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1 Abstract

Most large cities throughout the world exhibit traffic congestion; Boston

is a perfect example of this reality. Congestion can be characterized by both

usual traffic jams (due to morning/evening commutes) and unusual jams (due

to accidents, inclement road conditions, etc.); these unusual jams must be

identified to prevent congestion from spreading to adjacent roads. The goal

is to identify these unusual jams and report them in order to ultimately build

smart and efficient cities.

This thesis involved the design of an anomaly detection system and its

application to real traffic jam data provided by the City of Boston. For

this endeavor, a dataset containing traffic jam points was used for creating

anomaly-free baseline models for a set of time intervals defined over different

seasons, days, and hours. All jams become parametrized into a 4D feature

space; clustering methods are used to measure jam persistence in each time

interval and discard the jams that do not appear often. With defined models,

new traffic jams are compared and classified as either anomalous or non-

anomalous.
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2 Introduction

This thesis project is done in collaboration with the City of Boston in

support of making Boston a smarter and more efficient city. There has been

a large amount of recent work on smart cities on problems such as improve-

ment of transportation networks [1], detection and classification of roadway

obstacles [2], and emergency response systems [3]. We focus on the problem

of anomalous jam identification for transporation network improvement.

The Google-owned traffic and navigation application, Waze, continuously

collects data regarding traffic jams throughout a day. Waze provides this

data to the City for research purposes. Boston’s Department of Innovation

and Technology receives and processes the data and it then passes infor-

mation to the city transportation management group that has full control

of transportation-related infrastructure such as traffic lights, sensors, and

cameras throughout the Boston Metro area. The management group then

analyzes this information and takes appropriate action if needed. The infor-

mation of focus to us and to the City is traffic jam alerts.

Traffic jams can be classified into two categories: 1) typical jams, and 2)

anomalous jams. Typical traffic jams are jams that one can expect to happen

and that are not caused by a specific event. For example, a jam on the Mass

Pike at 9:00AM would be classified as a typical jam because we expect a

jam to exist at that time. These traffic jams are due to regular congestion

and no city intervention can fix the congestion, only time can. On the other
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hand, anomalous jams are unexpected jams that might happen at atypical

locations and/or times. These jams could be caused by on-road accidents,

inclement road conditions, construction at inappropriate times, etc. The

anomaly detection system is intended to be used as shown in Figure 1. The

system will receive jam data and it will output jam listings along with a

metric that represents the probability that a jam is non-anomalous. This

list can be used by the City of Boston and critical jams can be selected

and studied further using the city’s infrastructure; next, the cause of the

jam can be identified and appropriate action can be taken. As an example,

there might be a jam on a normally empty road at 9:30pm whose cause

might be a car accident due to icy roads that has caused lane blockage; this

jam is unexpected, and will be identified as such by the system. The jam

will be relayed to the city and the city management group will use their

infrastructure to investigate the cause of the strange jam (more specifically,

they will use cameras to locate the car accident), and they will take action by

contacting nearby police to quickly remove the cars and free up the blocked

lane. The transportation management group wants to receive alerts regarding

anomalous, not typical, traffic jams because only these jams can be remedied

through action from the city. Alerts about normal jams are not important

because the City will only waste time and resources to investigate a normal

jam that cannot be fixed by its intervention. The thesis work aims to develop

a traffic jam anomaly detection system that will provide alerts only about

anomalous jams in order to preserve resources and focus solely on jams that
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can be remedied with help from the City.

Data feature extraction and machine learning methods will be chosen and

applied to the jam dataset for anomalous jam identification. Training data

will be used to create nominal and anomaly-free traffic models and testing

data will be used to test system detection performance.

Figure 1: Anomaly Detection System Usage
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3 Anomaly Detection System Design

Figure 2: Anomaly Detection System Architecture

Figure 2 above represents the anomaly detection system block diagram.

The system design has been designed relative to the structure of the data at

hand. The massive jam dataset used in this endeavor contains jam points

from 2014 to 2016 and it has the format as shown in Figure 3.

