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Abstract

This paper considers the problem of testing for a structural break in the spatial lag

parameter in a panel model. It proposes a likelihood ratio test of the null hypothesis of

no break against the alternative hypothesis of a single break. The limiting distribution

of the test is derived under the null when both the number of individual units N and the

number of time periods T is large or N is fixed and T is large. The asymptotic critical

values for the test staitistic can be obtained analytically. The paper also proposes

a break-date estimator that can be employed to determine the location of the break

point following evidence against the null hypothesis. I present Monte Carlo evidence to

show that the proposed procedure performs well in finite samples. Finally, the paper

considers an empirical application of the test on budget spillovers and interdependence

in fiscal policy within US states.
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1 Introduction

Spatial dependence represents a situation where values observed at one location or region

depend on the values of neighboring observations at nearby locations. One may ask two

questions: first, does this dependence stay the same over time; and second, what might cause

the dependence to change? This paper answers the first question by proposing a likelihood

ratio test of the null hypothesis of no change against the alternative hypothesis of a one-

time change. In case there is evidence against the null hypothesis, the paper consequently

proposes a break-date estimator. The second question has been reflected upon through an

empirical application of budget spillovers in US states.

In the setup of spatial panel models with N individual units (geographic locations such as

countries and zip codes or network units like firms and individuals) observed over T number

of periods, where the outcome of each unit depends on its “neighbor’s” outcome, there exists

a problem of endogeneity. Hence such models are estimated using maximum likelihood or

generalized method of moments. Similar to the univariate time series case, in this paper a

sup LR test is proposed and the asymptotics are derived for large T cases.

In comparison to the vast literature on change point for univariate series, the correspond-

ing literature for panel data is quite small. One of the most popular and early tests in the

univariate literature is the popular F test of Chow [1960], which has been modified for cases

of unknown and multiple break dates in Andrews [1993], Andrews and Ploberger [1994] and

Bai and Perron [1998] among others. Bai [1997], Bai et al. [1998] and Qu and Perron [2007]

have extended the single time-series break models to multiple ones. They show that using

multiple time series improves estimation precision of the break dates and the size/power of

the tests. Perron [2006] provides a survey of the literature.

In the panel data literature, Bai [2010] establishes consistency of the estimated common

break point, achievable even if there is a single observation in a regime. The paper proposes

a new framework for developing the limiting distribution for the estimated break point and

lays down steps to construct confidence intervals. The least squares method is used for

estimating breaks in means. Feng et al. [2009] study a multiple regression model in a panel

setting where a break occurs at an unknown common date. They establish consistency and

rate of convergence both for a fixed time horizon and large panels. In Feng et al. [2009]

the limiting distribution is derived without the assumption of shrinking magnitude of break.

Liao [2008] uses the Bayesian method for estimation and inference about structural breaks

in panel.

Han and Park [1989] develop a multivariate cusum test in order to test for a structural
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break in panel data and they apply the test on US manufacturing goods trade data. Emerson

and Kao [2000] propose two classes of test statistics for detecting a break at an unknown

date in panel data models with time trend. The first is a fluctuation test while the second

is based on the mean and exponential Wald statistics of Andrews and Ploberger [1994]

and maximum Wald statistic of Andrews [1993]. Wachter and Tzavalis [2012] develop a

break detecting testing procedure for the AR(p) linear panel data with exogenous or pre-

determined regressors. The method accommodates structural break in the slope parameters

as well as fixed effects and no assumption is imposed on the homogeneity of cross-sectional

fixed effects. Pauwels et al. [2012] provide a structural break test for heterogeneous panel

data models, where the break affects some but not all cross-section units in the panel. The

test is robust to auto-correlated errors. The test statistic is based on comparing pre and

post break sample statistics as in Chow [1960].

A higher availability of geocoded socio-economic datasets has led to a vast expansion

of the study of spatial interaction between economics agents. Moreover, the recursive rela-

tionship between agents in a network can be modeled using spatial econometric methods.

Spatial dependence is the transmission of developments across “neighboring” agents. El-

horst [2010] provides detailed methodologies for estimating spatial panels and to test the

competing models. The above tests in the panel literature do not explicitly consider the

endogeneity problem in the model, which is arises from the spatial dependence. This paper

considers a spatial autoregressive model and tests the break in the spatial lag parameter. To

test the change in the spatial dependence parameter the paper proposes sup LR test similar

to Bai [1999]. Yu et al. [2008] and Lee and Yu [2010] provide the asymptotic properties

of quasi-maximum likelihood estimators for spatial autoregressive panel data models with

fixed effects. The results from Yu et al. [2008] are used to derive the limit distribution of

the sup LR test in this paper for large T. An estimator for the break date is proposed that

can be employed once evidence against no break in the spatial lag parameter is obtained.

