2

2λ
= (246 GeV )2

M2
h = 2v2λ . (24)

There are no remaining adjustable parameters and so Higgs production and decay
processes can be computed unambiguously in terms of the Higgs mass alone, making
the Higgs sector of the theory completely determined in the SM.
When the scalar potential is expressed in terms of v and Mh, it becomes,

V =
M2
h
2
h2+

M2
h
2v
h3+

M2
h

8v2
h4 , (25)

and it is apparent that for heavy Higgs masses (Mh ∼ 1 TeV ), the Higgs self-interactions
become strong.

EXPERIMENTAL SEARCHES FOR THE HIGGS BOSON

LEP

The Higgs boson was directly searched for at the LEP collider through the process
e+e− → Zh at energies up to

√
s = 209 GeV . The Higgs boson decays to the heaviest

particles kinematically accessible (bb and τ+τ− for the LEP searches) and the Z decays
roughly 70% of the time to jets, 20% to neutrinos, and 10% to charged leptons. The
LEP experiments searched in all of these channels and obtained the limit on a SM Higgs
boson[12],

Mh > 114.4 GeV . (26)
This limit can potentially be evaded by constructing models where the Higgs boson
decays to non-SM invisible particles with large branching ratios or the Higgs has highly
suppressed non-SM couplings to the Z[13]. A Higgs boson with couplings an order of
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The SM Higgs Mechanism (cont’d) 

§  The	  gauge	  bosons	  acquire	  mass	  through	  this	  vev,	  	  

§  A	  consequence	  of	  the	  SM	  Higgs	  mechanism	  is	  the	  existence	  of	  a	  scalar	  Higgs	  boson,	  
with	  the	  mass	  determined	  by	  the	  Higgs	  self	  coupling	  

§  Higgs	  mass	  is	  not	  known	  a	  priori.	  
§  Prior	  to	  the	  LHC	  discovery,	  various	  precision	  experiments	  put	  bounds	  on	  the	  range	  

of	  allowed	  Higgs	  mass.	  	  

M.	  Lin,	  "Computa/onal	  Issues	  in	  BSM	  Theories"	   5	  

TABLE 1. Standard Model Particles

Field SU(3) SU(2)L U(1)Y

QL =

(

uL
dL

)

3 2 1
3

uR 3 1 4
3

dR 3 1 − 2
3

LL =

(

νL
eL

)

1 2 −1

eR 1 1 −2

Φ=

(

φ+

φ0

)

1 2 1

which gives the contribution to the gauge boson masses from the scalar kinetic energy
term of Eq. 8,

M2
Gauge Boson ∼

1
2
(0,v)

(

1
2
gτ ·Wµ +

1
2
g′Bµ

)2( 0
v

)

. (11)

The physical gauge fields are two charged fields,W±, and two neutral gauge bosons, Z
and A,

W±
µ =

1√
2
(W1

µ ∓ iW 2
µ )

Zµ =
−g′Bµ +gW 3

µ
√

g2+g′ 2

Aµ =
gBµ +g′W 3

µ
√

g2+g′ 2
. (12)

The gauge bosons obtain masses via Eq. 11:

M2
W =

1
4
g2v2

M2
Z =

1
4
(g2+g′ 2)v2

MA = 0. (13)

Three of the degrees of freedom of the complex scalar doublet have been absorbed by
the gauge bosons to generate longitudinal polarizations for theW and Z gauge bosons.
This is the Higgs mechanism.
Since the massless photon must couple with electromagnetic strength, e, the coupling

constants define a weak mixing angle θW ,

e = gsinθW
e = g′ cosθW . (14)
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LHC Discovery 
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§  Both	  CMS	  and	  Atlas	  observed	  a	  
new	  par/cle	  state	  with	  mass	  
~126	  GeV.	  

§  Other	  proper/es	  of	  the	  “Higgs”	  
boson	  need	  to	  be	  established.	  	  

§  More	  work	  is	  needed	  to	  
confirm	  this	  is	  indeed	  the	  SM	  
Higgs	  boson.	  	  

§  New	  direc/on	  for	  BSM	  
theories:	  can	  this	  “Higgs”	  boson	  
be	  produced	  by	  some	  BSM	  
models.	  	  

§  On	  July	  4,	  2012,	  two	  teams	  at	  LHC	  announced	  the	  discovery	  of	  a	  new	  par/cle	  
consistent	  with	  the	  SM	  Higgs	  boson.	  	  
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The need for BSM theories 

§  Higgs	  has	  been	  found.	  Why	  are	  we	  s/ll	  interested	  in	  BSM	  theories?	  	  
•  Standard	  Model	  doesn’t	  incorporate	  gravity.	  

•  Standard	  Model	  cannot	  explain	  many	  experimental	  observa/ons:	  
-‐  Neutrino	  masses,	  dark	  mader	  and	  dark	  energy,	  etc.	  	  

•  Hierarchy	  problem:	  
-‐  Why	  is	  the	  Higgs	  mass	  (~126	  GeV)	  so	  much	  lighter	  than	  the	  Planck	  scale?	  	  
-‐  Requires	  delicate	  fine-‐tuning	  è	  Unnatural.	  	  

§  The	  SM	  Higgs	  mechanism	  is	  a	  parameteriza/on.	  It	  doesn’t	  explain	  the	  dynamical	  
origin	  of	  the	  electroweak	  symmetry	  breaking	  	  

§  Technicolor	  theories:	  EW	  symmetry	  is	  broken	  dynamically	  via	  new	  strong	  dynamics	  
at	  TeV	  scale	  and	  above.	  	  
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Technicolor in a nutshell 

§  Introduce	  new	  gauge	  interac/ons	  SU(NTC)	  at	  ΛTC,	  with	  NTF	  flavors	  of	  technifermions.	  	  

