## Massive Excitement in QCD and Beyond



## Aim of this talk

- Provide a survey of results about QCD, obtained using numerical lattice gauge theory, that are both
- quantitatively impressive and/or qualitatively noteworthy.
- Some quoted results have replaced ignorance, guesses, and beliefs with scientific knowledge.
- Others aid the interpretation of experiments or observations in particle physics, nuclear physics, and astrophysics.
- Examine whether other non-Abelian gauge theories could break electroweak symmetry.


## Quantum Chromodynamics

- The most perfect theory—asymptotic freedom.
- Triumph of reductionism: quark model $\oplus$ parton model $\oplus$ color $=$ QCD.
- Multi-scale problem: $m_{\mathrm{u}}, m_{\mathrm{s}}, M_{\pi}, M_{K}, \Lambda_{\mathrm{QCD}}, m_{\mathrm{c}}, m_{\mathrm{b}}, m_{\mathrm{t}} ; Q^{2 ;} ; a^{-1} ; L^{-1}$.
- Rich in symmetry: C, P, T; chiral symmetry, heavy-quark symmetry.
- Rich in emergent phenomena: hadron masses, chiral symmetry breaking, phase transitions, atomic nuclei ...
- ... requiring nonperturbative methods (lattice gauge theory) and a full exploitation of symmetries, asymptotic freedom, etc.

Asymptotic Freedom

- At short-distances, the force in QCD looks similar to QED:

$$
F(r)=-\frac{4}{3} \frac{\alpha_{s}(1 / r)}{r^{2}}
$$

where the $4 / 3$ is a color factor.

- The key difference is that virtual gluons reduce the effective $\alpha_{s}$ at short distances (high energies).
- Verified in experiment.


ASK \& Quigg, arXiv:1002.5032

## QCD of hadrons = QCD of partons



Bethke, arXiv:0908.1135

## QCD of hadrons = QCD of partons



$$
\begin{array}{lr}
-\infty & 2+1+1 \\
-\infty & 2+1
\end{array}
$$

Bethke, arXiv:0908.1135

## Lattice Gauge Theory

K. Wilson, $\underline{\text { PRD } 10 \text { (1974) } 2445}$

$$
\langle\bullet\rangle=\frac{1}{Z} \int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} \exp (-S)[\bullet]
$$

- Infinite continuum: uncountably many d.o.f. ( $\Rightarrow$ UV divergences);
- Infinite lattice: countably many; used to define QFT;
- Finite lattice: finite dimension $\sim 10^{8}$, so compute integrals numerically.

$L=N_{S} a$


## Lattice Gauge Theory

K. Wilson, $\underline{\text { PRD } 10 \text { (1974) } 2445}$

$$
\langle\bullet\rangle=\frac{1}{Z} \int \mathcal{D} U \underset{\sim}{\mathcal{D} \mathcal{D} \bar{\psi}} \exp (-S)[\bullet]
$$

- Infinite continuum: uncountably many d.o.f. ( $\Rightarrow$ UV divergences);
- Infinite lattice: countably many; used to define QFT;
- Finite lattice: finite dimension $\sim 10^{8}$,

$L=N_{S} a$


## Lattice Gauge Theory

K. Wilson, $\underline{\text { PRD } 10 \text { (1974) } 2445}$

$$
\left.\langle\bullet\rangle=\frac{1}{Z} \int \begin{array}{l}
\mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} \\
M \mathrm{MCx}(-S)[\bullet]
\end{array}\right]
$$

- Infinite continuum: uncountably many d.o.f. ( $\Rightarrow$ UV divergences);
- Infinite lattice: countably many; used to define QFT;
- Finite lattice: finite dimension $\sim 10^{8}$, so compute integrals numerically.

$L=N_{S} a$


## Some Jargon

- QCD observables (quark integrals by hand):

$$
\langle\bullet\rangle=\frac{1}{Z} \int \mathcal{D} U \prod_{f=1}^{n_{f}} \operatorname{det}\left(\not D+m_{f}\right) \exp \left(-S_{\text {gauge }}\right)\left[\bullet^{\prime}\right]
$$

- Quenched means replace det with 1.
(Obsolete.)
- Unquenched means not to do that.
- Partially quenched (usually) doesn't mean " $n_{f}$ too small" but $m_{\text {val }} \neq m_{\text {sea }}$, or even $D D_{\text {val }} \neq D_{\text {sea }}$ ("mixed action").