The performance of this estimator as well as the proposed test statistic in small samples is

evaluated via an extensive Monte Carlo study. Wied [2013] develops a CUSUM-type test for

time-varying parameters in a spatial autoregressive model for stock returns. The power of

the sup LR test is compared with the CUSUM test in the paper.

Case et al. [1993] show that a state’s budget expenditure depends on the spending of

similar1 states. Therefore, a rise in a “neighboring” state’s expenditure results in an increase

1Case et al. [1993] define similar states in three different ways - 1) similar in location, 2) similar in income

3) similar in racial composition.
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in the state’s own expenditure. As an empirical application, this paper applies the likelihood

ratio test on the budget dependence of US states over time. The data consists of annual

observations for the continental United States during the period 1960-2011. States that are

economically similar are defined as neighbors. The test result shows that the null hypothesis

of no break in the spatial dependence parameter is rejected and the break date is estimated

as 1982. The budget spillover is more pronounced post break. Details of the results and

intuitions on why there might be a break are discussed.

The paper is organized as follows: in section 2, the spatial lag model is presented and

discussed. Section 3 provides the motivating examples where the test can be applied. The

paper proposes a sup LR test, which is described in section 4. The limiting distribution of

the test is stated in section 5. The outline of the proof is also provided in this section (details

are in the Appendix). In the event of rejection of null hypotheis, the paper proposes a break

date estimator in section 6. The finite sample properties of the test and the estimator are

discussed in section 7. Finally, the paper applies the test in the empirical application of

budget spillovers in US states, in section 8. It shows that there was a change in the budget

dependence between similar income states.

2 Spatial Lag Model

Let us consider a simple pooled linear regression model

yit = xitβ + εit, (1)

where i is an index of cross-sectional dimension, with i = 1,...,N , and t is an index for the

time dimension, with t = 1,...,T . The paper discusses all the results using “time” as the

second dimension; however for a general spatial lag model, the second dimension could very

well reflect another cross-sectional characteristic, such as the industry sector or the number

of classes or groups. yit is an observation on the dependent variable at i and t, xit a 1×K
vector of observations on the (exogenous) explanatory variables including the intercept, β a

matching K × 1 vector of regression coefficients, and εit an error term. In stacked form, the

simple pooled regression can be written as

y = xβ + ε, (2)

with y a NT × 1 vector, X a NT × K matrix and ε a NT × 1 vector. In general, spatial

dependence is present whenever the correlation across cross-sectional units is non-zero, and
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the pattern of non-zero correlations conforms to a specified neighbor relation. When the

spatial correlation pertains to the dependent variable it is known as a spatial lag model. The

neighbor relation is expressed by means of a spatial weight matrix.

A spatial weights matrix W is a N ×N positive matrix in which the rows and columns

correspond to the cross-sectional observations. An element wij of the matrix expresses the

prior strength of the interaction between location i (in the row of the matrix) and location

j (column). This can be interpreted as the presence and strength of a link between nodes

(the observations) in a network representation that matches the spatial weights structure.

In the simplest case, the weights matrix is binary, with wij = 1 when i and j are neighbors,

and wij = 0 when they are not. The choice of the weights is typically driven by geographic

criteria such as contiguity (sharing a common border) or distance. However, generalizations

that incorporate notions of “economic” distance are increasingly being used as well. By

convention, the diagonal elements wii = 0 . For computational simplicity and to aid the

interpretation of the spatial variables, the weights are almost always standardized such that

the elements in each row sum to 1, or, wsij = wij/
∑

j wij. Using the subscript to designate

the matrix dimension, with WN as the weights for the cross-sectional dimension, and the

observations stacked, the full NT ×NT weights matrix becomes: WNT = IT ⊗WN , with IT

as an identity matrix of dimension T .

Unlike the time series case, where “neighboring” observations are directly incorporated

into a model specification through a shift operator (example t− 1), in the spatial literature

the neighboring observations are included in the model specification by applying a spatial lag

operator (W ) to the dependent variable. A spatial lag operator constructs a new variable

which consists of the weighted average of the neighboring observations, with the weights

as specified in W . The spatial lag model or mixed regressive spatial autoregressive model

includes a spatially lagged dependent variable as an explanatory variable in the regression

specification. The word “spatial lag” is used to specify the inclusion of the neighboring

observations. Similar to time series “lag operator”, Wy emphasizes the first-order location

lag in the dependent variable. The spatial lag model can be written as

y = ρ(IT ⊗WN)y +Xβ + ε (3)

where ρ is the spatial autoregressive parameter, and the parameter of interest in this paper.
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2.1 Endogeneity Problem