§  Technifermions	  possess	  chiral	  symmetry,	  similar	  to	  the	  QCD	  fermions.	  	  

§  This	  chiral	  symmetry	  is	  spontaneously	  broken	  è	  massless	  Techni-‐Goldstone	  bosons.	  
•  Three	  of	  these	  Goldstone	  bosons	  provide	  mass	  for	  the	  W	  and	  Z	  gauge	  bosons.	  
•  Others	  (if	  any)	  remain	  massive	  –	  model	  dependent.	  	  

§  Technifermion	  condensate	  at	  the	  Extended	  Technicolor	  scale	  ΛETC	  provides	  mass	  for	  
the	  SM	  fermions.	  	  mechanism	  for	  the	  genera/on	  of	  fermion	  masses.	  

§  ΛETC	  has	  to	  be	  large	  to	  suppress	  flavor-‐neutral	  changing	  current	  (FCNC)	  to	  be	  
consistent	  with	  experimental	  bounds	  è	  ΛETC	  ~	  103	  TeV	  
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Search for Conformal Window on the Lattice

From Confinement to Conformality

Technicolor as a BSM theory

Strong Dynamics at the TeV Scale
Technicolor (TC) theories: At the electroweak scale, ⇤TC ' FEW ⇡ 246
GeV, there may be a new form of strong interaction.
Weinberg & Susskind 1979

Assume gauge interactions SU(NTC) at ⇤TC.

Technifermions possess chiral symmetry, transforming under
SU(Nf ,TC)L ⌦ SU(Nf ,TC)R.

Spontaneous chiral symmetry breaking
! massless Technicolor Goldstone bosons
! three of these provide mass for the EW gauge bosons.

Technifermion condensate at the Extended Technicolor scale (⇤ETC)
provides mass for the quarks Dimopoulos & Susskind 1979, Eichten & Lane 1979

mq,l '
hQQiETC

⇤2
ETC

⇤ETC � ⇤TC to suppress flavor-changing neutral currents (FCNC).
! ⇤ETC ⇠ 103 TeV.
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Constraints for Technicolor Theories 

§  Technifermion	  condensate	  needs	  to	  be	  enhanced	  to	  provide	  large	  enough	  mass	  for	  
the	  SM	  fermions.	  	  
•  One	  consequence	  of	  this	  is	  that	  the	  anomalous	  dimension	  γ	  has	  to	  be	  large,	  O(1).	  	  

§  The	  electroweak	  S	  parameter	  needs	  to	  be	  small	  to	  sa/sfy	  the	  LEP	  experimental	  
constraint:	  S	  ≈	  0.	  	  
•  Naïve	  scaled-‐up	  QCD	  would	  violate	  this	  constraint.	  	  

	  
§  Axer	  Higgs	  discovery,	  a	  viable	  BSM	  theory	  must	  have	  a	  light	  scalar	  boson	  with	  a	  

mass	  consistent	  with	  the	  LHC	  finding.	  	  

§  All	  these	  would	  require	  that	  the	  new	  strong	  interac/ons	  are	  non-‐QCD	  like,	  probably	  
with	  near-‐conformal	  behaviors.	  è	  Walking	  Technicolor.	  	  

§  Walking	  technicolor	  theories	  may	  be	  able	  to	  produce	  light	  Higgs	  in	  the	  form	  of	  a	  
light	  dila/on,	  or	  a	  composite	  pseudo-‐Nambu-‐Goldstone	  boson	  (Lidle	  Higgs).	  	  
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What Walking Technicolor Theory May Look Like 

§  Perturba/ve	  2-‐loop	  beta	  func/on	  for	  
an	  SU(N)	  gauge	  theory	  with	  Nf	  
fundamental	  fermions.	  	  
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§  The	  phase	  space	  can	  be	  separated	  
into	  three	  different	  regions.	  	  

Probing Conformality on the Lattice

From Confinement to Conformality

The Phases of SU(N) Gauge Theories

SU(3) Case

-10
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Nf=6
Nf=9

Nf=12
Nf=17

� < 0:
asymptotic
freedom
� = 0:
fixed point
! scale
invariance
� > 0:
asymptotic
freedom lost

We have
a trivial fixed point at g = 0 (Gaussian fixed point).
an infrared fixed point (IRFP) at g > 0 with large enough Nf .

Probing Conformality on the Lattice

From Confinement to Conformality

The Phases of SU(N) Gauge Theories

The Conformal Window
Changing Nf may lead to different “phases” of the SU(N) gauge theories:

Nf < 11N/2(⌘ NAF
f ) asymptotically free

0  Nf < Nc
f confinement and spontaneous chiral symmetry breaking (S�SB)

Nc
f  Nf < NAF

f conformal
Nf > NAF

f asymptotic freedom lost

Nc
f : the conformal window – not known accurately because of the non-perturbative

nature. ) need LGT.
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Needle in a Haystack 
the one done for supersymmetric gauge theories [86]. However, the actual size of the conformal
window may be smaller than the one presented here which hence can be considered as a bound
on the size of the window. The reason being that chiral symmetry breaking could be triggered
for a value of � lower than two, as for example suggested by the ladder approximation. In
Figure 6 we plot the phase diagram.

