Exploratory Search of Long Surveillance Videos

Greg Castanén and Venkatesh
Saligrama
Boston University
Boston, MA, USA
gdc1@bu.edu, srv@bu.edu

ABSTRACT

We present a fast and flexible content-based retrieval method for
surveillance video. Designing a video search robust to uncertain
activity duration, high variability in object shapes and scene
content is challenging. We propose a two-step approach to
video search. First, local features are inserted into an inverted
index using locality-sensitive hashing (LSH). Second, we utilize
a novel dynamic programming (DP) approach to robustify against
temporal distortion, limited obscuration and imperfect queries.
DP exploits causality to assemble the local features stored in
the index into a video segment which matches the query video.
Pre-processing of archival video is performed in real-time, and
retrieval speed scales as a function of the number of matches rather
than video length. We derive bounds on the rate of false positives,
demonstrate the effectiveness of the approach for counting, motion
pattern recognition and abandoned object applications using seven
challenging video datasets and compare with existing work."

Categories and Subject Descriptors

14.8 [Computing Methodologies]: Image Processing
and Computer Vision—Scene Analysis; 1.5.4 [Computing
Methodologies]: Pattern Recognition—Applications

General Terms
Algorithms

Keywords

Exploratory search, Video search, Dynamic programming,
Surveillance

1. INTRODUCTION

Surveillance video camera networks are increasingly ubiquitous,
providing pervasive information gathering capabilities. In many

!'This research was supported by ONR grant N000141010477,
NGA grant HM1582-09-1-0037, NSF grant CCF-0905541, and
DHS grant 2008-ST-061- ED0001

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MM’12, October 29—November 2, 2012, Nara, Japan.

Copyright 2012 ACM 978-1-4503-1089-5/12/10 ...$15.00.

André Louis Caron and Pierre-Marc
Jodoin
Université de Sherbrooke
Sherbrooke, Quebec, Canada
andre.louis.caron@usherbrooke.ca,
pierre-marc.jodoin@usherbrooke.ca

applications, surveillance video archives are used for forensic
purposes to gather evidence after the fact. This calls for
content-based retrieval of video data matching user defined queries
with robustness to clutter and distortion.

Exploratory search [22] is a specialization of
information-seeking developed to address such situations. It
describes the activity of attempting to obtain information through
a combination of querying and collection browsing. Development
of exploratory search systems requires addressing two critical
aspects: video browsing and content-based retrieval. The focus of
this paper is the latter. We present a method for fast content-based
retrieval adapted to characteristics of surveillance videos. The
most challenging of these are:

1.) Data lifetime: since video is constantly streamed, there is a
perpetual renewal of video data. This calls for a model that can be
updated incrementally as video data is made available. The model
must also scale well with the temporal mass of the video.

2.) Unpredictable queries: the nature of queries depends on
the field of view of the camera, the scene itself and the type of
events being observed. The system should support queries of
different nature that can retrieve both recurrent events such as
people entering a store and infrequent events such as abandoned
objects and cars performing U-turns.

3.) Unpredictable event duration: events are unstructured.
They start anytime, vary in length, and overlap with other events.
The system is nonetheless expected to return complete events
regardless of their duration and whether or not other events occur
simultaneously.

4.) Clutter and occlusions: Tracking and tagging objects in urban
videos is challenging due to occlusions and clutter; especially when
real-time performance is required.

1.1 Related Work

Previous approaches to image and video-based retrieval are
based on summarization and scene understanding. Summarization
methods are loosely related to search. They attempt to reduce
the video to its relevant sections, typically dividing the video
into “shots” [17, 15] by locating and annotating key frames
corresponding to scene transitions or an absence of motion.
Unfortunately, such scene transitions are infrequent in surveillance
video, rendering most summarization approaches unsuitable for
exploratory search in complex scenes, the focus of this paper.

Scene-understanding methods have been suggested for
exploratory search [10, 19, 25]. These methods in general
focus on classifying observed activities in terms of activities
learned from a training video. For instance, activities observed
in public areas often follow some basic rules (such as traffic
lights, highways, building entries, etc), which are learned during
the training phase. Common topic modeling techniques include

Feature
Extraction

Query

Features

ﬁ

LSH
Index

Lightweight Inverted
Index Index
I »1 Lookup

Creation

User

Commands

Set of Query Features

Video Segments

Partial
Matches

Dynamic
Programming

Figure 1: From streaming video, local features for each document are computed and inserted into a fuzzy, lightweight index. A user inputs a query,
and partial matches (features which are close to parts of the query) are inserted into a dynamic programming (DP) algorithm. The algorithm extracts

the set of video segments which best matches the query.

HMMs [13, 10], Bayesian networks [23], context free grammars
[20], and other graphical models [I1, 14, 21]. We point out that
techniques that require global behavior understanding often rely on
tracking [13, 1 1] while those devoted to isolated action recognition
rely on low-level features [7, 26]. The classification stage can then
be used to retrieve pre-defined patterns of activity [10]).

Scene understanding techniques which focus on global
explanations operate at a competitive disadvantage in search:
the preponderance of clutter (requirement four) in surveillance
video makes the training step of scene understanding prohibitively
difficult. Second, since these techniques often focus on
understanding recurrent activities, they are unsuited for retrieving
infrequent events - this can be a problem, given that queries
are unpredictable (requirement two). Finally, the training step
in scene understanding can be prohibitively expensive, violating
requirement three, large data lifetimes.

Unlike summarization approaches, we extract a full set of
features; this is mandatory, as we have no a-priori knowledge of
what query will be asked. Unlike scene understanding techniques,
we have no training step; this would be incompatible with the data
lifetimes and magnitudes of the corpus. Instead, we develop an
approach based on exploiting temporal orders on simple features,
which allows us to find arbitrary queries quickly while maintaining
low false alarm rates. We demonstrate a substantial improvement
over scene-understanding methods such as [23, 10] on a number of
datasets in Section 5.