## Twentieth vs. Twenty-first Century Lattice QCD

- Quenched calculations (of the twentieth century) were really model calculations, which matched neither our own aspirations or HEP's.
- Famous theorist, December 2006:
- "I'll believe a 3\% lattice [QCD] theory error when the lattice has produced one successful prediction and several 3\% postdictions."
- Nine 1-3\% postdictions in March 2003 (in PRL).
- Three predictions in August 2004; November 2004; June 2005 (all in PRL). Verified by FOCUS, Belle, CLEO; CDF; CLEO, BaBar....


## Nine Postdictions

HPQCD, MILC, Fermilab Lattice, hep-lat/0304004




- Semileptonic form factor for $D \rightarrow K l v$
- Mass of $B_{c}$ meson
- Charmed-meson decay constants
$\gg 2004$



## Massive Excitement I

## Why Compute Hadron Masses?

- Show that the QCD Lagrangian generates hadron masses.
- Understand more deeply the only known mechanism for generating masses.
- Study first the chromodynamic energy stored between static sources:
- lowest level is the potential energy: at short distances, it is Coulombic, but at large distances, it soon turns linear, as a string would;
- excitations are interesting too: at short distances, level-ordering and levelspacing is QED-like; at hadronic distances ( $\sim 1-2 \mathrm{fm}$ ), the level-ordering becomes string-like; at very large distances (> 2 fm ), the spacing too.


## The QCD String

K. Juge, J. Kuti, \& C. Morningstar, PRL 90 (2003) 161601


## The QCD String Sausage

K. Juge, J. Kuti, \& C. Morningstar, PRL 90 (2003) 161601


## Hadron Masses: Qualitative \& Quantitative

- In QCD, the energy in the sausage generates the mass of all hadrons.
- Glueballs (hadrons without quarks) consist only of this stuff.

- $M\left(0^{++}\right) \approx 1700 \mathrm{MeV}\left[f_{J}(1710)\right] ; M\left(0^{-+}\right) \& M\left(2^{++}\right) \sim 800-900 \mathrm{MeV}$ higher.
- The mass of hadrons with light quarks (like protons and neutrons) comes from this kind of energy, plus the kinetic energy of (relativistic) quarks confined.
- This is the source of mass for atomic nuclei and, thus, everyday objects ...
- ... including you.
$\pi . . . \Omega: \mathrm{BMW}, \mathrm{MILC}, \mathrm{PACS}-\mathrm{CS}, \mathrm{QCDSF} ;$


## QCD Hadron Spectrum

 $\eta-\eta^{\prime}$ : RBC, UKQCD, Hadron Spectrum ( $\omega$ ); $D, B$ : Fermilab, HPQCD, Mohler\&Woloshyn

## Excited States

e.g., Hadron Spectrum Collaboration, PRD 83 (2011) 111502


- Future applications to glueball spectra, hybrids, excited baryons, and mixing.

Now, quark masses are MeV not GeV (see below), therefore

$$
m_{N}=E=/ c^{2}
$$

image by
D. Leinweber

Now, quark masses are MeV not GeV (see below), therefore

## The source of your <br> weight problem is quantum chromodynamics

$$
m_{N}=E=/ c^{2}
$$


image by
D. Leinweber

## Massive Excitement II

## Weak Interactions

- At energies probed by the Tevatron and the LHC, left- and right-handed quarks are different (weak eigenbasis):

$$
\begin{aligned}
& Q_{L}=\left(\binom{u}{d^{\prime}}_{L}\binom{c}{s^{\prime}}_{L}\binom{t}{b^{\prime}}_{L}\right), \quad Y_{Q_{L}}=-\frac{1}{6} \\
& U_{R}=\left(\begin{array}{lll}
u_{R} & c_{R} & t_{R}
\end{array}\right), \quad Y_{U_{R}}=+\frac{2}{3} \\
& U_{R}=\left(\begin{array}{lll}
d_{R} & s_{R} & b_{R}
\end{array}\right), \quad Y_{D_{R}}=-\frac{1}{3}
\end{aligned}
$$

9 fields: 3 doublets and 6 singlets under $\mathrm{SU}_{\llcorner }(2) \times \mathrm{U}_{\curlyvee}(1)$.

