Chiral fermions and precision lattice field theory

PPCM – Boston University May 9, 2014

Norman H. Christ Columbia University RBC and UKQCD Collaborations

Outline

- Lattice fermions
- State-of-the-art lattice QCD
- Apply to two processes:
 - $-K \rightarrow \pi \pi$ decay
 - $-K_L K_S$ mass difference

RBC Collaboration

- BNL
 - Chulwoo Jung
 - Chris Kelly
 - Christoph Lehner
 - Amarjit Soni
- RBRC
 - Tomomi Ishikawa
 - Taku Izubuchi (BNL)
 - Shigemi Ohta (KEK)
 - Eigo Shintani
- Connecticut
 - Tom Blum

- Columbia
 - Ziyuan Bai
 - Norman Christ
 - Luchang Jin
 - Jasper Lin
 - Robert Mawhinney
 - Greg McGlynn
 - David Murphy
 - Jianglei Yu
 - Daiqian Zhang

UKQCD Collaboration

• Edinburgh

- Peter Boyle
- Julien Frison
- Nicolas Garron (Trinity)
- Jamie Hudspith
- Karthee Sivalingam

• Southampton

- Shane Drury
- Tadeusz Janowski
- Andreas Juttner
- Andrew Lytle (Mumbai)
- Marina Marinkovic
- Antonin Portelli
- Chris Sachrajda

Lattice

Fermions

PPCM -- May 9, 2014 (5)

Lattice QCD

- First-principles treatment of lowenergy, non-perturbative QCD.
- All approximations understood and controlled:
 - Non-zero lattice spacing: $a \rightarrow 0$.
 - Finite volume: $L \rightarrow \infty$
 - Typically neglect E&M and $m_u \neq m_d$, $\alpha_{\rm EM} \ll 1$

• Supports not only rough phenomenology but also accurate theoretical physics (where it can be applied).

Lattice QCD – gauge action

- Theories which differ at the lattice scale can describe the same the long distance physics.
- Lattice gauge action chosen to achieve:
 - Reduced lattice artifacts: Symanzik improved, Iwasaki (improvement effects are expected but not verified)
 - Alter the short-distance behavior to vary the rate of topological tunneling. (effects are visible and important)

PPCM -- May 9, 2014 (7)

Lattice QCD – fermion action

- Great variety of fermion actions in use:
 - Wilson (clover)
 - staggered (naïve, p4, ASQTAD, HISQ)
 - domain wall (Shamir, Mobius, optimal)
 - overlap
- Fermion action chosen to achieve:
 - Reduced lattice artifacts: *clover*, *p4*, *ASQTAD*, *HISQ*
 - Accurate chiral symmetry (DWF)
 - Exact chiral symmetry (*overlap*)

Lattice QCD – fermion action

- The choice of fermion action does have important consequences!
- Wilson: large breaking of chiral symmetry
- Staggered:
 - Large lattice artifacts without improvement.
 - Four extra species (*tastes*) partially removed by *rooting*
 - Chiral symmetry broken, mass protected by *taste* symmetry.
- Domain wall: 12 48x more costly than Wilson
- Overlap:
 - ~100x more costly than Wilson
 - Monte Carlo simulation requires fixed topology
 - \rightarrow 1/*L* corrections and dangerous non-ergodicity

Domain wall fermions

- With adequate computer power, DWF become an interesting choice!
- Use 5-dimensional Wilson fermion action with Dirichelet BC on s = 0 and $s = L_s - 1$ slice.

- 4-D chiral bound states form on the s = 0 and $L_s 1$ walls.
- 5-D propagating states are large-action, lattice artifacts.
- 4-D states disappear as $p \rightarrow \pi/a$, solving the doubling problem.
- Accurate chiral symmetry at all energies, broken by left-right mixing: residual chiral symmetry breaking.

Chiral symmetry and topology

• Continuum Dirac operator $D = D_{\mu} \gamma^{\mu}$ obeys $\{D, \gamma^{5}\}=0 \rightarrow \text{if } D \psi_{n} = \lambda_{n} \psi_{n} \text{ then } D \gamma^{5} \psi_{n} = -\lambda_{n} \gamma^{5} \psi_{n}$

- Topological invariance of $N_R N_L$ easy to see!
- Atiyah-Singer theorem relates topological charge of gauge field to $N_R N_L$ of fermions.