2. OVERVIEW

To address the challenges of exploratory search, we utilize a
two-step process that first reduces the problem to the relevant
data, and then reasons intelligently over that data. This process
is shown in Fig. 1. As data streams in, video is pre-processed to
extract relevant features - activity, object size, color, persistence
and motion. These low-level features are hashed into a fuzzy,
light-weight lookup table by means of LSH [8]. LSH accounts for
spatial variability and reduces the search space for a user’s query to
the set of relevant partial (local) matches.

The second step is a search engine optimization which reasons
over the partial matches to produce full matches; segments of video

which fit the entire query pattern, as opposed to part of it. This
optimization operates from the advantageous standpoint of having
only to reason over the partial matches, which are the relevant
subset of the video. In surveillance video, where a long time can
pass without relevant action, this dramatically reduces the workload
of the optimization algorithm.

We then present two solutions for finding full matches. The
first is a greedy approach which flattens the query in time. The
second, a novel dynamic programming (DP) approach, exploits
the causal ordering of component actions that makeup a query.
DP reasons over the set of partial matches and finds the best
full match. We also rigorously establish theoretical guarantees
(Theorem 4.1). We show that the number of false positives in a
surveillance environment - as actions become more complex — the
probability of random actions mimicking them goes to zero.

3. LIGHTWEIGHT INDEX

Surveillance video frequently contains long periods of inactivity
and irrelevance. In this section we describe an approach for
creating a lightweight index with local features in order to reduce
complexity for the search engine.

3.1 Feature extraction

3.1.1 Structure

For the purpose of feature extraction, a video is considered to
be a spatio-temporal volume of size H x W x F where H x W
is the image size in pixels and F' the total number of frames in the
video. The video is divided along the temporal axis into contiguous
documents each containing A frames. As shown in Fig. 2, each
frame is divided into tiles of size B x B. An atom is formed by
grouping the same tile over A frames. These values vary depending
on the size of the video - for our videos, we chose B equal to 8 or
16 pixels, and A equal to 15 or 30 frames, depending on frame rate.
As the video streams in, features are extracted from each frame.
Whenever a document is created, each atom 7 is assigned a set of
features (see Sec. 3.1.2) describing the dynamic content over that
region.

We construct a pyramidal structure to robustify our algorithm to

71 8
o Atom S5y
H -
Pixel (i,j) =
Al ell1]f 2] 3

=

(&)

o

(a]

Figure 2: (Left) Given an W x H X F video, documents are

non-overlapping video clips each containing A frames. Each of the
frames are divided into tiles of size B x B. Tiles form an atom when
aggregated together over A frames. (Right) Atoms are grouped into
two-level trees - every adjacent set of four atoms is aggregated into a
parent, forming a set of partially overlapping trees.

location and size variability in detected features. Each element of
the pyramid has four children. This structure is made of k-level
trees, each containing M = ZLI I nodes (Fig. 2). In this
approach, a document containing U x V' atoms will be assigned
(U—-k+1) x (V —k+ 1) partially overlapping trees to be
indexed. For instance, in Figure 2, we draw a depth two tree on
a document which is 2 x 3 atoms, resulting in two overlapping
trees, each containing M = 5 nodes.

Each node of a tree is assigned a feature vector obtained by
aggregating the feature vector of its children. Let n be a non-leaf
node and a, b, ¢, d its four children. The aggregation process can
be formalized as

(i N S(b) =(c) =(d
7 =y (;cg,“),:c;),xﬂ:c;)) 7

where 1y is an aggregation operator for feature f. Sec. 3.1.2
presents more details on the aggregation operator. Given that
several features are extracted for each atom, aggregating a group
of k x k atoms results in a set of feature trees {tree; }, one for each
feature f. Given that a k-level tree contains M nodes, each treey

contains a list of M feature instances, namely treey = {:E’Sf)}

where 7 stands for the 7th node in the tree.

3.1.2 Features

As reported in the literature [12, 18, 24], atom features can be of
any kind such as color, object shape, object motion, tracks, etc. We
chose to use local processing due to the computational efficiency
which makes it better suited to the constant data renewal constraint
and real-time feature extraction. Because our focus is surveillance
video, we assume a stable camera. To be effective on a moving
or zooming camera, motion and zoom compensation would have
to be applied in advance of feature extraction. Feature extraction
computes a single value for each atom, which is aggregated into
feature trees. Our method uses the following five features:

(1) Activity z,: Activity is detected using a basic background
subtraction method [5]. The initial background is estimated using
a median of the first 500 frames. Then, the background is updated
using the running average method. At the leaf level, z, contains
the proportion of active pixels within the atom. Aggregation for
non-leaf nodes in feature trees, 14, is the mean of the four children.
(2) Object Size x,: Objects are detected using connected

components analysis of the binary activity mask obtained from
background subtraction [5]. Object size is the total number
of active pixels covered by the connected component. The
aggregation operator 1 for non-leaf nodes in feature trees is the
median of non-zero children. Whenever all four children have a
zero object size, the aggregation operator returns zero.

(3) Color Z.: Color is obtained by computing the quantized
histogram over every active pixel in the atom. RGB pixels are then
converted to the HSL color space. Hue, saturation and luminance
are quantized into 8, 4 and 4 bins respectively. The aggregation
operator v, for non-leaf nodes in feature trees is the bin-wise sum
of histograms. In order to keep relative track of proportions during
aggregation, histograms are not normalized at this stage.

(4) Persistence x,: Persistence is a detector for newly static
objects. It is computed by accumulating the binary activity mask
obtained from background subtraction over time. Objects that
become idle for a long periods of time thus get a large persistence
measure. The aggregation operator v, for non-leaf nodes in feature
trees is the maximum of the four children.

