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Standard Model of Particle Physics 

§  Standard	
  Model	
  of	
  par/cle	
  physics	
  describes	
  the	
  strong	
  and	
  electroweak	
  
interac/ons	
  of	
  the	
  elementary	
  par/cles.	
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Image from Wikipedia 

§  Quantum	
  chromodyanmics	
  
(QCD)	
  is	
  the	
  theory	
  of	
  the	
  
strong	
  interac/ons	
  between	
  
quarks	
  and	
  gluons.	
  SU(3)	
  
gauge	
  symmetry.	
  	
  

§  The	
  electroweak	
  sector	
  is	
  
described	
  by	
  SU(2)L	
  x	
  U(1)Y	
  	
  
symmetry.	
  	
  

§  Inputs	
  to	
  the	
  SM:	
  par/cle	
  
masses	
  and	
  the	
  gauge	
  
couplings	
  è	
  19	
  parameters.	
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The SM Higgs Mechanism  

§  What	
  gives	
  fermions	
  and	
  gauge	
  bosons	
  mass?	
  In	
  the	
  Standard	
  Model,	
  this	
  is	
  
achieved	
  by	
  the	
  Higgs	
  mechanism.	
  

§  A	
  complex	
  scalar	
  SU(2)L	
  doublet	
  is	
  introduced	
  by	
  hand,	
  	
  

	
  	
  	
  	
  	
  	
  	
  with	
  the	
  poten/al	
  (λ	
  >	
  0)	
  
	
  
	
  
§  When	
  μ2	
  <	
  0,	
  a	
  non-­‐zero	
  vacuum	
  expecta/on	
  value	
  (vev)	
  develops	
  and	
  

spontaneously	
  breaks	
  the	
  electroweak	
  symmetry.	
  	
  

	
  
§  The	
  scalar	
  doublet	
  can	
  be	
  wriden	
  in	
  terms	
  of	
  a	
  physical	
  Higgs	
  field	
  h	
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where

Wi
µν = ∂νWi

µ −∂µWi
ν −gε i jkW j

µWk
ν

Bµν = ∂νBµ −∂µBν . (2)

A mass term for the W and B gauge bosons would break the SU(2)L×U(1) gauge
symmetry.
Coupled to the gauge fields is a complex scalar SU(2)L doublet, Φ,

Φ=

(

φ+

φ0

)

, (3)

with a scalar potential given by

V (Φ) = µ2 |Φ†Φ | +λ
(

|Φ†Φ |
)2

, (4)

(λ > 0). This is the most general renormalizable and SU(2)L invariant potential.
The state of minimum energy for µ2 < 0 is not at φ0 = 0 and hence the scalar field

develops a vacuum expectation value (VEV). The direction of the minimum in SU(2)L
space is not determined since the potential depends only on the combination Φ†Φ and
we arbitrarily choose

⟨Φ⟩ =
1√
2

(

0
v

)

. (5)

With this choice the scalar doublet has U(1)Y charge (hypercharge) YΦ = 1 and the
electromagnetic charge is2

Qem =
(τ3+Y )

2
, (6)

yielding an unbroken electromagnetic charge symmetry:

Qem⟨Φ⟩ = 0 . (7)

The contribution of the scalar doublet to the Lagrangian is,

Ls = (DµΦ)†(DµΦ)−V (Φ) , (8)

where
Dµ = ∂µ − i

g
2
τ ·Wµ− i

g′

2
BµY. (9)

In unitary gauge, the scalar doublet can be written in terms of a physical scalar Higgs
field, h, as

Φ=
1√
2

(

0
v+h

)

, (10)

2 The τi are the Pauli matrices with Tr(τiτ j) = 2δi j.
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where
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remains massless. Hence a single scalar Higgs doublet not only generates masses for
the gauge bosons, but also for fermions. Unfortunately, the size of the fermion masses
remains unexplained.
The couplings of the Higgs boson to the fermions and gauge bosons are directly

proportional to their masses (by construction), which has the implication that the Higgs
boson decays primarily to the heaviest particles kinematically allowed. At tree level, the
Higgs couplings to photons and gluons vanish since the photon and gluon are massless.
These couplings first arise at 1-loop and hence are sensitive to new non-SM particles
which may propagate in the loops. The Higgs boson branching ratios are shown in Figs.
1 and 2 and they can easily be calculated including higher order corrections using the
programs HDECAY[9] or FEYNHIGGS[10].
One of the most important points about the Higgs mechanism is that all of the

couplings of the Higgs boson to fermions and gauge bosons are completely determined
in terms of gauge coupling constants and fermion masses. The potential of Eq. 4 has two
free parameters, µ and λ . We can trade these for

v2 = −
µ2

2λ
= (246 GeV )2

M2
h = 2v2λ . (24)

There are no remaining adjustable parameters and so Higgs production and decay
processes can be computed unambiguously in terms of the Higgs mass alone, making
the Higgs sector of the theory completely determined in the SM.
When the scalar potential is expressed in terms of v and Mh, it becomes,

V =
M2
h
2
h2+

M2
h
2v
h3+

M2
h

8v2
h4 , (25)

and it is apparent that for heavy Higgs masses (Mh ∼ 1 TeV ), the Higgs self-interactions
become strong.

EXPERIMENTAL SEARCHES FOR THE HIGGS BOSON

LEP

The Higgs boson was directly searched for at the LEP collider through the process
e+e− → Zh at energies up to

√
s = 209 GeV . The Higgs boson decays to the heaviest

particles kinematically accessible (bb and τ+τ− for the LEP searches) and the Z decays
roughly 70% of the time to jets, 20% to neutrinos, and 10% to charged leptons. The
LEP experiments searched in all of these channels and obtained the limit on a SM Higgs
boson[12],

Mh > 114.4 GeV . (26)
This limit can potentially be evaded by constructing models where the Higgs boson
decays to non-SM invisible particles with large branching ratios or the Higgs has highly
suppressed non-SM couplings to the Z[13]. A Higgs boson with couplings an order of

where

Wi
µν = ∂νWi

µ −∂µWi
ν −gε i jkW j

µWk
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0
v+h

)
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2 The τi are the Pauli matrices with Tr(τiτ j) = 2δi j.
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The SM Higgs Mechanism (cont’d) 

§  The	
  gauge	
  bosons	
  acquire	
  mass	
  through	
  this	
  vev,	
  	
  

§  A	
  consequence	
  of	
  the	
  SM	
  Higgs	
  mechanism	
  is	
  the	
  existence	
  of	
  a	
  scalar	
  Higgs	
  boson,	
  
with	
  the	
  mass	
  determined	
  by	
  the	
  Higgs	
  self	
  coupling	
  

§  Higgs	
  mass	
  is	
  not	
  known	
  a	
  priori.	
  