Figure 6: Phase diagram for nonsupersymmetric theories with fermions in the: i) fundamental
representation (black), ii) two-index antisymmetric representation (blue), iii) two-index sym-
metric representation (red), iv) adjoint representation (green) as a function of the number of
flavors and the number of colors. The shaded areas depict the corresponding conformal win-
dows. Above the upper solid curve the theories are no longer asymptotically free. Between the
upper and the lower solid curves the theories are expected to develop an infrared fixed point
according to the NSVZ inspired beta function. The dashed curve represents the change of sign
in the second coefficient of the beta function.

3.2.3 Comparison with the Ladder approximation

We now confront our bound for the conformal windows with the one obtained using the
ladder approximation in [10]. To determine the number of flavors above which the theory
becomes conformal, we employ the criterion proposed in [72, 73].

The idea behind this method is simple5. One simply compares the two couplings in the
infrared associated to i) an infrared zero in the � function, call it ↵⇤ with ii) the critical coupling,
denoted with ↵c, above which a dynamical mass for the fermions generates nonperturbatively
and chiral symmetry breaking occurs. If ↵⇤ is less than ↵c chiral symmetry does not occur

5The reader is urged to read the original papers for a more detailed explanation.

29
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Sannino ‘08 

Fundamental Rep. 

2-index antisym. 

2-index sym. adjoint 

§  There	  are	  a	  lot	  of	  candidate	  strongly	  interac/ng	  theories.	  	  
§  Non-‐perturba/ve	  calcula/ons	  are	  needed.	  è	  Comes	  the	  la>ce.	  	  	  
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The role of Lattice 

§  Such	  theories	  are	  strongly	  interac/ng	  and	  intrinsically	  non-‐perturba/ve.	  	  

§  La>ce	  gauge	  theory	  can	  calculate	  a	  lot	  of	  non-‐perturba/ve	  quan//es	  from	  first	  
principles.	  	  

§  BSM	  model	  builders	  need	  us	  to	  verify	  that	  technicolor	  theories	  can	  indeed	  sa/sfy	  
the	  constraints.	  	  

§  I	  will	  focus	  on	  SU(3)	  gauge	  theories	  with	  Nf	  fermions	  in	  the	  fundamental	  
representa/on.	  	  

M.	  Lin,	  "Computa/onal	  Issues	  in	  BSM	  Theories"	   12	  
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LGT Basics 

§  The	  core	  of	  LQCD	  simula/ons	  is	  Hybrid	  Monte	  Carlo	  (Molecular	  Dynamics	  +	  Monte	  
Carlo)	  in	  the	  Euclidean	  space:	  	  

	  
§  We	  don’t	  really	  calculate	  the	  determinants	  directly.	  Instead,	  pseudofermion	  fields	  

(bosonic	  fields)	  are	  introduced.	  For	  Nf	  =	  1,	  	  

	  
§  Most	  computa/on-‐intensive	  part	  is	  to	  solve	  the	  Dirac	  equa/ons:	  	  

§  D	  is	  a	  large,	  sparse,	  diagonally	  dominant	  matrix.	  Itera/ve	  solvers,	  such	  as	  conjugate	  
gradient	  (CG),	  are	  typically	  used	  to	  solve	  the	  equa/ons.	  	  Its	  condi/on	  number	  
worsens	  as	  the	  quark	  mass	  mf	  gets	  smaller	  è	  it	  takes	  longer	  to	  converge.	  	  
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Numerical Integration

I The functional integral over the fermionic degrees of freedom can be integrated
out using Grassman Algebra

hOi =

R
[dU]O[U]det(/D + m)e�Sg[U]

Z

I R
[dU] involves a large number of d.o.f.’s, even on the lattice. Exact evaluation

impossible.

A toy model to show you the cost of the calculation
I

4

4 lattice. 2 degrees of freedom each site (think about Ising model, for example).

I Total number of possible field configurations: 2

4

4

= 2

256 ⇠ 10

77.
I 1 operation per configuration) 10

56 years on a current mainstream supercomputer.
I Age of the universe: ⇠ 10

10 years!

Real lattice QCD calculations involve tens of millions of degrees of freedom
) Not possible to compute all the possibilities.

university-logo

Methodology Lattice Monte Carlo Methods

Euclidean Path Integral

Euclidean partition function for one-flavor QCD

Z =

∫

[dU][dψ̄][dψ]e−ψ̄D(mf )ψ−Sg[U]

=

∫

[dU] detD(mf )e−Sg[U] (Grassman algebra)

Direct evaluation of the determinant too expensive.
Two common solutions:

Quenching: set detD(mf ) ≡ 1, unphysical, obsolete
pseudo-fermion prescription: replace the Grassman variables with
bosonic fields φ, φ†

Z =

∫

[dU][dφ†][dφ]e
−φ† 1

(D†(mf )D(mf ))
1/2 φ−Sg[U]

(Gaussian integration)

Meifeng Lin (Columbia University) Hadron Physics with 2+1 Flavors of DWF Dissertation Defense 20 / 57

1 Task 5: Brookhaven National Labs Responsibil-
ity (Year 1 April 2014-March 2015)

BNL will provide Domain Science Expertise directing the efforts of PUMA-
V toward critical LQCD software kernels, such as QDP++, needed to sup-
port critical research investigation, and supporting the team integration of
PUMA-V optimized kernels, performance measurements, and the use of the
optimized kernels in simulation runs. In Year 1, the focus will be on LQCD
simulations related to particular experimental anomalies, with the priority
being the Proton Size Puzzle [1], in which the proton electric charge radius
measured from the muonic hydrogen Lamb shift is seven standard devia-
tions smaller than the one from the electron-proton scattering experiments,
which could be an indication of new physics. Our research at BNL on LQCD
simulations of the proton charge radius will involve the calculation of the
nucleon form factors using first-principles LQCD simulations at the physical
quark masses.

