QMC simulations on novel quantum magnetism of SU(2N) Hubbard models with large-spin fermions

Congjun Wu

Department of Physics, University of California, San Diego 1. D. Wang, Y. Li, Z. Cai, Z. Zhou, Y. Wang, C. Wu, Phys. Rev. Lett. 112, 156403 (2014).

- Z. Cai, H. Hung, L. Wang, D. Zheng, C. Wu, Phys. Rev. Lett. 110, 220401 (2013).
- 3. Z. Cai, H. Hung, L. Wang, C. Wu, Phys. Rev. B 88, 125108 (2013).
- 4. C. Wu, Nature Physics 8, 784 (2012) (News and Views)

Related past works:

- 5. C. Wu, J. P. Hu, and S. C. Zhang, Phys. Rev. Lett. 90 18646242003 May, 2014
- 6. C. Wu. Phys. Rev. Lett. 95, 266404 (2005).

Use large spin alkali and alkaline earth to realize
symmetries SU(N) and Sp(N) (N=4). (SO(5) ~
Sp(4)). Sp(4) symmetry is generic for spin-3/2
Hubbard model, and SU(4) is a special case of in
the Sp(4) phase space.

PHYSICAL REVIEW LETTERS week ending VOLUME 91, NUMBER 1

Exact SO(5) Symmetry in the Spin-3/2 Fermionic Syster

Congjun Wu,1 Jiang-ping Hu,2 and Shou-cheng Zhang

MC boundary 3 Ur= -9Ut

⊂ < η(l) >≠

G: SD(5)*SU(2) line Uor 5 Ub

NC bounder Uo+Us

F: 90(7) line

 $B: < (-)^{i} R_{-}(i) > \ell$

D <(-) N(i) >≠0

E: SU(4) In

H: 50(7) In

Besides the alkali atoms, the trapping and cooling o Describes the atkin atoms, ine trapping and cooking the the atkaline-carth atoms are also exciting recently [25,26]. Among these two families, ¹³⁰Cs, ¹⁸Be, ¹³⁵Ba, and ¹³⁵Ba are spin-3/2 atoms. The last two Ba atoms are stable and the resonances of $6s^2 \rightarrow 6s^46p^4$ are at 53.7 nm [27]. Itaus making them possible candidates. Their scattering lengths are not available now, but that Their Sattering sequences in a set of $a^{13}B_{10}$ (spin) was estimated as $-41a_{10}$ [25]. Because the coshell of Ba is full-filled, both the a_0, a_2 of ¹³⁵Ba and ¹³⁷Ba should have similar value. Considering the rapid development in this field, we expect more and more spin-3/2 systems will be realized experimentally.

Classical (large S): large-spin solid state <u>systems</u>

Hund's rule coupled electrons [] large onsite spin.

· Inter-site coupling is dominated by exchanging a single pair of electrons.

 ΔS only +1 or -1. Quantum spin-fluctuations are suppressed by 1/S.

C. Wu, Mod. Phys. Lett. (2006); Physics 3. 92 (2010).

The simplest case spin-3/2: Hidden symmetry!

Spin 3/2 atoms: 132Cs 9Be 135Ba 137Ba, 201Hg. C. Wu et al. Phys. Rev. Lett. 91, 186402 (2003).

Sp(4) (SO(5)) symmetry without fine tuning regardless of dimensionality, particle density, and lattice geometry

Sp(4) in spin 3/2 systems
[] SU(2) in spin 1/2 systems

- · SU(4) symmetry is realized iff the interaction is spin-independent.
- · Importance of high symmetries: unification of competing orders, description of strong spin fluctuations, etc. •13

Collaborators

Da Wang	(UCSD)
Yi Li	(UCSD Princeton)
Zi Cai	(UCSD]]Ludwig- Maximilians

Hsiang-hsuan Hung (UCSD[]UIUC[] UT Austin)

Dong Zheng (Tsinghua/UCSD[] industry)

Acknowledgments: J. Hirsch, D. Arovas (UCSD), Y. Takahashi (Kyoto Univ.), F. Zhou (UBC), T. L. Ho

(OSU) Supported by AFOSR, NSF

Yi Li

Univ.)

What is new? Large spin alkaline-earth and alkali atoms

High symmetries (e.g. Sp(2N)/SU(2N)) difficult to access in solid state systems, which are usually met in high energy physics.

Theoretical investigations

quantum!

Wu, Hu, Zhang, Chen, Wang (2003 ---);

Azaria, Lecheminant (2006 ---):

V. Gurarie, M. Hermele, A. Rey, J. Ye, P. Zoller, E. Demer, M. Lukin et al. (2010---).

Strong guantum fluctuations!