The data has 4 columns: 1) Time Stamp, 2) Jam ID, 3) Latitude, 4)

Longitude. These elements can be used for traffic jam visualization at a

specific time instance; this visualization is displayed in Figure 4. Overall,

all the data at hand takes up at least 10GB of data, so working directly

with this data would not be effective or efficient. It follows that a feature

extraction must be performed to obtain data that will be more amenable

to analysis. The feature extraction procedure is displayed in Figure 5. For

every traffic jam, 4 parameters are extracted: 1) Mean Latitude (lat), 2)
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Figure 3: Traffic Jam Data Format

Mean Longitude (long), 3) Length [in km] (l), and 4) Directionality relative

to a horizontal line (θ). Thus, each jam gets represented by a feature vector

of the form:
−→
f =

[
lat, long, l, θ

]
. With this, we form a simpler dataset that

can be analyzed efficiently.

With the feature extraction, we implicitly assume that traffic jams can

be approximated as lines; to verify this, we take all traffic jams, carry out

a linear regression, and look at the distribution of R2 values over all jams.

Figure 6 displays the sorted distribution and we see that over 85% of jams

have R2 > 0.7; this verifies the validity of our assumption.

With the new and simplified dataset, we take all the data and form a

training set; we will synthesize test data for use in the anomaly identification
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Figure 4: Traffic Jam Visualization @ 2:00PM, January 8th, 2015

Figure 5: Jam Feature Extraction

stage. The simplified training dataset, again, contains 4 parameters and also

jam occurence times. We want to take the training data and form baseline

models for comparison with new data in the anomaly identification testing

stage. To form baseline models, we must assume that traffic is constant

throughout the information used in creating the model; but, since our data

varies over years, seasons, days, and hours, there is a large amount of traffic

variability so our assumption will definitely not hold. To remedy this, we
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Figure 6: Distribution of Jam R2 Values

must split the training data into time intervals over seasons, days of the

week, and hours in a day to form partitions where traffic could safely be

assumed to be constant. Figure 7 displays how the partitioning of the data

is done. Basically, we split the data using each jam’s time stamp over 4

seasons, over 7 days, and over 5 different hour intervals per day.

Training Data 

Winter Fall Spring Summer 
Layer 1: 
Season 

Sun. Mon. Tue. Wed. Thu. Fri. Sat. 
Layer 2: 

Day 

𝑇𝐼1: 12AM – 6AM [Early Morning]   

𝑇𝐼2: 6AM – 10AM [Morning Rush Hour]   

𝑇𝐼3: 10AM – 3PM [Afternoon]   

𝑇𝐼3: 3PM – 7PM [Evening Rush Hour]   

𝑇𝐼5: 7PM – 12AM [Late Evening]   

Layer 3: 
Hours 

Figure 7: Time Interval Creation Scheme

With this, we form 140 time intervals, and a baseline traffic model needs
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to be formed for each time interval. Each baseline model will consist of sets

of traffic jams that will be referenced in testing to see whether or not a new

jam resembles any jam in the baseline model. If an identical jam exists, the

test point will be labeled as non-anomalous but if no identical jam exists,

it will be labeled as anomalous. This comparison assumes that the baseline

model is fully made up of non-anomalous jams; but this might not be the

case since the jam dataset contains raw and unprocessed data. A cleaning

stage must be applied to the data in each time interval in order to get rid of

the jams that seldomly occur. Clustering methods will be used for this stage

and the procedures and testing results are described in detail in Section 4.

After cleaning, baseline models can be formed and the testing stage can

begin. In testing, raw jam data will be obtained, the feature extraction

used in training will be carried out to obtain the feature vector
−→
f (test) =[

lattest, longtest, ltest, θtest
]
, the time stamp of the test jam will be used to

reference the appropriate time interval and thus baseline model, and a prob-

abilistic comparison will be done to determine whether a jam is anomalous

or not by using a probability measure. The methodology for the probabilistic

comparison will be discussed in detail in Section 5.
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4 Anomaly Cleaning Procedures