A typical lattice QCD simulation involves the generation of the gluon
background fields, and the computation of the quark propagators. In both
aspects of the simulation, the main numerical cost goes into the repeated
solution of the Dirac equation:

D[U ]ψ = b, or D†[U ]D[U ]φ = b′, (1)

where in the Wilson fermion discretization, the Dirac operator D[U ] can be
written as

Dx,y[U ] = (4 + m)δx,y −

4
∑

µ=1

[

1 − γµ

2
Uµ

x δx+µ̂,y +
1 + γµ

2
Uµ†

x−µ̂
δx−µ̂,y

]

. (2)

In the Dirac operator, m is the input quark mass, µ̂ is the unit vector in the
direction µ, γµ are 4 × 4 Dirac matrices, and x and y are four-dimensional
space-time vectors. U is the gluon field variable, and is an SU(3) matrix. For
a lattice with the size of L3

×T , a discrete Wilson Dirac operator is a square

1
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Computational Complexity for BSM Theories 

§  For	  SU(3)	  simula/ons	  with	  large	  Nf,	  cost	  increases	  quickly	  as	  Nf	  is	  increased.	  	  

	  
§  Naïve	  cost	  per	  molecular	  dynamics	  trajectory	  	  

	  
§  Mul/-‐scale	  problem:	  	  

•  Need	  ΛUV	  >>	  ΛIR	  to	  separate	  UV	  physics	  from	  IR.	  	  
•  ΛUV	  ~	  1/a,	  ΛIR	  ~	  confinement	  scale,	  MV	  

•  è	  Need	  fine	  la>ce	  spacing.	  	  
•  èèè	  large	  number	  of	  la>ce	  sites.	  	  

§  C.f.	  cost	  for	  QCD	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Christ	  and	  Jung,	  2007	  
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Probing Conformality on the Lattice

Lattice as a Tool to Probe Conformality

Lattice QCD

Formulation
Discretize field variables onto a space-time grid.

a

x+ux

Plaquette

Evaluate Euclidean path integral via Monte Carlo simulations

hOi =

R
[dA]⇧f [d ̄f ][d f ] O e�S(E)(A, f , ̄f )

Z
! integrating out fermion fields/Grassman variables

hOi =

R
[dU]O[U][det(/D + m)]Nf e�Sg[U]

Z
U: lattice gauge field variable, SU(3) matrices
! Monte Carlo Z

[dU] !
X

{U}

Probing Conformality on the Lattice

Lattice as a Tool to Probe Conformality

Going Beyond QCD: Setup and Challenges

Challenges
Cost increases quickly as Nf is increased:

hOi =

R
[dU]O[U][det(/D + m)]Nf e�Sg[U]

Z

Naive cost per MD trajectory

⇠ Nf (# of flavors)⇥ N1/2
f (# of steps per trajectory).

As Nf is increased, ChPT at a given order will only work at even lighter
pion masses.
! In the region accessible with current computing power, NLO ChPT is
not applicable. Higher orders involve too many unknown parameters.
! cannot use ChPT fits to confirm chiral symmetry breaking without
much more expensive calculation.

It becomes harder to sample different topological sectors. [more on next
few slides]

Search for Conformal Window on the Lattice

From Confinement to Conformality

Technicolor as a BSM theory

Walking Technicolor
There might exist a region ⇤IR < µ < ⇤UV where the running coupling ↵(µ)
evolves very slowly.

µΛIR
ΛU

g*

g

Assume �(µ) ⇠ �⇤, then Technifermion condensate gets enhanced:

hQQiETC ⇠ hQQiTC

„
⇤UV

⇤IR

«�⇤

Could be large enough to generate quark masses if �⇤ ⇠ O(1).
Could result in a small S parameter.

ΛIR ΛUV 

 
 
 

 

 

seen from Figure 4, current lattice results either are performed at heavier pion masses mπ, giving 
substantially smaller values for the radius, or suffer from large statistical errors. They are thus insufficient 
to resolve the discrepancy. To distinguish the two experimental results that differ by 4%, a combined 
statistical and systematic error of 2% for the lattice results will ultimately be needed to achieve a two-
sigma statistical significance. 

Another example is the nucleon axial charge gA that 
parameterizes the neutron beta decay and is well known 
experimentally [35] to be 1.2701(25). Because the nucleon 
axial charge is determined at the zero momentum transfer, it 
is numerically straightforward to calculate on the lattice and 
is considered one of the gold-plated quantities for LQCD. 
However, as shown in Figure 5, existing LQCD results at a 
wide range of pion masses are all systematically 10-20% 
lower than the experiment, even when a very small, close-to-
physical, pion mass is used in the simulations. A lot of studies 
have gone into understanding this discrepancy through 
extensive investigations of possible systematic errors, but the 
results are so far still inconclusive. Two of the potential 
culprits are the unphysical pion mass and large finite volume 
effects. It is possible that as the physical limit is approached, 
the value of gA may increase sharply to agree with the 
experiment. While chiral perturbation theory (ChPT) [36–39] 
may give a theoretical guidance to this trend, the lack of any 
curvature (except for the downward trend at the lightest few 
points) makes it impossible to determine the large number of unknown parameters and the predictive 
power of ChPT is lost. One the other hand, when the pion mass is decreased, the pion Compton 
wavelength becomes larger and a larger box is needed to suppress the finite volume effects. In fact, a 
recent calculation [15] by the QCDSF Collaboration using two flavors of improved Wilson fermions 
shows that the nucleon axial charge indeed increases sharply at the physical pion mass to agree with the 
experiment, but only after the finite volume effects are removed. Our calculation will be an independent 
check of their finding, but with the advantage of using chirally symmetric domain wall fermions and 
having three realistic quark flavors, which they did not have.  