(5) Motion Z,,: Motion vectors are extracted using Horn and
Schunck’s optical flow method [6]. Motion is quantized into 8
directions and an extra “idle” bin is used for flow vectors with
low magnitude. &, thus contains a 9-bin motion histogram. The
aggregation operator 1, for non-leaf nodes in feature trees is a
bin-wise sum of histograms. In order to keep relative track of
proportions during aggregation, histograms are not normalized at
this stage.

As mentioned previously, these motion features are extracted
while the video streams in. Whenever a document is created, its
atoms are assigned 5 descriptors, namely {zq, s, Zc, Tp, Tm }-
These descriptors are then assembled to form the 5 feature trees
{treeq}, {trees} ,{tree.}, {treep},{treem}. These feature
trees are the basis for the indexing scheme presented in section
3.2. After feature trees are indexed, all extracted feature content is
discarded, ensuring a lightweight representation. It is worth noting
that these features are intentionally simple. This speeds up feature
extraction and indexing while being robust to small distortions
because of the coarse nature of the features. While motion can be
sensitive to poorly-compensated camera motion or zoom, and color
can be sensitive to illumination changes, the other features have
been shown to relatively robust to these effects [5]. In addition, we
leverage on the dynamic programming in section 4.2.2 to limit false
activity detection.

3.2 Indexing & Hashing

When a document is created, features are aggregated into (U —
k+1) x (V —k+ 1) k-level trees. Each tree is made of 5 feature
trees, namely {tree,}, {trees}, {tree.}, {treey}, {tree,}. To
index a given feature tree trees efficiently, our method uses an
inverted index for content retrieval. Inverted index schemes,
which map content to a location in a database, are popular in
content-based retrieval because they allow extremely fast lookup in
very large document databases. For video, the goal is to store the
document number ¢ and the spatial position (u, v) in the database
based on the content of treey. This is done with a mapping function
which converts “tree;” to an entry in the database where (¢, u, v)
is stored. Two trees with similar contents, therefore, should be
mapped to proximate locations in the index; by retrieving all entries
which are near a query tree, we can recover the locations in the
video of all features trees that are similar.

This mapping and retrieval can be made for which update
and lookup exhibit flat performance (O(1) complexity). Because
similar content at different times is mapped to the same bin, the

time required to find the indices of matching trees does not scale
with the length of the video. Obviously, the total retrieval time
must scale linearly with the number of matching trees, but this
means that the run-time of the retrieval process scales only with
the amount of data which is relevant. In videos where the query
represents an infrequently-performed action, this optimization
yields an immense improvement in runtime.

Hashing: A hash-based inverted index uses a function to map
content to an entry in the index. This is done with a hashing
function h such that i : treey — j, where j is a hash table bucket
number. Usually, hash functions attempt to distribute content
uniformly over the hash space by minimizing the probability of
collisions between two non-equal entries:

T#§ = P{@) =h)}~0.

However, in a motion feature space, descriptors for two similar
events are never exactly equal. Moreover, it is unlikely that a user
query can be translated to feature vectors with sufficient accuracy
for such a strict hash function.

As a solution, we resort to a locality-sensitive hashing
(LSH) [€] technique. LSH is a technique for approximation of
nearest-neighbor search. In contrast to most hashing techniques,
LSH attempts to cluster similar vectors by maximizing the
probability of collisions for descriptors within a certain distance
of each other:

T~y = P{h(Z)=h(y)} > 0.

If feature trees are close in Euclidian distance (the element-wise
square of the distances between node values in the two trees is
small), then the probability of them having the same hash code is
high. Because our feature trees contain M real-valued variables,
LSH functions can be drawn from the p-stable family:

hap(trees) = V : treref +bJ ;
where @ is a M-dimensional vector with random components
drawn from a stable distribution, b is a random scalar drawn from
a stable distribution and r is an application-dependent parameter.
Intuitively, @ represents a random projection, an alignment offset
b and a radius r controlling the probability of collision inside the
radius.

Indices are built and searched independently for each feature.
Thus, the database is made of five indices Iy, one for each
feature f. Each index I; is composed of a set of n hash tables
{Ty:}, Vi = 1,...,n. Each hash table is associated its own
hash function Hy; drawn from the p-stable family hgz . The
parameter r can be adjusted to relax or sharpen matches. In
our implementation, r is fixed for a given feature. The random
parameters @ and b ensure projections from the different hash
functions complement each other.

Given a feature tree trees with hash code Hjy;(trees) = j,
Ty,i[j4, u,v] denotes the set of document numbers {¢} such that
feature trees at (¢, u, v) have similar content. Lookup in the index
Iy consists of taking the union of document numbers returned by
lookup in all tables {T’,; }:

I(trees,u,v) = Ui Ty; [Hy,i(trees), u,v].

Fig. 3 illustrates several feature trees partitioned into groups,
where trees in the same group have been given the same hashing
key. For a given video, we plotted the content of four of the most
occupied buckets for the motion feature tree,,. As one can see, the
trees associated to similar motion patterns in various parts of the
scene have been coherently hashed into similar buckets.

Figure 3: Contents of four buckets of a hash table for the motion
feature. Arrows size is proportional to the number of hits at the
specified location across the entire video. The hash buckets are
associated to activity (a) side walk (b) upper side of the street (c) lower
side of the street (d) crosswalk.

3.2.1 Data structure

As described previously, the inverted index stores in the same
bucket the spatio-temporal position {(¢,u,v)} of all trees whose
content is similar. As shown in Fig. 4, each bucket is a (U — k +
1) x (V — k + 1) matrix (see Sec. 3.1.1) whose cells contain a
list of document numbers {¢}. In that way, having an (u, v) matrix
lookup located right after the hashing lookup ensures a retrieval
time of O(1).

Tf)i

o

g

Figure 4: Hash table structure. For a given tree treey with
Hy ;(treey) = j, lookup T ;[j,u, v] is performed in two steps: (1)
fetch the bucket at position ;5 and (2) fetch the list of document numbers
at position (u, v) in the bucket.

