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Loop models are statitstical mechanics problems whose 
degrees of freedom are loops or random walks. 
Concretely, loops appear in many areas in physics 
ranging from Anderson localization [1] to frustated 
magnetism [2]. They also are elements of loop 
algorithms for Monte Carlo in quantum magnetic 
systems [3-4]. Convenient discretization of the field 
theories involved in these models are interesting to 
avoid some difficulties inherent to these methods.

The models we present here belong to a family of 
completely-packed loop models in three dimension and 
in two dimensions [5-8]. These models have two 
phases, one with short loops and another with some 
extended loops. Between the two phases we find phase 
transitions of novel types. 

We studied two families of models, both defined on a 
four-fold coordination lattice. While in the first case the 
links are oriented, and there are 2 incoming and two 
outgoing links at each node, in the second case, the 
links are unoriented. Loops are composed by tiling 
appropiately the pairings of Fig. 1 and choosing one of n 
possible colors for each loop. Then, the partition 
function is the sum to all configurations of the products 
of the weights of each node. 

In two dimensions, we studied the 'completely-packed loop 
model' (CPLC) [6]. Loops in this model are constructed with 
pairings at Fig. 1 (right panel) and a sample configuration is 
shown at Fig. 2 (left panel). The partition function is then

The loop model is a discretization of the RPn-1 sigma field theory, 
in the replica-limit of n    1. The phase diagram (Fig. 2, right panel) 
includes:
- Goldstone Phase: The loops are 'almost' brownian, however 
there are unusual logarithmic corrections.
- Short loop Phase: The disordered phase of the field theory.
- Phase diagram boundary:  The phase diagrams are those of 
the 'completely packed loop model' on the L (p=0) or Manhattan 
lattice (q=0 or q=1) in 2d.
- Critical Lines: Show a new universality class of classical phase 
transitions (intriguing hint of connection with 2D Anderson metal-
insulator transition,                      )
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Figure 3. Left panel: 2-leg and 4-leg watermelon correlators at the extended phase: probability of two points being connected by 2 
and 4 strands, respectively. The fitting function is to the universal law                                                     , with    
Center panel: shows the same correlators at the critical point for p=1/2. Fittings give an estimate for the exponents      
and                           , where                                  . Right panel: Spanning number (related to stiffness), number of strands which 
span the system, and its scaling form that  gives  an  estimate for the correlation length critical exponent                              .

This partition function allows numerical tricks to have access 
to exceptionally large systems.

Figure 1. Left Panel shows the pairings and weights in the partition function for the (oriented) completely-
packed loop model, for two different kind of lattices. Right panel shows them for the 'completely-packed loop 
model with crossings'
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Figure 2. Left panel shows a 10x10 configuration of the CPLC in two dimensions. Right panel shows 
the phase diagram for the CPLC, where                         . It is shown a caricature of the configuration 
for the three special points: p=1, (p=0,q=1) and (p=0, q=0).
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Loop Models in 3D
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We studied 3D loop models that can be mapped to  
CPn-1 sigma models (field theories familiar from 2D 
quantum magnets with SU(n) symmetry). Loops are 
formed with pairings at Fig. 1 (left panel). Here, the 
parameter n is the number of possible colours for each 
loop. The partition function is

Figure 4. p=0 configurations for the Cardy's 3D L-lattice [1] (left) and K-lattice (right) [5,7], with the 
Wigner-Seitz cell faces shaded.

Deconfined Criticality [12] in classical loop model
- p=1/2  gives a Z4 symmetry between four possible short loop 
phases.
- Add new coupling     that favours short loops while 
preserving symmetry.

Increasing    leads to a new phase transition spontaneously 
breaking the symmetry of the lattice and with an emergent U(1) 
symmetry [13]. This is the deconfined transition, discussed at 
length in (2+1)D magnets: the loop model provides a more 
convenient platform for studying its properties.
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Figure 5. Phase diagrams for the two lattices studied.

Critical Points.
   - n=1. Exact mapping to the class C model of the Anderson 
transitions [9-11]. Critical exponents:                                     
   - n=2. Critical exponents compatible with O(3) universality class:

   - n=3. Results suggest novel critical point that is unexpected from 
the point of view of Landau Ginsburg theory. Critical exponents: 

   - n   4. Discontinuos phase transitions.

Phase diagram (Fig. 5):
- Extended loops phase: The ordered phase of the field theory. 
Corresponds to the Neel state in (2+1d) SU(n) magnets. 
- Short loops phase: The massive phase of the field theory. 
Corresponds to a dimerised phase in SU(n) magnets.
- Critical line: Phase transitions of the (compact) CPn-1sigma 
model or  AF - VBL transition in SU(n) magnets. 

Figure 6. Left panel: Probability of a chosen link to belong to a loop of length   , where     is the number of links of the system and   
is the fraction of them occupied by extended loops [8]. Center panel: Binder cumulant of the energy for several n and both lattices, 
when the transition is continuous it goes to zero with a power-law. Right panel: Probability of having just one extended strand in 
the system versus the average of the number of spanning strands (n=3 main panel, n=2 top inset, and n=4 lower inset) .

Figure 6. Left Panel: Probability distribution of one of the order parameters      , as the coupling 
constant     varies and the system cross the phase transition. Right Panel: Two order parameters 
simultaneously critical (       ,                   ).