The problem in the estimation of the model (3) is that, unlike the time series case, the

spatial lag term is endogenous. This is the result of the two-directionality of the neighbor

relation in space (“I am my neighbor’s neighbor”), in contrast to the one-directionality in

time dependence. Rewriting equation (3) in a reduced form:

y = [IT ⊗ (IN − ρWN)−1]Xβ + [IT ⊗ (IN − ρWN)−1]ε (4)

specifying that the joint determination of the values of the dependent variable in the spatial

system is a function of the explanatory variables and error terms at all locations in the

system. The presence of the spatially lagged errors in the reduced form illustrates the joint

dependence of WNyt and εt in each cross-section. In model estimation, the simultaneity is

usually accounted for through instrumentation (IV and GMM estimation) or by specifying

a complete distributional model (maximum likelihood estimation). In this paper, I use

maximum likelihood estimation.

2.2 Maximum Likelihood Estimation

Assuming Gaussian distribution for the error term, with ε ∼ N(0, σ2
ε INT ), the log-likelihood

can be written as:

lnL = −NT
2
ln2πσ2

ε + T ln|IN − ρWN | −
1

2σ2
ε

ε′ε (5)

where ε = y−ρ(IT ⊗WN)y−Xβ and |IT ⊗ (IN −ρWN)| = T ln|IN −ρWN | is the Jacobian of

the spatial transformation. To avoid singularity or explosive processes, the parameter space

P for the true spatial autoregressive parameter ρ is compact and ρ0 is in the interior of P.

Lee [2004] discusses the asymptotic properties of the maximum likelihood estimators for

the cross-section case. Lee and Yu [2010] and Yu et al. [2008] derive the properties for

the spatial panel model with fixed effects. This paper uses the properties of the maximum

likelihood estimators to derive the asymptotic distribution of the test statistic.
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3 Motivation

The paper considers the following problem in a spatial lag model:

yit =


xitβ + ρ1

N∑
j=1

wijyjt + εit for t = 1, ..., ko,

xitβ + ρ2
N∑
j=1

wijyjt + εit for t = ko + 1, ..., T

(6)

ρ1 6= ρ2 means there is a change at an unknown date k0. The paper proposes a sup LR test

of the null hypothesis of ρ1 = ρ2 against the alternative hypothesis of a change: ρ1 6= ρ2.

The test detects structural break in the spatial dependence parameter. Following are some

empirical models where the test can be applied, providing motivation for the test.

3.1 Sectoral Output

Acemoglu et al. [2012] look into the intersectoral input-output linkages in the US and show

how microeconomic idiosyncratic fluctuations lead to aggregate fluctuations. Defining the

sectoral production function as,

xi = zil
α
i

n∏
j=1

x
βwij

ij (7)

where xi is the output of sector i, li is the amount of labor hired by the sector, α ∈ (0,1) is

the share of labor, xij is the amount of commodity j used in the production of good i, and

zi is the idiosyncratic productivity shock to sector i. The exponent wij ≥ 0 designates the

share of good j in the total intermediate input use of firms in sector i. In particular, wij =

0 if sector i does not use good j as input for production.

Acemoglu et al. [2012] assume that the input shares of all sectors add up to 1, so
∑

j wij

= 1. With the assumption of market clearing, equation (7) can be rewritten (taking log on

both sides) as equation (3). In this case, labor will be an exogenous variable and β1 6= β2

would mean changes in the Cobb-Douglas parameter over time.

3.2 Cigarette Sales

Baltagi and Li [2004] estimate a demand model for cigarettes based on a panel from 46 US

states and defining W based on the neighboring states:

log(Cit) = β1log(Pit) + β2log(Yit) + ρ
N∑
j=1

wijlog(Cjt) + εit (8)
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where Cit is real per capita sales of cigarettes by persons of smoking age (14 years and

older). This is measured in packs of cigarettes per capita. Pit is the average retail price of

a pack of cigarettes measured in real terms. Yit is real per capita disposable income. The

spatial autocorrelation parameter shows the dependence of cigarette sales in the neighboring

states. The tax policy on per packet cigarette differs by states and this leads to substantial

cross-state sales. However, over time, tax per packet has become more homogeneous and

hence one could expect the parameter ρ to change over time. By testing the hypothesis that

ρ1 = ρ2 against the alternative hypothesis of ρ1 6= ρ2, we can check if the dependence on

neighboring states has changed over time.

