Computational Issues in BSM Theories -- Past, Present and Future

Meifeng Lin Computational Science Center Brookhaven National Laboratory

Field Theoretic Computer Simulations for Particle Physics And Condensed Matter Boston University, May 8 – 10, 2014

a passion for discovery

Outline

- Introduction
 - Standard Model of Particle Physics
 - Beyond the Standard Model
 - The role of Lattice
- Computational Issues: Past, Present and Future
 - General issues
 - Past: viability of technicolor theories
 - Present: searching for Higgs imposters
 - Future: ?
- Summary and Outlook

Standard Model of Particle Physics

 Standard Model of particle physics describes the strong and electroweak interactions of the elementary particles.

Image from Wikipedia

- Quantum chromodyanmics (QCD) is the theory of the strong interactions between quarks and gluons. SU(3) gauge symmetry.
- The electroweak sector is described by SU(2)_L x U(1)_Y symmetry.
- Inputs to the SM: particle masses and the gauge couplings → 19 parameters.

Brookhaven Science Associates 5/8/14

The SM Higgs Mechanism

- What gives fermions and gauge bosons mass? In the Standard Model, this is achieved by the Higgs mechanism.
- A complex scalar SU(2)_L doublet is introduced by hand,

$$\Phi = \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array}\right)$$

with the potential ($\lambda > 0$)

$$V(\Phi) = \mu^2 | \Phi^{\dagger} \Phi | + \lambda \left(| \Phi^{\dagger} \Phi | \right)^2$$

 When μ² < 0, a non-zero vacuum expectation value (*vev*) develops and spontaneously breaks the electroweak symmetry.

$$\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \qquad v^2 = -\frac{\mu^2}{2\lambda} = (246 \ GeV)^2$$

The scalar doublet can be written in terms of a physical Higgs field h

$$\Phi = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0\\ v+h \end{array} \right)$$

The SM Higgs Mechanism (cont'd)

The gauge bosons acquire mass through this vev,

$$M_W^2 = \frac{1}{4}g^2v^2$$

$$M_Z^2 = \frac{1}{4}(g^2 + g'^2)v^2$$

$$M_A = 0.$$

 A consequence of the SM Higgs mechanism is the existence of a scalar Higgs boson, with the mass determined by the Higgs self coupling

$$M_h^2 = 2v^2\lambda$$

- Higgs mass is not known *a priori*.
- Prior to the LHC discovery, various precision experiments put bounds on the range of allowed Higgs mass.

LHC Discovery

 On July 4, 2012, two teams at LHC announced the discovery of a new particle consistent with the SM Higgs boson.

- Both CMS and Atlas observed a new particle state with mass ~126 GeV.
- Other properties of the "Higgs" boson need to be established.
- More work is needed to confirm this is indeed the SM Higgs boson.
- New direction for BSM theories: can this "Higgs" boson be produced by some BSM models.

Brookhaven Science Associates 5/8/14

The need for BSM theories

- Higgs has been found. Why are we still interested in BSM theories?
 - Standard Model doesn't incorporate gravity.
 - Standard Model cannot explain many experimental observations:
 - Neutrino masses, dark matter and dark energy, etc.
 - Hierarchy problem:
 - Why is the Higgs mass (~126 GeV) so much lighter than the Planck scale?
 - Requires delicate fine-tuning
 → Unnatural.
- The SM Higgs mechanism is a parameterization. It doesn't explain the dynamical origin of the electroweak symmetry breaking
- Technicolor theories: EW symmetry is broken dynamically via new strong dynamics at TeV scale and above.

Technicolor in a nutshell

- Introduce new gauge interactions SU(N_{TC}) at Λ_{TC} , with N_{TF} flavors of technifermions.
- Technifermions possess chiral symmetry, similar to the QCD fermions.
- This chiral symmetry is spontaneously broken → massless Techni-Goldstone bosons.
 - Three of these Goldstone bosons provide mass for the W and Z gauge bosons.
 - Others (if any) remain massive model dependent.
- Technifermion condensate at the Extended Technicolor scale Λ_{ETC} provides mass for the SM fermions. mechanism for the generation of fermion masses.

$$m_{q,l} \simeq \frac{\langle \overline{Q}Q \rangle_{ETC}}{\Lambda_{ETC}^2}$$

• Λ_{ETC} has to be large to suppress flavor-neutral changing current (FCNC) to be consistent with experimental bounds $\rightarrow \Lambda_{ETC} \sim 10^3$ TeV

Constraints for Technicolor Theories

- Technifermion condensate needs to be enhanced to provide large enough mass for the SM fermions.
 - One consequence of this is that the anomalous dimension γ has to be large, O(1).
- The electroweak S parameter needs to be small to satisfy the LEP experimental constraint: S ≈ 0.
 - Naïve scaled-up QCD would violate this constraint.
- After Higgs discovery, a viable BSM theory must have a light scalar boson with a mass consistent with the LHC finding.
- All these would require that the new strong interactions are non-QCD like, probably with near-conformal behaviors. → Walking Technicolor.
- Walking technicolor theories may be able to produce light Higgs in the form of a light dilation, or a composite pseudo-Nambu-Goldstone boson (Little Higgs).

What Walking Technicolor Theory May Look Like

- Perturbative 2-loop beta function for an SU(N) gauge theory with N_f fundamental fermions.
- The phase space can be separated into three different regions.

Brookhaven Science Associates 5/8/14

M. Lin, "Computational Issues in BSM Theories"

Needle in a Haystack

- There are a lot of candidate strongly interacting theories.
- Non-perturbative calculations are needed. → Comes the lattice.

