Beyond games:
Supercompute
desktop

Meng Wang
Boston University

l 1
Kick off meting?\

™

Games advanced so much..

R 3

Yesterday

Computing power behind games

::\!3 \

8 CORE CPU 480 CORE GPU

Video Card turn PC to HPC

Peak GFLOP/s

e w e—

GT300 “Fermi”

1000
NVIDIA GPU
wlp==ntel CPU
750
500
250 NV35 NV40
NV30
Jan Jun Apr
2003 2004

GTZ00
& |
aso G92 |
Ultra
G80
G71 |
G70 3.2 GHz '
3.0 GHz Harpertown
Core2 Duo -9 |
-0—o—9— |
Jun Mar Nov May Jun l
2005 2006 2008

2007

Super computer under your desk

$1.5 million S1.5 K

Beyond Games

 GPU is ready for general purpose computing.
— Accelerating operating system
— Optimization tool box,
— Linear algebra, FFT, LU decomposition...
— Gene Folding
— Physical Simulation

- C M % nitpy/www.nvidia.com/object/cuda_home.html# >

< cuDa ZONE = ErrErens SR

NVIDIA

DOWNLOADS WHAT IS CUDA CUDA ITH CUDA FORUMS NEWS AND EVENTS

Sand box in VGC

A MULTI CAMERA CUDA ENABLED INTERACTIVE SYSTEM.

In VGC, you wiill...

Learn Fresh New Technology

* Build FUN projects using:sug
— user computer interface "
— implement cutting €

— games
— ... NO Restriction!

L

In VGC, you will

* Learn visual processing tools.
* Get First hand projects experience
* Getin touch other geeks in BU.

Some rules in this club

Interest come first.

No bad ideas.

Encourage brain storm. And select some to do.
Learn by doing.

... (TBA)

What do we do on meetings?

e Tutorial on techniques we need for projects.
* Discussion of new ideas.

* Show demos.

* Play games.

* Plan weekend projects.

Resources

BU EC 500: High Performance Programming with
Multi Core, GPU’s (Herbordt, MW 2-4)

CUDA official website
MIT CUDA course: 6.963

VGC blog

& C M % http//blogs.bu.edu/vgc/ > O~ F~

BuddyPress Log In Blog Authors ~ Visit ~

VOaL IS VOUNE danad need vour neip and

PDAiLiCipatiorn

Weekend pro'
* This weekend: - o jbih u'S!

After the break, CUDA code walk though

CUDA Programming

Kernel Function

Kernel Function is the functions that actually run on each

thread on GPU!

Write kernel functions in _kernels.cu file

Can be extremely simple:

PixelOperation kernels.cu

__global void PixelOperation(char * * input, char * * output int w, int h);

Kernel Function

__global void PixelOperation(char * * input, char * * output int w, int h)

//get the position on the image where hread will work on
short i = blockldx.x*blockDim.x + threadl|

short j = blockldx.y*blockDim.y + threadldx.

//let each output pixel equal to the input

output[i][j]= inputli][j];

Pointer to the memory on
the graphic card

The actual calculation on
this thread.

This indicates this
function is for GPU

Threads live in blocks

short i = blockldx.x*blockDim.x + threadldx.x; // horizontal position
short j = blockldx.y*blockDim.y + threadldx.y; // vertical position

Threads index:
threadldx.x,
threadldx.y

-
A block has blockDim.x*blockDim.y

threads, fast shear memory
\In this case is 2x2=4 threads

CUDA Programming

---Presented By GoGo Studio Tech. group

Call the kernel function

//do the calculation use kernel
dim3 dimBlock(2,2);
dim3 dimGrid(4, 2);

// Launch the device computation threads!
PixelOperation <<< dimGrid, dimBlock >>> (input,outpur,width,height);

Provide the data!

(Device) Grid

Graphic card need data to work on. So we give him. Block (0, 0) Block (1, 0)

v

u "
=N

In your program:
Create some space in the graphic card to receive your data
cudaMalloc (void ** pd, size);

Transfer your data using
cudaMemcpy(pd,p,size,
cudaMemcpyHostToDevice);

r i

Launch the device computation threads!
PixelOperation <<< dimGrid, dimBlock >>> (pd,pd2,width,height);

Transfer your result back using
cudaMemcpy(result,pd2,size, cudaMemcpyDeviceToHost);

CUDA project prototype

