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1. Introduction 

The simplest way to estimate a two-way fixed effect model is to include fixed effects as 

dummy variables and obtain the least squares dummy variable (LSDV) estimator. When the 

numbers of levels for both fixed effects are small, using the LSDV is straightforward. 

When only one of the fixed effects has a large number of levels (i.e., the fixed effect is high 

dimensional), it is often feasible to include the other fixed effect as dummies. This leaves 

one high-dimensional fixed effect to absorb and we can apply the usual method of one-way 

fixed effect model after absorption. In both cases, the LSDV approach will work well 

theoretically regardless of whether data are balanced or not. 

The LSDV method, however, can become computationally infeasible as sample sizes and 

the numbers of high-dimensional fixed effects increase. One alternative is to estimate 

transformed models in which fixed effects are eliminated. Balázsi, Mátyás, and Wansbeek 

(2015) show that in a simple model with two fixed effects and balanced data, the within 

transformation has a straightforward formula. For models with more than two fixed effects 

and under common data issues such as unbalanced data, transformation can become 

intractable. Another transformation for multiple high-dimensional fixed effects is sequential 

demeaning over fixed effect indices. Such static transformation can completely eliminate 

fixed effects with balanced panels but will in general fail with unbalanced panels. 

In this paper, we propose an alternative approach to transform models featuring large, 

unbalanced datasets and multiple high-dimensional fixed effects. As opposed to the within 

transformation which absorbs fixed effects in one step, or the sequential demeaning that is 



3 

 

operated once for all fixed effects, our method demeans variables with respect to each one 

of the fixed effects sequentially and iteratively. We propose an assumption under which the 

algorithm converges in the sense that the remaining fixed effects are asymptotically 

eliminated and the estimator obtained from each iteration converges to the LSDV estimator. 

Also, this method can be generalized to more complicated models such as those containing 

more than two high-dimensional fixed effects and instrumental variables without increasing 

the complexity of the algorithm. Finally, we implement this method in SAS that is 

particularly capable of handling large data sets.  

Guimaraes and Portugal (2010) develop an alternative algorithm that uses the iteration and 

convergence implementation of least squares estimation with condensed fixed effect 

variables to reduce the number of explanatory variables. It starts with any initial values of 

fixed effects and iterates to continuously correct these values by averaging out the fixed 

effects from residuals. After convergence of the estimates, the fixed effects remain 

identifiable. An efficient GP algorithm has been programmed as a user build-in function in 

Stata (Correia 2015) called reghdfe, which we use as a benchmark in Monte Carlo 

simulations. Another alternative algorithm for two-way high-dimensional fixed effect 

models is from Somaini and Wolak (2016). This algorithm utilizes the common within 

transformation to absorb one of the fixed effects, and stores the inverse matrix partitioned 

on the dummies of the other fixed effect in a memory efficient way. Their method is 

restricted to dealing with two high-dimensional fixed effects. 

Table 1 compares our algorithm (denoted as TSLSFECLUS) to other existing programs in 

Stata and SAS. Our algorithm is able to accommodate all the data features being studied 
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including multiple high-dimensional fixed effects, 2SLS, clustered standard errors, and 

large data sets, while the rest of the programs are able to address some of them. reghdfe is 

the program closest to ours, but tends to fail on extremely large datasets due to its heavy 

use of memory during execution.   

Our algorithm involves the following: (1) Absorb fixed effects sequentially from all 

dependent and explanatory (including instrumental) variables; (2) estimate the model using 

the demeaned variables; (3) repeat iteratively until the estimates of parameters converge. 

We perform Monte Carlo simulations to evaluate the performance of our algorithm. We 

vary models according to the number of missing observations, dependence of the control 

variable on one of the fixed effects, dependence of the instrument on one of the fixed 

effects, extent of endogeneity, range of time fixed effects, model noisiness, and whether 

errors are clustered or not. Our results match well with those from estimation with fixed 

effect dummies in all the variations considered. 

The proposed algorithm is applied to US employer-based health insurance market data to 

examine how health plan types affect health care utilization. Our analysis sample, described 

more fully in Ellis and Zhu (2016), contains about 63 million observations from which we 

remove fixed effects for 1.4 million individuals, 3,000 counties, 150,000 primary care 

doctors, 465 employer*year*single/family coverage, and 47 months to predict plan type 

effects on monthly health care utilization. By simultaneously controlling for all fixed 

effects, the identification comes from consumers’ movement between health plan types. We 

use propensity scores for household choice of each health plan type as the instrumental 
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variables to control for endogenous plan choice and correct the standard errors to cluster at 

the employer level. Our estimates show that the breadth of provider networks dominates 

cost sharing in influencing consumers’ decision to seek care. 

The rest of the paper is organized as follows. Section 2 describes our iterative algorithm in 

a two-way fixed effect model framework. We present two theorems showing that under the 

proposed assumption, our algorithm generates estimates that are equivalent to those from 

the simple LSDV model. In Section 3, we conduct Monte Carlo simulations to evaluate the 

validity and properties of our algorithm. We then show in Section 4 that our algorithm is 

feasible to estimate a model of health care utilization on a real data set that requires 

controlling simultaneously for patients, providers and counties, each of high dimension. 

Finally, Section 5 concludes and discusses further research directions.  