Connection with Topology

• For the domain wall operator, low eigenvalues show this chiral pattern

- If the topological changes, all modes must mix between left and right walls.
- Tearing the gauge field must violate chirality!

Wilson Flow (Qi Liu)

• Instructive to examine topology and Dirac spectrum as the gauge fields are smoothed:

Local chirality violation

DWF at low energy

- At low energy *E* << 1/*a*, 5-D DWF theory looks like a chiral 4-D theory (QCD) with small chiral asymmetry:
 - Leading, dim-3 operator: $m_{\text{res}} \overline{q} q$ (mass term)
 - Next leading dim-5 operator: $m_{\text{res}} \overline{q} \sigma^{\nu\nu} F^{\nu\nu} q$ (clover term)
- Very small discretization errors:

Ratios of dimensionless combinations of physical quantities computed using 1/a = 1.73 and 2.28 GeV.

State-of-the-art Lattice QCD

PPCM -- May 9, 2014 (16)

Current state-of-the-art

- Physical m_{π} =135 MeV and L = 4 6 fm now possible.
- Generate 48³ x 96 and 64³ x 128 ensembles of gauge field configurations.
- Complete set of measurements takes 5.3 hours on a 32-rack BG/Q machine (sustains 1 Pflops)
- Large collaboration essential:
 - Highly optimized code (64 threads, SPI comms., wide-vector FP)
 - Sophisticated algorithms (deflation, FG $(\Delta t)^3$ integrator)
 - Complex measurement strategies (NPR, G-parity BC, 4-pt functions)

Efficient code is essential

- High-performance, Blue Gene/Q-optimized software underlies these results:
 - Peter Boyle's BG/Q inverter
 - Chulwoo Jung and Hantao Yin's threaded evolution and measurement code based on this inverter.
- Figure shows weak scaling on 96 BG/Q (Sequoia) racks.
- Sustained speed of 6 Pflops!

Weak Scaling for DWF BAGEL CG inverter

Code developed by Peter Boyle at the STFC funded DiRAC facility at Edinburgh

PPCM -- May 9, 2014 (18)

Measurement Techniques

- Use eigenvectors to solve $\not D G_n = h_n$ for multiple right-hand sides (deflation).
- Amortize eigCG or Lanczos set up time by using sources (h_n) on each time slice (128) and measuring all quantities in the same job.
- Use All-Mode-Averaging technique (Blum, Izubuchi & Shintani, arXiv:1208.4349 [hep-lat])
 - Loosen CG stopping condition $10^{-8} \rightarrow 10^{-4}$.
 - Obtain accurate result for 8 out of 128 time slices
 - O(10⁻⁸) accurate result = $\langle G_{10^{-4}} \rangle_{124} + \langle G_{10^{-8}} G_{10^{-4}} \rangle_{8}$
 - Achieve 5-20 x speed-up.

Simple state-of-the-art example: f_{π}

$$\langle 0|\overline{d}\gamma^5\gamma^{\mu}u|\pi^+(\vec{p})\rangle = f_{\pi}\frac{p^{\mu}}{\sqrt{4E_{\pi}(\vec{p})}}$$

$$f_{\pi} = N \sum_{\vec{r}} \frac{\langle A^{0}(\vec{r}, t) O_{\pi}(t=0) \rangle}{\langle O_{\pi}^{\dagger}(t) O_{\pi}(t=0) \rangle^{\frac{1}{2}}} e^{m_{\pi}t/2}$$

- 2012 (elaborate chiral fit): $f_{\pi} = 127(3)_{\text{stat}}(3)_{\text{sys}} \text{ MeV}$
- 2013 (m_{π} =135 MeV): $f_{\pi} = 130.0(0.3)_{\text{stat}}$ MeV (40 cnfgs.)
- Experiment: $f_{\pi} = 130.4(0.04)(0.2) \text{ MeV}$

New Opportunities

- With physical pion masses, large volumes and no need for chiral extrapolation we can tackle more complex and important quantities.
- Work with up, down and strange quarks (including some charm quark loops).
- $K \rightarrow \pi \pi$ decay
 - $\Delta I = 1/2$ rule
 - Direct CP violation and ε'
- $K_L K_S$ mass difference

