
The density matrix renormalization group and 
tensor network methods

Steve White 

• Exploiting the low entanglement of ground states	


• Matrix product states and DMRG	


• 1D          2D  	


• Tensor network states	


!
Some of what I’m leaving out:	


Historical connection to Wilson’s NRG for the Kondo problem	



Applications to 1+1D field theories,  including continuous MPS	



DMRG for quantum chemistry	



Real time solutions to time dependent Schrodinger eqn, including non 
equilibrium and spectral functions	
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Entanglement and the Schmidt decomposition

• Treat Ψij as a matrix:  perform the singular value 
decomposition” (SVD): Ψ= U D V,  with U and V unitary, D 
diagonal, with elements λα	



• Think of (λα)2  as the probability of the state |ᾶ> |α>; the 
von Neumann entropy	



–    S = -∑α (λα)2  ln (λα)2	



• Thus we have a natural low entanglement approximation:  
approximate the wavefunction by keeping a small number of 
|α> (with largest λα).	



• In DMRG we do an approximate version of this Schmidt 
decomposition for all positions of the dividing line between 
left and right.

i j Bipartition of a 
quantum system



Matrix Product States 
• For a 1D system, at every link, truncate the states to be 

the m largest Schmidt states	



• The Schmidt basis states for position  l + 1 must be 
linear combinations of those at l 	



!
!

• This produces a Matrix Product State (MPS) formula for 
the wavefunction:	



!
• A function is just a rule for giving a number from the 

inputs--here the {s} tell which matrices to multiply (first 
and last A’s are vectors).

Ψ(s1,s2,..sN) ≈ A1[s1] A2[s2] ... AN[sN]

|�l+1� =
�
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Diagrams for Matrix Product States

In an MPS, the basic unit is a matrix with an extra index, representing the state of 
a site

Vertices are matrices or tensors.  All internal lines are summed over.  External 
lines are external indices, associated with physical states 
!
Ordinary Matrix Multiplication:  ABC = 

A[s]ij = i j

s

A

Matrix Product State:

≈

Ψ(s1,s2,..sN) ≈ A1[s1] A2[s2] ... AN[sN]

2N N m2    for 
m x m 
matrices

s1 s1sN sN

Contractions: Sz

<ψ|

|ψ>
–Working left to right,  just 

matrix multiplies,  N m3



Matrix Product States + sweeping optimization algorithm = DMRG

Sweeping

ψ

l+1l
αl-1 βl

Fixed m states Fixed m states

Each step:  Lanczos to get ground state in reduced basis;  SVD splits Ψ in two; 
left half gets absorbed into left block



DMRG Convergence in 1D
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DMRG for 2D systems

• Map a finite width cylinder (vertical pbc’s only) onto a 
chain

Long range bonds

Calc time:  Lx Ly2 m3;     allows m ~ 10000, Ly ~ 10-12

S ~ Ly (“area law”) 
m ~ exp(a  Ly) 

Cut

Key problems:  2D 
system with a sign 
problem:   frustrated 
magnetic systems;  
doped fermion 
systems



0.4

Traditional DMRG for triangular lattice Heisenberg model

See White & Chernyshev, PRL 99, 127004 
(2007)

ΔE ~ 0.3%,   Δ<Sz> ~ 0.01 
!
Extrap order param to thermodynamic limit:  M = 0.205(15)  



Heisenberg model on the kagome lattice

• The Heisenberg model on the kagome lattice is 
one of the most frustrated systems	


- Proposed as a possible spin liquid in late 80’s, 

support from field theory (Z2...)(Sachdev, Read)	


But is it instead a valence bond crystal??
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XC8 cylinder, biased to HVBC

(a)

Highly 
biased path

Sample DMRG simulation on Kagome

Yan, Huse, White, 
Science June 5, 2011

Lots more numerical experiments were performed to build a very 
strong case that the ground state is a spin liquid



Doped Fermion systems:  Hubbard models, etc: Stripes 
forming in a t-J cylinder with 8 holes

t=1, J=0.35 
t’=t’’=0 
8 holes 
No pinning fields

Same system, but initial 
magnetic pinning favors 
a single anti phase stripe

White and Scalapino



Tensor networ methods for 2D systems

Traditional DMRG method (MPS state)

Entropy S  ~ Ly (“area law”) 
Bond dimension m ~ exp(a  Ly) 

Long range bonds
Cut

Calc time:  Lx Ly2 m3;      
Practical calculations: m ~ 10000,  
Ly ~ 12-14 for S=1/2 Heisenberg

Verstraete and Cirac, cond-mat/0407066  

PEPS
projected entangled-pair state  

Bond dimension 

Naturally obeys Area Law 
Can work directly with Lx ,Ly ⇾ ∞ 
Calc time:  ~m12;      
Practical calculations: m ~ 15,  
S=1/2 Heisenberg

Crossover in accuracy as a function of width for DMRG, Ly ~ 10



MERA:  multiscale entanglement renormalization ansatz

Vidal, PRL 99, 220405 (2007) 
!
Optimally encodes quantum critical 
systems with ln(L) corrections to the 
area law

Each link cut by the red line carries 
entanglement across the system

MERA encodes CFT’s beautifully.  It also 
may tell us how the AdS/CFT 
correspondence works (Swingle)

Exact holographic map!
Qi,  arxiv 1309.6282!
!
Note: close relationship to wavelet 
transforms; see my Perimeter talk, 
August ‘13!
!
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uniform d−wave state
striped state

PEPS applied to the t-J model (Corboz, et al)

Simple t-J model:  energy differences are too close to 
resolve competing states, despite excellent accuracy! 
!
PEPS is clearly competitive with the best alternative 
approaches for the t-J model.  If the competition 
between phases wasn’t so close, we would know the 
answer!

States are still 
competing at very 

low energies!

VMC+fixed node for 
N=162 

Lugas et al., PRB 74 (2006)

VMC+FN+2 Lanczos steps 
 for N=162 

Hu et al. PRB 85 (2012)  

J/t = 0.4
� = 0.1

iPEPs 
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Summary
• Tensor networks methods (including DMRG) are 

natural low entanglement methods which are having a 
very big impact on computational condensed matter 
and are now becoming crucial conceptual tools to 
understand quantum phases.	