§  Prior	
  to	
  the	
  LHC	
  discovery,	
  various	
  precision	
  experiments	
  put	
  bounds	
  on	
  the	
  range	
  

of	
  allowed	
  Higgs	
  mass.	
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TABLE 1. Standard Model Particles

Field SU(3) SU(2)L U(1)Y

QL =

(

uL
dL

)

3 2 1
3

uR 3 1 4
3

dR 3 1 − 2
3

LL =

(

νL
eL

)

1 2 −1

eR 1 1 −2

Φ=

(

φ+

φ0

)

1 2 1

which gives the contribution to the gauge boson masses from the scalar kinetic energy
term of Eq. 8,

M2
Gauge Boson ∼

1
2
(0,v)

(

1
2
gτ ·Wµ +

1
2
g′Bµ

)2( 0
v

)

. (11)

The physical gauge fields are two charged fields,W±, and two neutral gauge bosons, Z
and A,

W±
µ =

1√
2
(W1

µ ∓ iW 2
µ )

Zµ =
−g′Bµ +gW 3

µ
√

g2+g′ 2

Aµ =
gBµ +g′W 3

µ
√

g2+g′ 2
. (12)

The gauge bosons obtain masses via Eq. 11:

M2
W =

1
4
g2v2

M2
Z =

1
4
(g2+g′ 2)v2

MA = 0. (13)

Three of the degrees of freedom of the complex scalar doublet have been absorbed by
the gauge bosons to generate longitudinal polarizations for theW and Z gauge bosons.
This is the Higgs mechanism.
Since the massless photon must couple with electromagnetic strength, e, the coupling

constants define a weak mixing angle θW ,

e = gsinθW
e = g′ cosθW . (14)

remains massless. Hence a single scalar Higgs doublet not only generates masses for
the gauge bosons, but also for fermions. Unfortunately, the size of the fermion masses
remains unexplained.
The couplings of the Higgs boson to the fermions and gauge bosons are directly

proportional to their masses (by construction), which has the implication that the Higgs
boson decays primarily to the heaviest particles kinematically allowed. At tree level, the
Higgs couplings to photons and gluons vanish since the photon and gluon are massless.
These couplings first arise at 1-loop and hence are sensitive to new non-SM particles
which may propagate in the loops. The Higgs boson branching ratios are shown in Figs.
1 and 2 and they can easily be calculated including higher order corrections using the
programs HDECAY[9] or FEYNHIGGS[10].
One of the most important points about the Higgs mechanism is that all of the

couplings of the Higgs boson to fermions and gauge bosons are completely determined
in terms of gauge coupling constants and fermion masses. The potential of Eq. 4 has two
free parameters, µ and λ . We can trade these for

v2 = −
µ2

2λ
= (246 GeV )2

M2
h = 2v2λ . (24)

There are no remaining adjustable parameters and so Higgs production and decay
processes can be computed unambiguously in terms of the Higgs mass alone, making
the Higgs sector of the theory completely determined in the SM.
When the scalar potential is expressed in terms of v and Mh, it becomes,

V =
M2
h
2
h2+

M2
h
2v
h3+

M2
h

8v2
h4 , (25)

and it is apparent that for heavy Higgs masses (Mh ∼ 1 TeV ), the Higgs self-interactions
become strong.

EXPERIMENTAL SEARCHES FOR THE HIGGS BOSON

LEP

The Higgs boson was directly searched for at the LEP collider through the process
e+e− → Zh at energies up to

√
s = 209 GeV . The Higgs boson decays to the heaviest

particles kinematically accessible (bb and τ+τ− for the LEP searches) and the Z decays
roughly 70% of the time to jets, 20% to neutrinos, and 10% to charged leptons. The
LEP experiments searched in all of these channels and obtained the limit on a SM Higgs
boson[12],

Mh > 114.4 GeV . (26)
This limit can potentially be evaded by constructing models where the Higgs boson
decays to non-SM invisible particles with large branching ratios or the Higgs has highly
suppressed non-SM couplings to the Z[13]. A Higgs boson with couplings an order of
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LHC Discovery 
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§  Both	
  CMS	
  and	
  Atlas	
  observed	
  a	
  
new	
  par/cle	
  state	
  with	
  mass	
  
~126	
  GeV.	
  

§  Other	
  proper/es	
  of	
  the	
  “Higgs”	
  
boson	
  need	
  to	
  be	
  established.	
  	
  

§  More	
  work	
  is	
  needed	
  to	
  
confirm	
  this	
  is	
  indeed	
  the	
  SM	
  
Higgs	
  boson.	
  	
  

§  New	
  direc/on	
  for	
  BSM	
  
theories:	
  can	
  this	
  “Higgs”	
  boson	
  
be	
  produced	
  by	
  some	
  BSM	
  
models.	
  	
  

§  On	
  July	
  4,	
  2012,	
  two	
  teams	
  at	
  LHC	
  announced	
  the	
  discovery	
  of	
  a	
  new	
  par/cle	
  
consistent	
  with	
  the	
  SM	
  Higgs	
  boson.	
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The need for BSM theories 

§  Higgs	
  has	
  been	
  found.	
  Why	
  are	
  we	
  s/ll	
  interested	
  in	
  BSM	
  theories?	
  	
  
•  Standard	
  Model	
  doesn’t	
  incorporate	
  gravity.	
  

•  Standard	
  Model	
  cannot	
  explain	
  many	
  experimental	
  observa/ons:	
  
-­‐  Neutrino	
  masses,	
  dark	
  mader	
  and	
  dark	
  energy,	
  etc.	
  	
  

•  Hierarchy	
  problem:	
  
-­‐  Why	
  is	
  the	
  Higgs	
  mass	
  (~126	
  GeV)	
  so	
  much	
  lighter	
  than	
  the	
  Planck	
  scale?	
  	
  
-­‐  Requires	
  delicate	
  fine-­‐tuning	
  è	
  Unnatural.	
  	
  

§  The	
  SM	
  Higgs	
  mechanism	
  is	
  a	
  parameteriza/on.	
  It	
  doesn’t	
  explain	
  the	
  dynamical	
  
origin	
  of	
  the	
  electroweak	
  symmetry	
  breaking	
  	
  

§  Technicolor	
  theories:	
  EW	
  symmetry	
  is	
  broken	
  dynamically	
  via	
  new	
  strong	
  dynamics	
  
at	
  TeV	
  scale	
  and	
  above.	
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Technicolor in a nutshell 

§  Introduce	
  new	
  gauge	
  interac/ons	
  SU(NTC)	
  at	
  ΛTC,	
  with	
  NTF	
  flavors	
  of	
  technifermions.	
  	
  

§  Technifermions	
  possess	
  chiral	
  symmetry,	
  similar	
  to	
  the	
  QCD	
  fermions.	
  	
  

§  This	
  chiral	
  symmetry	
  is	
  spontaneously	
  broken	
  è	
  massless	
  Techni-­‐Goldstone	
  bosons.	
  
•  Three	
  of	
  these	
  Goldstone	
  bosons	
  provide	
  mass	
  for	
  the	
  W	
  and	
  Z	
  gauge	
  bosons.	
  
•  Others	
  (if	
  any)	
  remain	
  massive	
  –	
  model	
  dependent.	
  	
  

§  Technifermion	
  condensate	
  at	
  the	
  Extended	
  Technicolor	
  scale	
  ΛETC	
  provides	
  mass	
  for	
  
the	
  SM	
  fermions.	
  	
  mechanism	
  for	
  the	
  genera/on	
  of	
  fermion	
  masses.	
  