Low Energy Effective Theory

- Represent weak interactions by local four-quark Lagrangian $\mathcal{H}^{(\Delta S=1)} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left\{ \sum_{i=1}^{10} \left[z_i(\mu) - \frac{V_{td}}{V_{ud}} \frac{V_{ts}^*}{V_{us}^*} y_i(\mu) \right] Q_i \right\}$ • $V_{qq'}$ - CKM matrix elements • z_i and y_i - Wilson Coefficients
 - z_i and y_i Wilson Coefficients
 - Q_i four-quark operators

Four quark operators

- Current-current operators
 - $Q_1 \equiv (\bar{s}_{\alpha} d_{\alpha})_{V-A} (\bar{u}_{\beta} u_{\beta})_{V-A}$ $Q_2 \equiv (\bar{s}_{\alpha} d_{\beta})_{V-A} (\bar{u}_{\beta} u_{\alpha})_{V-A}$
 - QCD Penguins

$$Q_{3} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V-A}$$

$$Q_{4} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V-A}$$

$$Q_{5} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V+A}$$

$$Q_{6} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

Electro-Weak Penguins

 $Q_{7} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\alpha})_{V-A} \sum_{q=u,d,s} e_{q} (\bar{q}_{\beta} q_{\beta})_{V+A}$ $Q_{8} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum_{q=u,d,s} e_{q} (\bar{q}_{\beta} q_{\alpha})_{V+A}$ $Q_{9} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\alpha})_{V-A} \sum_{q=u,d,s} e_{q} (\bar{q}_{\beta} q_{\beta})_{V-A}$ $Q_{10} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum_{q=u,d,s} e_{q} (\bar{q}_{\beta} q_{\alpha})_{V-A}$

PPCM -- May 9, 2014 (23)

$K \rightarrow \pi \pi$ decay

PPCM -- May 9, 2014 (24)

$K \rightarrow \pi \pi$ phenomenology

• Final $\pi\pi$ states can have I = 0 or 2.

$$\langle \pi \pi (I=2) | H_w | K^0 \rangle = A_2 e^{i\delta_2} \qquad \Delta I = 3/2 \langle \pi \pi (I=0) | H_w | K^0 \rangle = A_0 e^{i\delta_0} \qquad \Delta I = 1/2$$

- CP symmetry requires A_0 and A_2 be real.
- Direct CP violation in this decay is characterized by:

$$\epsilon' = \frac{i e^{\delta_2 - \delta_0}}{\sqrt{2}} \left| \frac{A_2}{A_0} \right| \left(\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} \right) \quad \begin{array}{c} \text{Direct CP} \\ \text{violation} \end{array}$$

$K^0 - \overline{K^0}$ mixing

- $\Delta S=1$ weak decays allow K^0 and K^0 to decay to the same $\pi \pi$ state.
- Resulting mixing described by Wigner-Weisskopf:

$$i\frac{d}{dt}\left(\frac{K^{0}}{\overline{K}^{0}}\right) = \left\{ \left(\begin{array}{cc} M_{00} & M_{0\overline{0}} \\ M_{\overline{0}0} & M_{\overline{0}\overline{0}} \end{array}\right) - \frac{i}{2} \left(\begin{array}{cc} \Gamma_{00} & \Gamma_{0\overline{0}} \\ \Gamma_{\overline{0}0} & \Gamma_{\overline{0}\overline{0}} \end{array}\right) \right\} \left(\begin{array}{c} K^{0} \\ \overline{K}^{0} \end{array}\right)$$

• Decaying states are mixtures of K^0 and K^0

$$|K_{S}\rangle = \frac{K_{+} + \overline{\epsilon}K_{-}}{\sqrt{1 + |\overline{\epsilon}|^{2}}} \qquad \overline{\epsilon} = \frac{i}{2} \left\{ \frac{\operatorname{Im} M_{0\overline{0}} - \frac{i}{2} \operatorname{Im} \Gamma_{0\overline{0}}}{\operatorname{Re} M_{0\overline{0}} - \frac{i}{2} \operatorname{Re} \Gamma_{0\overline{0}}} \right\}$$
$$|K_{L}\rangle = \frac{K_{-} + \overline{\epsilon}K_{+}}{\sqrt{1 + |\overline{\epsilon}|^{2}}} \qquad \overline{\mathrm{Indirect CP}} \qquad \operatorname{Indirect CP}_{\text{violation}}$$