In this section, we endeavor to find an appropriate cleaning method in order

to remove anomalous jams from each time interval; clustering methods will

be used to achieve the task. We want to group together related jams in 4

dimensional space and locate the clusters with very few members. These

clusters contain jams that seldomly show up and can thus be labeled as

anomalous. These clusters with few members must be identified and removed

to ultimately create baseline models of non-anomalous jams. In this work,

we looked in depth at 2 different clustering methods: 1) DP-Means, and 2)

DB SCAN. From our experimental analysis, we decide that clustering can

happen more accurately by using cascaded clustering techniques. We look

at the following 2 cascaded clustering methods: 1) DP Means + DP Means,

and 2) DP Means + DB SCAN.
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4.1 DP-Means

DP Means is a fast and scalable nonparametric extension of k-means where

clusters can grow as a function of data. It was first introduced in [4] and

this unsupervised learning method improves upon k-means by removing the

necessity of knowing K, the number of desired clusters, and replacing it with

a cluster penalty parameter, λ, that dictates the amount of clusters formed.

arg min
{lc}kc=1

k∑
c=1

∑
x∈lc

||x− µc||2 + λk (1)

For a given set of data points x1, x2, ..., xn, the DP Means objective func-

tion in (1) finds the best set of k clusters l1, l2, ..., lk that appropriately groups

together points and minimizes the objective function where k is the number of

created clusters, nc is the number of points in cluster c, and µc = (
∑

x∈lc x)/nc

is the mean of cluster c.

The intuition of (1) is as follows: k clusters are created, and for each

cluster, we look at its constituent points and add up the Euclidean distance

from each point to the cluster center to form a metric for each cluster. These

metrics are then summed along with a term that penalizes k to form a single

value for each cluster set. We want to minimize this and thus find the optimal

cluster set. To evaluate this metric, clusters need to be formed initially; this

is done through the DP Means algorithm in 1.

Algorithm 1 successfully implements the nonparametric extension of k-

means where the appropriate clusters are created based on a user-defined
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Algorithm 1: DP Means

1: Input: x1, ..., xn [Input Data] ;λ [Penalty Parameter]
2: Output: l1, ..., lk [Clusters] ; k [# Of Clusters]
3: Initialize: k = 1, l1 = {x1, ..., xn}, µ1 = (

∑n
i=1 xi)/n

4: Initialize: Set cluster indicators: zi = 1, ∀i ∈ {1, ..., n}
5: repeat
6: For each point xi:
7: Compute dic = ||xi − µc||2, for c = 1, ..., k
8: If minc dic > λ, set k = k + 1, zi = k, µk = xi
9: Otherwise, set zi = arg minc dic

10: Generate clusters li, ..., lk based on zi, ..., zk : lj = xi|zi = j
11: For each cluster lj, compute: µj = (

∑
x∈lj x)/nj, Σj = Cov(x ∈ lj)

12: until convergence

penalty parameter, λ. The larger the λ, the fewer the amount of clusters

that will be formed; the smaller the λ, the more plentiful the amount of

clusters will become. For our problem, we would like accurate clusters but

we do not want a large amount of them in order to make the testing portion

of the project as computationally efficient as possible. The more clusters

that exist, the more calculations that must be done in testing to determine

whether or not points belong to any cluster. Figure 8 displays the results of

DP Means on the simple case of 2 2D Gaussian clusters with various cluster

penalty parameters. We see that the larger the λ, the fewer the created

clusters and vice versa.

We see that the appropriate choice of λ is very important; to accurately

choose its best value, we must use cross validation.

Cross validation is an eminent and frequently used method of optimizing

parameters to ensure best algorithm performance as presented in [5]. In
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Figure 8: DP Means on Simple 2D Gaussian Clusters With Various Penalties

this case, we want to choose the best λ by using k-fold Cross Validation; the

procedure is displayed in 2 and a visual representation of the data partitioning

is shown in Figure 9.

Figure 9: Visualization of k-fold Cross Validation

Procedure 1 allows us to locate the best penalty parameter in a given set;

the larger the fold value used, the more computation time that is required.

