
Kick off meeting

Beyond games:
Supercomputer on your
desktop

Meng Wang
Boston University

Games advanced so much..

Yesterday

Computing power behind games

Video Card turn PC to HPC
GT300 “Fermi”

Super computer under your desk

$1.5 million

Beyond Games
• GPU is ready for general purpose computing.

– Accelerating operating system

– Optimization tool box,

– Linear algebra, FFT, LU decomposition…

– Gene Folding

– Physical Simulation

– …

Sand box in VGC

In VGC, you will…

• Learn Fresh New Technology

• Build FUN projects using super computers:

– user computer interface

– implement cutting edge vision algorithms

– games

– … NO Restriction!

In VGC, you will
• Learn visual processing tools.

• Get First hand projects experience

• Get in touch other geeks in BU.

Some rules in this club

• Interest come first.

• No bad ideas.

• Encourage brain storm. And select some to do.

• Learn by doing.

• … (TBA)

What do we do on meetings?

• Tutorial on techniques we need for projects.

• Discussion of new ideas.

• Show demos.

• Play games.

• Plan weekend projects.

Resources
BU EC 500: High Performance Programming with
Multi Core, GPU‘s (Herbordt, MW 2-4)

CUDA official website

MIT CUDA course: 6.963

VGC blog

Weekend project 1

• This weekend:

• Home made multi touch interface.

After the break, CUDA code walk though

CUDA Programming

Decompose problem into a parallel, divide-and-conquer scheme.

A ‘kernel’ function can conquer your atomic problem.

An higher level program that collect all the atomic results

CUDA codes:

Regular C codes:

Kernel Function

Kernel Function is the functions that actually run on each
thread on GPU!

Can be extremely simple:

PixelOperation_kernels.cu

__global__ void PixelOperation(char * * input, char * * output int w, int h);

Write kernel functions in _kernels.cu file

Kernel Function
__global__ void PixelOperation(char * * input, char * * output int w, int h)

{
//get the position on the image where this thread will work on
short i = blockIdx.x*blockDim.x + threadIdx.x
short j = blockIdx.y*blockDim.y + threadIdx.y;

//let each output pixel equal to the input
output[i][j]= input[i][j];

} Pointer to the memory on
the graphic card

The actual calculation on
this thread.

This indicates this
function is for GPU

Threads live in blocks

short i = blockIdx.x*blockDim.x + threadIdx.x; // horizontal position
short j = blockIdx.y*blockDim.y + threadIdx.y; // vertical position

A block has blockDim.x*blockDim.y
threads, fast shear memory
In this case is 2x2=4 threads

blockDim.x=2

blockDim.y=2

Threads index:
threadIdx.x,
threadIdx.y

CUDA Programming

---Presented By GoGo Studio Tech. group

Decompose problem into a parallel, divide-and-conquer scheme.

A ‘kernel’ function can conquer your atomic problem.

An higher level program that collect all the atomic results

CUDA codes:

Regular C codes:

Call the kernel function

//do the calculation use kernel
dim3 dimBlock(2,2);
dim3 dimGrid(4, 2);

// Launch the device computation threads!
PixelOperation <<< dimGrid, dimBlock >>> (input,outpur,width,height);

Provide the data!

Graphic card need data to work on. So we give him.

In your program:
Create some space in the graphic card to receive your data

cudaMalloc (void ** pd, size);

Transfer your data using
cudaMemcpy(pd,p,size,
cudaMemcpyHostToDevice);

Launch the device computation threads!
PixelOperation <<< dimGrid, dimBlock >>> (pd,pd2,width,height);

Transfer your result back using
cudaMemcpy(result,pd2,size, cudaMemcpyDeviceToHost);

CUDA project prototype

PixelOperation.cu file

Char* imgBlur_Cuda(Char* input)
{

//Create some space in the graphic card
to receive your data
cudaMalloc (void ** pd, size);

//Transfer your data using
cudaMemcpy(pd,p,size,
cudaMemcpyHostToDevice);

//Launch the device computation threads!
PixelOperation <<< dimGrid, dimBlock
>>> (pd,pd2,width,height);

//Transfer your result back using
cudaMemcpy(result,pd2,size,
cudaMemcpyHostToDevice);

Return result;
}

PixelOperation_kernel.cu file

__global__ void PixelOperation(char * *
input, char * * output int w, int h)

{
//get the position on the image
where this thread will work on
short i = blockIdx.x*blockDim.x +
threadIdx.x
short j = blockIdx.y*blockDim.y +
threadIdx.y;

//let each output pixel equal to
the input
output[i][j]= input[i][j];

}

Regular C code

int main(void)
{
…

// do some stuff here!
output=imgBlur_Cuda(Char* input)

….
}