CP violation

• CP violating, experimental amplitudes:

$$\eta_{+-} \equiv \frac{\langle \pi^+ \pi^- | H_w | K_L \rangle}{\langle \pi^+ \pi^- | H_w | K_S \rangle} = \epsilon + \epsilon'$$

$$\eta_{00} \equiv \frac{\langle \pi^0 \pi^0 | H_w | K_L \rangle}{\langle \pi^0 \pi^0 | H_w | K_S \rangle} = \epsilon - 2\epsilon'$$

• Where:
$$\epsilon = \overline{\epsilon} + i \frac{\mathrm{Im}A_0}{\mathrm{Re}A_0}$$

Indirect: $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}$

Direct: $\text{Re}(\varepsilon'/\varepsilon) = (1.65 \pm 0.26) \times 10^{-3}$

Lattice Aspects

PPCM -- May 9, 2014 (28)

Physical $\pi \pi$ states – Lellouch-Luscher

- Euclidean e^{-Ht} projects onto $|\pi\pi(\vec{p}=0)>$
- Use finite-volume quantization.
- Adjust volume so 1st or 2nd excited state has correct *p*.

- Correctly include *p p* interactions, including normalization.
- Requires extracting signal from non-leading large *t* behavior:

$$G(t) \sim c_0 e^{-E_0 t} + c_1 e^{-E_1 t}$$

PPCM -- May 9, 2014 (29)

$\Delta I = 3/2$

PPCM -- May 9, 2014 (30)

$\Delta I = 3/2 \quad K \rightarrow \pi \pi$

- Three operators contribute $O^{(27,1)}$, $O^{(8,8)}$ and $O^{(8,8)m}$.
- Use isospin to relate to $K^+ \rightarrow \pi^+ \pi^+$.
- Use anti-periodic boundary conditions for *d* quark.
 (Changhoan Kim, hep-lat/0210003).
- Achieve essentially physical kinematics!
 - (63 \rightarrow 146 configurations)
 - $m_{\pi} = 142.9(1.1) \text{ MeV}$
 - $m_K = 511.3(3.9) \text{ MeV}$
 - $E_{\pi\pi} = 492(5.5) \text{ MeV}$

PPCM -- May 9, 2014 (31)

Computational Set-up (Lightman and Goode)

- Use anti-periodic boundary conditions for *d* quark in two directions (average over three choices).
- Fix $\pi \pi$ source at t = 0, vary location of O_W and kaon source.

$< \pi \pi | O | K >$ from 146 configurations

PPCM -- May 9, 2014 (33)

Determine physical A_2

- $\operatorname{Re}(A_2) = (1.436 \pm 0.063_{\text{stat}} \pm 0.258_{\text{sys}}) \ 10^{-8} \text{ GeV}$ Experiment: 1.479(4) 10^{-8} GeV
- $\operatorname{Im}(A_2) = -(6.29 \pm 0.46_{\text{stat}} \pm 1.20_{\text{sys}}) \ 10^{-13} \text{ GeV}$

• Error estimates:

	ReA ₂	$\text{Im}A_2$
lattice artefacts	15%	15%
finite-volume corrections	6.2%	6.8%
partial quenching	3.5%	1.7%
renormalization	1.8%	5.6%
unphysical kinematics	0.4%	0.8%
derivative of the phase shift	0.97%	0.97%
Wilson coefficients	6.6%	6.6%
Total	18%	19%

$\Delta I = 3/2$: Next results

(Tadeusz Janowski and Daiqian Zhang)

- Use two new large ensembles to remove a^2 error (m_{π} =135 MeV, L=5.4 fm)
 - $48^3 \times 96$, 1/a=1.73 GeV
 - 64³ x 128, 1/*a*=2.28 GeV

- $\operatorname{Re}(A_2) = (1.345 \pm 0.084_{\text{stat}}) \times 10^{-8} \text{ GeV}$
- $\operatorname{Im}(A_2) = -(6.32 \pm 28_{\text{stat}}) \times 10^{-13} \text{ GeV}$
- Experiment: $\operatorname{Re}(A_2) = 1.479(4) \ 10^{-8} \text{ GeV}$