Lightweight Storage: In contrast to approaches relying on a
distance metric, such as K-nearest neighbor search, the hash-based
index representation does not require storage of feature descriptors.
T,; contains only document numbers {¢}, which are stored in
4-byte variables. Our features, being local and primitive, are
dependent on foreground content. As such, both our indexing times
and storage scale linearly with the amount of foreground content in
the video. This is a useful feature for surveillance video, which can
have persistently inactive spaces or times throughout a video. For
example, the size of the index for a 5 hour video with an activity
rate of 2.5% is only 150kb while the input color video requires
almost 7Gb (compressed).

Building Lookup Table: As video streams in, the index for each
feature is updated by a simple and fast procedure. After extraction
of feature f for document ¢ is completed, the extracted features are
grouped into trees, as described in Sec. 3.1. Then, I is updated
with the mapping tree; — (¢, u,v) for each tree position (u,v)

covering an area with significant activity. This is repeated for each
feature f.

4. SEARCH ENGINE

We showed in Sec. 3 how to extract low-level features from a
video sequence, bundle them into trees and index them for O(1)
content-based retrieval. Here we explain how to use feature index
for high-level search.

4.1 Queries

In video search without exemplars, it’s essential to provide a
straightforward way for a user to input a query. For our purposes, a
query is defined as an ordered set of action components (for simple
queries, a single component frequently suffices), each of which is a
set of feature trees. To create a query, the user types in the number
of action components, and is then presented with a GUI, shown in
Figure 5 containing the first frame of the video to search for each
of the action components. The user then selects the type of feature
he wishes to search for, and draws the region of interest (ROI) that
he wishes to find it in. These regions and the features (directions
of motion, in this case) are shown in Fig.8 as green areas and red
arrows, respectively.

As an example, to describe a u-turn, the user might describe
three action components: one detecting motion approaching
an intersection, one detecting motion turning around, and one
detecting motion leaving the intersection. Likewise, a man hopping
a subway might be represented by somebody approaching the
subway, jumping up, and then continuing past the subway.

(1) Select a predefined video section

(3) Select target properties
o0

(4) Select
Query
Type

(5) Execute
Query

Figure 5: The query creation GUI provides a straightforward way to
construct queries. The user draws each action component (shown in
blue), and can additionally specify features.

Because our features (activity, size, color, persistence, and
motion) are semantically meaningful, this method of input is a
relatively accessible way to define a query. After the features and
the ROI are selected, a feature tree tree; is created to represent that
action component. Note that this formulation provides the user with
a way to produce a complex query vocabulary. A single component
could describe a search for “small red stationary objects” or ’large
objects moving to the right”. While our claims to simplicity are
theoretical, they are also supported by anecdotal evidence. People
unfamiliar with the system are able to create their own queries in
under a minute after a brief explanation of the tools.

After the action component has been input, the set of feature
trees is extracted from it using the formulation in Section 3.1.
These feature trees is used to query the inverted index of Section 3.2
to produce a set of documents and locations called partial matches
M (q) that contained similar trees to query g. In the case where the
query contains multiple feature trees, the set of matching locations
is the intersection of the matches for individual trees. Fig.8 presents
10 different queries with their ROL.

4.2 Full matches

Search in a surveillance video requires more than partial
matches. Activities in a video are inherently complex and show
significant variability in time duration. For instance, a fast car
taking a U-turn will span across fewer documents and generate
different motion features than a slow moving car. Also, due to the
limited size of a document (typically between 30 to 100 frames),
partial matches may only correspond to a portion of the requested
event. For example, partial matches in a document ¢ may only
correspond to the beginning of a U-turn. The results expected by
a user are so-called full maches, i.e. video segments [t,t + A]
containing one or more documents (A > 0). For example, the
video segment R = {¢,¢+ 1,t + 2} corresponds to a full U-turn
match when documents ¢,¢ + 1,¢ 4 2 contain the beginning, the
middle and the end of the U-turn. Given a query ¢ and a set of
partial matches M (q), a full match starting at time 7 is defined as

Ry~ (A) = {(u,v)|(t,u,v) € M(q), Vt € [r, 7+ A]}. (1)

Thus, Ry, -(A) contains the set of distinct coordinates of trees
partially matching g in the video segment [7, 7 + A].

We propose two algorithms to identify these full matches from
the set of partial matches. The first is a greedy optimization
procedure based on the total number of partial matches in a
document that does not exploit the temporal ordering of a query.
The second approach (Sec. 4.2.2), uses dynamic programming to
exploit temporal structure of the of a query’s action components.

4.2.1 Full matches using a greedy algorithm

The main difficulty in identifying full matches comes with the
inherent variability between the query and the target. This includes
time-scaling, false detections and other local spatio-temporal
deformations. Consequently, we are faced with the problem of
finding which documents to fuse into a full match given a set
of partial matches. We formulate it in terms of the following
optimization problem:

A" = arg MaX Vg - (A). (2)

where g is the query, T is a starting point and A the length of the
retrieved video segment. The value function vg, - (A) maps the set
of partial matches in the interval [, 7 + A] to some large number
when the partial matches fit ¢ well and to a small value when they
do not. To determine the optimal length of a video segment starting
at time 7 we maximize the above expression over A.

While many value functions are viable, depending upon user
preference, a simple and effective vg, - (A) is:

Vg,r(A) = [Rqr(A)] = A7, (3)

where Ry -(A) is defined by Eq. (1) and |Rq,-(A)] is the
total number of distinct matching locations found in the interval
[7,7 + A]. The value function is time-discounted since Rg,~(A)
is increasing in A (by definition, Rq,+(A) C Rq,+(A + 1)). The
parameter A is a time-scale parameter and loosely controls size of
retrieved video segment.

We can determine A by a simple and fast greedy algorithm.
The algorithm finds a set of non-overlapping video segments and
a natural ranking based the value function provided above. As will
be shown in Sec. 5, Eq. (3) produces compact video segments
while keeping low false positives and negatives rates.