3.3 Budget Spillovers

Case et al. [1993] showed that US states’ budget expenditure depends on the spending of

similar states:

Git = Xitβ + ρ
N∑
j=1

wijGjt + εit (9)

where Git is the per capita real government expenditure of state i in year t, Xit includes

relevant control variables-income and demographic, wij > 0 if a state is the “neighbor” of

another state. Case et al. [1993] define “neighbor” in three different ways in their paper -

1) neighbors in location, 2) states having similar income and 3) states having similar racial

composition. They found that if the neighboring state increases its budget spending by a

dollar, then the state increases its budget expenditure by 70 cents. Policies have changed

over the years and one might be interested in testing if the spillover effect remains the same.

3.4 Other Network Motivations

In many of the network studies, the impact of the network is usually estimated by including

WY in the model, where W is the weighting matrix defining the network and y is the variable

of concern. For example, a weighted average of the math test scores of students sitting beside

student i determines student i’s test score.

With increasing network data availability, we could have repeated samples from such

network experiments and then be curious to know how the impact of the network changes

over time. Our structural break test could be used in this respect.
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4 Test

In this section, I describe the test statistic. The spatial lag model is given by:

yit = xitβt + ρt

N∑
j=1

wijyjt + εit (10)

where εit ∼ N(0, σ2
εit). I want to test the null hypothesis:

H0 : ρ1 = .... = ρT and β1 = ... = βT and σ2
εi1 = ... = σ2

εiT

against the alternative

H1 : β1 = ... = βT and σ2
εi1 = ... = σ2

εiT but there is an integer k0, 1 < k0 < T ,

such that ρ1 = .... = ρk0 6= ρk0+1 = .... = ρT .

Rewriting the panel model with a change point at k0 in the parameter ρ,

yit =


xitβ + ρ1

N∑
j=1

wijyjt + εit for t = 1, ..., ko,

xitβ + ρ2
N∑
j=1

wijyjt + εit for t = ko + 1, ..., T

(11)

ρ1 6= ρ2 means there is a change at an unknown date k0. The problem can be described as

testing ρ1 = ρ2 against ρ1 6= ρ2.

Let us write twice the likelihood ratio as

2Λk = 2(lnLk(ρ̂k, β̂k, σ̂
2
k) + lnL∗k(ρ̂

∗
k, β̂k, σ̂

2
k)− lnLT (ρ̂T , β̂T , σ̂

2
T )), (12)

where

• lnLk(ρ̂k, β̂k, σ̂2
k) is the log-likelihood defined for t = 1,..,k

• lnL∗k(ρ̂∗k, β̂k, σ̂2
k) is the log-likelihood defined for t = k+1,...,T

• lnLT (ρ̂T , β̂T , σ̂
2
T ) is the log-likelihood defined for t =1,...,T

As k0 is unknown, I use a maximally selected likelihood ratio and reject H0 if

Zt = max
1<k<T

2Λk (13)

is large. So the suggested test mechanism is to calculate the difference between the log-

likelihood under an alternative hypothesis and the log-likelihood under null for every 1 <

k < T and then the test statistic is the maximum difference between them.
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5 Limiting Distribution

In this section I derive the asymptotic distribution of the test statistic. However, before that

I specify the assumptions.

5.1 Assumptions

Assumptions on WN :

Assumption 1. wij ≥ 0, i 6= j for the off-diagonal elements of the spatial weight matrix

WN and its diagonal elements satisfy wn,ii = 0 for i = 1,..,N.

Assumption 2. WN is uniformly bounded in both row and column sums.

Assumption 3. |IT ⊗ (IN − ρWN)| is invertible for all ρ ∈ P; moreover, P is compact and

ρ0 is in the interior of P.

Assumptions on X and ε:

Assumption 4. εit are iid across i and t with ε ∼ N(0, σ2
ε INT ) and E|εit|4+η <∞ for some

η > 0.

Assumption 5. The matrices 1
Nj

∑N
i=1

∑j
t=1XitX

′
it and 1

Nj

∑N
i=1

∑T
t=j+1XitX

′
it have min-

imum eigen values bounded away from zero in probability for large j or both large N and j.

Also, it is assumed that E||X4
it|| <∞.

Assumption on N and T:

Assumption 6. N is a non-decreasing function of T and T →∞

Assumption 1 is a standard normalization assumption in spatial econometrics while As-

sumption 2 is also used in Lee [2004] and Yu et al. [2008]. Assumption 3 guarantees that

model (4) is valid. Also, compactness is a condition for theoretical analysis. In empiri-

cal application, where WN is row-normalized, one just searches over (-1,1). Assumption 4

provides regularity assumption for εit. Assumption 5 makes sure that the regressors are

asymptotically stationary. Assumption 6 allows two cases: (i) N →∞ as T →∞ such that
N
T
→ k <∞, for k > 0 and (ii) N is fixed as T →∞.

Theorem. Let =⇒ denote weak convergence in distribution under the Skorohod topology.