$\Delta I = 1/2$

PPCM -- May 9, 2014 (36)

$\Delta I = 1/2 \quad K \rightarrow \pi \pi$

• Made much more difficult by disconnected diagrams:

- Many more diagrams (48) than $\Delta I = 3/2$.
- Initial threshold decay calculation successful (Qi Liu)
 - Re (A_0) : 25% statistical errors
 - Im (A_0) : 50% statistical errors

$\Delta I = \frac{1}{2} K \rightarrow \pi \pi - \text{Next steps}$ (Chris Kelly & Daiqian Zhang)

- Use all-2-all propagators (Trinity/KEK)
 - Sum over localized sources further suppress vacuum coupling
 - See 5x improvement in statistics for $I = 0, \pi \pi$ scattering
- Use **G-parity** BC to obtain $p_{\pi} = 205$ MeV
 - $G = C e^{i\pi I_y}$
 - Non-trivial: $\begin{pmatrix} u \\ d \end{pmatrix} \rightarrow \begin{pmatrix} d \\ -\overline{u} \end{pmatrix}$
 - Extra I = 1/2, s' quark adds $e^{-m_K L}$ error.
 - Tests: f_K and B_K correct within errors.

$\Delta I = 1/2 \quad K \rightarrow \pi \pi$: Physical kinematics

- Goal is a 20% calculation of ε'/ε with all errors controlled
- Repeat $\Delta I = 3/2$ kinematics
 - Use $32^3 \times 64$ volume with 1/a = 1.37 GeV
 - Achieve p = 205 MeV from **G-parity** boundary conditions in 3 directions
- BG/Q gives 20 x speedup
- Configuration generation at 500 time units
- Complete measurements performed on 10 configurations!
- Result expected in 1 year

K_L – K_S mass difference

PPCM -- May 9, 2014 (40)

$K^0 - \overline{K^0}$ Mixing

• Time evolution of $K^0 - \overline{K}{}^0$ system given by familiar Wigner-Weisskopf formula:

$$i\frac{d}{dt}\left(\frac{K^{0}}{\overline{K}^{0}}\right) = \left\{ \left(\begin{array}{cc} M_{00} & M_{0\overline{0}} \\ M_{\overline{0}0} & M_{\overline{0}\overline{0}} \end{array}\right) - \frac{i}{2} \left(\begin{array}{cc} \Gamma_{00} & \Gamma_{0\overline{0}} \\ \Gamma_{\overline{0}0} & \Gamma_{\overline{0}\overline{0}} \end{array}\right) \right\} \left(\begin{array}{c} K^{0} \\ \overline{K}^{0} \end{array}\right)$$

where:

$$\Gamma_{ij} = 2\pi \sum_{\alpha} \int_{2m_{\pi}}^{\infty} dE \langle i | H_W | \alpha(E) \rangle \langle \alpha(E) | H_W | j \rangle \delta(E - m_K)$$

$$M_{ij} = \sum_{\alpha} \mathcal{P} \int_{m_{\pi}}^{\infty} dE \frac{\langle i | H_W | \alpha(E) \rangle \langle \alpha(E) | H_W | j \rangle}{m_K - E}$$

PPCM -- May 9, 2014 (41)

$K^0 - \overline{K^0}$ Mixing

• CP violating: $p \sim m_t$ $\overline{\epsilon} = \frac{i}{2} \left\{ \frac{\operatorname{Im} M_{0\overline{0}} - \frac{i}{2} \operatorname{Im} \Gamma_{0\overline{0}}}{\operatorname{Re} M_{0\overline{0}} - \frac{i}{2} \operatorname{Re} \Gamma_{0\overline{0}}} \right\}$

• CP conserving: $p \le m_c$ $m_{K_S} - m_{K_L} = 2 \operatorname{Re}\{M_{0\overline{0}}\}$

PPCM -- May 9, 2014 (42)

Lattice Version (Jianglei Yu)

• Evaluate standard, Euclidean, 2^{nd} order $K^0 - \overline{K^0}$ amplitude:

$$\mathcal{A} = \langle 0 | T \left(K^{0}(t_{f}) \frac{1}{2} \int_{t_{a}}^{t_{b}} dt_{2} \int_{t_{a}}^{t_{b}} dt_{1} H_{W}(t_{2}) H_{W}(t_{1}) K^{0^{\dagger}}(t_{i}) \right) | 0 \rangle$$

