Effects of dynamic pitch and relative scaling on the perception of duration and prosodic grouping in American English

Alejna Brugos and Jonathan Barnes
Boston University, Boston, Massachusetts, USA
abrugos@bu.edu

Abstract

Results of two perception experiments suggest that using timing measures alone to compute prosodic structure misses valuable information from pitch. Previous research showed that pitch can distort perceived duration: tokens with dynamic or higher f0 are perceived as longer than comparable level-f0 or lower-f0 tokens, and silent intervals bounded by tokens of widely differing pitch are heard as longer than those bounded by tokens closer in pitch (the kappa effect). Phrase edges (signalled by increased duration, pause, phrase tones, and f0 reset) set the scene for pitch to modulate perceived duration. Two new experiments used the same duration and f0 manipulations (level vs. varying-slope rises, at varying pitch ranges) of segmentally-identical base files, in two separate tasks: 1) a linguistic grouping task using an ambiguously-structured phrase and 2) a psychoacoustic study on perceived duration. Results show that effects on perceived duration due to dynamic pitch can be either strengthened or nullified depending on relative scaling of compared tokens. These same manipulations push grouping judgments beyond what would be expected from distortions of perceived duration. This suggests that listeners integrate pitch and timing cues when judging linguistic structure, supporting measures of relative boundary size that combine duration and pitch measures.

Index Terms: duration perception, auditory illusions, dynamic pitch, timing, prosodic grouping, boundary tones

1. Introduction

Edges of prosodic groups are known to be marked (at least in many languages, Fon (2012) [1]) by pre-boundary lengthening, silent pauses, phrase tones and reset. Phonetic measures of these features are typically taken independently, without consideration of how they may interact in perception. However, perception of time can be systematically affected by a range of contextual factors (Brown, 2008) [2], including pitch (Hoopen, 2008) [3]. A growing body of work from a diverse range of fields shows that pitch and timing are not entirely perceptually independent.

1.1. Pitch-time interaction

Since Lehiste (1976) [4] showed that subjects perceived vowels with dynamic f0 as longer in duration than static-f0 vowels of the same objective duration, many studies have tried to replicate this finding, with varying results (see Cumming, 2011 [5] for an overview). Cumming (2011) [5] and Yu (2010) [6] both reproduced this effect, with differing methodologies and languages; Yu also found that vowels with higher f0 were perceived as longer than lower-f0 vowels.Outside of speech research, there is a substantial body of experimental work on pitch-timing interaction in perception. Henry (2011) [7] showed that perception of duration of non-speech tone glides can be modulated by the pitch change velocity of the target glide and of the standards: glides with greater pitch change velocity are perceived as longer than those with lesser pitch change velocity, or level-pitch tones.

Other work has focused on the effects on perceived duration of silent intervals bounded by filled intervals of varying pitch distance, a phenomenon known as the auditory kappa effect: silent intervals bounded by tones of closer pitch proximity are perceived as shorter in time than those of equal objective duration bounded by tones of a greater pitch distance (Cohen et al., 1953[8], 1954[9]). While typically demonstrated using non-speech tones (Shigeno, 1993 [10], Crowder & Neath, 1995 [11]; MacKenzie, 2007 [12]; inter alia), Brugos & Barnes (2012b) [13] showed that the auditory kappa effect also obtains for spoken language, such that the perceived duration of silent pauses in speech was modulated by the pitch distance across those pauses. In a second study using identical materials, Brugos & Barnes (2012a) [14] found that the effect of these pitch manipulations was even greater on perceived prosodic grouping of these phrases: even effects of objective duration differences on grouping perception were in some cases overridden. These results suggest that relative pitch proximity of neighboring prosodic phrases, described in the literature as phrase-initial reset (Jun, 2003) [15], should be taken into account for estimating boundary size, and support a trading relationship between pitch and timing cues in prosodic grouping (Beach, 1991 [16]; Cumming, 2011b [17]; Jeon & Nolan, 2013 [18]).

Of course, since phrase boundaries in natural speech commonly play host to dynamic pitch (e.g., boundary tones), pitch jumps (e.g., reset), and durational variation (phrase-final lengthening/pauses), we might expect all these pitch and timing cues to enter into cue-trading relationships for the signalling of prosodic grouping. In fact, something of this sort has been shown in a variety of studies. When f0 cues are neutral, grouping can be cued by duration cues alone (Scott,
under both scenarios. Gradiently prosodic phrases 2003 whether it is primarily just evalua base file produced multiple versions of the phrase, and the timing manipulations alone was nece modulate grouping perception by way of timing perception, it experiments.