Under assumptions 1-6 and H0, the limiting distribution of Zt is

Zt =⇒ sup
s∈(u,1−u)

B2
1(s)

s(1− s)
(14)
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where B1(s), is a standard Brownian bridge and u is a small positive number.

For a known break k0

Zt
D−→ χ2(1) (15)

To prove the result, I first take a Taylor approximation of 2Λk around the true parameter

ρ0. It is found that the approximations involve partial sums of Gaussian random vectors that

are independently and identically distributed. Using results from the maximum likelihood

estimation of the Spatial panel model I obtain uniform convergence to Weiner processes. As

a next step, the partials sums are manipulated to obtain a Brownian bridge distribution.

For a fixed k, it is then easy to show that the asymptotic distribution is Chi-Square. The

detailed proof is provided in the Appendix.

The intuition as to why the asymptotic distribution from the univariate time series test

is still valid in this case - because the spatial dependence is contained in time, the dependent

variable of unit i only depends on the contemporaneous dependent variable of the neighboring

units. So the endogeneity does not spread over time and hence the distribution is similar to

the one found in univariate time series case.

There is an explicit form of the distribution function of the limit random variable. The

critical values are provided in Kiefer [1959], p.438. Some of the relevant critical values are

for size = 10%, 1.4978; for size = 5%, 1.8444 and for size = 1% it is 2.649. In this paper I

use 5% trimming, i.e. u = 0.05.

6 Estimation

Following the evidence against null hypothesis, it is important to determine the location of

the break date. The proposed estimator of the break date is the one that maximizes the

likelihood under the alternative hypothesis,

k0 = arg max
k

lnLA (16)

where lnLA is the log likelihood under the alternative defined as: lnLA = lnLk + lnL∗k

lnLk = −Nk
2
ln2πσ2

ε + kln|IN − ρWN | −
1

2σ2
ε

N∑
i=1

k∑
t=1

εitεit

lnL∗k = −N(T − k)

2
ln2πσ2

ε + (T − k)ln|IN − ρWN | −
1

2σ2
ε

N∑
i=1

T∑
t=k+1

εitεit

11



where lnLk is the log-likelihood defined for t = 1,..,k and lnL∗k is the log-likelihood defined

for t = k+1,...,T

The asymptotic properties of the estimator, including the consistency, rate of conver-

gence, and limit distribution are currently under investigation. Simulation evidence, pre-

sented is section 7, shows that the estimator performs very well in small samples in terms of

bias and root mean squared error. The root mean squared error is shown to decrease as the

sample size increases, thereby suggesting that the estimator is indeed consistent.

7 Monte Carlo Results

To evaluate the finite sample performance of the LR test and the performance of the estima-

tor, this section reports results of a limited set of sampling experiments. All results reported

are for 1000 simulations. I consider the data generating process -

yit =


1 + xit + 0.6

N∑
j=1

wijyjt + εit pre-break

1 + xit + ρ2
N∑
j=1

wijyjt + εit post-break

(17)

where xit from N(0, 1) and εit from N(0, 1.3)

I first look into the power of the proposed test. Let ρ1 = 0.6 and the actual break date

is k0 = T/2 in each of the cases. I find that the test has high power even with N and T =

50 as seen in Table 1. The power increases with increases in N and/ or T (in Table 2).

Table 1: Power of the test- I

N T Rho2 Frequency of rejection

50 50 0.7 0.957

50 50 0.65 0.337

50 50 0.55 0.263

50 50 0.5 0.807

50 50 -0.6 1
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Table 2: Power of the test - II

N T Rho2 Frequency of rejection

50 100 0.65 0.657

50 100 0.55 0.551

50 200 0.65 0.932

50 200 0.55 0.881

100 50 0.65 0.515

100 50 0.55 0.401

100 100 0.65 0.852

100 100 0.55 0.741

100 200 0.65 0.989

100 200 0.55 0.971

(a) N = 50, T= 50 (b) N = 200, T = 200

(c) N = 50, T = 500 (d) N = 500, T= 500

Figure 1: Emprical versus Asymptotic Distribution
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Next I look into graphical comparisons between empirical and asymptotic distributions

presented in Figure 1. The continuous lines are the asymptotic distributions and the dotted

lines are the empirical cdf. It is found, that even with a small T, there is no size distortion

and the empirical distribution matches closely the asymptotic distribution. As T increases,

the two distributions overlap.

For a known break, the asymptotic distribution is chi-square with 1 degree of freedom.

The graphical comparison presented in Figure 2 shows that even with N= 50, T= 50, with

a known break, the empirical distribution is very close to the asymptotic chi-square distri-

bution.