Another system for quantum disordered Mott-insulating states besides solid state systems.

Large-spin cold fermion moves as a whole object. The

exchange of a pair of fermions can completely flip

Quantum fluctuations are enhanced by the large

Spin-3/2 Hubbard model in optical lattices

Fermi statistics: only Ftot=0, 2 are allowed; Ftot=1, 3

 $\eta^{+}(i) = \sum \langle 00 | \frac{3}{2} \frac{3}{2}; \alpha \beta \rangle c_{\alpha}^{+}(i) c_{\beta}^{+}(i)$

 $\chi_a^*(i) = \sum \langle 2a \mid \frac{3}{2} \frac{3}{2}; \alpha \beta \rangle c_\alpha^*(i) c_\beta^*(i)$

there is an exact Sp(4), or SO(5) symmetry,

· For arbitrary values of t, , U₀, U₂ and lattice geometry,

 $H = \sum -t \{ c_{i,\alpha}^{+} c_{j,\alpha} + h.c. \} - \sum c_{i,\alpha}^{+} c_{i,\alpha}$

 $+U_0\sum \eta^+(i)\eta(i)+U_2\sum \chi_a^+(i)\chi_a(i)$

C. Wu, Mod. Phys. Lett. (2006); Physics 3, 92 (2010).

 $\left| -\frac{1}{2} \right\rangle \left| -\frac{3}{2} \right\rangle$

Large-spin cold atoms: Not classical but

spin-configurations $\Delta S_z = \pm 1, \pm 2, \dots \pm S$

number of spin components

Bilinear, bi-gudratic,

bi-cubic terms, etc., are

all at equal importance.

 $S_i \cdot S_j, (S_i \cdot S_j)^2, (S_i \cdot S_j)^3$

are forbidden.

sinalet:

quintet:

Outline

Introduction: a novel system for quantum magnetism.

Large hyperfine-spin ultra-cold alklai and alklaine-earth fermions in optical lattices. Large spin enhances rather than suppresses quantum spin fluctuations due to large symmetries of SU(2N). Sp(2N).

• Brief-review the generic Sp(4) symmetric in spin-3/2 systems - unification of AFM, SC and CDW.

http://online.kitp.ucsb.edu/online/coldatoms07/ wu2/ Suppressing magnetic ordering by increasing Hubbard

U - a Quantum Monte-Carlo study.

Thermodynamic properties of SU(6) Hubbard model: Enhancement of Pomeranchuk cooling -OMC

Experiment breaking through of large-spin fermions DDI 105 100401

90401 (2010)	PHYSICAL	REVIEW	LETTERS	(2010)	5 NOV
Realization of	$a SU(2) \times SU(6)$	్త System of F	ermions in a	Cold Atomi	c Gas
Shintaro Taie.1.*	rosuke Takasu. ¹ Seiii	Sugawa, ¹ Rek	ishu Yamazaki.	² Takuva Tsui	imoto,1
	Ryo Murakami	i,1 and Yoshire	Takahashi ^{1,2}	,,	

2 (2010)	PHYSICAL	REVIEW	LETTERS		
	Degenera	چ te Fermi Ga	as of ⁸⁷ Sr	PRL 105, 030402 (2010)	
B. J. DeSalvo, M. Yan, P.G. Mickelson, Y.N. Martinez de Escobar, and T.C. Killian					

Physics 3 92 (2010) xotic many-body physics with large-spin Fermi gas ongjun Wu

Large N NOT large S! SU(2N), Sp(2N) (2N=2S+1)

· Alkaline-earth atoms have fully-filled electron-shells, thus their hyperfine spin is just nuclear spin.

• SU(2N) symmetry is not generic for spin-dependent interactions

From Auerbach's book time-reversal transformation span

- the Sp(2N) algebra. C. Wu et al, PRL 2003, C. Wu and S. C. Zhang PRB 2005; C. Wu, Mod, Phys. Lett. (2006); C. Wu Physics 3, 92 (2010).
- What is Sp(4)(SO(5)) group? SU(2) (SO(3)) group 3-vector: x, y, z; 3-generat L_{12}, L_{21}, L_{21} 2-spinor: $|\uparrow\rangle$, $|\downarrow\rangle$ Sp(4)(SO(5)) group. 5-vector: n_1, n_2, n_3, n_4, n_5 **10-generato** L_{ab} $(1 \le a < b \le 5)$ $\left| \frac{3}{2} \right\rangle \left| \frac{1}{2} \right\rangle \left| \frac{1}{2} \right\rangle \left| \frac{1}{2} \right\rangle \left| \frac{3}{2} \right\rangle$ 4-spinor:

· We will see what quantities correspond to these 5-vector and 10-generator.