For our experiments, we use a fold value k = 2 since good performance

was observed with this. Now, we look at some more complex examples of
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Procedure 1 : k-Fold Cross Validation for DP-Means

1: Input: x1, ..., xn [Input Data] ;λset [Set of λ’s] ; k [Fold #]
2: Output: λbest [Best Lambda]
3: Partition the n-length dataset into k (n/k)-length sized intervals T1, ..., Tk

4: Loop through all penalty parameters; for a specific λi ∈ λset = λ1, ..., λM :

5: Loop through the k data blocks; for iteration j where j ∈ 1, ..., k:
6: Set the testing set as Tj, training set as all remaining data (of length:
n− (n/k))

7: Run DP Means on the training set with λi and obtain a set of clusters
l1, ..., lC

8: For each test point, find closest cluster lclosest and do the following:
9: Obtain weighted distance from test point to closest cluster:

dweighted,i =
√

(xi − µclosest)T (Σ−1closest)(xi − µclosest) ∀i ∈ 1, ..., ntest where

ntest = (n/k)
10: For each cluster, add up the weighted distances from the points that have

the specific cluster as their closest cluster.
11: Obtain the final evaluation metric for a specific λ by taking the variance

of all the per cluster summed up weighted distances; add an optional
penalty βK to the metric to penalize on the amount of clusters formed,
K.

12: Choose the λbest that minimizes the penalized variance metric.
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DP Means where the penalty parameter was obtained through 2-fold Cross

Validation. As a reminder, our data has 4 features so we must cluster in 4-

dimensional space. Unfortunately, we cannot visualize 4D information easily

so the following examples are chosen to represent some features of the 4D

data but in fewer dimensions so we can visualize the clustering results.

Figure 10 displays the results of successful DP Means clustering on 2

noisey lines; we look at these lines because jams are represented as lines

along the 2 dimensions of our jam data, latitude and longitude. In addition,

we look at clustering results on 6 slightly-noisey lines. Figure 11 shows the

accurate clusters. Next, we want to show that clustering will work in higher

dimensions, so we attempt to cluster 216 point masses in 3D in Figure 12.

All masses are clustered correctly and 216 multi-colored clusters are formed.

Finally, we test clustering performance on the latitude and longitude features

of the jam data. Clusters are appropriately formed but the clusters in the

Downtown Boston area are very dense and not fine enough as those of the

outside suburban areas. This problem can be averted through multistage

clustering which is discussed in 4.3.1 and 4.3.2.

Ultimately, we see that DP Means is a clustering method that could scale

up well to our 4D data but the only bottleneck (which can be avoided) is the

variation of cluster density that could occur as seen in Figure 13. We now

transition to study another clustering method, DB SCAN, in 4.2.
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Figure 10: DP Means - Test on 2 Lines

Figure 11: DP Means - Test on 6 Lines

Figure 12: DP Means - Test on 3D Data
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Figure 13: DP Means - Test on 2D Real Data
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4.2 DB SCAN

DB SCAN is a very well-known density clustering method presented in [6]

that groups together points that are closely packed together (points with

many neighbors) and it marks as outliers points that lie alone in low density

regions (whose nearest neighbors are too far away). This method is resistant

to noise and it works well with clusters of various sizes and shapes [7]; but,

just like with DP Means, this method does not work very well with data of

varying density. This method requires two parameters: ε (distance threshold

for connecting points) and minPts (number of points required to form a

dense region).

The conventional algorithm presented in [6] identifies each point as one

of the following three types: 1) Outlier, 2) Core, and 3) Density Reachable;

labeling occurs by forming an ε-Neighborhood around each point and search-

ing for neighboring points whose distances to the current pont are less than ε.

Outliers are points that have no nearest neighbors in their ε-Neighborhood,

core points have at least minPts points in their ε-Neighborhood, and den-

sity reachable points have at least one neighbor inside their ε-Neighborhood.

With these label identifications, the next step is to create clusters. Outliers

form single member clusters while linked core and density reachable points

form their own clusters. This method seems promising because the outliers

that are identified are the anomalies that we must remove in creating base-

line traffic models so we can just remove the outliers from the data and thus

clean up each time interval for testing.
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Procedure 2 : DB SCAN

1: Input: x1, ..., xn [Input Data] ; ε [Threshold] ;minPts = 2

2: Output: l1, ..., lk [Clusters]

3: Loop through all points.