manipulations of f0 and duration to produce stimuli in the of the complete phrase was used as a base file for additional experiments. identical base recording of 2.1.1. psychoacoustic judgment of perceived duration. To investigate how dynamic pitch and duration might interact 2.1. Methods The ambiguous phrase chosen as context for the linguistic grouping task was a string of color terms blue and green and purple (following methodology of Beach et al., 1996 [23]). This phrase can be parsed variously: 1) ungrouped (a simple list of 3 colors) or 2) two groups, one pair of colors and a third color on its own, i.e.: blue and (green and purple) (B-GP) or (blue and green) and purple (BG-P).1

The f0 pattern of base recordings of blue was manipulated to include both dynamic f0 and plateau contours, and crossed with a continuum of duration manipulations leading to changes in relative duration of the words blue and green. Assuming that blue being longer than green cues more B-GP responses, and that dynamic f0 cues longer perceived duration, then we might predict dynamic F0 in blue likewise to cue more B-GP responses: results of duration and grouping perception tasks, in other words, should be largely overlapping. However, if, like in Brugos & Barnes 2012a [14], the effects of pitch go beyond their modulation of perceived duration, results from the two tasks are expected to diverge.

2.1.1. Stimuli

Manipulations of pitch and duration were performed to an identical base recording of blue, and these same resultant resyntheses were used in both the grouping perception and duration perception tasks as described below. A single version of the complete phrase was used as a base file for additional manipulations of f0 and duration to produce stimuli in the experiments. In order to see whether pitch manipulations modulate grouping perception by way of timing perception, it was necessary first to create a neutral condition in which timing manipulations alone might shift perceived grouping. A female native speaker of American English (the first author) produced multiple versions of the phrase, and the eventual base file token was selected through an extensive process of evaluation, resynthesis, and concatenation of naturally spoken words. Durations and intensity of each of the words were adjusted to produce a natural-sounding concatenation that did not strongly cue either B-GP or BG-P grouping. Base durations and duration continuum points were chosen based on a pre-experiment screening with 12 subjects via web form.

Figure 3: The base/neutral file. The words blue and green are — 400 ms long. The f0 contour of blue is a plateau with a 2 st rise, and then level f0, and green is level f0, 2 st below the max f0 of blue, and purple starts another 2 st lower, and ends in a 4 st fall.

Pitch and timing manipulations: The base recording of blue was resynthesized to create 3 f0 contour shapes at 5 durations, and at 3 steps affecting f0 range. All tokens of blue began with a rise similar to what was seen in natural productions: the 2 st rise began at the onset of voicing, through the [i] and into the beginning of the vowel [a]. In order to reduce segmental variation in the onset that might cue differences in perceived prominence and grouping, all manipulations for duration and contour were done only to the /u/ portion of the word following this pivot point (at 158 milliseconds into the word). From this point, the f0 did one of 3 things: 1) stayed level to the end of the word (“2-st-rise”) or 3) rose 4 st from the pivot (“4-st-rise”). 5 duration manipulations were performed on this same post-pivot interval such that the total duration of the word equalled 300 ms, 350 ms, 400 ms, 450 ms, and 500 ms, creating 15 time-by-contour manipulations (Figure 4, left).

Unfortunately, introducing a comparison of dynamic vs. static pitch into an experiment such as ours turns out to be far from simple. As Figure 5 shows, any attempt to alter f0 dynamically during the word blue in our sequence necessarily alters the pitch gap across the following boundary also. Given the results of Brugos & Barnes (2012b)[14], this turns out to be a serious potential confound for any investigation of the effects of dynamic pitch on perceived duration.

Figure 4: The base file blue was resynthesized to create 3 contour shapes at 5 durations, and duration of the initial 2 st rise was held constant (left). F0 contours for blue were each shifted to 3 f0 steps.

Figure 5: Schematic showing how dynamic F0 can introduce pitch differences across phrases.

1 It should be noted that there is controversy in the literature as to whether it is primarily just relative boundary size, rather than categorical identity of the boundaries involved, that matters most for interpretation (Price et al. 1991 [24]; Clifton et al., 2002 [25]; Jun, 2003 [15]: inter alia). We remain agnostic here as to whether the prosodic phrases used in this study are instantiations of specific levels of the Prosodic Hierarchy (Selkirk, 1986) [26], or instead recursive or gradiently-sized groups (Ladd, 1986 [27]; Wagner, 2005 [28]; Shriever, 2006 [29]; Kentner & Féry, 2013 [30]). The points we wish to make regarding the implementation of phrasing hold equally well under both scenarios.
In order to control for this confound, we chose to actively manipulate pitch step orthogonally to the manipulations of dynamic pitch so that we could better separate the effects. Each resulting contour/time combination was resynthesized at 3 different f0 ranges (“pitch steps”) based on the pitch relationship between the end point of blue and the f0 of the immediately following words in the grouping experiment (and green), which were always level at 202 Hz. 3 pitch steps were chosen: 1) 2 st above green (the level of the neutral condition for the plateau contour shown in Figure 3, above), 2) ending 4 st above green and 3) ending level to green. In each case, the entire contour was shifted up or down in pitch space.