It is thus of extreme interest and ultimate importance to perform LQCD simulations for these and other 
observables in a large volume with a physical pion mass. However, the current computer power still does 
not allow the computation at the physical pion mass and with a sufficiently large volume, thus unable to 
address both the chiral extrapolation and finite volume effects. Assuming the exact same algorithms are 
used, the numerical cost scales [40] with the lattice dimension L, pion mass mπ and the lattice spacing a 
naively as 

! !
fm

!MeV
!!

fm
!

!
. 

Our past experience suggests that when the pion mass is decreased by a factor 2, the lattice dimension L 
needs to increase by at least the same factor. Even with the lattice spacing fixed, the cost will grow by an 
order of 10 to 100. Taking the continuum limit of ! → 0 adds further complications, as calculations at 
multiple lattice spacing values are needed. Thus high-precision LQCD computation of nucleon structure 
in the physical limit can only be accomplished through innovative algorithms and efficient exploitation of 
the current and future high performance computing platforms.  
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m
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Figure 5: Recent results for the nucleon axial 
charge from Lattice QCD calculations with 
unphysical pion masses. 
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Approaching the Chiral Limit 

§  La>ce	  simula/ons	  are	  performed	  at	  several	  finite	  quark	  masses	  due	  to	  the	  
formidable	  numerical	  cost	  at	  small	  mf,	  and	  rely	  on	  chiral	  perturba/on	  theory	  to	  
extrapolate	  to	  	  
•  The	  physical	  limit	  for	  QCD.	  	  	  
•  The	  chiral	  limit	  for	  BSM	  theories.	  
	  

§  The	  converge	  of	  ChPT	  becomes	  worse	  or	  even	  ques/onable	  as	  Nf	  is	  increased.	  	  
•  In	  the	  region	  accessible	  with	  current	  compu/ng	  power,	  next-‐to-‐leading-‐order	  chiral	  

perturba/on	  theory	  is	  not	  applicable.	  Going	  to	  higher	  orders	  requires	  too	  many	  unknown	  
parameters.	  	  

§  For	  QCD,	  simula/ons	  directly	  at	  the	  physical	  limit	  are	  becoming	  available.	  	  

§  For	  BSM,	  going	  to	  lighter	  quark	  masses	  is	  much	  harder,	  and	  requires	  more	  
compu/ng	  power,	  and/or	  beder	  algorithms.	  	  

M.	  Lin,	  "Computa/onal	  Issues	  in	  BSM	  Theories"	   15	  
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Example: Condensate Enhancement 
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Nf = 6  Nf = 8  

§  We	  want	  to	  know	  if	  increasing	  Nf	  can	  increase	  the	  chiral	  condensate	  in	  the	  chiral	  
limit.	  	  

§  Three	  equivalent	  ways	  (in	  the	  chiral	  limit)	  to	  determine	  via	  Gell-‐Mann-‐Oakes-‐
Renner	  rela/on.	  	  

§  We’d	  like	  to	  know	  what	  the	  enhancement	  is	  at	  the	  chiral	  limit.	  	  

LSD Preliminary 
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Example: S Parameter 
§  We’d	  like	  to	  see	  a	  reduc/on	  of	  the	  S	  parameter	  compared	  to	  QCD.	  	  
§  At	  simulated	  mass	  region,	  there	  is	  some	  evidence	  of	  reduc/on.	  But	  there	  is	  s/ll	  

some	  uncertainty	  going	  to	  the	  lighter	  mass	  region.	  	  
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12

FIG. 9. Ratios R(IJ)
Nf

of the three observables X(IJ) in Eq. (15) that reduce to
˙
  

¸
/F 3 in the chiral limit, for Nf = 6

normalized by Nf = 2 (left) and Nf = 8/Nf = 2 (right). The horizontal axis is the geometric mean em =
p

mNf =2mNf =6,8.

tematic support for using such rational functions to fit
the Q

2-dependence of vacuum polarization functions.
Finally, the subtraction of �SSM in Eq. (17) removes

from the spectrum the three NGBs eaten by the W and
Z, and sets S = 0 for the standard model with Higgs
mass MH = 125 GeV. Since we have not yet carried
out the computationally demanding calculation of the
(flavor-singlet scalar) Higgs mass in our lattice studies,
we take

�SSM =
1
4

Z 1

4M2
P

ds

s

"
1�

✓
1� M

2
V 0

s

◆3

⇥(s�M

2
V 0)

#

� 1
12⇡

log
✓

M

2
V 0

M

2
H

◆
. (20)

The first term in Eq. (20) would be appropriate if MH

were comparable to the TeV-scale vector meson mass
MV 0; the second term corrects this for the physical
MH = 125 GeV [63].

Computing S for fixed m from Eqs. 17 and 20, employ-
ing the thermalization cuts and jackknife blocks listed in
Table I, produces the 8-flavor results shown in Figure 10.
This figure also includes the Nf = 2 and 6 results pre-
viously published in Ref. [13], which we update to use
MH = 125 GeV rather than MH ⇠ 1000 GeV. As in pre-
vious sections, we plot S vs. M

2
P /M

2
V 0 in order to provide

a more direct comparison between the three di↵erent the-
ories.