§  ΛETC	
  has	
  to	
  be	
  large	
  to	
  suppress	
  flavor-­‐neutral	
  changing	
  current	
  (FCNC)	
  to	
  be	
  
consistent	
  with	
  experimental	
  bounds	
  è	
  ΛETC	
  ~	
  103	
  TeV	
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Search for Conformal Window on the Lattice

From Confinement to Conformality

Technicolor as a BSM theory

Strong Dynamics at the TeV Scale
Technicolor (TC) theories: At the electroweak scale, ⇤TC ' FEW ⇡ 246
GeV, there may be a new form of strong interaction.
Weinberg & Susskind 1979

Assume gauge interactions SU(NTC) at ⇤TC.

Technifermions possess chiral symmetry, transforming under
SU(Nf ,TC)L ⌦ SU(Nf ,TC)R.

Spontaneous chiral symmetry breaking
! massless Technicolor Goldstone bosons
! three of these provide mass for the EW gauge bosons.

Technifermion condensate at the Extended Technicolor scale (⇤ETC)
provides mass for the quarks Dimopoulos & Susskind 1979, Eichten & Lane 1979

mq,l '
hQQiETC

⇤2
ETC

⇤ETC � ⇤TC to suppress flavor-changing neutral currents (FCNC).
! ⇤ETC ⇠ 103 TeV.
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Constraints for Technicolor Theories 

§  Technifermion	
  condensate	
  needs	
  to	
  be	
  enhanced	
  to	
  provide	
  large	
  enough	
  mass	
  for	
  
the	
  SM	
  fermions.	
  	
  
•  One	
  consequence	
  of	
  this	
  is	
  that	
  the	
  anomalous	
  dimension	
  γ	
  has	
  to	
  be	
  large,	
  O(1).	
  	
  

§  The	
  electroweak	
  S	
  parameter	
  needs	
  to	
  be	
  small	
  to	
  sa/sfy	
  the	
  LEP	
  experimental	
  
constraint:	
  S	
  ≈	
  0.	
  	
  
•  Naïve	
  scaled-­‐up	
  QCD	
  would	
  violate	
  this	
  constraint.	
  	
  

	
  
§  Axer	
  Higgs	
  discovery,	
  a	
  viable	
  BSM	
  theory	
  must	
  have	
  a	
  light	
  scalar	
  boson	
  with	
  a	
  

mass	
  consistent	
  with	
  the	
  LHC	
  finding.	
  	
  

§  All	
  these	
  would	
  require	
  that	
  the	
  new	
  strong	
  interac/ons	
  are	
  non-­‐QCD	
  like,	
  probably	
  
with	
  near-­‐conformal	
  behaviors.	
  è	
  Walking	
  Technicolor.	
  	
  

§  Walking	
  technicolor	
  theories	
  may	
  be	
  able	
  to	
  produce	
  light	
  Higgs	
  in	
  the	
  form	
  of	
  a	
  
light	
  dila/on,	
  or	
  a	
  composite	
  pseudo-­‐Nambu-­‐Goldstone	
  boson	
  (Lidle	
  Higgs).	
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What Walking Technicolor Theory May Look Like 

§  Perturba/ve	
  2-­‐loop	
  beta	
  func/on	
  for	
  
an	
  SU(N)	
  gauge	
  theory	
  with	
  Nf	
  
fundamental	
  fermions.	
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§  The	
  phase	
  space	
  can	
  be	
  separated	
  
into	
  three	
  different	
  regions.	
  	
  

Probing Conformality on the Lattice

From Confinement to Conformality

The Phases of SU(N) Gauge Theories

SU(3) Case

-10

-5

 0

 5

 10

 0  2  4  6  8  10

β(
g)

g

Nf=2
Nf=6
Nf=9

Nf=12
Nf=17

� < 0:
asymptotic
freedom
� = 0:
fixed point
! scale
invariance
� > 0:
asymptotic
freedom lost

We have
a trivial fixed point at g = 0 (Gaussian fixed point).
an infrared fixed point (IRFP) at g > 0 with large enough Nf .

Probing Conformality on the Lattice

From Confinement to Conformality

The Phases of SU(N) Gauge Theories

The Conformal Window
Changing Nf may lead to different “phases” of the SU(N) gauge theories:

Nf < 11N/2(⌘ NAF
f ) asymptotically free

0  Nf < Nc
f confinement and spontaneous chiral symmetry breaking (S�SB)

Nc
f  Nf < NAF

f conformal
Nf > NAF

f asymptotic freedom lost

Nc
f : the conformal window – not known accurately because of the non-perturbative

nature. ) need LGT.

 0

 5

 10

 15

 20

 25

 30

 0  1  2  3  4  5  6  7  8  9  10

N
f

Nc

Nf
AF

Nf
c

QCD

Trivial 

Conformal 

Confining 

Possibly walking 

IRFP 
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Needle in a Haystack 
the one done for supersymmetric gauge theories [86]. However, the actual size of the conformal
window may be smaller than the one presented here which hence can be considered as a bound
on the size of the window. The reason being that chiral symmetry breaking could be triggered
for a value of � lower than two, as for example suggested by the ladder approximation. In
Figure 6 we plot the phase diagram.

Figure 6: Phase diagram for nonsupersymmetric theories with fermions in the: i) fundamental
representation (black), ii) two-index antisymmetric representation (blue), iii) two-index sym-
metric representation (red), iv) adjoint representation (green) as a function of the number of
flavors and the number of colors. The shaded areas depict the corresponding conformal win-
dows. Above the upper solid curve the theories are no longer asymptotically free. Between the
upper and the lower solid curves the theories are expected to develop an infrared fixed point
according to the NSVZ inspired beta function. The dashed curve represents the change of sign
in the second coefficient of the beta function.

3.2.3 Comparison with the Ladder approximation

We now confront our bound for the conformal windows with the one obtained using the
ladder approximation in [10]. To determine the number of flavors above which the theory
becomes conformal, we employ the criterion proposed in [72, 73].

The idea behind this method is simple5. One simply compares the two couplings in the
infrared associated to i) an infrared zero in the � function, call it ↵⇤ with ii) the critical coupling,
denoted with ↵c, above which a dynamical mass for the fermions generates nonperturbatively
and chiral symmetry breaking occurs. If ↵⇤ is less than ↵c chiral symmetry does not occur

5The reader is urged to read the original papers for a more detailed explanation.

29
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Sannino ‘08 

Fundamental Rep. 

2-index antisym. 

2-index sym. adjoint 

§  There	
  are	
  a	
  lot	
  of	
  candidate	
  strongly	
  interac/ng	
  theories.	
  	
  
§  Non-­‐perturba/ve	
  calcula/ons	
  are	
  needed.	
  è	
  Comes	
  the	
  la>ce.	
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The role of Lattice 

§  Such	
  theories	
  are	
  strongly	
  interac/ng	
  and	
  intrinsically	
  non-­‐perturba/ve.	
  	
