Chiral fermions and precision lattice field theory

PPCM - Boston University May 9, 2014

Norman H. Christ
Columbia University
RBC and UKQCD Collaborations

Outline

- Lattice fermions
- State-of-the-art lattice QCD
- Apply to two processes:
$-K \rightarrow \pi \pi$ decay
$-K_{L}-K_{S}$ mass difference

RBC Collaboration

- BNL
- Chulwoo Jung
- Chris Kelly
- Christoph Lehner
- Amarjit Soni
- RBRC
- Tomomi Ishikawa
- Taku Izubuchi (BNL)
- Shigemi Ohta (KEK)
- Eigo Shintani
- Connecticut
- Tom Blum
- Columbia
- Ziyuan Bai
- Norman Christ
- Luchang Jin
- Jasper Lin
- Robert Mawhinney
- Greg McGlynn
- David Murphy
- Jianglei Yu
- Daiqian Zhang

UKQCD Collaboration

- Edinburgh
- Peter Boyle
- Julien Frison
- Nicolas Garron (Trinity)
- Jamie Hudspith
- Karthee Sivalingam
- Southampton
- Shane Drury
- Tadeusz Janowski
- Andreas Juttner
- Andrew Lytle (Mumbai)
- Marina Marinkovic
- Antonin Portelli
- Chris Sachrajda

Lattice

Fermions

Lattice QCD

- First-principles treatment of lowenergy, non-perturbative QCD.
- All approximations understood and controlled:
- Non-zero lattice spacing: $a \rightarrow 0$.
- Finite volume: $L \rightarrow \infty$
- Typically neglect $\mathrm{E} \& \mathrm{M}$ and $m_{u} \neq m_{d}$,
 $\alpha_{\text {EM }} \ll 1$
- Supports not only rough phenomenology but also accurate theoretical physics (where it can be applied).

Lattice QCD - gauge action

- Theories which differ at the lattice scale can describe the same the long distance physics.
- Lattice gauge action chosen to achieve:
- Reduced lattice artifacts: Symanzik improved, Iwasaki (improvement effects are expected but not verified)
- Alter the short-distance behavior to vary the rate of topological tunneling. (effects are visible and important)

PPCM -- May 9, 2014

Lattice QCD - fermion action

- Great variety of fermion actions in use:
- Wilson (clover)
- staggered (naïve, p4, ASQTAD, HISQ)
- domain wall (Shamir, Mobius, optimal)
- overlap
- Fermion action chosen to achieve:
- Reduced lattice artifacts: clover, p4, ASQTAD, HISQ
- Accurate chiral symmetry (DWF)
- Exact chiral symmetry (overlap)

Lattice QCD - fermion action

- The choice of fermion action does have important consequences!
- Wilson: large breaking of chiral symmetry
- Staggered:
- Large lattice artifacts without improvement.
- Four extra species (tastes) partially removed by rooting
- Chiral symmetry broken, mass protected by taste symmetry.
- Domain wall: $12-48 x$ more costly than Wilson
- Overlap:
- ~100x more costly than Wilson
- Monte Carlo simulation requires fixed topology
$\rightarrow 1 / L$ corrections and dangerous non-ergodicity

Domain wall fermions

- With adequate computer power, DWF become an interesting choice!
- Use 5-dimensional Wilson fermion action with Dirichelet
 BC on $s=0$ and $s=L_{\mathrm{s}}-1$ slice.
- 4-D chiral bound states form on the $\mathrm{s}=0$ and $L_{\mathrm{s}}-1$ walls.
- 5-D propagating states are large-action, lattice artifacts.
- 4-D states disappear as $p \rightarrow \pi / a$, solving the doubling problem.
- Accurate chiral symmetry at all energies, broken by left-right mixing: residual chiral symmetry breaking.

Chiral symmetry and topology

- Continuum Dirac operator $D=D_{\mu} \gamma^{\mu}$ obeys
$\left\{D, \gamma^{5}\right\}=0 \rightarrow$ if $D \psi_{n}=\lambda_{n} \psi_{n}$ then $D \gamma^{5} \psi_{n}=-\lambda_{n} \gamma^{5} \psi_{n}$

- Topological invariance of $N_{R}-N_{L}$ easy to see!
- Atiyah-Singer theorem relates topological charge of gauge field to $N_{R}-N_{L}$ of fermions.