The S parameter is only well defined in the chiral limit
M

2
P /M

2
V 0 ! 0. However, chiral symmetry breaking with

Nf light but massive flavors produces N

2
f �1 PNGBs. To

obtain the phenomenological S parameter, we must con-
sider a chiral limit in which only three of these PNGBs
become exactly massless NGBs to be identified with the
longitudinal components of the W and Z. The other
N

2
f � 4 PNGBs must remain massive enough to have

evaded experimental observation. (These PNGBs are
all pseudoscalars, not to be identified with the 125 GeV

Higgs, which comes from the flavor-singlet scalar spec-
trum that we have not yet investigated.)

FIG. 10. Electroweak S parameter with MH = 125 GeV, for
Nf = 2, 6 and 8 with ND = 1 fermion doublet assigned chiral
electroweak couplings in Eq. (17). Our results for Nf = 2 and
6 were previously published in Refs. [13, 52].

For Nf = 2 this requirement simply reduces to the
linear M

2
P /M

2
V 0 ! 0 extrapolation shown in Figure 10,

which produces the non-perturbative result S = 0.42(2),
in agreement with the scaled-up QCD value S ⇡ 0.43
for MH = 125 GeV. When Nf > 2, keeping all the
fermion masses degenerate in the chiral limit would give
rise to additional massless NGBs that make a loga-
rithmically divergent contribution to S, proportional to
log

�
M

2
V 0/M

2
P

�
. The blue band in Figure 10 fits the three

Nf = 6 data points with the smallest M

2
P /M

2
V 0 . 1 to

the corresponding chiral form [52]. In a realistic con-
text, the N

2
f �4 PNGBs remain massive, due to standard

model and other interactions, which break this degener-
acy.

LSD Preliminary 
Plot by D. Schaich 



5/8/14	  

Topological Charge Freeze 
§  A	  topological	  charge,	  or	  the	  winding	  number,	  of	  a	  give	  gauge	  configura/on	  is	  

defined	  as	  

§  For	  SU(3)	  gauge	  theories	  with	  Nf	  fundamental	  fermions,	  Q	  takes	  integer	  values.	  	  
§  In	  a	  finite	  volume,	  Q	  can	  take	  all	  the	  possible	  integer	  values,	  which	  would	  follow	  a	  

Gaussian	  distribu/on	  
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Probing Conformality on the Lattice

Lattice as a Tool to Probe Conformality

Going Beyond QCD: Setup and Challenges

Topological Charge
A topological charge Q, or the winding number, of a given gauge configuration is
defined as

Q[A] =
1

32⇡2

Z
d4x✏µ⌫�⇢TrFµ⌫(x)F�⇢(x),

Fµ⌫(x) = @µA⌫(x)� @⌫Aµ(x) + [Aµ(x), A⌫(x)] .

For SU(3) gauge theories with Nf fundamental fermions, Q[A] takes integer
values.
In a finite volume, Q should take all the possible values, and it should follow a
Gaussian distribution.
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Nf = 2 + 1 QCD case, Aoki et al., PRD83, 074508(2011)
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Z
d4x✏µ⌫�⇢TrFµ⌫(x)F�⇢(x),

Fµ⌫(x) = @µA⌫(x)� @⌫Aµ(x) + [Aµ(x), A⌫(x)] .

For SU(3) gauge theories with Nf fundamental fermions, Q[A] takes integer
values.
In a finite volume, Q should take all the possible values, and it should follow a
Gaussian distribution.
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Topological Charge Freeze 

§  As	  Nf	  is	  increased,	  it	  becomes	  harder	  for	  topological	  charge	  to	  tunnel,	  especially	  at	  a	  
small	  a.	  

§  QCD	  simula/ons	  have	  similar	  issues	  at	  fine	  la>ce	  spacings.	  	  
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Probing Conformality on the Lattice

Lattice as a Tool to Probe Conformality

Going Beyond QCD: Setup and Challenges

Frozen Topology
In some of our simulations, Nf = 10 for example, the topological charge
gets frozen at a particular value.

Ordered and disordered starts have different Q, leading to inconsistent
physical results.
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Effects of Frozen Topology 
§  At	  fixed	  Q,	  the	  hadron	  masses	  depends	  linearly	  on	  Q2	  to	  first	  order.	  	  
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Probing Conformality on the Lattice

Lattice as a Tool to Probe Conformality

Going Beyond QCD: Setup and Challenges

Effects of Frozen Topology
The masses depend linearly on Q2 to the first order.
Brower, Chandrasekharan, Negele, and Wiese, PLB560, 64(2003)
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Our results at mf = 0.025 are consistent with the above dependence.
Essentially it is a finite volume effect.
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The masses depend linearly on Q2 to the first order.
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Scalar in QCD 
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(Plot from N. Mathur et al. 2007.) 
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Light Composite Scalar from Near-Conformal 
Gauge Theories? 

3

of 2D(t) without the projection, which does not have an
oscillating behavior. This means that the flavor symme-
try breaking between AπSC

(t) and Aπ
SC
(t) in Eq. (4) is

small. The effective mass plateau of 2D(t) is statistically
consistent with the one of 2D+(t) − C+(t) in the large
time region. Note that effective mass of −C+(t) is always
larger than the one of 2D(t) in our simulations, as shown
in Fig. 1. Since the plateau of 2D(t) appears at earlier
time with smaller error than the one of 2D+(t)−C+(t),
we choose 2D(t) to extractmσ in all the parameters. The
earlier plateau might be caused by a reasonable cancella-
tion among contributions from excited scalar states and
a0 in 2D(t). It should be noted that, because of the small
mσ, comparable to mπ, the exponential damping of D(t)
is slow, and this helps preventing a rapid degradation of
the signal-to-noise ratio.