Figure 2: CDF plot for empirical distribution with a known break

Next I compare the performance of the break-date estimator. The bias is almost negli-

gible. The root mean square decreases with increases in N. With increases in T the stan-

dard deviation does not go down. This is a well known result in the univariate time series

literature-only the break fraction can be consistently estimated, not the break date.

Also, I make a quick comparison with the ordinary least squares residuals-based method,
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with the estimator defined by

k̂ = arg min
1≤k≤T

SSR(k) (18)

Here SSR(k) is the sum of squared residuals of the model under the alternative assuming

a break at date k. The bias is comparable in the two cases, but the standard deviation and

root mean square is higher for the OLS residual-based estimate of break date.

Table 3: Estimator Performance - Likelihood Method

Rho1 Rho2 N T Break date bias St.dev RMSE

0.6 0.7 50 50 25 0.1 1.01 1.01

0.6 0.7 50 100 50 0.08 1.16 1.16

0.6 0.7 50 200 100 0.11 1.1 1.1

0.6 0.7 50 50 25 0.1 1.01 1.01

0.6 0.7 100 50 25 0.04 0.67 0.67

0.6 0.7 200 50 25 0.01 0.23 0.23

0.6 0.7 50 50 25 0.1 1.01 1.01

0.6 0.7 100 100 50 0.06 0.52 0.53

0.6 0.65 50 50 25 0.35 5.77 5.78

0.6 0.55 50 50 25 0.16 6.99 6.99

0.6 -0.6 50 50 25 0 0 0

Looking at the tables closely, an interesting pattern is observed, there is an asymmetry

in the behavior of the estimator and the power of the test. When ρ2 = 0.55 the power of

the test is poorer compared to that when ρ2 = 0.65. Similarly the break date estimator

has a lower standard deviation and root mean square when the post-break parameter is

increasing (ρ2 = 0.65) as compared to a comparable reduction in the post-break parameter

(ρ2 = 0.55). An explanation for such behavior could be that, when post-break parameter is

increasing (ρ2 = 0.65), there is a higher signal of spatial dependence. This leads to reduction

in the variance and makes it easier to determine the break. However when the post-break

parameter is comparably lower (ρ2 = 0.55) the signal is lower giving rise to more variation

and difficult to capture the break.
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Table 4: Estimator Performance - OLS Residuals

rho1 rho2 N T Break date bias St.dev RMSE

0.6 0.7 50 50 25 -0.2 2.53 2.54

0.6 0.7 50 100 50 -0.31 2.01 2.03

0.6 0.7 50 200 100 -0.36 1.85 1.88

0.6 0.7 50 50 25 -0.2 2.53 2.54

0.6 0.7 100 50 25 -0.14 1.17 1.18

0.6 0.7 200 50 25 -0.09 0.49 0.5

0.6 0.7 50 50 25 -0.2 2.53 2.54

0.6 0.7 100 100 50 -0.22 1.09 1.11

0.6 0.65 50 50 25 -0.51 8.95 8.96

0.6 0.55 50 50 25 -0.03 9.8 9.8

0.6 -0.6 50 50 25 0 0 0

The proposed likelihood based estimator performs well in finite sample. As N increases,

the root mean square error decreases suggesting that the estimator is consistent.

8 Budget Spillovers

Case et al. [1993] showed how a US state’s budget expenditure depends on the spending of

similar states. Quoting Arkansas state Senator Doug Brandon (1989) describing his state’s

budgetary policy as

“We do everything everyone else does.”

The proposed sup LR test is used to check the hypothesis that a state’s dependence on

another’s budget remained the same in the US or has changed over time. The data consists

of an annual panel of US states from 1960 to 2011. All dollar figures are calculated on a per

capita basis and deflated using the GDP deflator (the base year being 2009). The dependent

variable is the government expenditure of state i in the year t. The budget expenditure is

the sum of the direct spending of state and local governments. The variables included in Xit

other than the intercept are: the real per-capita personal income, income squared, real per

capita total intergovernmental federal revenue to state and local governments, population

density, proportion of the population at least 65 years old, proportion of the population

between 5 and 14 years old, and proportion of the population that is black. The income
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and revenue are the resources the state government can use. The square of the income picks

up possible non-linear effects of changing resources. The population density captures the

possibility that there are potential congestion effects and scale economies in the provision of

state and local government services. States with different age and racial structures may have

different demands for publicly provided goods. Hence demographic variables are included.

The model can be written as:

Git = Xitβ + ρ

N∑
j=1

wijGjt + εit (19)

where X includes all the control variables. I consider T= 52 from 1960 to 2011 and N = 49

states in the US. Case et al. [1993] use three different ways to define the weight matrix. In

this paper, I define it as wij = (1/|Yi−Yj|)/Si, where Yk is the mean income over the sample

period and Si is the sum
∑

j 1/|Yi − Yj|. According to this definition of the weight matrix,

rich states are neighbors to rich states and poor states are neighbors to poor states.