It may seem strange that such a simple value function provides
accurate results over a wide range of queries and videos. Intuitively,
this is because the more complex a query is, the less likely it is to
be generated by unassociated actions. We state this formally in
theorem 4.1.

Theorem 4.1 Suppose that we have a random video: we sample
independently across time and at each instant uniformly from the
set of all trees with replacement. Suppose the query q consists of
|q| distinct trees and the random video has Rq -(A) matches. For
A = ~|q| the probability that log(vq,~(A)) > al|q| for some o €
(0, 1) is smaller than O(1/|q|?).

This result suggests that the false alarm probability resulting from
an algorithm that is based on thresholding vg,-(A) is small.
This result is relevant because we expect log(vg,~(A)) for video
segments that match the query to have a value larger than ag| for
some « when A = Q(|q]).

PROOF. For simplicity we only consider each document to
contain a single random tree drawn from among || trees. The
general result for a fixed number of trees follows in an identical
manner. We compute the value of random video of length 7, i.e.,

P{ug0(A) = exp(alq])} = P{[Rq,0(A)] = algl + 7},

where we substituted % = ~ and taken logarithms on both sides to

obtain the second equation. Let, A; be the number of documents
before we see a new document among the set ¢ after just having
seen the j — 1th new document. This corresponds to the inter-arrival
time between the (j — 1)th and jth document. Given our single tree
random model we note that R,,0(A) is a counting process in A and
so we have the following equivalence,

¢
Ryo(A) >0 <= Y A; <A,
j=1
Thus we are now left to determine the P {Zﬁzl Aj < A}

where ¢ = aq| + 7. Next, A1, Ao, ... are independent geometric
random variables. The jth random variable A; has a geometric

distribution with parameter p; = “‘”H*‘j . Using these facts we can
determine the mean value and variance of the sum using linearity

of expectations. Specifically, it turns out that
¢

¢ ¢ I3
E <2Aj> =3 i var <2Aj> -y
j=1 j=1 i

j=11" j=1

Upon computation the mean turns out to be O(|H|), while the
variance turns out to be O(|#H|?/|g|*). We now apply Chebyshev
inequality to conclude P {vq,0(A) > exp(alg))} < O(1/]q]?),
which establishes the result. [

4.2.2 Full matches with Dynamic Programming(DP)

We can improve upon the performance of the greedy algorithm
in Sec. 4.2.1 by exploiting the order of the action components. For
example, in the example of a man hopping a subway turnstile, he
has to approach the turnstile from the wrong direction, hop over
it, and continue. For a car taking a u-turn, it has to approach the
intersection, turn across it, and depart the way it came. While these

g 5
Seq. 1
-
<
Seq. 2
-
g &
Seq. 3
-

Time———

Figure 6: Three sequences of actions. All have equivalent values of
Rg,+(A); only the third row is valid U-turn.

component actions have many valid configurations when examined
independently, there is only one order in which they represent the
desired full action. This is illustrated in Fig. 6.

In the greedy optimization of Section 4.2.1, we ignore the
time-ordering that a set of queries contains. The value function
R,,~(A) does not differentiate between the sequences of actions
(Forward, Left, Back) and the sequence of actions (Back, Forward,
Left). Intuitively, this should hurt performance - false matches are
more likely to appear than were we to exploit this causality.

After a user uses the GUI described in Section 4.1 to create a
query containing a set of /N action components, we search through
the inverted index to retrieve /N sets of matching locations within
the video, one for each action component.

After this pre-processing step, we adapt the Smith-Waterman
dynamic programming algorithm [16] , originally developed for
gene sequencing, to determine the best set of partial matches in
the query. Our algorithm, described in Algorithm 1, operates over
the set of matches m, o which contains matches in document « to
action component 7 to recover a query that has been distorted. For
the purposes of our videos, we consider three types of distortion,
namely insertion, deletion and continuation.

(1) Insertion covers documents where we believe the query is
happening but there are no partial matches. This can happen if
unrelated documents are inserted, if there is a pause in the execution
of the activity, or if the activity is obscured.

(2) Deletion covers documents where sections of the query are
missing. If a deletion has occurred, one (or more) of the action
components in the query will not be present in the video. Deletions
can happen because of obscuration, or simply because somebody
does not perform one component of the full action.

(3) Continuation covers documents where we continue to see an
action component which we have already seen. This is important
because of time distortion; a single action component does not
necessarily occur in multiple consecutive documents before the
next action component is reached.

As described in Algorithm 1, to search for a query with |g|
action components in a video with N documents, our dynamic
programming approach creates an N X |g| matrix, V/, which is

Algorithm 1 Dynamic programming (DP) algorithm
1: procedure SEARCH(m, W, T)
2: V < 0;paths + 0; 7+ ;a1
3: while 7 < number of documents do
4: while o < number of action components do
0
(Vici,a—1 + Winaten) * Mr o

5: V‘r,a <— max (Vrfl,a + Wcont) * My o
(fol,a + Wdelete) * (1 - m‘r,a)
(V-r,afl + Winser't) * (1 - mr,a)

6: Let (a,b) be the index which was used to generate

the maximum value

7 if Vi, o) > 0 then

8: pathsr o < pathsqy U (T, @)

9: else

10: pathsr o < pathsq

11: end if

12: a+—a+1

13: end while

14: T T1T+1

15: end while
16: Matches + ()
17: while max(V) > T do

18: Let (a, b) be the index of V' containing the maximum
value

19: Matches <— Matches U paths,

20: for 7, € paths,,, do

21: Via=0

22: end for

23: end while
24: Return Matches, the set of paths above threshold T
25: end procedure

filled out from the top left to the bottom right. A path through the
matrix is defined as a set of adjacent (by an 8-neighborhood) matrix
element, where each element of the path represents a hypothetical
assignment of an action component taking place in a document. A
path containing element V, ;, would indicate that that path believed
that action component b occured in document a.