  

§  La>ce	
  gauge	
  theory	
  can	
  calculate	
  a	
  lot	
  of	
  non-­‐perturba/ve	
  quan//es	
  from	
  first	
  
principles.	
  	
  

§  BSM	
  model	
  builders	
  need	
  us	
  to	
  verify	
  that	
  technicolor	
  theories	
  can	
  indeed	
  sa/sfy	
  
the	
  constraints.	
  	
  

§  I	
  will	
  focus	
  on	
  SU(3)	
  gauge	
  theories	
  with	
  Nf	
  fermions	
  in	
  the	
  fundamental	
  
representa/on.	
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LGT Basics 

§  The	
  core	
  of	
  LQCD	
  simula/ons	
  is	
  Hybrid	
  Monte	
  Carlo	
  (Molecular	
  Dynamics	
  +	
  Monte	
  
Carlo)	
  in	
  the	
  Euclidean	
  space:	
  	
  

	
  
§  We	
  don’t	
  really	
  calculate	
  the	
  determinants	
  directly.	
  Instead,	
  pseudofermion	
  fields	
  

(bosonic	
  fields)	
  are	
  introduced.	
  For	
  Nf	
  =	
  1,	
  	
  

	
  
§  Most	
  computa/on-­‐intensive	
  part	
  is	
  to	
  solve	
  the	
  Dirac	
  equa/ons:	
  	
  

§  D	
  is	
  a	
  large,	
  sparse,	
  diagonally	
  dominant	
  matrix.	
  Itera/ve	
  solvers,	
  such	
  as	
  conjugate	
  
gradient	
  (CG),	
  are	
  typically	
  used	
  to	
  solve	
  the	
  equa/ons.	
  	
  Its	
  condi/on	
  number	
  
worsens	
  as	
  the	
  quark	
  mass	
  mf	
  gets	
  smaller	
  è	
  it	
  takes	
  longer	
  to	
  converge.	
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Numerical Integration

I The functional integral over the fermionic degrees of freedom can be integrated
out using Grassman Algebra

hOi =

R
[dU]O[U]det(/D + m)e�Sg[U]

Z

I R
[dU] involves a large number of d.o.f.’s, even on the lattice. Exact evaluation

impossible.

A toy model to show you the cost of the calculation
I

4

4 lattice. 2 degrees of freedom each site (think about Ising model, for example).

I Total number of possible field configurations: 2

4

4

= 2

256 ⇠ 10

77.
I 1 operation per configuration) 10

56 years on a current mainstream supercomputer.
I Age of the universe: ⇠ 10

10 years!

Real lattice QCD calculations involve tens of millions of degrees of freedom
) Not possible to compute all the possibilities.

university-logo

Methodology Lattice Monte Carlo Methods

Euclidean Path Integral

Euclidean partition function for one-flavor QCD

Z =

∫

[dU][dψ̄][dψ]e−ψ̄D(mf )ψ−Sg[U]

=

∫

[dU] detD(mf )e−Sg[U] (Grassman algebra)

Direct evaluation of the determinant too expensive.
Two common solutions:

Quenching: set detD(mf ) ≡ 1, unphysical, obsolete
pseudo-fermion prescription: replace the Grassman variables with
bosonic fields φ, φ†

Z =

∫

[dU][dφ†][dφ]e
−φ† 1

(D†(mf )D(mf ))
1/2 φ−Sg[U]

(Gaussian integration)

Meifeng Lin (Columbia University) Hadron Physics with 2+1 Flavors of DWF Dissertation Defense 20 / 57

1 Task 5: Brookhaven National Labs Responsibil-
ity (Year 1 April 2014-March 2015)

BNL will provide Domain Science Expertise directing the efforts of PUMA-
V toward critical LQCD software kernels, such as QDP++, needed to sup-
port critical research investigation, and supporting the team integration of
PUMA-V optimized kernels, performance measurements, and the use of the
optimized kernels in simulation runs. In Year 1, the focus will be on LQCD
simulations related to particular experimental anomalies, with the priority
being the Proton Size Puzzle [1], in which the proton electric charge radius
measured from the muonic hydrogen Lamb shift is seven standard devia-
tions smaller than the one from the electron-proton scattering experiments,
which could be an indication of new physics. Our research at BNL on LQCD
simulations of the proton charge radius will involve the calculation of the
nucleon form factors using first-principles LQCD simulations at the physical
quark masses.

A typical lattice QCD simulation involves the generation of the gluon
background fields, and the computation of the quark propagators. In both
aspects of the simulation, the main numerical cost goes into the repeated
solution of the Dirac equation:

D[U ]ψ = b, or D†[U ]D[U ]φ = b′, (1)

where in the Wilson fermion discretization, the Dirac operator D[U ] can be
written as

Dx,y[U ] = (4 + m)δx,y −

4
∑

µ=1

[

1 − γµ

2
Uµ

x δx+µ̂,y +
1 + γµ

2
Uµ†

x−µ̂
δx−µ̂,y

]

. (2)

In the Dirac operator, m is the input quark mass, µ̂ is the unit vector in the
direction µ, γµ are 4 × 4 Dirac matrices, and x and y are four-dimensional
space-time vectors. U is the gluon field variable, and is an SU(3) matrix. For
a lattice with the size of L3

×T , a discrete Wilson Dirac operator is a square

1
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Computational Complexity for BSM Theories 

§  For	
  SU(3)	
  simula/ons	
  with	
  large	
  Nf,	
  cost	
  increases	
  quickly	
  as	
  Nf	
  is	
  increased.	
  	
  

	
  
§  Naïve	
  cost	
  per	
  molecular	
  dynamics	
  trajectory	
  	
  

	
  
§  Mul/-­‐scale	
  problem:	
  	
  

•  Need	
  ΛUV	
  >>	
  ΛIR	
  to	
  separate	
  UV	
  physics	
  from	
  IR.	
  	
  
•  ΛUV	
  ~	
  1/a,	
  ΛIR	
  ~	
  confinement	
  scale,	
  MV	
  

•  è	
  Need	
  fine	
  la>ce	
  spacing.	
  	
  
•  èèè	
  large	
  number	
  of	
  la>ce	
  sites.	
  	
  

§  C.f.	
  cost	
  for	
  QCD	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Christ	
  and	
  Jung,	
  2007	
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Probing Conformality on the Lattice

Lattice as a Tool to Probe Conformality

Lattice QCD

Formulation
Discretize field variables onto a space-time grid.

a

x+ux

Plaquette

Evaluate Euclidean path integral via Monte Carlo simulations

hOi =

R
[dA]⇧f [d ̄f ][d f ] O e�S(E)(A, f , ̄f )

Z
! integrating out fermion fields/Grassman variables

hOi =

R
[dU]O[U][det(/D + m)]Nf e�Sg[U]

Z
U: lattice gauge field variable, SU(3) matrices
! Monte Carlo Z

[dU] !
X

{U}

Probing Conformality on the Lattice

Lattice as a Tool to Probe Conformality

Going Beyond QCD: Setup and Challenges

Challenges
Cost increases quickly as Nf is increased:

hOi =

R
[dU]O[U][det(/D + m)]Nf e�Sg[U]

Z

Naive cost per MD trajectory

⇠ Nf (# of flavors)⇥ N1/2
f (# of steps per trajectory).