Table 5: Full model estimate

Coefficient Asymptotic t-stat p-value

intercept 0.697432 0.214295 0.830317

Pop65 -0.404178 -4.898872 0.000001

Pop5to14 -0.058942 -0.57394 0.566009

Popblack -0.056243 -4.30405 0.000017

Popden -0.000282 -2.213868 0.026838

F 1.735213 58.255465 0

Y 0.130133 14.288976 0

Y 2 0.000018 1.621974 0.104809

W ∗G 0.121999 7.302404 0

All the test results are based on tests with size 5%. We reject the null hypothesis

of no break, implying evidence for a break. The break date is estimated at 1982. The

pre-break budget spillover coefficient is estimated as 0.0229 while the post-break budget

spillover coefficient is estimated as 0.1056. As to why there might be a break, there could

be two reasons: 1) In 1981, Ronald Reagan became the president of the United States

and advocated many different policies across US states (also known as Reagonomics). 2)

The number of Democratic governors in the US started decreasing post 1983 suggesting

synchronized Republican economic policies in different states.
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To differentiate between trend behaviors and fluctuations, a Hodrick-Prescott filter is

applied on all the dollar value variables to closely look into idiosyncratic budget spillovers in

US states. We reject the null hypothesis of no break. The break date is then estimated to

be in 1977. The pre-break ρ coefficient is 0.5718 and the post-break ρ coefficient is 0.3746.

Firstly this suggests that the idiosyncrasy in budget expenditure for a state depends on

“similarly” situated states. Secondly, the dependence goes down post-break. This can be

attributed to more power given to the governors in the 1980’s. For the federal government

(central planner) the budget policies for each state will be similar; compared to individual

governors in each state who will adjust the budget expenditures for their states based on

individual needs. So overall even though the spillovers increase (capturing overall trend in

the economy), the budget spillovers in case of idiosyncracies reduce over time.

9 Conclusion

This paper considers the problem of structural break in the spatial dependence parameter

in a panel model and provides a likelihood ratio test.

In this paper, I first describe the spatial panel model and the interpretation of the spatial

lag or spatial autoregressive parameter. Next I motivate the problem of structural break in

such parameter. The sup LR test statistic is proposed and under large T, the limiting distri-

bution is derived. The test is easy to implement and the critical values can be analytically

obtained.

In case there is evidence to reject the null hypothesis, the paper proposes a break date

estimator based on the argument which maximizes the likelihood ratio. The finite sample

properties of the test and the break-date estimator are provided. The monte carlo simulations

show that the test has good power even in small samples. The estimator of the break date

shows negligible bias and the root mean square decreases with increases in N suggesting a

consistent break-date estimator for a panel model.

The paper then considers the problem of budget spillovers across US states and the

change in the spatial dependence over time. The test rejects the null hypothesis of no break in

budget spillovers for 1) the spillover in the overall budget expenditure of US states and 2) the

spillover in the fluctuations of budget expenditure. The overall trend of spatial dependence

in budget expenditure is found to have increased post-break, but the idiosyncrasies in budget

expenditure are less spatially dependent post-break.

The following extensions to the paper are being considered - 1) asymptotic limit distribu-
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tion of the test staitstic for large N , (2) proving the consistency of the break date estimator

and deriving the limiting distribution, and 3) extending the test to multiple structural breaks.

10 Appendix: Proof of theorem

Let θ = (ρ, β, σ2
ε ). Then,

lnLT (θ) = −NT
2
ln2πσ2

ε + T ln|IN − ρWN | −
1

2σ2
ε

N∑
i=1

T∑
t=1

ε′itεit

lnLk(θ) = −Nk
2
ln2πσ2

ε + kln|IN − ρWN | −
1

2σ2
ε

N∑
i=1

k∑
t=1

ε′itεit

lnL∗k(θ) = −N(T − k)

2
ln2πσ2

ε + (T − k)ln|IN − ρWN | −
1

2σ2
ε

N∑
i=1

T∑
t=k+1

ε′itεit

Denoting lnLT (θ) = Lc, lnLk(θ) = L1 and lnL∗k(θ) = L2. Also defining ρ̂k as the MLE

estimate for pre-break regime under alternative, ρ̂∗k as the MLE estimate for post-break

regime under alternative and ρ̂T as the MLE estimate under null. Taking Taylor expansion

of 2[L1 + L2 − Lc] around the true value ρ0 and denoting that by Rk

Rk = 2[L1(ρ0) + L2(ρ0)− Lc(ρ0)