2. An Iterative Estimation Algorithm 

Consider a simple linear two-way fixed effect model: 

                                                 𝑦𝑖𝑡 = 𝑥𝑖𝑡
′ 𝛽 + 𝛼𝑖 + 𝜃𝑡 + 𝑢𝑖𝑡                                             (1) 

∀𝑖 ∈ 𝑁𝑡 ⊆ 𝒩 = {1, 2, … ,𝑁} 

or ∀𝑡 ∈ 𝑇𝑖 ⊆ 𝒯 = {1,2, … , 𝑇} 

When 𝑁𝑡 ≡ 𝒩,∀𝑡 or 𝑇𝑖 ≡ 𝒯, ∀𝑖, the data is a balanced panel. Otherwise, there are missing 

observations and the panel is unbalanced. Without any loss of generality, assume 𝒩 ≥ 𝒯. 

The higher-dimensional fixed effect, i.e. 𝛼𝑖, is always absorbed first. 
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The idea of our algorithm is to sequentially absorb fixed effects repeatedly until the model 

converges. Specifically, we employ the following three-step procedure. 

Step 1: Demean all dependent and independent variables by each one of the fixed effects 

sequentially and estimate the model with the demeaned variables. Denote as the 1st iteration.  

Step 2: Demean the standardized variables from the previous iteration and estimate the 

model with the demeaned variables. 

Step 3: Repeat Step 2 iteratively until the estimates converge. 

Using Model (1), our algorithm can be laid out as the following.   

1st iteration: 

1) Demean 𝑦𝑖𝑡 and 𝑥𝑖𝑡 over i 

𝑦𝑖⋅ = 𝑥𝑖⋅
′ 𝛽 + 𝛼𝑖 +

1

‖𝑇𝑖‖
∑ 𝜃𝑡
𝑡∈𝑇𝑖

+ 𝑢𝑖⋅ 

𝑦̃𝑖𝑡 ≡ 𝑦𝑖𝑡 − 𝑦𝑖∙ = 𝑥̃𝑖𝑡
′ 𝛽 + 𝜃𝑡 −

1

‖𝑇𝑖‖
∑ 𝜃𝑡
𝑡∈𝑇𝑖

+ 𝑢̃𝑖𝑡 

2) Demean the resulting 𝑦̃𝑖𝑡 and 𝑥̃𝑖𝑡 over t 

𝑦̃⋅𝑡 = 𝑥̃⋅𝑡
′ 𝛽 + 𝜃𝑡 −

1

‖𝑁𝑡‖
∑

1

‖𝑇𝑖‖
∑ 𝜃𝑡
𝑡∈𝑇𝑖𝑖∈𝑁𝑡

+ 𝑢̃⋅𝑡 
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𝑦̃𝑖𝑡
(1) ≡ 𝑦̃𝑖𝑡 − 𝑦̃⋅𝑡 = 𝑥̃𝑖𝑡

(1)′𝛽 −
1

‖𝑇𝑖‖
∑ 𝜃𝑡
𝑡∈𝑇𝑖

+
1

‖𝑁𝑡‖
∑

1

‖𝑇𝑖‖
∑ 𝜃𝑡
𝑡∈𝑇𝑖𝑖∈𝑁𝑡

+ 𝑢̃𝑖𝑡
(1)

= 𝑥̃𝑖𝑡
(1)′𝛽 + 𝛼𝑖

(1) + 𝜃𝑡
(1) + 𝑢̃𝑖𝑡

(1)
 

where 𝜃𝑡
(1)

 and 𝛼𝑖
(1)

 are the remaining fixed effects after 1st iteration defined as: 

{
 
 

 
 𝜃𝑡

(1) ≡
1

‖𝑁𝑡‖
∑

1

‖𝑇𝑖‖
∑ 𝜃𝑡
𝑡∈𝑇𝑖𝑖∈𝑁𝑡

𝛼𝑖
(1) ≡ −

1

‖𝑇𝑖‖
∑ 𝜃𝑡
𝑡∈𝑇𝑖

 

Similarly, the model after (k+1)th iteration can be written as: 

𝑦̃𝑖𝑡
(𝑘+1) ≡ 𝑦̃𝑖𝑡

(𝑘) − 𝑦̃⋅𝑡
(𝑘) = 𝑥̃𝑖𝑡

(𝑘+1)′𝛽 + 𝛼𝑖
(𝑘+1) + 𝜃𝑡

(𝑘+1) + 𝑢̃𝑖𝑡
(𝑘+1)

 

and 

{
 
 

 
 𝜃𝑡

(𝑘+1) ≡
1

‖𝑁𝑡‖
∑

1

‖𝑇𝑖‖
∑ 𝜃𝑡

(𝑘)

𝑡∈𝑇𝑖𝑖∈𝑁𝑡

𝛼𝑖
(𝑘+1) ≡ −

1

‖𝑇𝑖‖
∑ 𝜃𝑡

(𝑘)

𝑡∈𝑇𝑖

                                            (2) 

 

ASSUMPTION 1 Quasi-Balance: For any two time periods s and t, there exists an individual 

who is observed in both periods. 

∀𝑠, 𝑡 ∈ {1,2, … , 𝑇}, ∃𝑖  s. t.  𝑖 ∈ 𝑁𝑡 and 𝑖 ∈ 𝑁𝑠  

Assumption 1 restricts the extent of unbalancedness of a dataset, although it is in fact a 

relatively loose condition which could be commonly observed in most empirical datasets. 
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This assumption is specific to the order of fixed effects being absorbed, i.e., individual 

fixed effect absorbed first followed by time fixed effect. An example of when Assumption 

1 fails is when there are two periods in which the pools of individuals are completely 

different.1  

THEOREM 1: For model (1), if the dataset satisfies Assumption 1, then starting from any 

initial value of 𝜃(0) ≡ 𝜃, the remaining fixed effects converge to a constant vector, i.e. 