PPCM -- May 9, 2014 (43)

Interpret Lattice Result

$$\mathcal{A} = N_{K}^{2} e^{-M_{K}(t_{f}-t_{i})} \sum_{n} \frac{\langle \overline{K}^{0} | H_{W} | n \rangle \langle n | H_{W} | K^{0} \rangle}{M_{K}-E_{n}} \left(-(t_{b}-t_{a}) - \frac{1}{M_{K}-E_{n}} + \frac{e^{(M_{K}-E_{n})(t_{b}-t_{a})}}{M_{K}-E_{n}} \right)$$
2. Uninteresting constant
$$(1) \quad (2)$$

- 3. Growing or decreasing exponential: $E_n < m_K$ must be removed!
- Finite volume correction:

$$M_{K_L} - M_{K_S} = 2\sum_{n} \frac{\langle \overline{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle}{M_K - E_{n_0}} - \frac{E_{n_0}^2}{2k_n M_K} \frac{d(\phi + \delta_0)}{dk} \bigg|_{M_K} V |\langle n_0 | H_W | K^0 \rangle|^2 \cot(\phi + \delta_0) \bigg|_{M_K}$$

N.H. Christ, X. Feng, G. Martinelli, C.T. Sachrajda

PPCM -- May 9, 2014 (44)

Lattice setup (Jianglei Yu)

- Must include charm quark (GIM *u*–*d* cancellation)
- Two calculations performed
 - $-16^3 \times 32$, $m_p = 420$ MeV, types 1 & 2 (arXiv:1212.5931)

 $-24^3 \times 64$, $m_p = 330$ MeV, all graphs included

PPCM -- May 9, 2014 (45)

Exponentially growing terms

- The vacuum, π^0 and η require special treatment:
 - Calculate $\langle X | H_W / K^0 \rangle$ directly and subtract, $X = |0\rangle$, π^0 , η
 - Fit the exponential time dependence in the 4-point function
 - Adjust $c_s \overline{s} d$ or $c_p \overline{s} \gamma^5 d$ terms to completely remove an unwanted state.

Remove extra η contribution

- Calculate $\langle \eta | H_W / K^0 \rangle$ directly and remove
- Has an $\sim 10\%$ effect on the result

PRL 105, 241601 (2010)	PHYSICAL REV	IEW LETTERS	week ending 10 DECEMBER 2010		, 1	(_	<u> </u>	$-\lambda$	
	$oldsymbol{\eta}$ and $oldsymbol{\eta}'$ Mesons f	rom Lattice QCD			$\eta^{r} = - \pi$	=(<i>uu</i> -	+aa -	$\vdash SS$	
N. H. Christ, ¹ C. Da	wson, ² T. Izubuchi, ^{3,4} C. Jung A. Soni, ³ an	g, ³ Q. Liu, ¹ R. D. Mawhinney, ¹ C. T. d R. Zhou ⁶	Sachrajda, ⁵		\sim	3 \			
	(RBC and UKQCI	O Collaborations)							
¹ Physi ² Department of Physics, ⁴ RIKEN-BNL R ⁵ School of Physics a ⁶ Physics D	s Department, Columbia Univer University of Virginia, 382 McC- Brookhaven National Laborator; search Center, Brookhaven Nati nd Astronomy, University of Soue partment, University of Conner (Received 24 February 2010;	sity, New York, New York 10027, USA ormick Road, Charlottesville, Virginia 2; y, Upton, New York 11973, USA onal Laboratory, Upton, New York 1197 thampton, Southampton SO17 1BJ, Unitr icat, Storrs, Connecticut 06269-3046, U published 8 December 2010)	2904-4714, USA 73, USA ea Kingdom ISA		$\eta = \frac{1}{\sqrt{6}}$	$\left(\overline{u}u + \right)$	$-\overline{d}d$ –	$2\overline{s}s$)	
The large mass of of the axial anomal lattice QCD calcula eigenstates show sm physical light qu 947(142) MeV, con	the ninth pseudoscalar meson, the ninth pseudoscalar meson, the y and the gauge field topology p tion of the η and η' masses and all octet-singlet mixing with a mitrix mass gives, with statistic sistent with the experimental val	he η' , is believed to arise from the combi- resent in QCD. We report a realistic, 2 I mixing which confirms this picture. TI xing angle of $\theta = -14.1(2.8)^\circ$. Extrapol: al errors only, $m_\eta = 573(6)$ MeV a ues of 548 and 958 MeV.	ined effects + 1-flavor, he physical lation to the and $m_{\eta'} =$		V U				
DOI: 10.1103/PhysRe	vLett.105.241601	PACS numbers: 12.38.Gc, 11.15.Ha, 11.30.F	Rd, 14.40.Be				n		
The relatively large mass meson, the η^{\prime} , provides a signifi- chromodynamics (QCD), the model which describes the i gluons. On a naive classical lev axial-vector currents. Given the symmetries which these curr	of the ninth pseudoscalar icant challenge for quantum component of the standard nteractions of quarks and el, there are nine conserved le vacuum breaking of the ents generate, this should	diagrams to decrease exponentially separation. For mesons this fallofi exponential time dependence of th space meson propagator, and good be seen over a large range of times. source and sink of the meson propa quark propagators, the needed expo	y with increasing time ff roughly matches the he massive. Euclidean- l numerical signals can . For terms in which the gator are not joined by nential decrease comes	$ n H_{w} K^{0}\rangle$	$K^0 \longrightarrow 2$	•	1	e(M	$-K^0$
				$\frac{ \langle \eta H_W K^{-} \rangle}{M_K - M_\eta}$	$-\left(-\left(t_{b}-t_{a}\right)\right)$	$(a) - \overline{M_I}$	$\frac{1}{\kappa - M_{\eta}}$	$++\frac{e}{N}$	$\frac{1}{M_K - M_\eta}$