Connection with Topology

- For the domain wall operator, low eigenvalues show this chiral pattern

- If the topological changes, all modes must mix between left and right walls.
- Tearing the gauge field must violate chirality!

Wilson Flow (Qi Liu)

- Instructive to examine topology and Dirac spectrum as the gauge fields are smoothed:

Local chirality violation

DWF at low energy

- At low energy $E \ll 1 / a$, 5-D DWF theory looks like a chiral 4-D theory (QCD) with small chiral asymmetry:
- Leading, dim-3 operator: $m_{\text {res }} \bar{q} q$
(mass term)
- Next leading dim-5 operator: $m_{\text {res }} \bar{q} \sigma^{u v} F^{v v} q$ (clover term)
- Very small discretization errors:

Ratios of dimensionless combinations of physical quantities computed using $1 / a=1.73$ and 2.28 GeV .

State-of-the-art Lattice QCD

Current state-of-the-art

- Physical $m_{\pi}=135 \mathrm{MeV}$ and $L=4-6 \mathrm{fm}$ now possible.
- Generate $48^{3} \times 96$ and $64^{3} \times 128$ ensembles of gauge field configurations.
- Complete set of measurements takes 5.3 hours on a 32 -rack BG/Q machine (sustains 1 Pflops)
- Large collaboration essential:
- Highly optimized code (64 threads, SPI comms., wide-vector FP)
- Sophisticated algorithms (deflation, $\mathrm{FG}(\Delta t)^{3}$ integrator)
- Complex measurement strategies (NPR, G-parity BC, 4-pt functions)

Efficient code is essential

- High-performance, Blue Gene/Q-optimized software underlies these results:
- Peter Boyle's BG/Q inverter
- Chulwoo Jung and Hantao Yin's threaded evolution and measurement code based on this inverter.
- Figure shows weak scaling on $96 \mathrm{BG} / \mathrm{Q}$ (Sequoia) racks.
- Sustained speed of 6 Pflops!

Weak Scaling for DWF BAGEL CG inverter

Code developed by Peter Boyle at the STFC funded DiRAC facility at Edinburgh

Measurement Techniques

- Use eigenvectors to solve $\not \subset G_{n}=h_{n}$ for multiple right-hand sides (deflation).
- Amortize eigCG or Lanczos set up time by using sources $\left(h_{n}\right)$ on each time slice (128) and measuring all quantities in the same job.
- Use All-Mode-Averaging technique (Blum, Izubuchi \& Shintani, arXiv:1208.4349 [hep-lat])
- Loosen CG stopping condition $10^{-8} \rightarrow 10^{-4}$.
- Obtain accurate result for 8 out of 128 time slices
$-\mathrm{O}\left(10^{-8}\right)$ accurate result $=\left\langle\mathrm{G}_{10-4}\right\rangle_{124}+\left\langle\mathrm{G}_{10-8}-\mathrm{G}_{10-4}\right\rangle_{8}$
- Achieve 5-20 x speed-up.

Simple state-of-the-art example: f_{π}

- 2012 (elaborate chiral fit): $f_{\pi}=127(3)_{\text {stat }}(3)_{\text {sys }} \mathrm{MeV}$
- $2013\left(m_{\pi}=135 \mathrm{MeV}\right): \quad f_{\pi}=130.0(0.3)_{\text {stat }} \mathrm{MeV}(40 \mathrm{cnfgs}$.
- Experiment:

$$
f_{\pi}=130.4(0.04)(0.2) \mathrm{MeV}
$$

New Opportunities

- With physical pion masses, large volumes and no need for chiral extrapolation we can tackle more complex and important quantities.
- Work with up, down and strange quarks (including some charm quark loops).
- $K \rightarrow \pi \pi$ decay
- $\Delta \mathrm{I}=1 / 2$ rule
- Direct CP violation and ε^{\prime}
- $K_{L}-K_{S}$ mass difference

Low Energy Effective Theory

- Represent weak interactions by local four-quark Lagrangian
$\mathcal{H}^{(\Delta S=1)}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left\{\sum_{i=1}^{10}\left[z_{i}(\mu)-\frac{V_{t d}}{V_{u d}} \frac{V_{t s}^{*}}{V_{u s}^{*}} y_{i}(\mu)\right] Q_{i}\right\}$