Because manipulations to blue alone were not sufficient to cue grouping differences for all listeners in a pre-experiment screening, and as it was obvious to some listeners when the post-blue phrase was unchanging, manipulations to the duration of green were also added. Base green was approximately 400 ms in duration, and additional manipulations yielded green at 350 and 450 ms as well.

2.1.2. Subjects, presentation and task
16 native speakers of American English (age 18 to 22 years) participated in Experiment 1 for a payment of $10. 9 of these subjects additionally participated in Experiment 2 for an additional $10. (Experiment 2, the duration task, was always presented to subjects after completion of Experiment 1.) Subjects faced a laptop and listened to stimuli over headsets. Both experiments were forced-choice tasks, with responses indicated via a button box or designated keys on the laptop. Each experiment took about 25 minutes, including breaks and training. Subjects read a brief introduction to the study, then proceeded to a training section, to ensure that they understood the task. For Experiment 1, subjects were presented with natural examples of prosodic grouping (of repeated digits) produced by a native speaker. Subjects proceeded to the experimental phase after answering at least 75% correct of at least 10 training trials. For Experiment 2, training consisted of presentations of plateau tokens of differing durations, using only duration differences of 100 ms or greater. Subjects proceeded to the experimental phase upon correctly answering 5 training trials in a row.

Experiment 1: Grouping perception. The screen presented 2 images representing two grouping choices: 1) One solid blue ball, and another purple with green spots (B-GP) and 2) one blue ball with green spots, and another solid purple (BG-P). The text “blue and green & purple” and “blue & green and purple” accompanied each image. For each trial, subjects were played a recording of the complete phrase blue and green and purple, and asked to indicate whether they heard the phrase as corresponding to B-GP or BG-P. They were not instructed to attend to any specific aspect of the signal. Trials included phrases with the 45 blue manipulations (3 contours x 5 durations x 3 time steps), paired with the phrase completion, including 3 durations of green (350, 400, and 450 ms): 4 repetitions with 400-ms green, and 2 repetitions for the other 2. These 360 trials were randomized for each subject.

Experiment 2: Duration perception. Target versions of the word blue identical to those in Experiment 1 were compared to level-f0 standards of the same base file blue. Standards were completely level-f0 versions of blue at 202 Hz (the level of and green in the grouping experiment), and presented in the same 5 durations of the targets (300, 350, 400, 450 and 500 ms). Trials consisted of a target followed by a standard, with 200 ms of silence interceding. Each pairing was also presented in the opposite order, that is, standard followed by target (45 targets x 5 standards x 2 orders = 450 trials). An additional repetition of each of the 2 rise contours in the target-standard order was included to maximize repetitions of the comparisons of greatest interest, for a total of 600 trials, randomized for each subject. Subjects were asked to indicate which of the two repetitions of the word blue sounded longer.

3. Results and analysis

Experiment 1: Results presented are from 5598 experimental trials for 16 subjects. Figure 7 displays proportion of B-GP responses as a function of duration difference between the words blue and green (durations of and & purple remain constant for all conditions). Positive time values indicate that blue is longer than green, and negative that blue is shorter. At left, individual lines represent the 3 contours (plateau, 2-st- rise, 4-st-rise) and at right the 3 pitch steps (0-level, 2-st- above, 4-st-above). The upward diagonal trend of the lines in both graphs shows that responses are strongly correlated with duration difference between blue and green. Bigger time values show more responses that blue is grouped separately (B-GP), and smaller time values more responses that blue is grouped with green (BG-P). The three lines by contour (left) show virtually no separation, but the 3 lines by pitch step (right) show clear separation such that trials where the pitch of blue ends level with the following words show proportionately greater responses that blue grouped with green (BG-P), and higher pitch steps show increasingly more responses that blue is grouped separately (B-GP).

Results were analyzed using mixed-effects logistic regression, implemented through the lme4 package (Bates & Maechler, 2009 [31]) in R with response (“B-GP” or “BG-P”) as dependent variable, and time step, pitch step and f0 contour as fixed factors. Subject was included as a random effect (Baayen et al., 2008 [32]). The result was a model (N = 5598, log-likelihood = -3269) showing an expected significant main effect of time step (Wald Z = 29.57, p < .001), as well as main effects for pitch step, with 2-st and 4-st differing from 0-level (2-st: Wald Z = 5.371, p < .001; 4-st, Wald Z = 7.54, p < .001). There was a weak effect of contour (between plateau and 2-st-rise (Wald Z= 1.98, p < .05), also pushing responses toward B-GP. There was also a somewhat complicated series of interactions between contour and pitch step such that dynamic pitch contours showed a slight tendency at the 2-st and 4-st steps to produce fewer B-GP responses, which will be addressed in the discussion section.