4: Create an ε-Neighborhood for each point.

5: Connect each point with all other points in its ε-neighborhood.

6: Create single member clusters for the points with no other points in their

ε-neighborhoods.

7: Create clusters using the inter-point links.

Figure 14: DB SCAN - Simple 2D Example

For our application, we solely care about forming clusters, not labeling

them; thus, an intuitive procedure for applying DB SCAN is displayed in

Procedure 2 and is used for our tests. A simple example of DB SCAN in 2D

is also shown in Figure 14 in order to visualize cluster formations. Basically,

points with no close neighbors form single member clusters but those with
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close neighbors connect and form clusters.

To successfully implement DB SCAN, we must have knowledge of the 2

necessary parameters, ε and minPts. In our case, minPts is not very impor-

tant since we solely care about forming clusters (setting minPts = 2 results

in good performance), not labeling points; so, it is imperative to find an ap-

propriate value for ε and we do so using the k-fold cross validation method

shown in Procedure 3 which endeavors to find the best ε that minimizes an

aggregate cluster density metric.

Procedure 3 : Cross Validation for DB SCAN

1: Input: x1, ..., xn [Input Data] ; εset [Set of ε’s]

2: Output: εbest [Best ε]

3: Loop through all ε’s; for a specific εi ∈ εset = ε1, ..., εM :

4: Run DB SCAN with εi and obtain a set of clusters I1, ..., IC :

5: Loop through all clusters:

6: For each cluster, do the following to obtain a density metric: Take all

data in the cluster, form an adjacency matrix where each element is a

euclidean distance, form a vector v containing all the distances in the

upper triangular portion of the adjacency matrix, and define a cluster

density metric as the fraction of the sum of the values in v that are less

than ε divided by the entire sum of v.

7: Obtain overall density metric for a specific ε by adding up the cluster

densities over all clusters.

8: Choose the εbest that minimizes the overall density metric.
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Just like we did with DP Means, we test DB SCAN on a few representative

examples that give us confidence that it will work appropriately with our 4D

jam data. First, we apply the method on a 2-line dataset as shown in Figure

15; here, minPts = 2 and ε is obtained through cross validation. We see

that points are clustered correctly and outliers are correctly identified. Next,

Figure 16 shows nice clustering results for similar data that makes up 6 low-

noise lines. Now, we look at clustering results of 216 3D masses in Figure

17; each mass was successfully identified as a cluster. Finally, in Figure 18,

we test the clustering on the latitude and longitude features from a random

time interval in our real data. Due to the density variation of the latitude

and longitude features, the formed clusters are appropriately made outside of

the Center/Downtown Boston area that is represented as one large cluster.

For this section of the data, a smaller ε must be used; to test this, we take

the entire center cluster and cluster it again as shown in Figure 19 using DB

SCAN but with a smaller ε. This cascaded clustering seems to be able to

solve the density dilemmas we have had with both DP Means and DB SCAN;

using these two methods, we form cascaded clustering schemes that we will

use to form anomaly-free baseline models for use in testing.
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Figure 15: DB SCAN - 2 Lines

Figure 16: DB SCAN - 6 Lines

Figure 17: DB SCAN - 3D Data
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Figure 18: DB SCAN - Latitude and Longitude Data

Figure 19: DB SCAN - Clustering On Dense 2D Data
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4.3 Cascaded Clustering

Cascaded clustering is a means of circumventing the problem of varying data

density that arises with single stage clustering. We ultimately want to form

dense and accurate clusters that group together similar points and remove

the clusters with very few members; the process for Cascaded Clustering is as

follows: We first take a dataset, apply one clustering method to it, get a set

of clusters, and then apply another clustering method to the initial clusters

that need further clustering. We look at 2 cascaded methods: 1) DP Means

+ DP Means, 2) DP Means + DB SCAN and we test them out on simple

examples to show their effectiveness in clustering data of varying density. For

each time interval, these two methods will be applied and clusters with few

members will be removed in the creation of baseline models. With this, we

will have sets of clusters that we will use in 5 to determine whether or not a

new jam is anomalous.
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4.3.1 DP Means + DP Means

Cascading DP Means allows us to form dense and precise clusters; the clus-

tering procedure is as follows: Given a dataset, apply DP Means with a small

penalty λ, and for the clusters that have a large amount of members, apply

DP Means again with a λ that is obtained from k-fold Cross Validation.