Four quark operators

- Current-current operators
$Q_{1} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A}\left(\bar{u}_{\beta} u_{\beta}\right)_{V-A}$
$Q_{2} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A}\left(\bar{u}_{\beta} u_{\alpha}\right)_{V-A}$
- QCD Penguins

$$
\begin{aligned}
& Q_{3} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{V-A} \\
& Q_{4} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V-A} \\
& Q_{5} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{V+A} \\
& Q_{6} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V+A}
\end{aligned}
$$

- Electro-Weak Penguins

$$
Q_{7} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\beta}\right)_{V+A}
$$

$$
Q_{8} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V+A}
$$

$$
Q_{9} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, S} e_{q}\left(\bar{q}_{\beta} q_{\beta}\right)_{V-A}
$$

$$
Q_{10} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V-A}
$$

$K \rightarrow \pi \pi$ decay

$K \rightarrow \pi \pi$ phenomenology

- Final $\pi \pi$ states can have $I=0$ or 2 .

$$
\begin{aligned}
\langle\pi \pi(I=2)| H_{w}\left|K^{0}\right\rangle & =A_{2} e^{i \delta_{2}} & \Delta I=3 / 2 \\
\langle\pi \pi(I=0)| H_{w}\left|K^{0}\right\rangle & =A_{0} e^{i \delta_{0}} & \Delta I=1 / 2
\end{aligned}
$$

- CP symmetry requires A_{0} and A_{2} be real.
- Direct CP violation in this decay is characterized by:

$$
\epsilon^{\prime}=\frac{i e^{\delta_{2}-\delta_{0}}}{\sqrt{2}}\left|\frac{A_{2}}{A_{0}}\right|\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right) \quad \begin{array}{|c|}
\begin{array}{c}
\text { Direct CP } \\
\text { violation }
\end{array} \\
\hline
\end{array}
$$

$\boldsymbol{K}^{0}-\overline{\boldsymbol{K}^{0}}$ mixing

- $\Delta S=1$ weak decays allow K^{0} and $\overline{K^{0}}$ to decay to the same $\pi-\pi$ state.
- Resulting mixing described by Wigner-Weisskopf:

$$
i \frac{d}{d t}\binom{K^{0}}{\bar{K}^{0}}=\left\{\left(\begin{array}{ll}
M_{00} & M_{0 \overline{0}} \\
M_{\overline{00}} & M_{\overline{00}}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{cc}
\Gamma_{00} & \Gamma_{0 \overline{0}} \\
\Gamma_{\overline{00} 0} & \Gamma_{\overline{00}}
\end{array}\right)\right\}\binom{K^{0}}{\bar{K}^{0}}
$$

- Decaying states are mixtures of K^{0} and K^{0}

$$
\begin{aligned}
& \left|K_{S}\right\rangle=\frac{K_{+}+\bar{\epsilon} K_{-}}{\sqrt{1+|\bar{\epsilon}|^{2}}} \quad \bar{\epsilon}=\frac{i}{2}\left\{\frac{\operatorname{Im} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Im} \Gamma_{0 \overline{0}}}{\operatorname{Re} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Re} \Gamma_{0 \overline{0}}}\right\} \\
& \left|K_{L}\right\rangle=\frac{K_{-}+\bar{\epsilon} K_{+}}{\sqrt{1+|\bar{\epsilon}|^{2}}} \quad \begin{array}{c}
\begin{array}{c}
\text { Indirect CP } \\
\text { violation }
\end{array}
\end{array}
\end{aligned}
$$

CP violation

- CP violating, experimental amplitudes:

$$
\begin{aligned}
\eta_{+-} & \equiv \frac{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon+\epsilon^{\prime} \\
\eta_{00} & \equiv \frac{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon-2 \epsilon^{\prime}
\end{aligned}
$$

- Where: $\epsilon=\bar{\epsilon}+i \frac{\operatorname{lm} A_{0}}{\operatorname{Re} A_{0}}$