## Identity from Higgs and Yukawa

- Whatever breaks electroweak symmetry has a weak-SU(2) doublet, $\Phi$, so it can have Yukawa interactions

$$
\begin{aligned}
& y_{i j}^{u} \bar{Q}_{L}^{i} \Phi U_{R}^{j}+y_{i j}^{d} \bar{Q}_{L}^{i} \tilde{\Phi}^{*} D_{R}^{j}+\text { h.c. }= \\
& y_{i j}^{u}\left(\begin{array}{ll}
\bar{U} & \bar{D})_{L}^{i}\binom{\Phi^{0}}{\Phi^{-}} U_{R}^{j}+y_{i j}^{d}\left(\begin{array}{ll}
\bar{U} & \bar{D})_{L}^{i}\binom{\Phi^{+}}{\bar{\Phi}^{0}} D_{R}^{j}+\text { h.c. }
\end{array}\right.
\end{array} . \begin{array}{l}
\text { h. }
\end{array}\right) .
\end{aligned}
$$

where indices label generations.

- Spontaneous symmetry breaking driven by $\Phi=\binom{v}{0}$ :
- generates masses for the quarks and gauge bosons.


## Identity from Higgs and Yukawa

- Whatever breaks electroweak symmetry has a weak-SU(2) doublet, $\Phi$, so it can have Yukawa interactions

- Spontaneous symmetry breaking driven by $\Phi=\binom{v}{0}$ :
- generates masses for the quarks and gauge bosons.


## Quark Masses

- Adjust the bare mass in lattice QCD so one hadron mass comes out right.
- Convert to a conventional renormalization scheme:

| Lattice QCD | $\underline{\text { MILC }}$ | $\underline{\text { RBC }}$ | $\underline{B M W}$ | $\underline{H P Q C D}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\bar{m}_{u}(2 \mathrm{MeV})$ | $1.9 \pm 0.2$ | $2.24 \pm 0.35$ | $2.15 \pm 0.11$ | $2.01 \pm 0.14$ |
| $\bar{m}_{d}(2 \mathrm{MeV})$ | $4.6 \pm 0.3$ | $4.65 \pm 0.35$ | $4.79 \pm 0.14$ | $4.79 \pm 0.16$ |
| $\bar{m}_{s}(2 \mathrm{MeV})$ | $88 \pm 5$ | $97.6 \pm 6.2$ | $95.5 \pm 1.9$ | $92.4 \pm 1.5$ |
| $\bar{m}_{c}\left(\bar{m}_{c}\right)$ |  |  | $1273 \pm 6$ |  |
| $\bar{m}_{b}\left(\bar{m}_{b}\right)$ |  |  | $4164 \pm 23$ |  |

- The up \& down masses are $\sim 4$ \& $\sim 9$ times electron mass.
- The up mass is far from 0: the strong CP problem is indeed a problem.
- Mass couples left to right: has to break $\mathrm{SU}_{\mathrm{L}}(2)$ and $\mathrm{U}_{\mathrm{r}}(1)$ (spontanesously).
- Weak and mass eigenbases related by unitary transformation, $D_{L}=V_{\text {СКM }} D_{L}^{\prime}$.
- Global symmetries reduce parameter count of CKM matrix to 4:
- $\left|V_{\mathrm{us}}\right|,\left|V_{\mathrm{cb}}\right|,\left|V_{\mathrm{ub}}\right|, \delta_{\mathrm{KM}}=\arg V_{\mathrm{ub}}^{*}$-as fundamental as electron mass.
- Unitarity relations, e.g., $V_{u d}^{*} V_{u b}+V_{c d}^{*} V_{c b}+V_{t d}^{*} V_{t b}=0$ : triangles in the complex plane.
- Probed by many measurements + corresponding QCD.


