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|_| Loop models are statitstical mechanics problems whose
degrees of freedom are loops or random walks.
Concretely, loops appear in many areas in physics
ranging from Anderson localization [1] to frustated
magnetism [2]. They also are elements of loop
algorithms for Monte Carlo In quantum magnetic
systems [3-4]. Convenient discretization of the field
theories involved In these models are interesting to
avoid some difficulties inherent to these methods.
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The models we present here belong to a family of
completely-packed loop models in three dimension and
In two dimensions [5-8]. These models have two
phases, one with short loops and another with some
extended loops. Between the two phases we find phase
transitions of novel types.

1)

R

R

125228 5 saxxdsc

Kor KX -

p I—p
Figure 1. Left Panel shows the pairings and weights in the partition function for the (oriented) completely-
packed loop model, for two different kind of lattices. Right panel shows them for the 'completely-packed loop
odel with crossings'
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We studied two families of models, both defined on a
four-fold coordination lattice. While in the first case the
links are oriented, and there are 2 incoming and two
outgoing links at each node, in the second case, the
links are unoriented. Loops are composed by tiling
appropiately the pairings of Fig. 1 and choosing one of n
possible colors for each loop. Then, the partition
function is the sum to all configurations of the products
of the weights of each node.
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In two dimensions, we studied the ‘completely-packed loop
model' (CPLC) [6]. Loops In this model are constructed with
pairings at Fig. 1 (right panel) and a sample configuration Is
shown at Fig. 2 (left panel). The partition function is then

Zopre = ) p" (1= p)gNe[(1 —p)(1 — g)] V2.
C

This partition function allows numerical tricks to have access
to exceptionally large systems.
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Figure 2. Left panel shows a 10x10 configuration of the CPLC in two dimensions. Right panel shows
the phase diagram for the CPLC, where ¢ = (1 — p)q . Itis shown a caricature of the configuration
\for the three special points: p=1, (p=0,g=1) and (p=0, g=0). /

Loop Model in 2D i

The loop model is a discretization of the rpN-1 sigma field theory,
In the replica-limit of n—1. The phase diagram (Fig. 2, right panel)

Includes: -
- Goldstone Phase: The loops are 'almost' brownian, however
there are unusual logarithmic corrections. —

- Short loop Phase: The disordered phase of the field theory.

- Phase diagram boundary: The phase diagrams are those of
the '‘completely packed loop model' on the L (p=0) or Manhattan -
lattice (g=0 or g=1) in 2d.
- Critical Lines: Show a new universality class of classical phase |-
transitions (intriguing hint of connection with 2D Anderson metal-
insulator transition, v = 2.745(19))

0.7 N T T T T T T 0.5 T
0.014 e
ro 0.012} )

92 ‘
o 0.4 F e PR
0.6 QOOOS; . | % _ 1.91 T%ﬁ Ege
I e, 50:006 p 0.3 r % w1
— (B" 0.004 Q\e —_ h e s
AN 0.5 Py e 9\
~— N T oo - ~ = . 5 ;
5 1 S . 102 I 10% 50.2 L o @ 10°7 1/110-0 10-{203 I
&\l 04 | Q(_5\] = \&\\ \‘ﬁ\ -
O . =, = |
o o j o
0.3 f . <k e
\\e“\e\ 0.1 r 10-5 \E\G
0.09 r : ‘ *
0.2 ‘ ‘ ‘ ‘ ‘ 0.08 ‘ L ‘ ‘
10 102 10°% 10 10° 106 10? 10 10* 10° =
L L
Figure 3. Left panel: 2-leg and 4-leg watermelon correlators at the extended phase: probability of two points being connected by 2
and 4 strands, respectively. The fitting function is to the universal law G (L/2) = Cx/log(L/rq)®*, with «as = 2, ay = 12. -
Center panel: shows the same correlators at the critical point for p=1/2. Fittings give an estimate for the exponents Z2 = 0.091(1)
and z4=0.491(1) ,where Gy(L/2) x L—2% _Right panel: Spanning number (related to stiffness), number of strands which

span the system, and its scaling form that gives an estimate for the correlation length critical exponent v = 2.745(19) .

Figure 4. p=0 configurations for the Cardy's 3D L-lattice [1] (left) and K-lattice (right) [5,7], with the
Wigner-Seitz cell faces shaded. /

We studied 3D loop models that can be mapped to
CP"! sigma models (field theories familiar from 2D
guantum magnets with SU(n) symmetry). Loops are
formed with pairings at Fig. 1 (left panel). Here, the
parameter n is the number of possible colours for each
loop. The partition function Is

N N1 _ number of loops
Zloops :Zp p(l—p) l=rn ps
C
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\ Figure 5. Phase diagrams for the two lattices studied. /

Deconfined Criticality [12] in classical loop model

- p=1/2 gives a Z, symmetry between four possible short loop

phases.
- Add new coupling J that favours short loops while
preserving symmetry.

ncreasing J leads to a new phase transition spontaneously
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Phase diagram (Fig. 5):
- Extended loops phase: The ordered phase of the field theory. —
Corresponds to the Neel state in (2+1d) SU(n) magnets.

- Short loops phase: The massive phase of the field theory.
Corresponds to a dimerised phase in SU(n) magnets.

- Critical line: Phase transitions of the (compact) CP"'sigma
model or AF - VBL transition in SU(n) magnets.
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Figure 6. Left panel: Probability of a chosen link to belong to a loop of length [, where L is the number of links of the system and f
is the fraction of them occupied by extended loops [8]. Center panel: Binder cumulant of the energy for several n and both lattices,

when the transition is continuous it goes to zero with a power-law. Right panel: Probability of having just one extended strand in
the system versus the average of the number of spanning strands (n=3 main panel, n=2 top inset, and n=4 lower inset) .

Critical Points.
- n=1. Exact mapping to the class C model of the Anderson
transitions [9-11]. Critical exponents: v = 0.997(2), n = —0.06(2).
- n=2. Critical exponents compatible with O(3) universality class:
v = 0.708(5), n = 0.04(3).
- n=3. Results suggest novel critical point that is unexpected from
the point of view of Landau Ginsburg theory. Critical exponents:
v = 0.536(13), n = 0.23(2).
- n>4. Discontinuos phase transitions.
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Symmetry [13] ThIS IS the deconflned tranSition, dlscussed at Figugrpe1 6. Left Panel: Probability distribution of one of the order parameters @,a{the coupling
| ' J vari ition. Ri  Tw
length in (2+1)D magnets: the loop model provides a more \_ smatancovsly crteal (O, O = gy reren R Fenel uoorderparamerers )

convenient platform for studying its properties.
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