𝜃𝑡
(𝑘) → 𝐶 ∀𝑡, as 𝑘 → ∞. (Proof in Appendix A.) 

By Theorem 1, 𝜃𝑡
(𝑘) → 𝐶 ∀𝑡 and we can easily derive from equation (2) that 𝛼𝑖

(𝑘) → −𝐶 ∀𝑖. 

So the remaining individual and time fixed effects will be cancelled out with each other 

upon convergence. In other words, by iterating the sequential absorption, fixed effects are 

eliminated asymptotically.  

THEOREM 2: For model (1) under Assumption 1, the OLS/2SLS estimator 𝛽̂(𝑘) from each 

iteration converges to the LSDV estimator of 𝛽. (Proof in Appendix A.) 

COROLLARY 1: If the OLS/2SLS estimator 𝛽̂(𝑘) converges to the LSDV estimator, the 

remaining fixed effects converge. (Proof in Appendix A.) 

Ideally, once the remaining fixed effects converge, we can obtain an unbiased and 

consistent estimator under regulatory assumptions. However, in practice, convergence of 

remaining fixed effects could not be observed explicitly. From Theorem 2 and Corollary 1, 

                                                 
1 When Assumption 1 fails, the time fixed effects cannot be identified because individual fixed effects are 

nested within these two-period time fixed effects. In addition, if Assumption 1 fails for more than one pair of 

time periods, then the singularity problem will cause LSDV to fail as well. 
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it is equivalent to checking the convergence on estimates from the demeaned model in each 

iteration {𝛽̂(1), 𝛽̂(2), … , 𝛽̂(𝑘), … , 𝛽̂(∞)}. For a detailed description of the program 

implementation, see Appendix B. With endogeneity, we need to modify model (1) into a 

two-stage linear model and also demean any instrumental variables in Step 1 and 2. 

However, with these minimal changes the two theorems in Section 2 remain valid, hence 

our algorithm applies to linear models with endogeneity. 

3. Monte Carlo Simulations 

3.1. Pseudo Data Generating Process 

To examine the performance and convergence properties of our algorithm, we generate 

pseudo data sets according to model (1). In particular, we allow linear dependence between 

the fixed effects and the control variable x. We also allow the flexibility to include clustered 

errors that introduce correlation of errors within clusters.   

Denote 𝑁 = number of individuals; 𝑇 = number of time periods; 𝜌𝑋𝐹𝐸𝑖 = dependence of 

control variable on individual fixed effect; 𝜌𝑋𝐹𝐸𝑡 = dependence of control variable on time 

fixed effect; 𝜌𝑍𝐹𝐸𝑖 = dependence of the potential instrumental variable on individual fixed 

effect; 𝜌𝑍𝐹𝐸𝑡 = dependence of the potential instrumental on time fixed effect; 𝑀 = number 

of missing observations. 

𝑦𝑖𝑡 = 2 ∗ 𝑥𝑖𝑡 + 𝛼𝑖 + 𝜃𝑡 + 𝑢𝑖𝑡 

𝑥𝑖𝑡 = 𝑧𝑖𝑡 + 𝜌𝑋𝐹𝐸𝑖 ∗ 𝛼𝑖 + 𝜌𝑋𝐹𝐸𝑡 ∗ 𝜃𝑡 + 𝑣𝑖𝑡 

𝑧𝑖𝑡 = 𝑧𝑖𝑡
∗ + 𝜌𝑍𝐹𝐸𝑖 ∗ 𝛼𝑖 + 𝜌𝑍𝐹𝐸𝑡 ∗ 𝜃𝑡 
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where 

𝛼𝑖, 𝑧𝑖𝑡
∗~𝑈[0,10], 𝜃𝑡~𝑈[0, 𝜃̅] 

(
𝑢𝑖𝑡
𝑣𝑖𝑡
)~𝑁 [(

0
0
) (

𝜎𝑢
2 𝜎𝑢𝜌𝑢𝑣

𝜎𝑢𝜌𝑢𝑣 1
)] 

𝑖 = 1, 2, … , 𝑁, 𝑡 = 1, 2, … , 𝑇 

When the control variable 𝑥𝑖𝑡 is exogenous, 𝜌𝑢𝑣 equals 0.  

To build in clustering of standard errors, we construct errors {𝑢𝑖𝑡}𝑖,𝑡 assuming without loss 

of generality that errors are clustered within individuals over time: 

𝐹𝑜𝑟 𝑖 = 1, 2, … ,𝑁 

𝑢𝑖~𝑁(0, 𝜎𝑢
2) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑢𝑖𝑡 = 𝜆
𝑡−1𝑢𝑖, 𝜆 ≠ 0,1, 𝑓𝑜𝑟 𝑡 = 1, 2, … , 𝑇 

where 𝜆 governs the serial correlation of errors within individuals and is fixed at 0.5 in all 

the simulations.2 When standard errors are clustered, we express the error terms in the 

model as:  

(
𝑢𝑖𝑡
𝑣𝑖𝑡
)~𝑁 [(

0
0
) (

𝜆𝑡−1𝜎𝑢
2 √𝜆𝑡−1𝜎𝑢𝜌𝑢𝑣

√𝜆𝑡−1𝜎𝑢𝜌𝑢𝑣 1
)] 

We construct unbalanced data by randomly selecting M observations to drop from the 

balanced data, satisfying the Quasi-Balance assumption. 