## CKM and Lattice QCD

- Gold-plated quantities available to (over)determine CKM matrix:

$$
V=\left(\begin{array}{cccc}
\left|V_{u d}\right| & \left|V_{u s}\right| & \left|V_{u b}\right| & \arg V_{u b}^{*} \\
\pi \rightarrow \ell \nu & K \rightarrow \ell v & B \rightarrow \tau v & \left\langle K^{0} \mid \bar{K}^{0}\right\rangle \\
n \rightarrow p e^{-\bar{v}} & K \rightarrow \pi \ell v & B \rightarrow \pi \ell \nu & \\
\left|V_{c d}\right| & \left|V_{c s}\right| & \left|V_{c b}\right| & \\
D \rightarrow \ell v & D_{s} \rightarrow \ell v & B \rightarrow D \ell v & \\
D \rightarrow \pi \ell v & D \rightarrow K \ell v & B \rightarrow D^{*} \ell v & \\
\left|V_{t d}\right| & \left|V_{t s}\right| & \left|V_{t b}\right| & \\
\left\langle B_{d} \mid \bar{B}_{d}\right\rangle & \left\langle B_{s} \mid \bar{B}_{s}\right\rangle & \text { (no } t \bar{q} \text { hadrons) }
\end{array}\right)
$$

- loops vs. trees


## G. Colangelo et al. [FLAG], arXiv: 1310.8555;

 alia et E. Gámiz et al. [Fermilab/MILC], arXiv:1312.1228

## $\left|V_{u b}\right|$ from Lattice QCD

G. Colangelo et al. [FLAG], arXiv: 1310.8555



## $\left|V_{c b}\right|$ from Lattice QCD

G. Colangelo et al. [FLAG], arXiv: 1310.8555


## arg $V_{u b}$ from Lattice QCD

G. Colangelo et al. [FLAG], arXiv: 1310.8555


## Unitarity Triangle

c.f., Laiho, Lunghi, Van de Water, arXiv:0910.2928


## Lessons

- Lattice QCD plays a crucial role for neutral-meson mixing ( $K, B, B_{s}$ ).
- Lattice QCD plays a key role in $\left|V_{\mathrm{us}}\right|,\left|V_{\mathrm{cs}}\right|,\left|V_{\mathrm{ub}} / V_{\mathrm{cb}}\right|,\left|V_{\mathrm{cb}}\right|$.
- Suite of experiments, pQCD, and IQCD shows that CKM flavor violation and KM CP violation predominates.
- Still room for new physics: tension at 2-3o level:
- confidence level of global fit improves more, if NP in kaon mixing [LLV];
- $\varepsilon_{K}$ band uses corrections of Nierste, Ligeti, ASK [hep-ph/0201071].


## Massive Excitement III

## LHC and Its Scalar Boson

- First observation July 4, 2012.
- Mass 125.7 GeV .
- Decay patterns consistent with the Standard Model of one Higgs doublet: $W_{L}^{ \pm}, Z_{L}^{0}, H^{0}$.
- But the SM is unsatisfactory on physical, philosophical, and mathematical grounds.
-What is going on?



## What Does Higgs Mass Say?

from M. Carena and others


- Supersymmetry: where are the superpartners?
- Could a new kind of sausage generates theses masses too?


## Requirements on Strongly-Coupled EWSB

- Isolated scalar boson with mass 126 GeV and correct couplings.
- Isolation means that the spectrum cannot be too much like QCD
- Higgs boson and longitudinal gauge bosons could be pseudo-Goldstones;
- the "running" of the coupling could be very slow, such that the dynamics are approximately conformal over a wide range of scales.
- Theory space is huge:
- Which gauge group? Which fermion representation?


## Outlook

- Many topics in lattice QCD omitted here:
- muon g-2 experiment at Fermilab relies on a QCD calculation of the hadronic contribution;
- flavor physics experiments at LHCb and Belle 2 require better (achievable) precision;
- future studies of Higgs BRs need more precise quark masses (achievable).
- In many cases, effects of EM and $m_{d}-m_{u}$ must now be incorporated.
- The importance of lattice QCD in nuclear physics cannot be overstated.