As the matrix is filled out, each element chooses to append itself
to the best possible preceding path - which, by definition, ends
immediately above it, immediately to the left of it, or both. It stores
the resulting value, and a pointer to the preceding element, in the
value matrix V. When the matrix is fully filled out, the optimal
path can be found by starting at the maximal value in the matrix and
tracing backwards. In order to find multiple matches, we repeatedly
find the maximal value in V/, the optimal path associated with it, set
the values along that path to zero, and repeat until the maximum
value in V' is below a threshold 7". An example of this matrix, with
paths overlaid, is shown in figure 7.

For a given penalty on each type of distortion W, Wp, We
(corresponding to insertion, deletion, and continuation) and a given
bonus for each match, Wy, the DP algorithm (Algorithm 1) is
guaranteed to find the set of partial matches which maximizes the
sum of the penalties and bonuses over an interval of time. For
our queries, we were relatively certain that elements of the query
would not be obscured, but we were uncertain about our detection
rate on features and how long an event would take. Thus, we set
Wr = -2, Wp = =10, We = 1, and W)y, = 8. These values
preclude optimal solutions which involve deletions, look for longer
sequences that match, and are relatively robust to missed detection.

We note that because it reasons over specific partial matches,

T 0 0 0 3
A ———>1 3 H
A 4 5> 3 1
€ 3 e — 3
A 3 ¢ 9—1—>7
G 3 5 8—1—6
T Y bt bl 11

Figure 7: An example of the V matrix. The query is actions A, C,
A, T, and the seven documents in the video corpus each contains a
single action, T, A, A, C, A, G, T. The values for W;, Wp, W and
W are —1, —2, 1 and 3 respectively. The optimal path, A,A,C,A,G,T,
involves an insertion, a continuation and a deletion. It is found by
tracing backwards from the maximal element, valued at 11.

our dynamic programming approach also finds the locations in the
video segments where the event occurs, but this is not exploited in
the results of this paper.

S. EXPERIMENTAL RESULTS

5.1 Datasets

In order to evaluate performance of the two-step problem
formulation, and the DP approach in particular, we initially tested
our two-step approach on seven surveillance videos (see table 1
and Fig. 8). These videos were selected to test the application of
this basic approach to multiple domains, as well as to provide a
basis for comparison to other algorithms. The Winter driveway,
U-Turn and Abandoned object sequences were shot by us, PETS
and Parked-vehicle and MIT-traffic come from known databases [3,
1], MIT-traffic was made available to us by Wang et al. [2]; Subway
from Adam et al. [4].

As listed in Table 1, we tested different queries to recover
moving objects based on their color, size, direction, activity and
persistence. We queried for rare and sometimes anomalous events
(cat in the snow, illegal U-turns, abandoned objects and people
passing turnstile in reverse) as well as usual events (pedestrian
counting, car turning at a street light, and car parking). Some
videos featured events at a distance MIT-traffic, while others
featured people moving close to the camera Subway. We searched
for objects, animals, people, and vehicles. Given these queries, we
watched the videos and created a ground-truth list for each task.

5.2 HDP Comparison

For the purposes of comparison, we employed high-level
search functions based on scene understanding techniques using
Hierarchical Dirichelet Processes (HDP) [23, 10]. We chose
this, because unlike [11, 9], it does not require tracking, which
can be difficult to do in complex scenes and is computationally
prohibitive. At each iteration, the HDP-based learning algorithm
assigns each document to one or more high-level activities. This
classification is used as input to the next training iteration. Xiang
et al. [23] propose a search algorithm that uses learned topics
as high-level semantic queries. The search algorithm is based on
the classification outputs from the final HDP training iteration. We
compare our method to this HDP-based search algorithm.

Figure 8: Screen shots of the ten tasks. These images show the search queries (with green ROI) and a retrieve frame (with a red rectangle). The red

dots correspond to the tree whose profile fit the query.

Task Video Search query Features Video size | Index size
1 Winter driveway black cat appearance color and size 6.55 GB 147 KB
2 Subway people passing turnstiles motion 2.75 GB 2.3 MB
3 Subway people hopping turnstiles motion 2.75 GB 2.3 MB
4 MIT Traffic cars turning left motion 10.3 GB 42 MB
5 MIT Traffic cars turning right motion 10.3 GB 42 MB
6 U-turn cars making U-turn motion 1.97 GB 13.7 MB
7 U-turn cars turning left, no U direction 1.97 GB 13.7 MB
8 Abandoned object abandoned objects size and persistence 682 MB 2.6 MB
9 Abandoned object abandoned objects size, persistence and color | 682 MB 2.6 MB
10 PETS abandoned objects size and persistence 1.01 GB 5.63 KB
11 Parked-vehicle parked vehicles size and persistence

Table 1: Tasks’ number, videos, search query, associate features, video size and index size. Tasks 1, 8,9, 10, and 11 use compound search operators.
The index size can be several orders of magnitude smaller than raw video. Our use of primitive local features implies that index times and index size
are both proportional to the number of foreground objects in the video. Consequently, index size tends to be a good surrogate for indexing times.

Queries are specified as the ideal classification distribution and
the search algorithm compares each document’s distribution over
the learned topics against this ideal distribution. Comparison is
performed using the relative entropy (Kullback-Leibler divergence)
between the two distributions. The Kullback-Leibler divergence
gives a measure of distance between the query ¢ and the distribution
p; for document j over the K topics:

K
D(q,p;) =Y _ q(k)log

q(k)
k=1 i

pi(k)’

The query ¢ is created by looking at the ideal documents and
assigning to ¢ a uniform distribution over the topics present in
them. The search procedure evaluates D(g, p;) for each document
7 and ranks the documents in order of increasing divergence.