                                                 
2 Note that 𝜆 cannot be equal to 0 or 1, because otherwise there would be no variation in errors within 

individuals and 𝑢𝑖𝑡 would be completely absorbed in the same manner as the individual fixed effect 𝛼𝑖, in 

which case no random errors would be left in the model. 



11 

 

3.2. Variations in Parameters 

Our simulation model according to (1) defines 7 random variables {𝑦, 𝑥, 𝑧, 𝛼, 𝜃, 𝑢, 𝑣} and 10 

parameters {𝑁, 𝑇,𝑀, 𝜌𝑍𝐹𝐸𝑖 , 𝜌𝑍𝐹𝐸𝑡 , 𝜌𝑋𝐹𝐸𝑖 , 𝜌𝑋𝐹𝐸𝑡 , 𝜌𝑢𝑣 , 𝜃̅, 𝜎𝑢}. We fix 𝑁 = 𝑇 = 100, 𝜌𝑋𝐹𝐸𝑖 =

0.2 and 𝜌𝑍𝐹𝐸𝑖 = 0, while allowing the rest of parameters to vary.3 We focus on unbalanced 

models with two-way fixed effects for both OLS and 2SLS.4 For each model, we first run 

100 simulations and estimate the model using our iteration procedure, and then compare it 

with the LSDV estimate or equivalently the estimate from the optimal within 

transformation output by Stata.5 

We conduct simulations by varying one or a pair of parameters at a time while keeping 

other parameters fixed at the baseline values, as shown in Table 2. The baseline is 

{𝑀, 𝜌𝑍𝐹𝐸𝑡 , 𝜌𝑋𝐹𝐸𝑡 , 𝜌𝑢𝑣, 𝜃̅, 𝜎𝑢}= {5000, 0, 80, 0, 100, 10} for OLS and 

{𝑀, 𝜌𝑍𝐹𝐸𝑡 , 𝜌𝑋𝐹𝐸𝑡 , 𝜌𝑢𝑣, 𝜃̅, 𝜎𝑢} = {5000, 40, 40, 0.6, 100, 10} for 2SLS models. We explore 

variations along (1) number of missing observations 𝑀={5000, 6000, 2000}, (2) relative 

importance of time fixed effect in explanatory variables (𝜌𝑋𝐹𝐸𝑡, 𝜃̅)= {(80, 100), (40, 100), 

(0, 100), (-80, 100), (80, 10)} for OLS and (𝜌𝑍𝐹𝐸𝑡 , 𝜌𝑋𝐹𝐸𝑡 , 𝜃̅)= {(40, 40, 100), (0, 80, 100), 

(80, 0, 100), (40, -40, 100), (60, -20, 100), (20, -20, 100), (40, 40, 10)} for 2SLS, (3) model 

noisiness 𝜎𝑢= {10, 100}, and (4) correlation between the endogenous variable and the error 

term, 𝜌𝑢𝑣= {0.6, 0.2} for 2SLS models only. Finally, we examine OLS models with and 

without clustered standard errors. 

                                                 
3 The dependence of 𝑥 and z on individual fixed effect does not affect simulation results since individual fixed 

effect is completely absorbed in the first iteration, based on the order of absorption. Therefore we keep them 

fixed in all the simulations. 
4 Consistent with the analytical model, we find that for balanced data, convergence always happens after the 

first iteration. 
5 We use Stata’s built-in programs reghdfe to output results as our benchmark. 



12 

 

3.3. Results 

Table 3a shows the OLS simulation results, which are the means and standard deviations 

over 100 simulations, of the following: the converged estimate of 𝑥, standard error, t 

statistics of  null hypothesis that our estimate equal the true value (i.e., 2), number of 

iterations, difference between our estimate and that from reghdfe, and difference between 

the standard error reported from our algorithm and that from reghdfe. The models converge 

on average after 2.93 to 4.84 iterations depending on the specific data structure. 

Furthermore, when the unbalancedness of data increases, or the number of missing 

observations increases, it takes more iterations to converge. By changing the coefficients of 

time fixed effect in constructing explanatory variables and the range of time fixed effect in 

uniform distribution, we are able to test on the influence of remaining fixed effect and 

hence the convergence rate. As expected, when the dependence decreases, or the range of 

time fixed effect increases, the number of iteration increases. When the relative importance 

of time fixed effect changes, the final estimate and standard error do not change due to the 

elimination of remaining fixed effects in all variables. In Table 3b where the results of 

2SLS models are shown, convergence requires fewer iterations when 𝑧 is independent of 

time fixed effect and the opposite is true when the dependence of 𝑥 on time fixed effect 

exclusively comes from 𝑧. The correlation of error terms in the two stages does not affect 

the results. If the clustered standard error is present, our algorithm obtains more precise 

estimates with fewer iterations. Finally, the last two columns of Table 3a and 3b show that 

our iterative results match well with the Stata default output, including standard errors that 

match with the Stata default outputs for all the variations of the model being examined here. 
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4. Empirical Example 

4.1. Health Plan Type Effects on Health Care Utilization 

We illustrate our algorithm using US employer-sponsored health insurance market data to 

extend the analyses in Ellis and Zhu (2016).  