The role of Lattice

- Such theories are strongly interacting and intrinsically non-perturbative.
- Lattice gauge theory can calculate a lot of non-perturbative quantities from first principles.
- BSM model builders need us to verify that technicolor theories can indeed satisfy the constraints.
- I will focus on SU(3) gauge theories with N_f fermions in the fundamental representation.

LGT Basics

The core of LQCD simulations is Hybrid Monte Carlo (Molecular Dynamics + Monte Carlo) in the Euclidean space:

$$\langle O \rangle = \frac{\int [dU]O[U]\det(D + m)e^{-S_g[U]}}{Z}$$

 We don't really calculate the determinants directly. Instead, pseudofermion fields (bosonic fields) are introduced. For N_f = 1,

$$Z = \int [dU] [d\phi^{\dagger}] [d\phi] e^{-\phi^{\dagger} \frac{1}{(D^{\dagger}(m_{f})D(m_{f}))^{1/2}} \phi - S_{g}[U]}$$

Most computation-intensive part is to solve the Dirac equations:

$$D[U]\psi = b$$
, or $D^{\dagger}[U]D[U]\phi = b'$,

D is a large, sparse, diagonally dominant matrix. Iterative solvers, such as conjugate gradient (CG), are typically used to solve the equations. Its condition number worsens as the quark mass m_f gets smaller → it takes longer to converge.

Computational Complexity for BSM Theories

For SU(3) simulations with large N_f, cost increases quickly as N_f is increased.

$$\langle O \rangle = \frac{\int [dU]O[U][\det(D + m)]^{N_f} e^{-S_g[U]}}{Z}$$

Naïve cost per molecular dynamics trajectory

~ $N_f(\# \text{ of flavors}) \times N_f^{1/2}(\# \text{ of steps per trajectory}).$

Approaching the Chiral Limit

- Lattice simulations are performed at several finite quark masses due to the formidable numerical cost at small m_f, and rely on chiral perturbation theory to extrapolate to
 - The physical limit for QCD.
 - The chiral limit for BSM theories.
- The converge of ChPT becomes worse or even questionable as N_f is increased.
 - In the region accessible with current computing power, next-to-leading-order chiral perturbation theory is not applicable. Going to higher orders requires too many unknown parameters.
- For QCD, simulations directly at the physical limit are becoming available.
- For BSM, going to lighter quark masses is much harder, and requires more computing power, and/or better algorithms.

Example: Condensate Enhancement

- We want to know if increasing N_f can increase the chiral condensate in the chiral limit.
- Three equivalent ways (in the chiral limit) to determine via Gell-Mann-Oakes-Renner relation.
- We'd like to know what the enhancement is at the chiral limit.

Example: S Parameter

- We'd like to see a reduction of the S parameter compared to QCD.
- At simulated mass region, there is some evidence of reduction. But there is still some uncertainty going to the lighter mass region.

Brookhaven Science Associates 5/8/14

Topological Charge Freeze

 A topological charge, or the winding number, of a give gauge configuration is defined as

$$Q[A] = \frac{1}{32\pi^2} \int d^4 x \epsilon_{\mu\nu\gamma\rho} \operatorname{Tr} F_{\mu\nu}(x) F_{\gamma\rho}(x),$$

$$F_{\mu\nu}(x) = \partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x) + [A_{\mu}(x), A_{\nu}(x)]$$

- For SU(3) gauge theories with N_f fundamental fermions, Q takes integer values.
- In a finite volume, Q can take all the possible integer values, which would follow a Gaussian distribution

Brookhaven Science Associates 5/8/14

M. Lin, "Computational Issues in BSM Theories"

Topological Charge Freeze

- As N_f is increased, it becomes harder for topological charge to tunnel, especially at a small a.
- QCD simulations have similar issues at fine lattice spacings.

Effects of Frozen Topology

5/8/14

At fixed Q, the hadron masses depends linearly on Q² to first order.

Brower, Chandrasekharan, Negele, and Wiese, PLB560, 64(2003)

$$M_Q = M(0) + \frac{1}{2}M^{(2)}(0)\frac{1}{V\chi_t}\left(1 - \frac{Q^2}{V\chi_t}\right) + O\left(\frac{1}{V^3}\right),$$

M. Lin, "Computational Issues in BSM Theories"

Scalar in QCD

21

Light Composite Scalar from Near-Conformal Gauge Theories?

- Now that a new scalar boson has been discovered, can we produce such a light scalar from technicolor theories?
- First evidence appeared in near-conformal or conformal theories.

5/8/14

Not a cheap calculation

 For non-flavor singlet states, such as the pion, the correlation functions involve only the "connected" diagrams.

 For flavor-singlet states, such as the flavor-singlet scalar, disconnected diagrams are needed in the calculation.

➔ needs all-to-all propagators. Direct cost proportional to lattice volume

- Typically stochastic estimators are used → noise is introduced, and requires a large number of noise estimators to get a signal.
- In the chiral limit, the pseudoscalar mass goes to 0, but the scalar mass should remain finite. → Can we see this crossover with lighter fermion masses?

Summary and Outlook

- Lattice BSM simulations can provide valuable input for BSM model building.
- Such simulations are numerically expensive, and more challenging that QCD simulations.
- Prominent issues right now are the difficulty in getting to the chiral limit, and obtaining the flavor-singlet scalar boson mass with good precision.
- Outlook:
 - Increasing computing power and algorithmic innovations (multigrid?) will help us perform simulations at lighter masses and larger volumes.
 - Evolving theoretical understanding may pinpoint or rule out some BSM theories that are inconsistent with experimental observations.
 - Perhaps we will finally find the right BSM theory, or concede that standard model is the perfect theory and there's nothing more?

