Group Testing and Graph Constrained Group Testing

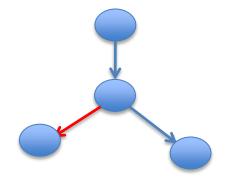
Venkatesh Saligrama Boston University

Workshop on Frontiers of Controls, Games & Network Science with Civilian and Military Applications, UT Austin

Applications of Group Testing

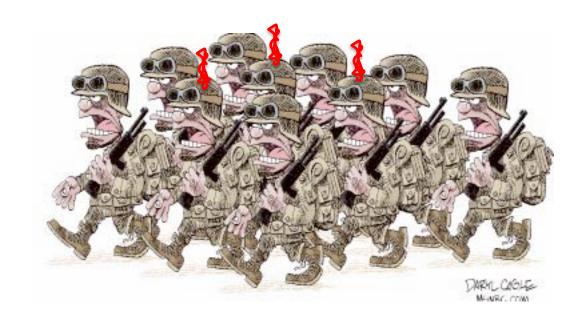
- > DNA Screening (clones) [Du,Hwang'00]
- Streaming [Gilbert-Strauss 08]
 - Telephone Calls
- Compressed Sensing [Muthukrishnan 05]

Congested IP Link [Nguyen-Thiran07]



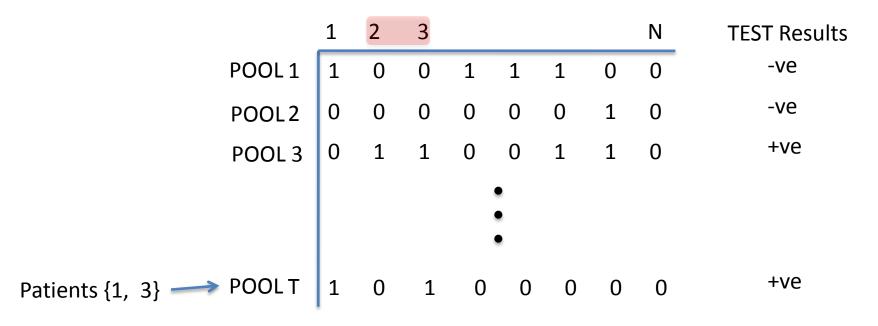
What is Group testing?

- ➤ K soldiers in a large population, N, have disease
 - Detect by testing pooled blood samples
 - Compressed sensing in 1940s



Illustrative Example

Patients (Blood Samples)

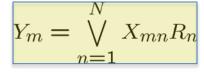


> Goal:

- Find defectives
- How many tests are required?

Non-Adaptive Group Testing

- > Given
 - N items: $R_1, R_2, R_3, ..., R_N \in \{0,1\}$
 - $\le K$ defectives: $R_m = 1$
- \triangleright Test Matrix: $X = [X_{mn}],$
 - $-X_{mn} = 1 \rightarrow Put nth item in pool m$
- \triangleright Binary Output (Y_m) mth test
 - $Y_m = 1$ is mth pool contains a defective
 - Noisy Case



- > Goal:
 - Find defectives
 - Min. number of tests required

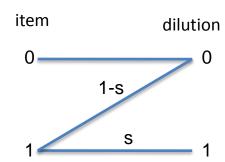
Noisy Cases

> Additive noise (False Positives)

$$Y_m = \bigvee_{n=1}^N X_{mn} R_n \bigvee W_m \quad W_m \text{ Bernoulli(q)}$$

Dilution Effect

$$Y_m = \bigvee_{n=1}^N \mathcal{Z}(X_{mn}R_n)$$



- Blood Sample is Diluted
- Link Losses are random [Nguyen-Thiran07]

Problem Setup

- \triangleright N Items, Defectives \le K, X Test Matrix, T tests
- > Defective set: $s \in \mathcal{D}$
- \blacktriangleright Decoder $g: Y^T \to \mathcal{D}$

- > Errors:
 - > Average Error, Worst-Case, ...

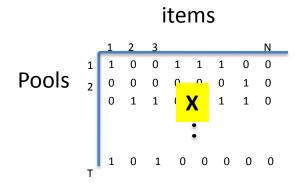
$$\frac{1}{|\mathcal{D}|}\sum_{s}\lambda_s(\mathbf{X}) \quad \max_{s}\lambda_s(\mathbf{X})$$

$$\lambda_s(\mathbf{X}) = \mathbf{1}(g(Y^T) \neq s|s)$$

 $\bar{\lambda}_s(\mathbf{X}) = \text{Prob}(g(Y^T) \neq s|s))$

Problems

- > Problem 1
 - X arbitrary test matrix
 - Can design any test matrix
 - Lot of work (next slide)



➤ Problem 2:

- X structured test Matrix
- Test matrix comes from a constraint set (Graph)
- Min. # of tests
 - New ...