Ellis and Zhu (2016) estimate the health plan type effects on monthly health care treatment 

decisions. We use their data from the Truven Health Analytics MarketScan® Research 

Databases from 2007 to 2011 that contain detailed claims information for individuals 

insured by large employers in the US. The analysis sample contains 1.4 million individuals, 

ages 21-64, who are continuously insured from 2007 through 2011, with over 60 million 

treatment months for which they can assign an employer, a plan type, and a primary care 

physician (PCP). The extension in this paper is that we include 150,000 PCP fixed effects 

in addition to the 1.4 million individual and 3,000 county fixed effects, so that plan effects 

control not only for individual and geographic variation, but also in the specific PCPs seen 

by each consumer. Specifically, we estimate the following model. 

                     𝑌𝑖𝑡 = 𝜇𝑃𝐿𝐴𝑁𝑝 + 𝛽𝑋𝑖,𝑡−1 + 𝛼𝑖 + 𝛿𝑑 + 𝛾𝑐 + 𝜃𝑡 + 𝜆𝐸𝑌𝐹 +  𝜀𝑖𝑡         (3) 

where 𝑌𝑖𝑡 is the indicator of doctor visit for consumer i in month t. The variables of interest, 

𝑃𝐿𝐴𝑁𝑝, are five plan dummies: EPO, HMO, POS, COMP, CDHP/HDHP. The omitted plan 

type is PPO, and hence the coefficients 𝜇 give the plan type effects as a difference from 
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PPOs.6 Following Ellis and Zhu (2016), we instrument the endogenous plan type choice 

using the predicted plan type choice probabilities estimated from multinomial logit models 

at the household level. 

In addition, we control for an enrollee’s health status 𝑋𝑖,𝑡−1,
7

 enrollee fixed effects 𝛼𝑖, PCP 

fixed effects 𝛿𝑑, employee county fixed effects 𝛾𝑐, monthly time fixed effects 𝜃𝑡, and 

employer*year*single/family coverage fixed effects 𝜆𝐸𝑌𝐹. Finally, 𝜀𝑖𝑡 are error terms 

adjusted for clustering at the employer*year*single/family coverage level. Using equation 

(3), we identify the effects of plan innovations by the change in coverage for continuously 

eligible households.  

4.2. Results 

Due to the size of this data, it is impossible to estimate the model unless at least three 

dimensions of fixed effects are absorbed because apart from individual (about 1.4 million 

levels) and provider (about 150,000 levels) fixed effects, county fixed effects are also 

relatively high dimensional (about 3,000 levels). Also contributing to the challenge is the 

need to refine standard errors for 465 employer*year *coverage clusters. 

Choosing how many fixed effects to absorb reflects a tradeoff between number of iterations 

and runtime. Generally, the more fixed effects absorbed, the more iterations needed for 

                                                 
6 Plan type acronyms are: EPO (Exclusive Provider Organization), HMO (Health Maintenance Organization), 

POS (Point of Service, non-capitated), COMP (Comprehensive), and CDHP/HDHP (Consumer-Driven 

Health Plan/High-deductible Health Plan), and PPO (Preferred Provider Organization). 
7 We use prospective model risk score predicting total spending estimated from the prior twelve months of 

diagnoses to capture the patient’s overall health status. 
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convergence, as convergence is generally harder to attain while the faster each iteration is 

by reducing the number of dummies variables in the model.  

Table 4 shows that narrow network plans EPOs, HMOs and POS’s reduce the probabilities 

of monthly provider contacts by 11.1%, 5.7%, 3.6%, respectively relative to PPO plans, 

while CDHP/HDHP plans are statistically insignificantly different (95% CI: -3.6% to 4.6%). 

Results suggest that narrow networks may be more effective than cost sharing in reducing 

health care utilization. 

Figure 1 shows the convergence of estimates of five plan type effects and risk scores from 

regressing model (3) iteratively, with each iteration sequentially absorbing all five fixed 

effects. Number of iterations needed for convergence is significantly larger than that in the 

pseudo data, suggesting the important role of data structure in determining the speed of 

convergence. Examining the speed of convergence is a natural extension to this paper for 

future research. 

5. Conclusions and Discussion 

We present a new estimation algorithm that is particularly designed for models with 

multiple high-dimensional fixed effects and unbalanced panel. In essence, our algorithm 

absorbs fixed effects sequentially until they are asymptotically eliminated, which is 

straightforward and easy to implement. Monte Carlo simulations show that our approach 

matches results from estimation with fixed effect dummies in all the models. Furthermore, 

using our algorithm, it is feasible to estimate a model of health care utilization that involves 

63 million observations from which we remove fixed effects for 1.4 million individuals, 
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150,000 distinct primary care doctors, 3,000 counties, 465 employer*year*single/family 

coverage dummies and 47 monthly time dummies. 

In the Monte Carlo simulations, we also observe the changes of the estimate and standard 

error from the first iteration which provides insights for the remaining fixed effect bias and 

the pattern of convergence in our empirical case. For example, in OLS models, when the 

dependence of control variable on the time fixed effect decreases or the range of time fixed 

effect increases, the remaining fixed effect bias in the first iteration increases. On the other 

hand, in 2SLS models, if the instrument 𝑧 is independent of time fixed effect, the remaining 

fixed effect bias is minimal and insignificant. In addition, if 𝑧 depends on time fixed effect 

but such dependence is offset in x, where in extreme cases 𝑥 is independent of time fixed 

effect, the remaining fixed effect bias increases and is extremely large in the extreme case. 

An interesting finding when we increase the noisiness of the models is that the remaining 

fixed effect in the first iteration is not affected, although the algorithm takes more iterations 

to converge and the converged estimates are less precise. This illustrates that the remaining 

fixed effect that cannot be eliminated after the first iteration dominates the idiosyncratic 

noise. Whether the standard error is clustered or not has no effect on estimates from the 

first iteration. 