Experiment 2: Results are presented for 9 subjects for 3360 trials (only target-standard order trials are included, being closest to conditions of Experiment 1.) Figure 8 displays the proportion of “target longer” responses as a function of duration difference between target and standard.
Positive time values indicate a target longer than a standard, and negative that the target is shorter. (For time = 0, target and standard were of identical duration). At left, lines again represent the 3 contours, and at right the 3 pitch steps. The upward diagonal trend of the lines in both graphs shows that subject responses are strongly correlated with the duration, with more responses that the target was longer when the target was indeed objectively longer. The three lines by contour in (figure 8, left) again show virtually no separation, and the 3 lines by pitch step (figure 8, right) only show some suggestion of separation where time = 0.

A mixed model analysis was performed much as in Experiment 1, but with response (“target longer” or “standard longer”) as the dependent variable. The result was a model (N = 3360, log-likelihood = -1601) showing significant main effect of time step (target-standard time difference) (Wald Z = 27.47, p < .0001). There was no main effect of contour, but also no significant main effect of pitch step. There was, however, a slightly significant interaction between contour and pitch step (Wald Z = 2.43, p < .05) only for the 2-st-rise contour with the 4-st-above pitch step.

4. Discussion

The effects of f0 manipulations on grouping perception and duration perception are not identical. The effect of contour (rising pitch vs. plateau) did not strongly influence results in either the grouping perception or the duration perception experiment. Pitch step appears to have influenced responses in both experiments, but potentially in complicated ways.

The complicated interactions between pitch step and contour seen in the results of Experiment 1 are likely a reflection of perceived scaling differences. While pitch step was defined here in terms of pitch distance between the end of blue and the following phrase, this likely reflects perceived scaling only for plateau tokens. It is known that for tone glides, perceived pitch is roughly equivalent to a point roughly 2/3 of the way through the glide (Rossi’s “2/3 rule,” Rossi, 1971 [33]). Estimating perceived pitch thus, tokens where blue is either dramatically higher or lower than green will tend to be perceived as B-GP, and where they are similar in pitch there are likely to be more BG-P judgments. Closer pitch across the boundary may influence perceived tonal continuity, and such pitch proximity or similarity of pitch may suggest a weaker boundary. Large pitch changes across a boundary, conversely, create a greater discontinuity, and cue a stronger boundary. Such an observation is in keeping with proposals of prosodic grouping that make reference to gestalt-like principles, such as proposed by Kentner & Féry (2013) [30], and similar to principles proposed for music grouping by Lerdahl & Jackendoff (1983) [34]. It is also worth noting that pitch is recognized as playing a role in connecting phrases into coherent segments in discourses (Wichmann, 2000 [35]; Hansson, 2003 [36]; Hirst, 1993 [37]), but such effects have not been as thoroughly explored in intonational phonology traditions such as AM/ToBI (Beckman & Ayers, 1997 [38]).

In Experiment 2, the lack of effect of pitch contour, seemingly suggests that dynamic pitch does not modulate perceived duration. This may well be due to the orthogonal manipulation of pitch range. When examining the subset of cases where the target and standard durations were equal, more responses that the target was longer can be seen when there is a big pitch jump between target and standard. It is possible that, as shown with the kappa effect, such a pitch jump affects perceived duration of the interceding silent interval. Indeed, it may be the case that subjects are not clearly distinguishing between the durations of the filled intervals vs. the silent intervals. (Note that there is a larger silent interval, 200 ms vs. 50 ms, in Experiment 2, and this may be reflected in the overall tendency for subjects to hear the first item as longer: 60%, in spite of balanced presentations.) It is possible that at least some of the previously reported effects of dynamic pitch on perceived duration are due to a confound of dynamic pitch introducing pitch step differences across compared tokens. Under certain circumstances dynamic pitch may have an effect, but circumstances may need to be just right, and may be overridden by other effects, such as relative scaling. It is also conceivable that while the psychoacoustic effect of dynamic pitch on perceived duration is real, it may not transfer straightforwardly to speech.

5. Conclusions

These results of these experiments add to our understanding of the effects of pitch on perceived duration, and suggest that pitch factors affect grouping judgments beyond what would be expected from distortions of perceived duration. While pitch factors have been shown to modulate perceived duration, such effects do not account for the degree to which pitch changes affect perceived grouping. Pitch relations across boundaries influence perceived juncture across those boundaries, at times overriding the effects of durational cues. Results support the idea that listeners integrate pitch and timing cues when judging linguistic structure, supporting measures of relative boundary size that combine duration and pitch measures.
6. References