The procedure results are first shown in Figure 20 where we cluster a 2 line

dataset. The resulting clusters from the first stage of the sequence are shown

by the point colors while the even finer clusters from the second stage are

displayed by the ellipses. Single member clusters are displayed without any

ellipse around them. For our anomaly cleaning, these point clusters would

be removed from the dataset. With this, we obtain finer and more accu-

rate clusters for analysis. As another example, we look at a random time

interval’s latitude and longitude data, cluster once with DP Means, find a

dense cluster in the Downtown Area, and then cluster it again to get finer

and more accurate groupings. This is indeed the case as we see in Figure 21

where identical jams are grouped nicely. In addition to Cascaded DP Means,

we look at DP Means + DB SCAN in 4.3.2.
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Figure 20: DP Means + DP Means - Clustering 2 Lines

Figure 21: DP Means + DP Means - Clustering Downtown Boston Cluster
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4.3.2 DP Means + DB SCAN

Here, we look at how clustering works with DP Means + DB SCAN. The

procedure is as follows: Apply DP Means to the entire dataset to form pre-

liminary clusters, locate the clusters that require further clustering, and then

apply DB SCAN to them where minPts = 2 and ε is obtained through k-fold

cross validation. As done with DP Means, we test this procedure on a 2-line

dataset as shown in Figure 22; we see that the initial clusters from DP Means

became more fine after the DB SCAN application. Next, we look at a dense

cluster that was acquired from applying DP Means to latitude and longitude

data and apply DB SCAN to it to obtain the clusters displayed in Figure

23. Similar jams are clustered correctly and those that do not have close

neighbors are also correctly identified as outliers. For our anomaly cleaning,

we can just remove these outliers directly from the dataset.

Figure 22: DP Means + DB SCAN - Clustering 2 Lines

32



Figure 23: DP Means + DB SCAN - Clustering Downtown Boston Cluster
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5 Anomaly Detection Testing Methodology

At this point of the work, we have been able to complete the training phase

of the project where we formed anomaly-free baseline traffic models for dif-

ferent time intervals that could be used for testing whether or not a new jam

is anomalous. Now, we want to find a means of comparing new jams to the

data in a specific time interval; the way we do so is by forming a probability

of association of a new jam to the closest jam cluster. As shown in Figure

2, to study a test point, we first parameterize the jam into 4D space, we

reference the correct time interval based on season, day, and hour informa-

tion, and then apply some comparison. The comparison process is depicted

in Procedure 4; here, since we output a probability of cluster association, we

present a soft decision where an anomaly can be defined by a range of small

association values. Basically, small passociation values show that specific jams

cannot be associated to any cluster so they can be called anomalous and vice

versa. Regarding the association metric, the α parameter is used to scale the

squared Euclidean distance and its choice affects the resulting association

value. More specifically, a large α will not give very large association values

if a test point is very close to a cluster; on the other hand, a small α will

not give very small association values if the test point is far away from a

specific cluster. Thus, it is important to choose a scaling value that is not

very large or small; an appropriate value can be experimentally found for a

given dataset.
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We start off by testing this Procedure on a simple 2 line dataset as shown

in Figure 24 where we choose α = 1/8. On the left, we have a test point that

is very close to its closest cluster and the association value is 0.9360, a large

value. On the right, the test point is farther away and the association value

is smaller, 0.7813. From this, we see that the developed metric performs

well. Next, we look at a more complicated example with a small subset of

our real 4D feature data. The subset contains the points depicted in Table

1. We apply both cascaded clustering schemes (CC1 = DP Means + DP

Means, CC2 = DP Means + DB SCAN) and the created clusters are the

same and are grouped as shown in Columns 6 and 7 of Table 1. With these

created clusters, we want to obtain association values of the test points in

Table 2 (all of which are closest to Cluster 3) where feature vectors 2-5 are

variations of feature vector 1 where only one feature value is changed; the

rest of the jams vary multiple features, again, relative to feature vector 1.