PPCM -- May 9, 2014 (47)

Latest results (Jianglei Yu)

- $N_f = 2+1, 24^3 \ge 32, m_{\pi} = 330 \text{ MeV}, m_c^{\overline{\text{MS}}}(2 \text{ GeV}) = 949 \text{ MeV}$
- Incorporate GIM cancellation

• Large statistics (800 configurations, 64 measurements each).

PPCM -- May 9, 2014 (48)

Results

Δ_K	$\overline{\Delta_K T_{min} Q_1 \cdot Q_1}$		$Q_1\cdot Q_2$	$Q_2\cdot Q_2$	ΔM_K	
	6	0.754(42)	-0.16(15)	2.70(18)	3.30(34)	10
7	7	0.755(42)	-0.18(15)	2.66(18)	3.23(34)	$x 10^{-12} \text{ MeV}$
	8	0.751(42)	-0.18(15)	2.62(19)	3.18(35)	
Diagra	ams	$Q_1 \cdot Q_1$	$Q_1 \cdot Q_2$	$Q_2 \cdot Q_2$	ΔM_K	-
Туре	1,2	1.485(80)	1.567(38)	3.678(56)	6.730(96)	× 10-12 MeV
All	1	0.754(42)	-0.16(15)	2.70(18)	3.30(34)	
						•

- Unphysical, $m_{\pi} = 330 \text{ MeV}$
- Active charm but $m_c a = 0.55$
- Result:

 ΔM_K = 3.30(34) 10⁻¹² MeV

• $\Delta M_K^{\text{expt}} = 3.483(6) \ 10^{-12} \text{ MeV}$

- Agreement fortuitous!
- $32^3 \times 64$, 1/a=1.37 GeV, $m_{\pi}=330$ MeV started (Z. Bai)
- 80² x 96 x 192, 1/*a*=3.0 GeV calculations planned!

Outlook

- DWF with physical quark masses reproduce QCD at the $\leq 2\%$ level on a 64³ x 128 lattice.
- NPR give continuum-like control of operator normalization and mixing.
- Theoretical advances allow rescattering effects to be correctly computed in Euclidean space (so far only for low energy $\pi \pi$ states).
- Many critical quantities can now be computed:
 - $K \rightarrow \pi \pi$, $\Delta I=3/2$ and 1/2, ε'/ε
 - $M_{KL} M_{KS}$
 - $K \rightarrow \pi \, l \, \overline{l}, \ K \rightarrow \pi \, v \overline{v}$
 - Quark effects on g_{μ} 2 at $O(\alpha^3)$ (L. Jin's poster)