We fit 2D(t) in the region t = 6–11 by a single cosh
form assuming only σ propagating in this region to obtain
mσ for all the parameters. The fit result on L = 36 at
mf = 0.015 is shown in Fig. 1. In this parameter it
is possible to fit 2D(t) with a longer fit range, while in
some parameters the effective mass of 2D(t) in the large
time region is unstable with large error in the current
statistics. Thus, we choose this fixed fit range in all the
parameters. In order to estimate the systematic error
coming from the fixed fit range, we carry out another fit
in a region at larger t than the fixed one, with the same
number of data points. An example of this fit is shown in
Fig. 1. We quote the difference between the two central
values as the systematic error.

The values of mσ and also mπ for all the parame-
ters are summarized in Table I. Figure 2 presents mσ

as function of mf together with mπ. These are our main
results. The data on the largest two volumes at each
mf , except for mf = 0.015, agree with each other, and
suggest that finite size effects are negligible in our statis-
tics. We find a clear signal that σ is as light as π for
all the fermion masses we simulate. This property is
distinctly different from the one in usual QCD, where
mσ is clearly larger than mπ [28, 29], while it is simi-
lar to the one in Nf = 12 QCD observed in our previous
study [11]. Thus, this might be regarded as a reflection of
the approximate scale symmetry in this theory, no mat-
ter whether the main scale symmetry breaking in the far
infrared comes from mf or mD, as we noted before. The
figure also shows that our simulation region is far from
heavy-fermion limit, because the vector meson mass ob-
tained from the (γiγ4⊗ξiξ4) operator, denoted by ρ(PV),
is clearly larger than mπ.

Although the accuracy of our data is not enough to
make a clear conclusion for a chiral extrapolation, we
shall report some results below. While in the previous
paper [10] we found that the data for mπ and Fπ, π de-
cay constant at each mf , are consistent with chiral per-
turbation theory (ChPT) in the region mf ≤ 0.04, the
updated data [30], tabulated in Table I, show consistency
with ChPT in a somewhat smaller region mf ≤ 0.03.
Thus, we shall use the lightest three data with the small-
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FIG. 2: Mass of the flavor-singlet scalar mσ compared to the
mass of NG pion mπ as a function of the fermion mass mf .
Outer error represents the statistical and systematic uncer-
tainties added in quadrature, while inner error is only statis-
tical. Square symbols are slightly shifted for clarity. Mass of
vector meson with one standard deviation is expressed by full
boxes.

est error at each mf , i.e., the two data on L = 36 and
the lightest data on L = 24, in the following analyses.
The validity of ChPT is intact even when the light

σ comparable with π is involved in the chirally broken
phase: the systematic power counting rule as a general-
ization of ChPT including σ as a dilaton was established
in Ref. [31] (“dilaton ChPT (DChPT)”) including com-
putation of the chiral log effects. At the leading order
we have m2

π = 4mf⟨ψ̄ψ⟩/F 2 (Gell-Mann-Oakes-Renner
relation) and

m2
σ = d0 + d1m

2
π , (5)

where d0 = m2
σ|mf=0 and d1 = (3 − γm)(1 + γm)/4 ·

(NfF 2)/F 2
σ , with γm being mass anomalous dimension

in the walking region, F and Fσ being the decay con-
stants of π and σ, respectively, in the chiral limit. (F/

√
2

corresponds to 93 MeV for the usual QCD π.) In the fol-
lowing fit, we ignore higher order terms including chiral
log. We plot m2

σ as a function of m2
π in Fig. 3. The

extrapolation to the chiral limit based on Eq. (5) gives
a reasonable χ2/d.o.f. = 0.27, with a tiny value in the
chiral limit, d0 = −0.019(13)(39) where the first and sec-
ond errors are statistical and systematic, respectively. It
agrees with zero with 1.4 standard deviation and shows a
consistency with the NG nature of σ. Although errors are
large at this moment, it is very encouraging for obtain-
ing a light technidilaton to be identified with a composite
Higgs with mass 125 GeV, with the value very close to
F/

√
2 ≃ 123 GeV of the one-family model with 4 weak-

doublets, i.e., Nf = 8. The value of F from our data is
estimated as F = 0.0202(13)(5467), which is updated from
the previous paper [10] using more statistics and a new
smaller mf data. (If this scalar is to be identified with a
composite Higgs, we expect d0 ∼ F 2/2 ∼ 0.0002).
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Nf = 8 
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FIG. 3: Fermionic mσ and gluonic mG effective masses (re-
spectively from correlators in Eq. (4) and Eq. (5)) for L = 24
and mf = 0.06. The fitted masses are highlighted by dashed
and dotted-dashed lines for the gluonic correlators and dotted
lines for the fermionic one. Systematics effects on the gluonic
mass are not relevant given the larger statistical error.
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FIG. 4: The mass of the flavor–singlet scalar meson σ (see
Table I) compared to the mass of the pseudo–scalar π state
and the mass mG from gluonic operators. Errors are statis-
tical and systematics added in quadrature. The hyperscaling
curve is described in the text. The triangle and filleds square
symbols are slightly shifted for clarity.

each parameter. For mσ on the largest two volumes at
each mf , finite size effects are negligible in our statis-
tics. For a check of consistency with the hyperscaling of
mπ, we fit mσ on the largest volume data at each mf

using the hyperscaling form mσ = C(mf )1/1+γ with a
fixed γ = 0.414 estimated from mπ [10], which gives a
reasonable value of χ2/dof = 0.12. The fit is shown in
Fig.4. We remind here that the fitted data points have
mπL > 11.5, as can be checked from Table. I. We also es-
timate the ratio mσ/mπ at each parameter and report it
in Table I. All the ratios are smaller than unity by more
than one standard deviation including the systematic er-
ror, except the one atmf = 0.06 on L = 30, as previously
explained. A constant fit with the largest volume data at

each mf gives 0.86(3). These results are consistent with
the theory being infrared conformal. Moreover they do
not show an abnormal mf dependence of mσ similar to
the one observed in Ref. [23], by which an effect of an
unphysical phase boundary would have been suspected.