There is room to improve our algorithm. First, future studies could further investigate the 

convergence properties of our algorithm to improve its speed. Our simulation results offer 

some initial insights that convergence speed might mainly depend on relations between 

variables and fixed effects and the unbalanced structure of data. In addition, our algorithm 

might be modified to utilize prior information about the fixed effects to determine an 
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optimal order of sequential absorption that eliminates the fixed effects to the largest extent. 

Furthermore, certain numerical analysis techniques, e.g., Newton-Raphson Iteration, could 

be adopted to make our algorithm more efficient. Another extension of our paper would be 

to build analytical models to accommodate more than two high-dimensional fixed effects, 

allowing for a better understanding of the real data. 
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Table 1. Comparison of Programs 

 

  

Clustered 

s.e. 
IV 

One 

HDFE 

2+ 

HDFE 

Big 

Data 

Stata 

ivregress X X 
   

a2reg 
  

X X 
 

reghdfe X X X X 
 

SAS 

PROC GLM 
  

X X X 

PROC SYSLIN 
 

X 
  

X 

PROC SURVEYREG X 
   

X 

TSLSFECLUS X X X X X 

 

Notes: Table summarizes the capability of various existing Stata (i.e., ivregress, a2reg, 

reghdfe) and SAS (i.e., PROC GLM, PROC SYSLIN, PROC SURVEYREG) commands, 

in comparison to our iterative algorithm (i.e., TSLSFECLUS), in handling models with the 

listed features. HDFE stands for high-dimensional fixed effect.
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Table 2. Simulation Parameters for Two-way Fixed Effects Model 

 

 
M 𝜌𝑍𝐹𝐸𝑡 𝜌𝑋𝐹𝐸𝑡 𝜌𝑢𝑣 𝜃̅ 𝜎𝑢 

Clustered 

s.e. 

OLS 

5000 0 80 0 100 10 N 

6000 0 80 0 100 10 N 

2000 0 80 0 100 10 N 

5000 0 40 0 100 10 N 

5000 0 0 0 100 10 N 

5000 0 -80 0 100 10 N 

5000 0 80 0 10 10 N 

5000 0 80 0 100 100 N 

5000 0 80 0 100 10 Y 

2SLS 

5000 40 40 0.6 100 10 N 

6000 40 40 0.6 100 10 N 

2000 40 40 0.6 100 10 N 

5000 0 80 0.6 100 10 N 

5000 80 0 0.6 100 10 N 

5000 40 -40 0.6 100 10 N 

5000 60 -20 0.6 100 10 N 

5000 20 -20 0.6 100 10 N 

5000 40 40 0.6 10 10 N 

5000 40 40 0.6 100 100 N 

5000 40 40 0.2 100 10 N 

5000 40 40 0.6 100 10 Y 

 

Notes: Table shows the parameter inputs for simulating the two-way fixed effects model 

described in (1) in Section 2 of the text. Parameters are defined as: M (number of 

observations randomly selected to be dropped from the sample), 𝜌𝑍𝐹𝐸𝑡 (dependence of the 

potential instrumental variable on time fixed effect), 𝜌𝑋𝐹𝐸𝑡 (dependence of the control 

variable on time fixed effect), 𝜌𝑢𝑣 (correlation between the endogenous variable and the 

error term), 𝜃̅ (range of uniformly distributed time fixed effect), 𝜎𝑢 (standard deviation of 

error term in the dependent variable) and whether the clustered standard error (at the level 

of i) is present. Each row is a separate simulation for 100 times and the first row in each 

group of OLS/2SLS estimation shows the baseline parameter values. In each simulation, we 

change one or a pair of parameter values while fixing the others at their baseline values.  
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Table 3a. Simulation Results for OLS Models 

Parameter Coeff. s.e. 

t  

(H0: 𝜷̂ =
𝟐) 

Iteration # 
∆𝜷̂ 

= 𝜷̂ − 𝜷̂𝟎 

∆𝐬𝐞 
= s.e. – s.e.0 

Baseline 
1.9953 0.0471 -0.0963 4.05 -4.6E-05 -0.0002 

(0.0504) (0.0022) (1.0627) (0.33) (3.2E-05) (0.0020) 

𝑀 = 6000 
2.0000 0.0509 0.0325 4.72 -5.6E-05 -0.0022 

(0.0537) (0.0086) (1.0261) (0.75) (0.0002) (0.0085) 

𝑀 = 2000 
1.9989 0.0370 -0.0318 3.80 -5.4E-05 -3.0E-05 

(0.0382) (0.0005) (1.0296) (0.42) (3.0E-05) (0.0003) 

𝜌𝑋𝐹𝐸𝑡 = 40 
1.9954 0.0472 -0.0966 3.98 -4.1E-05 -9.5E-05 

(0.0504) (0.0013) (1.0628) (0.20) (3.6E-05) (0.0012) 

𝜌𝑋𝐹𝐸𝑡 = 0 
1.9954 0.0473 -0.0982 2.93 -4.4E-05 -9.8E-05 

(0.0504) (0.0009) (1.0618) (0.26) (2.6E-05) (0.0005) 

𝜌𝑋𝐹𝐸𝑡 = −80 
1.9954 0.0469 -0.1029 4.04 -3.4E-05 -0.0005 

(0.0504) (0.0033) (1.0632) (0.40) (7.4E-05) (0.0032) 