Indirect: $|\varepsilon|=(2.228 \pm 0.011) \times 10^{-3}$
Direct: $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=(1.65 \pm 0.26) \times 10^{-3}$

Lattice Aspects

Physical $\pi \pi$ states - Lellouch-Luscher

- Euclidean $e^{-H t}$ projects onto $\mid \pi \pi(\vec{p}=0)>$
- Use finite-volume quantization.
- Adjust volume so $1^{\text {st }}$ or $2^{\text {nd }}$ excited
 state has correct p.
- Correctly include $p-p$ interactions, including normalization.
- Requires extracting signal from non-leading large \boldsymbol{t} behavior:

$$
G(t) \sim c_{0} e^{-E_{0} t}+c_{1} e^{-E_{1} t}
$$

$\Delta I=3 / 2$

$\Delta \mathrm{I}=3 / 2 \quad K \rightarrow \pi \pi$

- Three operators contribute $\mathrm{O}^{(27,1)}, \mathrm{O}^{(8,8)}$ and $\mathrm{O}^{(8,8) \mathrm{m}}$.
- Use isospin to relate to $K^{+} \rightarrow \pi^{+} \pi^{+}$.
- Use anti-periodic boundary conditions for d quark. (Changhoan Kim, hep-lat/0210003).

- Achieve essentially physical kinematics!
(63 $\rightarrow 146$ configurations)
- $\boldsymbol{m}_{\boldsymbol{\pi}}=142.9(1.1) \mathrm{MeV}$
- $\boldsymbol{m}_{K}=511.3(3.9) \mathrm{MeV}$
- $\boldsymbol{E}_{\pi \pi}=492(5.5) \mathrm{MeV}$

PPCM -- May 9, 2014

Computational Set-up

(Lightman and Goode)

- Use anti-periodic boundary conditions for d quark in two directions (average over three choices).
- Fix $\pi-\pi$ source at $t=0$, vary location of O_{W} and kaon source.

$t_{\pi}=0,16,32,48,0, \ldots$

$<\pi \pi|O| K>$ from 146 configurations

$O^{(8,8) m}$

Plot ratio of correlators: $\quad \frac{C_{K \pi \pi}^{i}(t)}{C_{K}\left(t_{K}-t\right) C_{\pi \pi}(t)}=\frac{\mathcal{M}_{i}}{Z_{K} Z_{\pi \pi}}$

Determine physical A_{2}

- $\operatorname{Re}\left(A_{2}\right)=\left(1.436 \pm 0.063_{\text {stat }} \pm 0.258_{\text {sys }}\right) 10^{-8} \mathrm{GeV}$

Experiment: 1.479(4) $10^{-8} \mathrm{GeV}$

- $\operatorname{Im}\left(A_{2}\right)=-\left(6.29 \pm 0.46_{\text {stat }} \pm 1.20_{\text {sys }}\right) 10^{-13} \mathrm{GeV}$
- Error estimates:

	$\operatorname{Re} A_{2}$	$\operatorname{Im} A_{2}$
lattice artefacts	15%	15%
finite-volume corrections	6.2%	6.8%
partial quenching	3.5%	1.7%
renormalization	1.8%	5.6%
unphysical kinematics	0.4%	0.8%
derivative of the phase shift	0.97%	0.97%
Wilson coefficients	6.6%	6.6%
Total	18%	19%

$\Delta \mathrm{I}=3 / 2: \quad$ Next results

(Tadeusz Janowski and Daiqian Zhang)

- Use two new large ensembles to remove a^{2} error $\left(m_{\pi}=135 \mathrm{MeV}\right.$, $\mathrm{L}=5.4 \mathrm{fm}$)
- $48^{3} \times 96,1 / a=1.73 \mathrm{GeV}$
- $64^{3} \times 128,1 / a=2.28 \mathrm{GeV}$

- First continuum results, (preliminary):
- $\operatorname{Re}\left(A_{2}\right)=\left(1.345 \pm 0.084_{\text {stat }}\right) \times 10^{-8} \mathrm{GeV}$
- $\operatorname{Im}\left(A_{2}\right)=-\left(6.32 \pm 28_{\text {stat }}\right) \times 10^{-13} \mathrm{GeV}$
- Experiment: $\operatorname{Re}\left(A_{2}\right)=1.479(4) 10^{-8} \mathrm{GeV}$