To summarize, we performed the first study of the
scalar flavor–singlet state in Nf = 12 QCD using
fermionic and gluonic interpolating operators. The most
striking feature of the measured scalar spectrum is the
appearance of a state lighter than the π state, as it is
shown in Fig. 4. Such a state appears both in gluonic
and fermionic correlators at small bare fermion mass.
Clear signals in our simulations were possible thanks to
the following salient features: 1. Small taste–symmetry
breaking, 2. Efficient noise–reduction methods, 3. Large
configuration ensembles, and 4. Slow damping of D(t)
thanks to small mσ.

We regard the light scalar state observed for Nf = 12
in this study, as a reflection of the dilatonic nature of the
conformal dynamics, since otherwise the p–wave bound
state (scalar) is expected to be heavier than the s–wave
one (pseudo–scalar). Thus, it is a promising signal for
a walking theory, where a similar conformal dynamics in
a wide infrared region should be operative in the chiral
limit to form a dilatonic state with mass of O(Fπ), in
such a way that the tiny spontaneous–breaking–scale Fπ

plays the role of mf (cfr. Ref. [11]).

While further investigation of the scalar state in Nf =
12 QCD, such as a possible lattice spacing dependence,
is important, the most pressing future direction is to
look at more viable candidates for walking technicolor
models. For example, it will be interesting to investi-
gate the scalar spectrum of the Nf = 8 SU(3) theory,
which was shown to be a good candidate for the walking
technicolor [11], where the scalar state could be identi-
fied with the technidilaton, a pseudo Nambu–Goldstone
boson coming from the dynamical breaking of conformal
symmetry. There actually exists an indication of such a
light scalar in Nf = 8 QCD [38].
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Nf = 12 
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§  Now	  that	  a	  new	  scalar	  boson	  has	  been	  discovered,	  can	  we	  produce	  such	  a	  light	  
scalar	  from	  technicolor	  theories?	  	  

§  First	  evidence	  appeared	  in	  near-‐conformal	  or	  conformal	  theories.	  	  
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Not a cheap calculation 

§  For	  non-‐flavor	  singlet	  states,	  such	  as	  the	  pion,	  the	  correla/on	  func/ons	  involve	  only	  
the	  “connected”	  diagrams.	  	  

§  For	  flavor-‐singlet	  states,	  such	  as	  the	  flavor-‐singlet	  scalar,	  disconnected	  diagrams	  are	  
needed	  in	  the	  calcula/on.	  	  

  è	  	  needs	  all-‐to-‐all	  propagators.	  Direct	  cost	  propor/onal	  to	  la>ce	  volume	  

§  Typically	  stochas/c	  es/mators	  are	  used	  è	  noise	  is	  introduced,	  and	  requires	  a	  large	  
number	  of	  noise	  es/mators	  to	  get	  a	  signal.	  	  

§  In	  the	  chiral	  limit,	  the	  pseudoscalar	  mass	  goes	  to	  0,	  but	  the	  scalar	  mass	  should	  
remain	  finite.	  è	  Can	  we	  see	  this	  crossover	  with	  lighter	  fermion	  masses?	  	  
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Proton Mass from Lattice QCD

Calculate proton two-point correlation functions

C(t) =
X

~x

hP(~x, t)P†(~0, 0)i

with P(~x, t) is an operator chosen to have the quantum numbers of the proton (spin, parity,
etc.)
Time evolution operator

eiHt

In Euclidean space, e�Ht

P(~x, t) = eHtP(~x, 0)e�Ht

Insertion of complete set of states |ni

C(t) =
X

n

h0|P|nihn|P|0i
2Mn

e�Mnt

At sufficiently large t, all the states die off except the ground state

C(t) t�a�! e�MPt

Meifeng Lin (Yale) Quarks and Gluons on Supercomputers March 17, 2011 38 / 57
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Summary and Outlook 

§  La>ce	  BSM	  simula/ons	  can	  provide	  valuable	  input	  for	  BSM	  model	  building.	  	  

§  Such	  simula/ons	  are	  numerically	  expensive,	  and	  more	  challenging	  that	  QCD	  
simula/ons.	  	  

§  Prominent	  issues	  right	  now	  are	  the	  difficulty	  in	  ge>ng	  to	  the	  chiral	  limit,	  and	  
obtaining	  the	  flavor-‐singlet	  scalar	  boson	  mass	  with	  good	  precision.	  	  

§  Outlook:	  	  
•  Increasing	  compu/ng	  power	  and	  algorithmic	  innova/ons	  (mul/grid?)	  will	  help	  us	  perform	  

simula/ons	  at	  lighter	  masses	  and	  larger	  volumes.	  	  
•  Evolving	  theore/cal	  understanding	  may	  pinpoint	  or	  rule	  out	  some	  BSM	  theories	  that	  are	  

inconsistent	  with	  experimental	  observa/ons.	  	  
•  Perhaps	  we	  will	  finally	  find	  the	  right	  BSM	  theory,	  or	  concede	  that	  standard	  model	  is	  the	  

perfect	  theory	  and	  there’s	  nothing	  more?	  	  
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