𝜃̅ = 10 
1.9954 0.0473 -0.0982 3.93 -4.4E-05 1.1E-05 

(0.0504) (0.0009) (1.0618) (0.26) (2.6E-05) (0.0005) 

𝜎𝑢 = 100 
1.9541 0.4734 -0.0973 4.84 -5.2E-05 0.0001 

(0.5038) (0.0088) (1.0618) (0.39) (2.9E-05) (0.0054) 

Clustered s.e. 
1.9994 0.0054 -0.0181 3.96 -5.9E-05 -2.8E-05 

(0.0061) (0.0011) (1.5716) (0.28) (6.8E-05) (0.0006) 

 

Notes: Table shows the simulation results (including the coefficient and standard error 

estimates) on the 9 OLS models described in Table 2, using our iterative algorithm (i.e., 

TSLSFECLUS with tol=10-4) and their comparison with results from reghdfe, 𝛽̂0 and s.e.0. 

Results are means over 100 simulations with standard deviations shown in parentheses. The 

fixed parameters are {N, T, 𝜌𝑍𝐹𝐸𝑖, 𝜌𝑋𝐹𝐸𝑖}={100, 100, 0, 0.2}. Baseline values for the rest of 

parameters are {𝑀, 𝜌𝑍𝐹𝐸𝑡 , 𝜌𝑋𝐹𝐸𝑡 , 𝜌𝑢𝑣, 𝜃̅, 𝜎𝑢}= {5000, 0, 80, 0, 100, 10}. Clustered standard 

error correction, used in the last row, is at the level of i. 
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Table 3b. Simulation Results for 2SLS Models 

Parameter Coeff. s.e. 

t  

(H0: 𝜷̂ =
𝟐) 

Iteration # 
∆𝜷̂ 

= 𝜷̂ − 𝜷̂𝟎 

∆𝐬𝐞 
= s.e. – s.e.0 

Baseline 
1.9945 0.0501 -0.1040 4.03 -5.3E-05 -2.6E-05 

(0.0534) (0.0009) (1.0632) (0.17) (2.8E-05) (0.0005) 

𝑀 = 6000 
1.9995 0.0558 0.0056 4.77 -5.1E-05 -0.0004 

(0.0571) (0.0039) (1.0154) (0.49) (2.9E-05) (0.0038) 

𝑀 = 2000 
1.9988 0.0392 -0.0281 3.78 -4.8E-05 -2.5E-05 

(0.0392) (0.0005) (0.9971) (0.41) (2.8E-05) (0.0003) 

𝜌𝑍𝐹𝐸𝑡 = 0 

𝜌𝑋𝐹𝐸𝑡 = 80 

1.9945 0.0501 -0.1040 2.94 -5.3E-05 -2.5E-05 

(0.0534) (0.0009) (1.0631) (0.24) (2.8E-05) (0.0005) 

𝜌𝑍𝐹𝐸𝑡 = 80 

𝜌𝑋𝐹𝐸𝑡 = 0 

1.9945 0.0499 -0.1019 4.11 -4.8E-05 -0.0002 

(0.0534) (0.0024) (1.0641) (0.40) (6.0E-05) (0.0021) 

𝜌𝑍𝐹𝐸𝑡 = 40 

𝜌𝑋𝐹𝐸𝑡 = −40 

1.9945 0.0501 -0.1040 4 -5.3E-05 -2.6E-05 

(0.0534) (0.0009) (1.0632) (0) (2.8E-05) (0.0005) 

𝜌𝑍𝐹𝐸𝑡 = 60 

𝜌𝑋𝐹𝐸𝑡 = −20 

1.9945 0.0501 -0.1040 4 -5.3E-05 -2.6E-05 

(0.0534) (0.0009) (1.0632) (0) (2.8E-05) (0.0005) 

𝜌𝑍𝐹𝐸𝑡 = 20 

𝜌𝑋𝐹𝐸𝑡 = −20 

1.9945 0.0501 -0.1039 4 -5.3E-05 -2.6E-05 

(0.0534) (0.0009) (1.0633) (0) (2.8E-05) (0.0005) 

𝜃̅ = 10 
1.9945 0.0501 -0.1040 3.82 -5.3E-05 -2.7E-05 

(0.0534) (0.0009) (1.0632) (0.38) (2.8E-05) (0.0005) 

𝜎𝑢 = 100 
1.9456 0.5009 -0.1030 4.73 -5.2E-05 -0.0003 

(0.5338) (0.0092) (1.0631) (0.44) (2.8E-05) (0.0051) 

𝜌𝑢𝑣 = 0.2 
1.9946 0.0501 -0.1062 4.03 -5.0E-05 -2.6E-05 

(0.0534) (0.0009) (1.0633) (0.17) (2.9E-05) (0.0005) 

Clustered s.e. 
1.9991 0.0057 -0.1229 3.98 -4.9E-05 1.2E-05 

(0.0069) (0.0010) (1.3047) (0.20) (2.8E-05) (0.0005) 

 

Notes: Table shows the simulation results (including the coefficient and standard error 

estimates) on the 12 2SLS models described in Table 2, using our iterative algorithm (i.e., 

TSLSFECLUS with tol=10-4) and their comparison with results from reghdfe, 𝛽̂0 and s.e.0. 