The changed features are shown in bold. Here, α = 3/16 (experimentally

chosen) for the testing metric and before any analysis, we normalize the test

points to z-scores using the mean and standard deviations of the dataset in

Table 1. The association values in Column 6 show that when you change

a feature even slightly, the metric will correctly decrease to show that the

adjusted jam has some characteristic that has not been seen in a specific

time interval. When multiple features are changed, even smaller association

values result, as we expect. With this, we see the effectiveness of our testing

methodology and we can output a list of association values (which can be
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represented as probabilities of belonging to the closest cluster in the time

interval) that can be used by the City of Boston.

Now, we look at testing performance on synthetic jams during a random

time interval for both cascaded clustering methods. The testing association

metric is defined as: α = 5/8; we look at the following time interval: Season:

Spring, Day: Friday, Hour: Evening Rush Hour and the test points we use

are displayed in Tables 3 and 4. More specifically, Table 3 displays test points

and their probabilities of association to their nearest clusters using Cascaded

DP Means; Table 4 shows the same elements using DP Means + DB SCAN.

The first test point occurs on Commonwealth Avenue, right on the BU

Campus, and the chosen angle and length values represent the structure of

the road and a common jam length. With CC1, we see that the association

value is 0.8010, which says that this current test point belongs to the closest

cluster and thus it should not be labeled as anomalous. CC2 results in a

larger value, 0.8570, which shows even more that the point should not be

anomalous. Next, we change the length of the same jam and we see that

CC1 and CC2 give 0.7622 and 0.6725, respectively. Since the jam length has

been increased to a large value, this jam can safely be labeled as anomalous

since it represents heavy and unusual traffic; CC2 does the best in defining

the point as such with a smaller association value. Now, we look at a jam on

Massachusetts Avenue, a road that experiences traffic during rush hour. For

some normal parameters, CC1 and CC2 correctly give large values of 0.8648

and 0.8707, respectively. After this, the angle and length parameters are
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kept the same and the latitude and longitude locations are slightly shifted to

a nearby road, Beacon Street, that does not experience traffic at the chosen

spot. We want the resulting association metric to be small to show that the

new jam is anomalous in comparison to the historical data; CC1 and CC2

give values of 0.7348 and 0.6699, respectively. We see that CC2 gives the

more appropriate value. The fifth jam in located on Brookline Avenue, in

front of the Beth Israel Deaconess Hospital, a place where traffic is common.

CC1 and CC2 give associations of 0.8729 and 0.8616, respectively, and we see

that both return correct values. The sixth jam occurs on South Huntington

Avenue, a location close to the fifth jam but in a quiet neighborhood; we want

the resulting probability value to be small. CC1 and CC2 give acceptable

values of 0.7054 and 0.6979, respectively. Finally, the last 2 jams occur in

the suburbs where not too many jams have been recorded. We want the

association values for both these methods to be small; we get just that with

both methods. More analysis of this kind can be done with different time

intervals but the same performance trends will be observed as we have done

more tests and ended up with the same conclusions.

With our testing, we conclude that both cascaded clustering methods

perform very well but CC2 performs slightly better as seen with the preceding

comparisons.
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4D Subset of Real Data - 3 Clusters
True
Labels

Longitude Latitude Angle
(θ)

Length
(km)

CC1
Clusters

CC2
Clusters

1 −71.0686 42.3370 71 .44 1 1
1 −71.0687 42.3371 68 .35 1 1
1 −71.0687 42.3370 69 .38 1 1
2 −71.0852 42.3425 −13 .13 2 2
2 −71.0850 42.3426 −11 .20 2 2
2 −71.0851 42.3423 −12 .14 2 2
2 −71.0851 42.3423 −12.4 .11 2 2
3 −71.0437 42.3355 −55 .66 3 3
3 −71.0435 42.3353 −50 .67 3 3
3 −71.0434 42.3353 −52 .63 3 3
3 −71.0433 42.3354 −48 .70 3 3