$\Delta I=1 / 2$

$\Delta I=1 / 2 \quad K \rightarrow \pi \pi$

- Made much more difficult by disconnected diagrams:

- Many more diagrams (48) than $\Delta I=3 / 2$.
- Initial threshold decay calculation successful (Qi Liu)
$-\operatorname{Re}\left(A_{0}\right): 25 \%$ statistical errors
$-\operatorname{Im}\left(A_{0}\right): 50 \%$ statistical errors

$\Delta I=1 / 2 K \rightarrow \pi \pi$ - Next steps
 (Chris Kelly \& Daiqian Zhang)

- Use all-2-all propagators (Trinity/KEK)
- Sum over localized sources - further suppress vacuum coupling
- See 5 x improvement in statistics for $I=0, \pi-\pi$ scattering
- Use G-parity BC to obtain $p_{\pi}=205 \mathrm{MeV}$
$-G=C e^{i \pi I y}$
- Non-trivial: $\quad\binom{u}{d} \rightarrow\binom{\bar{d}}{-\bar{u}}$
- Extra $I=1 / 2, s^{\prime}$ quark adds $e^{-m_{K} L}$ error.
- Tests: f_{K} and B_{K} correct within errors.

f_{K} with G parity BC

$\Delta I=1 / 2 \quad K \rightarrow \pi \pi:$ Physical kinematics

- Goal is a 20% calculation of $\varepsilon^{\prime} / \varepsilon$ with all errors controlled
- Repeat $\Delta I=3 / 2$ kinematics
- Use $32^{3} \times 64$ volume with $1 / a=1.37 \mathrm{GeV}$
- Achieve $p=205 \mathrm{MeV}$ from G-parity boundary conditions in 3 directions
- BG/Q gives $20 \times$ speedup
- Configuration generation at 500 time units
- Complete measurements performed on 10 configurations!
- Result expected in 1 year

$K_{L}-K_{S}$ mass difference

$K^{0}-\overline{K^{0}}$ Mixing

- Time evolution of $K^{0}-\overline{K^{0}}$ system given by familiar Wigner-Weisskopf formula:

$$
i \frac{d}{d t}\binom{K^{0}}{\bar{K}^{0}}=\left\{\left(\begin{array}{ll}
M_{00} & M_{0 \overline{0}} \\
M_{\overline{0} 0} & M_{\overline{00}}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{00} & \Gamma_{0 \overline{0}} \\
\Gamma_{\overline{0} 0} & \Gamma_{\overline{00}}
\end{array}\right)\right\}\binom{K^{0}}{\bar{K}^{0}}
$$

where:

$$
\begin{gathered}
\Gamma_{i j}=2 \pi \sum_{\alpha} \int_{2 m_{\pi}}^{\infty} d E\langle i| H_{W}|\alpha(E)\rangle\langle\alpha(E)| H_{W}|j\rangle \delta\left(E-m_{K}\right) \\
M_{i j}=\sum_{\alpha} \mathcal{P} \int_{m_{\pi}}^{\infty} d E \frac{\langle i| H_{W}|\alpha(E)\rangle\langle\alpha(E)| H_{W}|j\rangle}{m_{K}-E}
\end{gathered}
$$

$\mathbf{K}^{\mathbf{0}}-\overline{\mathbf{K}^{0}} \mathbf{M i x i n g}$

- CP violating: $p \sim m_{t} \quad \bar{\epsilon}=\frac{i}{2}\left\{\frac{\operatorname{Im} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Im} \Gamma_{0 \overline{0}}}{\operatorname{Re} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Re} \Gamma_{\overline{0}}}\right\}$

- CP conserving: $p \leq m_{c} \quad m_{K_{S}}-m_{K_{L}}=2 \operatorname{Re}\left\{M_{00}\right\}$

Lattice Version (Jianglei Yu)

- Evaluate standard, Euclidean, $2^{\text {nd }}$ order $K^{0}-\overline{K^{0}}$ amplitude:

$$
\mathcal{A}=\langle 0| T\left(K^{0}\left(t_{f}\right) \frac{1}{2} \int_{t_{a}}^{t_{b}} d t_{2} \int_{t_{a}}^{t_{b}} d t_{1} H_{W}\left(t_{2}\right) H_{W}\left(t_{1}\right) K^{0^{\dagger}}\left(t_{i}\right)\right)|0\rangle
$$