Problem 1: Arbitrary Test Matrix

- > Problem 1: find best matrix > min. tests
 - Noiseless Setting
 - Combinatorial Group Testing: Du, Hwang'2000
 - Superimposed codes (Kautz and Singleton'64)
 - Deterministic designs (Dyachkov and Rykov'83) (Ruszinko'94)(Erdos'85)(Ngyuen'88)(Porat'08)
 - Random Designs (Dyachkov'76,'82)(Sebo'85)(Macula'96)
 - Compressed sensing and approximate identification(Gilbert'08)
 - Two-Stage Disjunctive Testing: (Berger-Levenshtein 2002)
 - Noisy Setting/Probabilistic Method
 - Information Theory [Atia-Saligrama 09]
 - K Defectives \rightarrow Put nth element in mth pool with prob 1/K
 - Multi-User Comms → Mutual Information formula

Main Result [Atia-S 09]

 \succ Theorem (average error \rightarrow 0 asymptotically) if:

$$T = \max_i \left\{ \frac{\log \binom{N-K}{i} \binom{K}{i}}{I(X_{(i)}; X_{(K-i)}, Y)} \right\}$$
 sufficiency
$$T \geq \frac{\log \binom{N}{K}}{I(X_{(K)}, Y)}$$
 Necessity

- > X_{mn} generated i.i.d. Bernoulli p
- \succ $X_{(K)}$ corresponds to collection associated with K defective items
- \succ $X_{(i)}$ subset of i defective items in K (that are mis-classified)
- Necessity: FANO Bound

Results: Arbitrary Tests/Pools[Atia-S 09]

> N items; K defectives; T Pools/Tests

$$T = \Theta\left(K\log(N)\right)$$

Noiseless - average error

$$T = \Theta\left(\frac{K\log(N)}{(1-q)}\right)$$

q: false alarm probability

$$T = O\left(\frac{K\log(N)}{(1-s)^2}\right)$$

s: Prob. defective diluted in a pool

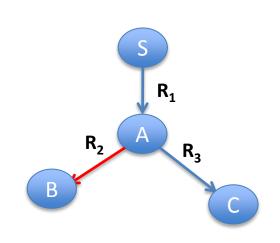
$$T = \Theta\left(K^2 \log(N)\right)$$

Noiseless - Exact Reconstruction Contrast with Compressed Sensing

Problem 2: Structured Test Matrix

- > Boolean Congested IP Link Problem
 - link congested if trans. rate is small
 - path congested if at least one link congested

$$Y_m = \bigvee_{n=1}^N X_{mn} R_n$$



> Summary:

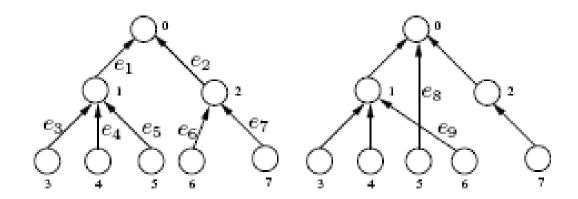
- Xmn = 1 only when link n is on path m
- Cannot design test matrix arbitrarily

	Links		
	R_1	R_2	R_3
Path 1	1	1	0
Path 2	1	0	1
	0	1	1

Structured Tests: Lossy Links in SNETs

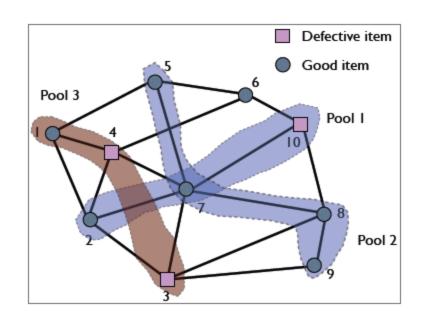
> Test Matrix is a Tree

- > Different routing tree used each time instant
 - Sensor node failures, ad-hoc trans, ...



Graph Constrained Group Testing

- \triangleright Graph G = (V, E)
- > Items:
 - vertices $v \in V$, edges $e \in E$
- \triangleright Defectives \leq k items
- > Pools:
 - items visited by uniform random walk graph of length t starting at source
 - Random Walk (RW) from source to dest.