As Nf is increased, ChPT at a given order will only work at even lighter
pion masses.
! In the region accessible with current computing power, NLO ChPT is
not applicable. Higher orders involve too many unknown parameters.
! cannot use ChPT fits to confirm chiral symmetry breaking without
much more expensive calculation.

It becomes harder to sample different topological sectors. [more on next
few slides]

Search for Conformal Window on the Lattice

From Confinement to Conformality

Technicolor as a BSM theory

Walking Technicolor
There might exist a region ⇤IR < µ < ⇤UV where the running coupling ↵(µ)
evolves very slowly.

µΛIR
ΛU

g*

g

Assume �(µ) ⇠ �⇤, then Technifermion condensate gets enhanced:

hQQiETC ⇠ hQQiTC

„
⇤UV

⇤IR

«�⇤

Could be large enough to generate quark masses if �⇤ ⇠ O(1).
Could result in a small S parameter.

ΛIR ΛUV 

 
 
 

 

 

seen from Figure 4, current lattice results either are performed at heavier pion masses mπ, giving 
substantially smaller values for the radius, or suffer from large statistical errors. They are thus insufficient 
to resolve the discrepancy. To distinguish the two experimental results that differ by 4%, a combined 
statistical and systematic error of 2% for the lattice results will ultimately be needed to achieve a two-
sigma statistical significance. 

Another example is the nucleon axial charge gA that 
parameterizes the neutron beta decay and is well known 
experimentally [35] to be 1.2701(25). Because the nucleon 
axial charge is determined at the zero momentum transfer, it 
is numerically straightforward to calculate on the lattice and 
is considered one of the gold-plated quantities for LQCD. 
However, as shown in Figure 5, existing LQCD results at a 
wide range of pion masses are all systematically 10-20% 
lower than the experiment, even when a very small, close-to-
physical, pion mass is used in the simulations. A lot of studies 
have gone into understanding this discrepancy through 
extensive investigations of possible systematic errors, but the 
results are so far still inconclusive. Two of the potential 
culprits are the unphysical pion mass and large finite volume 
effects. It is possible that as the physical limit is approached, 
the value of gA may increase sharply to agree with the 
experiment. While chiral perturbation theory (ChPT) [36–39] 
may give a theoretical guidance to this trend, the lack of any 
curvature (except for the downward trend at the lightest few 
points) makes it impossible to determine the large number of unknown parameters and the predictive 
power of ChPT is lost. One the other hand, when the pion mass is decreased, the pion Compton 
wavelength becomes larger and a larger box is needed to suppress the finite volume effects. In fact, a 
recent calculation [15] by the QCDSF Collaboration using two flavors of improved Wilson fermions 
shows that the nucleon axial charge indeed increases sharply at the physical pion mass to agree with the 
experiment, but only after the finite volume effects are removed. Our calculation will be an independent 
check of their finding, but with the advantage of using chirally symmetric domain wall fermions and 
having three realistic quark flavors, which they did not have.  

It is thus of extreme interest and ultimate importance to perform LQCD simulations for these and other 
observables in a large volume with a physical pion mass. However, the current computer power still does 
not allow the computation at the physical pion mass and with a sufficiently large volume, thus unable to 
address both the chiral extrapolation and finite volume effects. Assuming the exact same algorithms are 
used, the numerical cost scales [40] with the lattice dimension L, pion mass mπ and the lattice spacing a 
naively as 

! !
fm

!MeV
!!

fm
!

!
. 

Our past experience suggests that when the pion mass is decreased by a factor 2, the lattice dimension L 
needs to increase by at least the same factor. Even with the lattice spacing fixed, the cost will grow by an 
order of 10 to 100. Taking the continuum limit of ! → 0 adds further complications, as calculations at 
multiple lattice spacing values are needed. Thus high-precision LQCD computation of nucleon structure 
in the physical limit can only be accomplished through innovative algorithms and efficient exploitation of 
the current and future high performance computing platforms.  

0 0.05 0.1 0.15 0.2
m
π

2  [GeV2]

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

g A

Experiment
LHP-Clover
QCDSF Clover
LHP Mixed
TMF Nf=2
DWF Nf=3 ID32 (AMA)
DWF Nf=3 I24 (AMA)
TMF Nf=4

Figure 5: Recent results for the nucleon axial 
charge from Lattice QCD calculations with 
unphysical pion masses. 

LAB 13-958 PI:  LIN, MEIFENG
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Approaching the Chiral Limit 

§  La>ce	
  simula/ons	
  are	
  performed	
  at	
  several	
  finite	
  quark	
  masses	
  due	
  to	
  the	
  
formidable	
  numerical	
  cost	
  at	
  small	
  mf,	
  and	
  rely	
  on	
  chiral	
  perturba/on	
  theory	
  to	
  
extrapolate	
  to	
  	
  
•  The	
  physical	
  limit	
  for	
  QCD.	
  	
  	
  
•  The	
  chiral	
  limit	
  for	
  BSM	
  theories.	
  
	
  

§  The	
  converge	
  of	
  ChPT	
  becomes	
  worse	
  or	
  even	
  ques/onable	
  as	
  Nf	
  is	
  increased.	
  	
  
•  In	
  the	
  region	
  accessible	
  with	
  current	
  compu/ng	
  power,	
  next-­‐to-­‐leading-­‐order	
  chiral	
  

perturba/on	
  theory	
  is	
  not	
  applicable.	
  Going	
  to	
  higher	
  orders	
  requires	
  too	
  many	
  unknown	
  
parameters.	
  	
  

§  For	
  QCD,	
  simula/ons	
  directly	
  at	
  the	
  physical	
  limit	
  are	
  becoming	
  available.	
  	
  

§  For	
  BSM,	
  going	
  to	
  lighter	
  quark	
  masses	
  is	
  much	
  harder,	
  and	
  requires	
  more	
  
compu/ng	
  power,	
  and/or	
  beder	
  algorithms.	
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Example: Condensate Enhancement 
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Nf = 6  Nf = 8  

§  We	
  want	
  to	
  know	
  if	
  increasing	
  Nf	
  can	
  increase	
  the	
  chiral	
  condensate	
  in	
  the	
  chiral	
  
limit.	
  	
  

§  Three	
  equivalent	
  ways	
  (in	
  the	
  chiral	
  limit)	
  to	
  determine	
  via	
  Gell-­‐Mann-­‐Oakes-­‐
Renner	
  rela/on.	
  	
  

§  We’d	
  like	
  to	
  know	
  what	
  the	
  enhancement	
  is	
  at	
  the	
  chiral	
  limit.	
  	
  

LSD Preliminary 
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Example: S Parameter 
§  We’d	
  like	
  to	
  see	
  a	
  reduc/on	
  of	
  the	
  S	
  parameter	
  compared	
  to	
  QCD.	
  	