+ L′1(ρ0)(ρ̂k − ρ0) +
L′′1(ρ0)

2
(ρ̂k − ρ0)2

+ L′2(ρ0)(ρ̂
∗
k − ρ0) +

L′′2(ρ0)

2
(ρ̂∗k − ρ0)2

− L′c(ρ0)(ρ̂T − ρ0) +
L′′c (ρ0)

2
(ρ̂T − ρ0)2]

Now, L1(ρ0) + L2(ρ0) = Lc(ρ0). So Rk can be rewritten as:

Rk = [2L′1(ρ0)(ρ̂k − ρ0) + L′′1(ρ0)(ρ̂k − ρ0)2

+ 2L′2(ρ0)(ρ̂
∗
k − ρ0) + L′′2(ρ0)(ρ̂

∗
k − ρ0)2

− 2L′c(ρ0)(ρ̂T − ρ0) + L′′c (ρ0)(ρ̂T − ρ0)2]
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From Lee [2004] and Yu et al. [2008] under the assumptions 1-6

√
NT (ρ̂T − ρ0) =

[
− 1

NT
L′′c (ρ0)

]−1 1√
NT

L′c(ρ0)

√
Nk(ρ̂k − ρ0) =

[
− 1

Nk
L′′1(ρ0)

]−1 1√
Nk

L′1(ρ0)√
N(T − k)(ρ̂∗k − ρ0) =

[
− 1

N(T − k)
L′′2(ρ0)

]−1 1√
N(T − k)

L′2(ρ0)

Using these relationships and rearranging the terms, Rk can be rewritten as:

Rk =
1√
Nk

L′1(ρ0)
[
− 1

Nk
L′′1(ρ0)

]−1 1√
Nk

L′1(ρ0)

+
1√

N(T − k)
L′2(ρ0)

[
− 1

N(T − k)
L′′2(ρ0)

]−1 1√
N(T − k)

L′2(ρ0)

− 1√
NT

L′c(ρ0)
[
− 1

NT
L′′c (ρ0)

]−1 1√
NT

L′c(ρ0)

Let GN = WN [IN − ρNWN ]−1 then

− 1

NT
L′′c (ρ0) =

1

σ2
ε0

T∑
t=1

(
(WNYNt)WNYNt + tr(G2

N)
)

where WNYNt = GNXNtβ0 +GNεNt and lim
T→∞

− 1
NT
L′′c (ρ̄)⇒ H∗

′
H∗. Also,

1√
NT

L′c(ρ0) =
1

σ2
ε0

√
NT

T∑
t=1

[
(GNXNtβ0)

′εNt
]

+
1

σ2
ε0

√
NT

T∑
t=1

[
ε′NtG

′
NεNt − σ2

ε0trGN

]

1√
NT

T∑
t=1

[
ε′NtG

′
NεNt − σ2

ε0trGN

]
= op(1)

1√
NT

T∑
t=1

[
(GNXNtβ0)

′εNt
]

= Op(1)

Now, 1√
T

∑T
t=1

[
1√
N

(GNXNtβ0)
′εNt
]

= T−1/2
∑T

t=1HNtεNt. Here, 1√
N

(GNXNtβ0)
′ = HNt and

lim
T→∞

HNt ⇒ H∗. As long as T →∞, by FCLT we get:

1√
T

T∑
t=1

HNtεNt ⇒ H∗W (1)
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where W (t) is a standard Weiner process. Thus, if we let k
T

= λ. Then by FCLT,

1√
k

k∑
t=1

HNtεNt ⇒
H∗W (λ)√

λ

1√
T − k

T∑
t=k+1

HNtεNt ⇒
H∗(W (1)−W (λ))√

1− λ

Hence we get:

R(k)⇒ H∗W (λ)(H∗)−1√
λ

H∗W (λ)(H∗)−1√
λ

+
H∗(W (1)−W (λ))(H∗)−1√

1− λ
H∗(W (1)−W (λ))(H∗)−1√

1− λ
−H∗W (1)(H∗)−1H∗W (1)(H∗)−1

Let

R(λ) ≡ 1

λ
[W (λ)]2 +

1

1− λ
[W (1)−W (λ)]2 − [W (1)]2

Rearranging the terms we get:

sup
λ∈(u,1−u)

R(λ)⇒ sup
λ∈(u,1−u)

[λW (1)−W (λ)]2

λ(1− λ)

or sup
λ∈(u,1−u)

R(λ)⇒ sup
λ∈(u,1−u)

B2
1(λ)

λ(1− λ)

For known k0, λ0 = k0
T

, the limit distribution of R(λ0) is χ2
1.
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