Interpret Lattice Result

$$
\begin{aligned}
\mathcal{A} & =N_{K}^{2} e^{-M_{K}\left(t_{y}-t_{i}\right)} \sum_{n} \frac{\left\langle\bar{K}^{0}\right| H_{W}|n\rangle\langle n| H_{W}\left|K^{0}\right\rangle}{M_{K}-E_{n}}\left(-\left(t_{b}-t_{a}\right)-\frac{1}{M_{K}-E_{n}}\right. \\
& \text { 1. } \Delta m_{K}{ }^{\mathrm{FV}} \\
& \text { 2. Uninteresting constant }
\end{aligned}
$$

3. Growing or decreasing exponential: $E_{n}<m_{K}$ must be removed!

- Finite volume correction:

$$
\left.M_{K_{L}}-M_{K_{S}}=2 \sum_{n} \frac{\left\langle\vec{K}^{0}\right| H_{W}|n\rangle\langle n| H_{W}\left|K^{0}\right\rangle}{M_{K}-E_{n_{0}}}-\left.\frac{E_{n_{0}}^{2}}{2 k_{n} M_{K}} \frac{d\left(\phi+\delta_{0}\right)}{d k}\right|_{m_{K}} V\left|\left\langle n_{0}\right| H_{W}\right| K^{0}\right\rangle\left.\left.\right|^{2} \cot \left(\phi+\delta_{0}\right)\right|_{M_{K}}
$$

N.H. Christ, X. Feng, G. Martinelli, C.T. Sachrajda

Lattice setup (Jianglei Yu)

- Must include charm quark (GIM $u-d$ cancellation)
- Two calculations performed
$-16^{3} \times 32, m_{p}=420 \mathrm{MeV}$, types $1 \& 2$ (arXiv:1212.5931)
$-24^{3} \times 64, m_{p}=330 \mathrm{MeV}$, all graphs included

Type 3

Type 4

PPCM -- May 9, 2014

Exponentially growing terms

- The vacuum, π^{0} and η require special treatment:
- Calculate $\langle X| H_{W}\left|K^{0}\right\rangle$ directly and subtract, $X=|0\rangle, \pi^{0}, \eta$
- Fit the exponential time dependence in the 4-point function
- Adjust $c_{s} \bar{s} d$ or $c_{p} \bar{s} \gamma^{5} d$ terms to completely remove an unwanted state.

$$
\begin{equation*}
\text { PPCM -- May 9, } 2014 \tag{46}
\end{equation*}
$$

Remove extra η contribution

- Calculate $\langle\eta| H_{W}\left|K^{0}\right\rangle$ directly and remove
- Has an $\sim 10 \%$ effect on the result

PRL 105, 241601 (2010)	Physical review letters	${ }_{10}^{\text {Week ending }}$ (eckMBR 2010
$\boldsymbol{\eta}$ and $\boldsymbol{\eta}^{\prime}$ Mesons from Lattice QCD		
N. H. Christ, ${ }^{1}$ C. Dawson, ${ }^{2}$ T. Izubuchi, ${ }^{3,4}$ C. Jung, ${ }^{3}$ Q. Liu, ${ }^{1}$ R.D. Mawhinney, ${ }^{1}$ C. T. Sachrajda, ${ }^{5}$ A. Soni, ${ }^{3}$ and R. Zhou ${ }^{6}$		
${ }^{1}$ Physics Department, Columbia University, New York, New York 10027, USA ${ }^{2}$ Department of Physics, University of Virginia, 382 McCormick Road, Charlottesville, Virginia 22904-4714, USA Brookhaven National Laboratory, Upton, New York 11973, USA ${ }^{4}$ RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA ${ }^{5}$ School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United King dom (Received 24 February 2010; published 8 December 2010)		
The large mass of the ninth pseudoscalar meson, the η^{\prime}, is believed to arise from the combined effects of the axial anomaly and the gauge field topology present in QCD. We report a realistic, $2+1$-flavor, lattice QCD calculation of the η and η^{\prime} masses and mixing which confirms this picture. The physical eigenstates show small octet-singlet mixing with a mixing angle of $\theta=-14.1(2.8)^{\circ}$. Extrapolation to the physical light quark mass gives, with statistical errors only, $m_{\eta}=573(6) \mathrm{MeV}$ and $m_{\eta^{\prime}}=$ 947 (142) MeV , consistent with the experimental values of 548 and 958 MeV .		
Do: 10.1103R	105.24601 PACS numbers: 1238.Ge, 1	$1440 . \mathrm{Be}$