  
§  At	
  simulated	
  mass	
  region,	
  there	
  is	
  some	
  evidence	
  of	
  reduc/on.	
  But	
  there	
  is	
  s/ll	
  

some	
  uncertainty	
  going	
  to	
  the	
  lighter	
  mass	
  region.	
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FIG. 9. Ratios R(IJ)
Nf

of the three observables X(IJ) in Eq. (15) that reduce to
˙
  

¸
/F 3 in the chiral limit, for Nf = 6

normalized by Nf = 2 (left) and Nf = 8/Nf = 2 (right). The horizontal axis is the geometric mean em =
p

mNf =2mNf =6,8.

tematic support for using such rational functions to fit
the Q

2-dependence of vacuum polarization functions.
Finally, the subtraction of �SSM in Eq. (17) removes

from the spectrum the three NGBs eaten by the W and
Z, and sets S = 0 for the standard model with Higgs
mass MH = 125 GeV. Since we have not yet carried
out the computationally demanding calculation of the
(flavor-singlet scalar) Higgs mass in our lattice studies,
we take

�SSM =
1
4

Z 1

4M2
P

ds

s

"
1�

✓
1� M

2
V 0

s

◆3

⇥(s�M

2
V 0)

#

� 1
12⇡

log
✓

M

2
V 0

M

2
H

◆
. (20)

The first term in Eq. (20) would be appropriate if MH

were comparable to the TeV-scale vector meson mass
MV 0; the second term corrects this for the physical
MH = 125 GeV [63].

Computing S for fixed m from Eqs. 17 and 20, employ-
ing the thermalization cuts and jackknife blocks listed in
Table I, produces the 8-flavor results shown in Figure 10.
This figure also includes the Nf = 2 and 6 results pre-
viously published in Ref. [13], which we update to use
MH = 125 GeV rather than MH ⇠ 1000 GeV. As in pre-
vious sections, we plot S vs. M

2
P /M

2
V 0 in order to provide

a more direct comparison between the three di↵erent the-
ories.

The S parameter is only well defined in the chiral limit
M

2
P /M

2
V 0 ! 0. However, chiral symmetry breaking with

Nf light but massive flavors produces N

2
f �1 PNGBs. To

obtain the phenomenological S parameter, we must con-
sider a chiral limit in which only three of these PNGBs
become exactly massless NGBs to be identified with the
longitudinal components of the W and Z. The other
N

2
f � 4 PNGBs must remain massive enough to have

evaded experimental observation. (These PNGBs are
all pseudoscalars, not to be identified with the 125 GeV

Higgs, which comes from the flavor-singlet scalar spec-
trum that we have not yet investigated.)

FIG. 10. Electroweak S parameter with MH = 125 GeV, for
Nf = 2, 6 and 8 with ND = 1 fermion doublet assigned chiral
electroweak couplings in Eq. (17). Our results for Nf = 2 and
6 were previously published in Refs. [13, 52].

For Nf = 2 this requirement simply reduces to the
linear M

2
P /M

2
V 0 ! 0 extrapolation shown in Figure 10,

which produces the non-perturbative result S = 0.42(2),
in agreement with the scaled-up QCD value S ⇡ 0.43
for MH = 125 GeV. When Nf > 2, keeping all the
fermion masses degenerate in the chiral limit would give
rise to additional massless NGBs that make a loga-
rithmically divergent contribution to S, proportional to
log

�
M

2
V 0/M

2
P

�
. The blue band in Figure 10 fits the three

Nf = 6 data points with the smallest M

2
P /M

2
V 0 . 1 to

the corresponding chiral form [52]. In a realistic con-
text, the N

2
f �4 PNGBs remain massive, due to standard

model and other interactions, which break this degener-
acy.

LSD Preliminary 
Plot by D. Schaich 
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Topological Charge Freeze 
§  A	
  topological	
  charge,	
  or	
  the	
  winding	
  number,	
  of	
  a	
  give	
  gauge	
  configura/on	
  is	
  

defined	
  as	
  

§  For	
  SU(3)	
  gauge	
  theories	
  with	
  Nf	
  fundamental	
  fermions,	
  Q	
  takes	
  integer	
  values.	
  	
  
§  In	
  a	
  finite	
  volume,	
  Q	
  can	
  take	
  all	
  the	
  possible	
  integer	
  values,	
  which	
  would	
  follow	
  a	
  

Gaussian	
  distribu/on	
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Probing Conformality on the Lattice

Lattice as a Tool to Probe Conformality

Going Beyond QCD: Setup and Challenges

Topological Charge
A topological charge Q, or the winding number, of a given gauge configuration is
defined as

Q[A] =
1

32⇡2

Z
d4x✏µ⌫�⇢TrFµ⌫(x)F�⇢(x),

Fµ⌫(x) = @µA⌫(x)� @⌫Aµ(x) + [Aµ(x), A⌫(x)] .

For SU(3) gauge theories with Nf fundamental fermions, Q[A] takes integer
values.
In a finite volume, Q should take all the possible values, and it should follow a
Gaussian distribution.

-20 -15 -10 -5 0 5 10 15 20
Q

0

50

100

150

200

Nf = 2 + 1 QCD case, Aoki et al., PRD83, 074508(2011)

Probing Conformality on the Lattice

Lattice as a Tool to Probe Conformality

Going Beyond QCD: Setup and Challenges

Topological Charge
A topological charge Q, or the winding number, of a given gauge configuration is
defined as

Q[A] =
1

32⇡2

Z
d4x✏µ⌫�⇢TrFµ⌫(x)F�⇢(x),

Fµ⌫(x) = @µA⌫(x)� @⌫Aµ(x) + [Aµ(x), A⌫(x)] .

For SU(3) gauge theories with Nf fundamental fermions, Q[A] takes integer
values.
In a finite volume, Q should take all the possible values, and it should follow a
Gaussian distribution.
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Topological Charge Freeze 

§  As	
  Nf	
  is	
  increased,	
  it	
  becomes	
  harder	
  for	
  topological	
  charge	
  to	
  tunnel,	
  especially	
  at	
  a	
  
small	
  a.	
  

§  QCD	
  simula/ons	
  have	
  similar	
  issues	
  at	
  fine	
  la>ce	
  spacings.	
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Probing Conformality on the Lattice

Lattice as a Tool to Probe Conformality

Going Beyond QCD: Setup and Challenges

Frozen Topology
In some of our simulations, Nf = 10 for example, the topological charge
gets frozen at a particular value.

Ordered and disordered starts have different Q, leading to inconsistent
physical results.
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Effects of Frozen Topology 
§  At	
  fixed	
  Q,	
  the	
  hadron	
  masses	
  depends	
  linearly	
  on	
  Q2	
  to	
  first	
  order.	
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Probing Conformality on the Lattice

Lattice as a Tool to Probe Conformality

Going Beyond QCD: Setup and Challenges

Effects of Frozen Topology
The masses depend linearly on Q2 to the first order.
Brower, Chandrasekharan, Negele, and Wiese, PLB560, 64(2003)

MQ = M(0) +
1
2

M(2)(0)
1

V�t

„
1�

Q2

V�t

«
+ O

„
1

V3

«
,

Our results at mf = 0.025 are consistent with the above dependence.
Essentially it is a finite volume effect.
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Going Beyond QCD: Setup and Challenges

Effects of Frozen Topology
The masses depend linearly on Q2 to the first order.
Brower, Chandrasekharan, Negele, and Wiese, PLB560, 64(2003)
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Our results at mf = 0.025 are consistent with the above dependence.
Essentially it is a finite volume effect.
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Scalar in QCD 
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(Plot from N. Mathur et al. 2007.) 
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Light Composite Scalar from Near-Conformal 
Gauge Theories? 