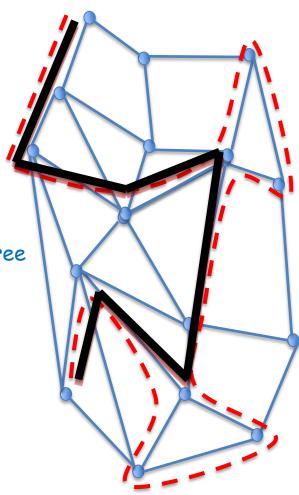
$$P_{ij} = \begin{cases} \frac{1}{d_i} & (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

- > Goal:
 - Min. tests reqd to locate defectives

Connection: Loop Erased RW

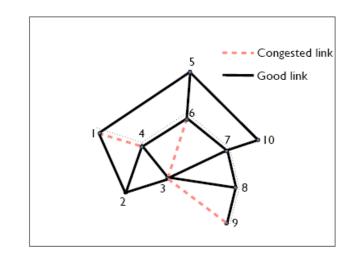
- > Random Rooted Spanning Trees
 - Path generation: erase cycles in the order generated
 - Uniform distribution over all spanning trees
- > Stopping time
 - Do same as above for any stopping time
 - Prob that specific rooted tree is a subset of spanning tree

- > Our setup
 - Vertices tested only once
 - Our pool is a tree
 - tests are whether a tree contains defectives
 - Similar but more elaborate argument for edges



Solution

- Links (36), (39),(41) are congested
 - When is a test informative? ``good link" (56)
 - RW passes (56) but not through congested links.
 - Error if there is no path such that this happens for all good links



RW: Random Walk

$$A = \{Congested Links\}$$

$$\pi_{v,A} = \operatorname{Prob}(v \in RW, RW \cap A = \emptyset)$$

$$Error(v, A) = (1 - \pi_{v, A})^T$$

	Links			
	R_1	R_2	R_3	
Path 1	1	1	0	
Path 2	1	0	1	
	0	1	1	

Solution: Simple Cases

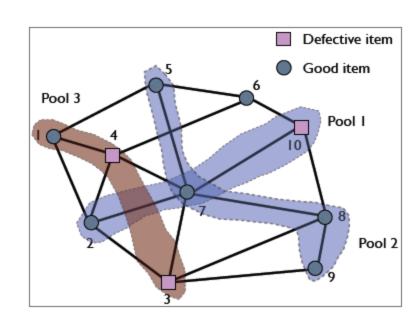
> N items, K Defectives

$$Error(v, A) = (1 - \pi_{v, A})^T$$

- Completely connected graph
 - Source S, RW Length t= O(N/K)
 - T \approx O(K log(N)) (avg error)
 - Vertices or edges
 - Source (S) → Destination (D)

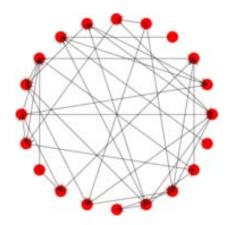
$$\pi_{v,\mathcal{A}} = O\left(\frac{1}{K^2}\right) \longrightarrow \mathsf{T} = \mathsf{O}(\mathsf{K}^2 \log(\mathsf{n}))$$

• Why? Order $S \rightarrow v \rightarrow D \rightarrow A$



More Involved Cases

- > Erdos-Renyi Graph
 - -G(N,p), p = log(N)/N
 - Expander whp
 - Mixing time $\Lambda_N = O(\log(N))$
 - Time to reach ``equilibrium dist"



- \triangleright Degree $D \in [D_1, D_2]$ graph
 - D \gg d, Mixing time Λ_N
- > Pools:
 - RW of length t from source
 - RW from Source(s) to Destination(s)

Results: Structured Tests [CKM-S 10]

> N items; K defectives; T Pools/Tests (Erdos-Renyi)

$$T = O\left(K\log^2(N)\right)$$

Noiseless - average error

$$T = O\left(\frac{K\log^2(N)}{(1-q)}\right)$$

q: false alarm probability

$$T = O\left(\frac{K\log^2(N)}{(1-s)^2}\right)$$

s: Prob. defective diluted in a pool

$$T = O\left(K^2 \log(N)\right)$$

Source → Destination Pools

Results: Structured Tests [CKM-S 10]

 \triangleright N items; K defectives; T Pools/Tests (D \in [D₁, D₂])