 axial-vector currents. Given the vacuum breaking of the
symmetries which these currents generate, this should and sink of the meson propagator are not joined by
quark propagators, the needed exponential decrease comes

$$
\begin{aligned}
& \eta^{\prime}=\frac{1}{\sqrt{3}}(\bar{u} u+\bar{d} d+\bar{s} s) \\
& \eta=\frac{1}{\sqrt{6}}(\bar{u} u+\bar{d} d-2 \bar{s} s) \\
& \begin{array}{c}
K^{0} \longrightarrow \eta \\
\frac{\left.\left|\langle\eta| H_{W}\right| K^{0}\right\rangle\left.\right|^{2}}{M_{K}-M_{\eta}}\left(-\left(t_{b}-t_{a}\right)-\frac{1}{M_{K}-M_{\eta}}++\frac{e^{\left(M_{K}-M_{\eta}\right)\left(h_{b}-t_{\theta}\right)}}{M_{K}-M_{\eta}}\right)
\end{array}
\end{aligned}
$$

Latest results
 (Jianglei Yu)

- $N_{f}=2+1,24^{3} \times 32, m_{\pi}=330 \mathrm{MeV}, m_{c}{ }^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=949 \mathrm{MeV}$
- Incorporate GIM cancellation

- Large statistics (800 configurations, 64 measurements each).

Results

Δ_{K}	$T_{\text {min }}$	$Q_{1} \cdot Q_{1}$	$Q_{1} \cdot Q_{2}$	$Q_{2} \cdot Q_{2}$	ΔM_{K}
	6	$0.754(42)$	$-0.16(15)$	$2.70(18)$	$3.30(34)$
7	7	$0.755(42)$	$-0.18(15)$	$2.66(18)$	$3.23(34)$
	8	$0.751(42)$	$-0.18(15)$	$2.62(19)$	$3.18(35)$
Diagrams	$Q_{1} \cdot Q_{1}$	$Q_{1} \cdot Q_{2}$	$Q_{2} \cdot Q_{2}$	ΔM_{K}	
Type 12 12	$1.485(80)$	$1.567(38)$	$3.678(56)$	$6.730(96)$	
All	$0.754(42)$	$-0.16(15)$	$2.70(18)$	$3.30(34)$	

- Unphysical, $m_{\pi}=330 \mathrm{MeV}$
- Active charm but $m_{c} a=0.55$
- Result:

$$
\Delta M_{K}=3.30(34) 10^{-12} \mathrm{MeV}
$$

- $\Delta M_{K}{ }^{\text {expt }}=3.483(6) 10^{-12} \mathrm{MeV}$
- Agreement fortuitous!
- $32^{3} \times 64,1 / a=1.37 \mathrm{GeV}$, $m_{\pi}=330 \mathrm{MeV}$ started (Z. Bai)
- $80^{2} \times 96 \times 192,1 / a=3.0 \mathrm{GeV}$ calculations planned!

Outlook

- DWF with physical quark masses reproduce QCD at the $\leq 2 \%$ level on a $64^{3} \times 128$ lattice.
- NPR give continuum-like control of operator normalization and mixing.
- Theoretical advances allow rescattering effects to be correctly computed in Euclidean space (so far only for low energy $\pi-\pi$ states).
- Many critical quantities can now be computed:
- $K \rightarrow \pi \pi, \Delta I=3 / 2$ and $1 / 2, \varepsilon^{\prime} / \varepsilon$
- $M_{K_{L}}-M_{K_{S}}$
- $K \rightarrow \pi l T, K \rightarrow \pi v \bar{v}$
- Quark effects on $g_{\mu}-2$ at $O\left(\alpha^{3}\right)$ (L. Jin's poster)