3

of 2D(t) without the projection, which does not have an
oscillating behavior. This means that the flavor symme-
try breaking between AπSC

(t) and Aπ
SC
(t) in Eq. (4) is

small. The effective mass plateau of 2D(t) is statistically
consistent with the one of 2D+(t) − C+(t) in the large
time region. Note that effective mass of −C+(t) is always
larger than the one of 2D(t) in our simulations, as shown
in Fig. 1. Since the plateau of 2D(t) appears at earlier
time with smaller error than the one of 2D+(t)−C+(t),
we choose 2D(t) to extractmσ in all the parameters. The
earlier plateau might be caused by a reasonable cancella-
tion among contributions from excited scalar states and
a0 in 2D(t). It should be noted that, because of the small
mσ, comparable to mπ, the exponential damping of D(t)
is slow, and this helps preventing a rapid degradation of
the signal-to-noise ratio.

We fit 2D(t) in the region t = 6–11 by a single cosh
form assuming only σ propagating in this region to obtain
mσ for all the parameters. The fit result on L = 36 at
mf = 0.015 is shown in Fig. 1. In this parameter it
is possible to fit 2D(t) with a longer fit range, while in
some parameters the effective mass of 2D(t) in the large
time region is unstable with large error in the current
statistics. Thus, we choose this fixed fit range in all the
parameters. In order to estimate the systematic error
coming from the fixed fit range, we carry out another fit
in a region at larger t than the fixed one, with the same
number of data points. An example of this fit is shown in
Fig. 1. We quote the difference between the two central
values as the systematic error.

The values of mσ and also mπ for all the parame-
ters are summarized in Table I. Figure 2 presents mσ

as function of mf together with mπ. These are our main
results. The data on the largest two volumes at each
mf , except for mf = 0.015, agree with each other, and
suggest that finite size effects are negligible in our statis-
tics. We find a clear signal that σ is as light as π for
all the fermion masses we simulate. This property is
distinctly different from the one in usual QCD, where
mσ is clearly larger than mπ [28, 29], while it is simi-
lar to the one in Nf = 12 QCD observed in our previous
study [11]. Thus, this might be regarded as a reflection of
the approximate scale symmetry in this theory, no mat-
ter whether the main scale symmetry breaking in the far
infrared comes from mf or mD, as we noted before. The
figure also shows that our simulation region is far from
heavy-fermion limit, because the vector meson mass ob-
tained from the (γiγ4⊗ξiξ4) operator, denoted by ρ(PV),
is clearly larger than mπ.

Although the accuracy of our data is not enough to
make a clear conclusion for a chiral extrapolation, we
shall report some results below. While in the previous
paper [10] we found that the data for mπ and Fπ, π de-
cay constant at each mf , are consistent with chiral per-
turbation theory (ChPT) in the region mf ≤ 0.04, the
updated data [30], tabulated in Table I, show consistency
with ChPT in a somewhat smaller region mf ≤ 0.03.
Thus, we shall use the lightest three data with the small-
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FIG. 2: Mass of the flavor-singlet scalar mσ compared to the
mass of NG pion mπ as a function of the fermion mass mf .
Outer error represents the statistical and systematic uncer-
tainties added in quadrature, while inner error is only statis-
tical. Square symbols are slightly shifted for clarity. Mass of
vector meson with one standard deviation is expressed by full
boxes.

est error at each mf , i.e., the two data on L = 36 and
the lightest data on L = 24, in the following analyses.
The validity of ChPT is intact even when the light

σ comparable with π is involved in the chirally broken
phase: the systematic power counting rule as a general-
ization of ChPT including σ as a dilaton was established
in Ref. [31] (“dilaton ChPT (DChPT)”) including com-
putation of the chiral log effects. At the leading order
we have m2

π = 4mf⟨ψ̄ψ⟩/F 2 (Gell-Mann-Oakes-Renner
relation) and

m2
σ = d0 + d1m

2
π , (5)

where d0 = m2
σ|mf=0 and d1 = (3 − γm)(1 + γm)/4 ·

(NfF 2)/F 2
σ , with γm being mass anomalous dimension

in the walking region, F and Fσ being the decay con-
stants of π and σ, respectively, in the chiral limit. (F/

√
2

corresponds to 93 MeV for the usual QCD π.) In the fol-
lowing fit, we ignore higher order terms including chiral
log. We plot m2

σ as a function of m2
π in Fig. 3. The

extrapolation to the chiral limit based on Eq. (5) gives
a reasonable χ2/d.o.f. = 0.27, with a tiny value in the
chiral limit, d0 = −0.019(13)(39) where the first and sec-
ond errors are statistical and systematic, respectively. It
agrees with zero with 1.4 standard deviation and shows a
consistency with the NG nature of σ. Although errors are
large at this moment, it is very encouraging for obtain-
ing a light technidilaton to be identified with a composite
Higgs with mass 125 GeV, with the value very close to
F/

√
2 ≃ 123 GeV of the one-family model with 4 weak-

doublets, i.e., Nf = 8. The value of F from our data is
estimated as F = 0.0202(13)(5467), which is updated from
the previous paper [10] using more statistics and a new
smaller mf data. (If this scalar is to be identified with a
composite Higgs, we expect d0 ∼ F 2/2 ∼ 0.0002).

M.	
  Lin,	
  "Computa/onal	
  Issues	
  in	
  BSM	
  Theories"	
   22	
  

Y. Aoki et al. (LatKMI Coll.) 2014 

Nf = 8 
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FIG. 3: Fermionic mσ and gluonic mG effective masses (re-
spectively from correlators in Eq. (4) and Eq. (5)) for L = 24
and mf = 0.06. The fitted masses are highlighted by dashed
and dotted-dashed lines for the gluonic correlators and dotted
lines for the fermionic one. Systematics effects on the gluonic
mass are not relevant given the larger statistical error.
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FIG. 4: The mass of the flavor–singlet scalar meson σ (see
Table I) compared to the mass of the pseudo–scalar π state
and the mass mG from gluonic operators. Errors are statis-
tical and systematics added in quadrature. The hyperscaling
curve is described in the text. The triangle and filleds square
symbols are slightly shifted for clarity.

each parameter. For mσ on the largest two volumes at
each mf , finite size effects are negligible in our statis-
tics. For a check of consistency with the hyperscaling of
mπ, we fit mσ on the largest volume data at each mf

using the hyperscaling form mσ = C(mf )1/1+γ with a
fixed γ = 0.414 estimated from mπ [10], which gives a
reasonable value of χ2/dof = 0.12. The fit is shown in
Fig.4. We remind here that the fitted data points have
mπL > 11.5, as can be checked from Table. I. We also es-
timate the ratio mσ/mπ at each parameter and report it
in Table I. All the ratios are smaller than unity by more
than one standard deviation including the systematic er-
ror, except the one atmf = 0.06 on L = 30, as previously
explained. A constant fit with the largest volume data at

each mf gives 0.86(3). These results are consistent with
the theory being infrared conformal. Moreover they do
not show an abnormal mf dependence of mσ similar to
the one observed in Ref. [23], by which an effect of an
unphysical phase boundary would have been suspected.