 Λ_N : Mixing Time

$$T = O\left(K\Lambda_N^2 og(N)\right)$$

Noiseless - average error

$$T = O\left(\frac{K\Lambda_N^2 \log(N)}{(1-q)}\right)$$

q: false alarm probability

$$T = O\left(\frac{K\Lambda_N^2 \log(N)}{(1-s)^2}\right)$$

s: Prob. defective diluted in a pool

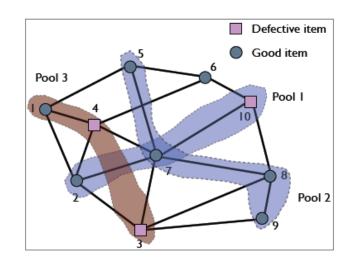
$$T = \Theta\left(K^2 \Lambda_N^2 \log(N)\right)$$

Source → Destination Pools

Proof Idea (RW of length t)

 \triangleright Observe: $Error(v, A) = (1 - \pi_{v,A})^T$

- \triangleright If we want T = O(K $\Lambda_N \log(N)$)
 - we need $\pi_{v,\mathcal{A}} = \Omega\left(\frac{1}{K}\right)$
 - But $\pi_v = \Omega\left(\frac{t}{N\Lambda_N}\right)$



Proof Idea

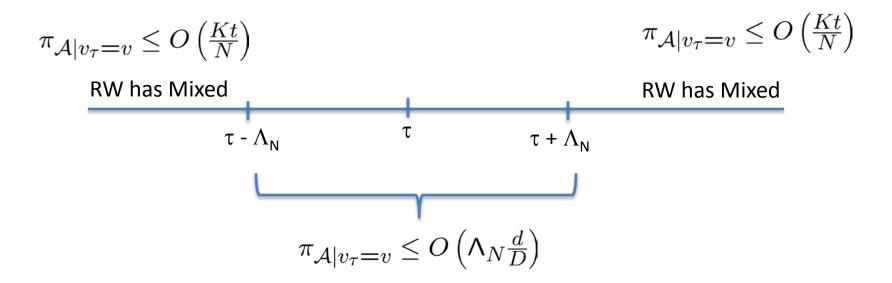
> `Lower bound"

$$\pi_{v,\mathcal{A}} \geq \pi_v (1 - \pi_{\mathcal{A}|v \in RW})$$

- ># visits to $v \leq O(\Lambda_N)$
 - Markov inequality
- >Upper bound for (not) visiting A given each time v visited

Upper bound for visiting A in time t

 \triangleright Suppose v visited at time τ



> But # visits to v can be $O(\Lambda_N)$, so

$$\pi_{\mathcal{A}|v\in RW} = O\left(\Lambda_N \frac{Kt}{N}\right) \longrightarrow t = \Omega\left(\frac{N}{K\Lambda_N}\right)$$

Result

> RW of length t

$$\pi_{\mathcal{A}|v\in RW} = O\left(\Lambda_N \frac{Kt}{N}\right) \longrightarrow t = \Omega\left(\frac{N}{K\Lambda_N}\right)$$

$$\pi_{v,\mathcal{A}} \approx \pi_v = \Omega\left(\frac{t}{N\Lambda_N}\right) = \Omega\left(\frac{1}{K\Lambda_N^2}\right)$$

- > RW from source (5) to destination (D)
 - Prob(start at S visit v then D then A)
 - Prob(start at S visit v but not D & A)
 - Prob(start at v visit D but not A)

$$\pi_{v,\mathcal{A}} = \Omega(\frac{1}{K^2 \Lambda_N^2})$$

Comments (Optimality?)

- > Dependence on K defectives:
 - $-O(K), O(K^2)$ etc
 - Lower bounds using unstructured tests, complete graphs
- > Mixing time?
 - Appears fundamental.
 - · Grids, Cycle
- > Can we improve these results?

Extensions 1

- > Average error
- > Symmetric Graphs
- > Rare Events

> Weighted Graphs

Conclusions

- > Graph Constrained Group Testing
 - Tests/Pools constrained to be paths
- Pools generated by Random Walks
 - RW of fixed length
 - RW Source to Destination
- > Expanders:
 - Fixed Length \rightarrow # Tests = $O(K \log^2(N))$
 - RW S \rightarrow D \rightarrow #Tests = $O(K^2 \log^2(N))$
- > References
 - CKM-S: http://arxiv.org/abs/1001.1445
 - Atia-S: http://arxiv.org/abs/0907.1061