Table 1: Table of Data and Cluster Labels for 4D Subset

Procedure 4 : Determining If A Jam Is Anomalous

1: Input: I1, ..., IC [Time Interval Clusters];xtest [4D Feature Vector]

2: Output: passociation [Degree of Association to Closest Cluster]

3: Calculate the association metric for each cluster where ni =

# of points in cluster i ∈ 1, ..., C, α = user-defined scaling parameter,

and dj,test = euclidean distance from a cluster point to test point :

passociation = (

ni∑
j=1

exp(−αd2j,test))/(ni)

4: Locate the maximum association value and output it.
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Test Points for 4D Subset of Real Data
Test
Jam
#

Longitude Latitude Angle (θ) Length
(km)

passociation

1 −71.0430 42.3340 −47 .72 0.9104
2 -71.0030 42.3340 −47 .72 0.6596
3 −71.0430 42.3490 −47 .72 0.4773
4 −71.0430 42.3340 35 .72 0.7160
5 −71.0430 42.3340 −47 1.12 0.6895
6 -71.0030 42.3490 −47 .72 0.4144
7 −71.0430 42.3340 35 1.12 0.6120
8 -71.0030 42.3490 12 .72 0.3916
8 -71.0030 42.3490 12 1.12 0.3663

Table 2: Table of Test Jams for 4D Subset

Test Results for Real 4D Data - DP Means + DP Means
Road Longitude Latitude Angle (θ) Length (km) passociation
Comm. Ave. −71.1022 42.3494 −35 .6 0.8010
Comm. Ave. −71.1022 42.3494 −35 1.5 0.7622
Mass. Ave. −71.0873 42.3464 −60 .3 0.8648
Beacon St. −71.1715 42.3331 −60 .3 0.7348
Brookline Ave. −71.1072 42.3389 45 .48 0.8729
S. Hunt. Ave. −71.1122 42.3239 −79 .28 0.7054
Trapelo Rd. −71.2056 42.3947 −40 1.1 0.6154
Hartford St. −71.2524 42.2127 20 .34 0.4617

Table 3: Table of Test Jams for Real Data - Spring, Friday, Evening Rush
Hour - DP Means + DP Means
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Test Results for Real 4D Data - DP Means + DB SCAN
Road Longitude Latitude Angle (θ) Length (km) passociation
Comm. Ave. −71.1022 42.3494 −35 .6 0.8570
Comm. Ave. −71.1022 42.3494 −35 1.5 0.6725
Mass. Ave. −71.0873 42.3464 −60 .3 0.8707
Beacon St. −71.1715 42.3331 −60 .3 0.6699
Brookline Ave. −71.1072 42.3389 45 .48 0.8616
S. Hunt. Ave. −71.1122 42.3239 −79 .28 0.6979
Trapelo Rd. −71.2056 42.3947 −40 1.1 0.5806
Hartford St. −71.2524 42.2127 20 .34 0.4625

Table 4: Table of Test Jams for Real Data - Spring, Friday, Evening Rush
Hour - DP Means + DB SCAN

Figure 24: Testing: Simple 2 Line Example
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6 Conclusion

In this work, we endeavored to develop a means of identifying anomalous traf-

fic jams by using historical data; we achieved this by using machine learning

techniques. We first began with latitude and longitude jam data and we ex-

tracted 4 features from each jam to create a less complex and more efficient

dataset. Next, we partitioned the data into 140 time intervals grouped by

season, day, and hour interval. With this, we studied different clustering

methods and applied two cascaded clustering schemes to each time interval

to group together similar points; we also cleaned some anomalous data from

our time intervals by removing clusters with very few members. With the

training phase complete, we then developed a means for testing whether or

not a new jam is anomalous; we did so with a soft assignment method where

we basically calculated, for a specific jam, a probability of it belonging to the

closest cluster. Values close to 1 show that the jam is very much associated

with its closest cluster so it is not anomalous while values close to 0 show

that the jam is not associated with the closest cluster so it can be labeled as

anomalous.

We successfully created a system that can interpret new data quickly and

with a great amount of accuracy. In the future, more clustering methods can

be studied for improved anomaly cleaning, more/different data can be used,

and/or a different association metric can be used.
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