5.3 Eleven Tasks

Once we had defined the queries, we watched all of the videos
and created a ground-truth list for each task. Ground truth was
obtained manually by noting the range of frames containing each
of the expected results. Comparison is obtained by computing
the intersection of the ranges of frames returned by the search
procedure to the range of frames in the ground truth. Events
are counted manually by viewing the output results. An event
is marked as detected if it appears in the output video and
at least 1 partial match hits objects appearing in the event.
The greedy-optimization results are displayed in Fig. 8 and
summarized in table 2. The comparable results for HDP are
summarized below in table 2.

The “Ground truth” column of table 2 indicates the true
number of events which exist in the dataset. The “Greedy

Task Video Duration | Ground Truth | Greedy True | HDP [10] True | Greedy False | HDP [10] False | Runtime
(minutes) (events) (events found) | (events found) | (events found) | (events found) | (seconds)

1 Winter driveway 253 3 - 1 - 7.5

2 Subway 79 117 116 114 1 121 0.3

3 Subway 79 13 11 1 2 33 3.0

4 MIT Traffic 92 66 61 6 5 58 0.4

5 MIT Traffic 92 148 135 54 13 118 0.5

6 U-turn 34 8 6 0 23 1.2

7 U-turn 34 6 4 1 14 0.6

8 Abandoned object 13.8 2 - 0 - 4.8

9 Abandoned object 13.8 2 - 0 - 13.3

10 PETS 7.1 4 4 - 0 - 20.2

11 Parked-vehicle 32 14 14 - 0 - 12.3

Table 2: Results for the elevens tasks using greedy optimization and HDP labels. Crossed-out rows correspond to queries for which there was no

corresponding topic in the HDP search.

True” column indicates the number of correct detections (true
positives) for the Greedy algorithm and “HDP True” the number of
correct detections (true positives) for the HDP-based search [21].
Likewise, the “Greedy False” and “HDP False” indicate the number
of false alarms that were found for those eleven tasks.

Table 2 demonstrates the robustness of the two-step method in a
wide-array of search applications, outperforming the HDP baseline
significantly in detection and false alarm rate. The figures in the
table are given for results of total length approximately equal to
that of the ground truth. As can be seen from the figures in the
table, the absolute detection rate is strong.

In table 2, we learn that HDP-search deals well with search of
recurring large-scale activities and poorly otherwise. While several
queries could not be executed because of a lack of topics that could
be used to model the query, the results nonetheless demonstrate
some of the shortcomings of the algorithm. The HDP search scales
linearly with the number of documents, an undesirable quality with
large datasets. Further, the cost of the training phase is prohibitive
(approximately 2 days for the “subway” sequence) and must be
paid again every time thatmore video data is included.

5.4 Dynamic Programming

Of the eleven tasks described in table 1, only tasks two to
seven had temporal structure which could be exploited through
dynamic programming. As it turned out, the features used in these
tasks were purely motion. In order to demonstrate the potential
gain from exploiting this structure, we chose tasks three, four and
six and performed dynamic programming using the full query, as
well as greedy and HDP search algorithms. The ROC curves for
those three scenarios are provided in Fig 9, contrasting dynamic
programming with HDP and Greedy Optimization.

Fig. 9 demonstrates the type of improvement that can be
attained by the two-step approach to search. The ROC curves
for LSH-based greedy optimization dominate the HDP curves, and
there is clear improvement from employing time-ordering with DP.
These improvements come as no surprise - HDP is doing a global
search, attempting to create a topic for each action. LSH does a
compelling local search which is fast and produces low false alarm
rate. This is largely due to the global nature of HDP - the topics
it discovers are more likely to be common events, so infrequent
events such as u-turns and turnstile-hopping pose a problem. Note
that the gap between local and global searches narrow on the
MIT-traffic dataset, where the event being found (left turns at a
light) is a relatively common occurrence with enough repetition to
fill a topic model.

5.5 Discussion

This approach represents a fundamentally different way of
approaching the video search problem. Rather than relying on an
abundance of training data or finely-tuned features to differentiate
actions of interest from noise, we rely on simple features and
causality. In addition to the clear benefits in terms of a run-time
which scales sub-linearly with the length of the video corpus, the
simple features and hashing approach render the approach robust
to user error as well as poor-quality video. The results of section
5.4 demonstrate clearly that causality and temporal structure can be
powerful tools to reduce false alarms. Another added benefit is how
the algorithm scales with query complexity. Whereas algorithms
such as topic modeling or a feature-based matching suffer as
queries becomes more complex due to efforts to characterize the
query, the two-step approach becomes more successful - the more
action components in a query, the more likely it is to differentiate
itself from noise. There is, of course, non-temporal structure that
we have yet to exploit. Spatial positioning of queries, such as
“The second action component must occur to the northeast of the
first”, or “The second action component must be near the first” is a
simple attribute which may further differentiate queries of interest
from background noise. This is not to say that the approach is not
without its limitations. It requires that the activity being described
contain discrete states, each of which is describable by a simple
feature vocabulary. Complex actions like sign language or actions
which are to fast or too small to be identified at the atom level will
be difficult to search for.