To summarize, we performed the first study of the
scalar flavor–singlet state in Nf = 12 QCD using
fermionic and gluonic interpolating operators. The most
striking feature of the measured scalar spectrum is the
appearance of a state lighter than the π state, as it is
shown in Fig. 4. Such a state appears both in gluonic
and fermionic correlators at small bare fermion mass.
Clear signals in our simulations were possible thanks to
the following salient features: 1. Small taste–symmetry
breaking, 2. Efficient noise–reduction methods, 3. Large
configuration ensembles, and 4. Slow damping of D(t)
thanks to small mσ.

We regard the light scalar state observed for Nf = 12
in this study, as a reflection of the dilatonic nature of the
conformal dynamics, since otherwise the p–wave bound
state (scalar) is expected to be heavier than the s–wave
one (pseudo–scalar). Thus, it is a promising signal for
a walking theory, where a similar conformal dynamics in
a wide infrared region should be operative in the chiral
limit to form a dilatonic state with mass of O(Fπ), in
such a way that the tiny spontaneous–breaking–scale Fπ

plays the role of mf (cfr. Ref. [11]).

While further investigation of the scalar state in Nf =
12 QCD, such as a possible lattice spacing dependence,
is important, the most pressing future direction is to
look at more viable candidates for walking technicolor
models. For example, it will be interesting to investi-
gate the scalar spectrum of the Nf = 8 SU(3) theory,
which was shown to be a good candidate for the walking
technicolor [11], where the scalar state could be identi-
fied with the technidilaton, a pseudo Nambu–Goldstone
boson coming from the dynamical breaking of conformal
symmetry. There actually exists an indication of such a
light scalar in Nf = 8 QCD [38].

Acknowledgments.– Numerical simulation has been car-
ried out on the supercomputer system ϕ at KMI in
Nagoya University, and the computer facilities of the Re-
search Institute for Information Technology in Kyushu
University. This work is supported by the JSPS
Grant-in-Aid for Scientific Research (S) No.22224003,
(C) No.23540300 (K.Y.), for Young Scientists (B)
No.25800139 (H.O.) and No.25800138 (T.Y.), and also
by Grants-in-Aid of the Japanese Ministry for Scien-
tific Research on Innovative Areas No.23105708 (T.Y.).
E.R. was supported by a SUPA Prize Studentship and
a FY2012 JSPS Postdoctoral Fellowship for Foreign
Researchers (short-term). We would like to thank
Luigi Del Debbio and Julius Kuti for fruitful discussions.

Nf = 12 

Y.Aoki et al. (LatKMI Coll.) 2013 

§  Now	
  that	
  a	
  new	
  scalar	
  boson	
  has	
  been	
  discovered,	
  can	
  we	
  produce	
  such	
  a	
  light	
  
scalar	
  from	
  technicolor	
  theories?	
  	
  

§  First	
  evidence	
  appeared	
  in	
  near-­‐conformal	
  or	
  conformal	
  theories.	
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Not a cheap calculation 

§  For	
  non-­‐flavor	
  singlet	
  states,	
  such	
  as	
  the	
  pion,	
  the	
  correla/on	
  func/ons	
  involve	
  only	
  
the	
  “connected”	
  diagrams.	
  	
  

§  For	
  flavor-­‐singlet	
  states,	
  such	
  as	
  the	
  flavor-­‐singlet	
  scalar,	
  disconnected	
  diagrams	
  are	
  
needed	
  in	
  the	
  calcula/on.	
  	
  

  è	
  	
  needs	
  all-­‐to-­‐all	
  propagators.	
  Direct	
  cost	
  propor/onal	
  to	
  la>ce	
  volume	
  

§  Typically	
  stochas/c	
  es/mators	
  are	
  used	
  è	
  noise	
  is	
  introduced,	
  and	
  requires	
  a	
  large	
  
number	
  of	
  noise	
  es/mators	
  to	
  get	
  a	
  signal.	
  	
  

§  In	
  the	
  chiral	
  limit,	
  the	
  pseudoscalar	
  mass	
  goes	
  to	
  0,	
  but	
  the	
  scalar	
  mass	
  should	
  
remain	
  finite.	
  è	
  Can	
  we	
  see	
  this	
  crossover	
  with	
  lighter	
  fermion	
  masses?	
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Proton Mass from Lattice QCD

Calculate proton two-point correlation functions

C(t) =
X

~x

hP(~x, t)P†(~0, 0)i

with P(~x, t) is an operator chosen to have the quantum numbers of the proton (spin, parity,
etc.)
Time evolution operator

eiHt

In Euclidean space, e�Ht

P(~x, t) = eHtP(~x, 0)e�Ht

Insertion of complete set of states |ni

C(t) =
X

n

h0|P|nihn|P|0i
2Mn

e�Mnt

At sufficiently large t, all the states die off except the ground state

C(t) t�a�! e�MPt

Meifeng Lin (Yale) Quarks and Gluons on Supercomputers March 17, 2011 38 / 57



5/8/14	
  

Summary and Outlook 

§  La>ce	
  BSM	
  simula/ons	
  can	
  provide	
  valuable	
  input	
  for	
  BSM	
  model	
  building.	
  	
  

§  Such	
  simula/ons	
  are	
  numerically	
  expensive,	
  and	
  more	
  challenging	
  that	
  QCD	
  
simula/ons.	
  	
  

§  Prominent	
  issues	
  right	
  now	
  are	
  the	
  difficulty	
  in	
  ge>ng	
  to	
  the	
  chiral	
  limit,	
  and	
  
obtaining	
  the	
  flavor-­‐singlet	
  scalar	
  boson	
  mass	
  with	
  good	
  precision.	
  	
  

§  Outlook:	
  	
  
•  Increasing	
  compu/ng	
  power	
  and	
  algorithmic	
  innova/ons	
  (mul/grid?)	
  will	
  help	
  us	
  perform	
  

simula/ons	
  at	
  lighter	
  masses	
  and	
  larger	
  volumes.	
  	
  
•  Evolving	
  theore/cal	
  understanding	
  may	
  pinpoint	
  or	
  rule	
  out	
  some	
  BSM	
  theories	
  that	
  are	
  

inconsistent	
  with	
  experimental	
  observa/ons.	
  	
  
•  Perhaps	
  we	
  will	
  finally	
  find	
  the	
  right	
  BSM	
  theory,	
  or	
  concede	
  that	
  standard	
  model	
  is	
  the	
  

perfect	
  theory	
  and	
  there’s	
  nothing	
  more?	
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