Fermionic Hubbard model:

A simplest model describing interacting particles in a lattice with only minimum ingredients.

At half-filling: Free from "sign-problem" in DQMC Antiferromagnetic long-range ordering in 2D (D. J. Scalapino et al, 1981, J. E. Hirsch 1983) Away from half-filling: ? High-Tc superconductor. MI Mott transition..

ARTICLES

12

SU(2N) generalization of Hubbard model: a mathematic convenience of large M

$$= -t \sum_{\langle ij \rangle} \sum_{\alpha=1}^{2N} (c_{i,\alpha}^{\dagger} c_{j,\alpha} + h.c) + \frac{U}{2} \sum_{\mathbf{i}} (n_i - \tilde{\mu})^2 \mathbf{i}_i \mathbf{k} \mathbf{k}$$

In(2):↑ or ↓

An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling

Shintaro Taie¹*, Rekishu Yamazaki^{1,2}, Seiji Sugawa¹ and Yoshiro Takahashi^{1,2}

S. Taie.et.al. Nature phys. 8, 825(2012). $s - \pi^2 k_g T/T_g$ (per atom) $ln(N = 6): -5/2..., +5/2 \rightarrow$

OUANTUM GASES

Mott made easy

The realization of a Mott insulating state in a system of ultracold fermions comprising far more intern components than the electron, provides an avenue for probing many-body physics that is difficult to access

C. Wu, Nature phys. 8, 784 (2012)

Н

nature

physics

3

 n_{3}, n_{4}

Outline

· Introduction: a novel system for quantum magnetism.

Large hyperfine-spin ultra-cold alklai and alklaine-earth fermions in optical lattices. Large spin enhances rather than suppresses quantum spin fluctuations due to large symmetries of SU(2N), Sp(2N).

· Brief-review the generic Sp(4) symmetric in spin-3/2 systems - unification of AFM, SC and CDW.

> http://online.kitp.ucsb.edu/online/coldatoms07/ wu2/

- Suppressing magnetic ordering by increasing Hubbard U - a Quantum Monte-Carlo study.
- Thermodynamic properties of SU(6) Hubbard model: Enhancement of Pomeranchuk cooling OMC

spin-3/2 algebra v⁺M_w

Total degrees of freedom: 42=16=1+3+5+7.

1 density operator and 3 spin operators are far from

 Spin-quadrupole matrices (rank-2 tensors) form five- Γ matrices (SO(5) vector) --- the same Γ -matrices in Dirac equation

 ${}^{a} = \xi_{ii}^{a} F_{i} F_{i}, \quad \{\Gamma^{a}, \Gamma^{b}\} = 2\delta_{ab}, \quad (1 \le a, b \le 5)$ 16

Hidden conserved quantities:

Pinning field method: NOT oversensitive to weak ordering • 1D Hubbard model:

 Bond dimer state consist 2^N resonating Neel configurations. As N goes infinity, bond dimer ordering is realized (Sachdev + Read) 22

Conclusion

- Large-spin cold fermions are quantum-like NOT
- Spin-3/2 Hubbard model unifies AFM, SC and CDW phases with exact symmetries extended from Sp(4).
- · Novel magnetic behavior as increasing U in the SU(2N) Hubbard model.
- · Pomeranchuk cooling of the SU(6) Hubbard model.


```
Modern Physics Letters B, Vol. 20, No. 27 (2006) 1707–1738
```

HIDDEN SYMMETRY AND QUANTUM PHASES IN SPIN-3/2 COLD ATOMIC SYSTEMS

Brief Devie

World Scientific

CONGJUN WU	
Karli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA www.j@hitp.acsb.edu	
Received 31 August 2006	
	19

Mott gap: extracting single particle gap from Green's function

· Single-particle gap is weakened by increasing 2N.

QMC with pinning field: AF dome in phase diagram

Outline

Introduction: a novel system for quantum magnetism.

Large hyperfine-spin ultra-cold alklai and alklaine-earth fermions in optical lattices. Large spin enhances rather than suppresses quantum spin fluctuations due to large symmetries of SU(2N), Sp(2N).

- Brief-review the generic Sp(4) symmetric in spin-3/2 systems unification of AFM, SC and CDW.
 - http://online.kitp.ucsb.edu/online/coldatoms07/ wu2/
- Suppressing magnetic ordering by increasing Hubbard U - a Quantum Monte-Carlo study.

20

• Thermodynamic properties of SU(6) Hubbard model: Enhancement of Pomeranchuk cooling OMC

T. Paiva, et al, PRL 104, 066406 (2010). 20

- classical!