6. CONCLUSION

We presented a method that summarizes the dynamic content
of a surveillance video in a way that is compatible with arbitrary
user-defined queries. We divide the video into documents each
containing a series of atoms. These atoms are grouped together
into trees all containing a feature list. These features describing
the size, the color, the direction and the persistence of the moving
objects. The coordinates of these trees are then stored into a
hash-table based feature index. Hash functions group trees whose
content is similar. In this way, search becomes a simple lookup as
user-specified queries are converted into a table index. Our method
has many advantages. First, because of the indexing strategy,
our search engine has a complexity of O(1) for finding partial
matches. Second, the index requires only minimal storage. Third,
our method requires only local processing, making it suitable for
facing constant data renewal. This makes it simple to implement
and easy to adjust. Fourth, our method summarizes the entire

A
R o9}
= 08l
o o o
8 o go7r
o = = LSH+DP o = LSH + DP v
5 09) & =t L SH £ ——LSH 506
2 S i111s111 HDP 2 i111%111 HDP 2
805 a S ost
$ 3]
E o4 § £ o Eo4r
03 § o3b
02, * 02|
01 S o,
%o o0z o3 04 05 06 07 08 09 1 3 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
false positive rate false positive rate false positive rate

Figure 9: ROC curves for the U-turn, subway and traffic datasets. Both our greedy search and DP significantly outperform scene-understanding
methods such as HDP methods [23, 10].

video, not just the predominant modes of activity: it can retrieve [15] J. Sivic and A. Zisserman. Video Google: A text retrieval
any combination of rare, abnormal and recurrent activities. approach to object matching in videos. In Proc. IEEE Int.
Conf. Computer Vision, volume 2, pages 1470-1477, 2003.
7. REFERENCES [16] T. Smith and M. Waterman. Identification of common
[1] i-lids. computervision.wikia.com/wiki/I-LIDS. molecular subsequences. J. of Molecular Biology, 147, 1981.
[17] X. Song and G. Fan. Joint key-frame extraction and object
[2] Mit traffic. segmentation for content-based video analysis. IEEE Trans.
people.csail.mit.edu/xgwang/HBM.html. Circuits Syst. Video Technol., 16(7):904-914, 2006.
[3] Pets 2006. http://ftp.pets.rdg.ac.uk/. [18] E Stringa e?nd C. Reg:azzoni. Content-base.d retrieval and real
[4] A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz. Robust time detection from video sequences acquired by

real-time unusual event detection using multiple surveillance systems. In Proc. IEEE Int. Conf. Image

fixed-location monitors. IEEE Trans. Pattern Anal. Machine Pr ocessjing » pages 138-142, 1998.)
Intell., 30(3):555-560, 2008. [19] Y.-L. Tian, A. Hampapur, L. Brown, R. Feris, M. Lu,

[5] Y. Benezeth, P-M. Jodoin, B. Emile, H. Laurent, and A. Senior, C.-F. Shu, and Y. Zhai. Event detection, query, and
; ; ’ ’ retrieval for video surveillance. In Z. Ma, editor, Artificial

C. Rosenberger. Comparative study of background N e !
Intelligence for Maximizing Content Based Image Retrieval.

subtraction algorithms. J. of Elec. Imaging, 19(3):1-12,

2010. Information Science Reference; 1 edition, 2008.
(6] B.Horn and B. Schunck. Determining optical flow. Arif. [20] H. Veeraraghavan, N. Papanikolopoulos, and P. Schrater.
Intell., 17(1-3):185-203, 1981. Learning dynamic event descriptions in image sequences. In

[7] Q. Dong, Y. Wu, and Z. Hu. Pointwise motion image (PMI): Proc. IEEE Conf. Computer Vision Pattern Recognition,

A novel motion representation and its applications to pages 1-6, 2007. . . .
abnormality detection and behavior recognition. IEEE Trans. (21] X. Wang, X Ma, and E.Grlmson..Unsuperv ised activity
Circuits Syst. Video Technol., 19(3):407-416, 2009. perception in crowded and complicated scenes using
(8] A. Gionis, P. Indyk, and R. Motwani. Similarity search in hlerarf:hlcal bayesian models. /EEE Trans. Pattern Anal.
high dimensions via hashing. In Proc. Int. Conf. on Very Machine I.ntell‘, 31(3):539-555, 2009.
Large Data Bases, pages 518-529, 1999. [22] R. W. White and R. A. Roth. Exploratory Search: Beyond
[9] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank. A the Query-Response Paradigm. Morgan-Claypool, VT,
system for learning statistical motion patterns. /[EEE Trans. U'S',A" 2009, . . .
Pattern Anal. Machine Intell., 28(9): 14501464, 2006. [23] T. Xlapg and S. Gong. Video behavior proﬁ_hng for anomaly
[10] D. Kuettel, M. Breitenstein, L. Gool, and V. Ferrari. What’s ggtesct'lgog 3 IgobéE 2T(;(L)lgs‘ Pattern Anal. Machine Intell.,
going on? discovering spatio-temporal dependencies in (5):893-908,) .
dynamic scenes. In Proc. IEEE Conf. Computer Vision [24] Y. Yang, B. Lovell, and F. Dadgostar. Content-based video
Pattern Recognition, pages 1951-1958, 2010. retrieval (cbvr) system for cctv surveillance videos. In Proc
[11] G. Medioni, I. Cohen, F. Bremond, S. Hongeng, and of Dig. Img. Comp. Tech. and App., pages 183-187, 2009.
R. Nevatia. Event detection and analysis from video streams. [25] C. Yeo, P. Ahammad, K. Ramchandran, and 8. Sastr. High

IEEE Trans. Pattern Anal. Machine Intell., 23(8):873-889, speed action recognition and localization in compressed
2001. domain videos. IEEE Trans. Circuits Syst. Video Technol.,

[12] J. Meessen, M. Coulanges, X. Desurmont, and J.-F. Delaigle. 18(8?:1006 - 1015, 2008. . . .
Content-based retrieval of video surveillance scenes. In [26] A. Yilmaz and M. Shah. A differential geometric approach to
MRCS, pages 785-792, 2006. representing the human actions. Comput. Vis. Image Und.,

[13] I. Pruteanu-Malinici and L. Carin. Infinite hidden markov 109(3):335-351, 2008.

models for unusual-event detection in video. IEEE Trans.
Image Process., 17(5):811-821, 2008.

[14] C. Simon, J. Meessen, and C. DeVleeschouwer. Visual event
recognition using decision trees. Multimedia Tools and
Applications, 2009.

computervision.wikia.com/wiki/I-LIDS
people.csail.mit.edu/xgwang/HBM.html
http://ftp.pets.rdg.ac.uk/