Results are means over 100 simulations with standard deviations shown in parentheses. The 

fixed parameters are {N, T, 𝜌𝑍𝐹𝐸𝑖, 𝜌𝑋𝐹𝐸𝑖}={100, 100, 0, 0.2}. Baseline values for the rest of 

parameters are{𝑀, 𝜌𝑍𝐹𝐸𝑡 , 𝜌𝑋𝐹𝐸𝑡 , 𝜌𝑢𝑣, 𝜃̅, 𝜎𝑢}= {5000, 40, 40, 0.6, 100, 10}. Clustered 

standard error correction, used in the last row, is at the level of i.
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Table 4.  Health Plan Type Effects on Health Care Utilization 

  Pr(any visit)   

EPO -0.111 ** 

 

(0.053) 

 HMO -0.057 *** 

 

(0.015) 

 POS -0.036 ***  

 

(0.009) 

 COMP 0.051 

 

 

(0.043) 

 CDHP/HDHP 0.005 

 

 

(0.021) 

 Prospective risk score 0.024 ***  

 

(0.001) 

    

Dep. Var. Mean 0.321 

 Observations 62,899,584  

 

 

  

Notes: Table shows the 2SLS estimates of health plan type effects on the probability of 

seeking care. Plan acronyms are defined as: EPO (Exclusive Provider Organization), HMO 

(Health Maintenance Organization), POS (Point of Service, non-capitated), COMP 

(Comprehensive), and CDHP/HDHP (Consumer-Driven Health Plan/High-deductible 

Health Plan). PPO (Preferred Provider Organization) is the omitted plan type. The annual 

prospective risk score is the predicted total spending using the prior 12 months of diagnoses. 

Regression also controls for individual fixed effects, PCP fixed effects, employee county 

fixed effects, employer*year*family coverage fixed effects, and monthly time fixed effects. 

Standard errors are adjusted for clustering at the level of employer-year-single/family 

coverage type. *** = p<0.01, ** = p<0.05, * = p<0.10.
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Figure 1. Convergence of Estimates of Health Plan Type Effects on Health Care Utilization 

Notes: Figure shows the convergence of 2SLS estimates of health plan type effects on the probability of seeking care. Each plan 

type estimate is normalized by its value at the last iteration (i.e., iteration 237). PPO (Preferred Provider Organization) is the 

omitted plan type. The underlying regression controls for individual fixed effects, PCP fixed effects, employee county fixed 

effects, employer*year*family coverage fixed effects, and monthly time fixed effects, a prospective model risk score predicting 

total spending using the prior 12 months of diagnoses. 
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Appendix A: Proof of Theorems and Corollary 

Proof of Theorem 1: 

Define the T-by-1 vector of remaining time fixed effects at k-th iteration as: 

𝜃(𝑘) = [
𝜃1
(𝑘)

⋮

𝜃𝑇
(𝑘)
] 

∀r = 1,2, … , T, from equation (2) 

𝜃𝑟
(𝑘+1) ≡

1

‖𝑁𝑟‖
∑

1

‖𝑇𝑖‖
∑ 𝜃𝑡

(𝑘)

𝑡∈𝑇𝑖𝑖∈𝑁𝑟

=
1

∑ 1(𝑗 ∈ 𝑁𝑟)
𝑁
𝑗=1

∑1(𝑖 ∈ 𝑁𝑟) ∙ [
1

∑ 1(𝑠 ∈ 𝑇𝑖)
𝑇
𝑠=1

∑1(𝑡 ∈ 𝑇𝑖)𝜃𝑡
(𝑘)

𝑇

𝑡=1

]

𝑁

𝑖=1

=∑∑
1(𝑖 ∈ 𝑁𝑟)1(𝑡 ∈ 𝑇𝑖)

∑ 1(𝑗 ∈ 𝑁𝑟)
𝑁
𝑗=1 ∑ 1(𝑠 ∈ 𝑇𝑖)

𝑇
𝑠=1

𝑁

𝑖=1

𝜃𝑡
(𝑘)

𝑇

𝑡=1

=∑𝜆𝑟𝑡𝜃𝑡
(𝑘)

𝑇

𝑡=1

 

Then the linear system of the remaining fixed effect between adjacent iterations is as follow: 

𝜃(𝑘+1) = Λ𝜃(𝑘) 

where the linear transformation T-by-T matrix Λ with (r,t) entry: 

𝜆𝑟𝑡 ≡∑
1(𝑖 ∈ 𝑁𝑟)1(𝑡 ∈ 𝑇𝑖)

∑ 1(𝑗 ∈ 𝑁𝑟)
𝑁
𝑗=1 ∑ 1(𝑠 ∈ 𝑇𝑖)

𝑇
𝑠=1

𝑁

𝑖=1

 

In other word, the fixed effects at (k+1)th iteration are the weighted averages of fixed 

effects from k-th iteration and the weights satisfy the following two conditions. 

1. Summations within rows are 1, ∀r 
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∑𝜆𝑟𝑡

𝑇

𝑡=1

=∑∑
1(𝑖 ∈ 𝑁𝑟)1(𝑡 ∈ 𝑇𝑖)

∑ 1(𝑗 ∈ 𝑁𝑟)
𝑁
𝑗=1 ∑ 1(𝑠 ∈ 𝑇𝑖)

𝑇
𝑠=1

𝑁

𝑖=1

𝑇

𝑡=1

=∑
1(𝑖 ∈ 𝑁𝑟)∑ 1(𝑡 ∈ 𝑇𝑖)

𝑇
𝑡=1

∑ 1(𝑗 ∈ 𝑁𝑟)
𝑁
𝑗=1 ∑ 1(𝑠 ∈ 𝑇𝑖)

𝑇
𝑠=1

𝑁

𝑖=1

=∑
1(𝑖 ∈ 𝑁𝑟)

∑ 1(𝑗 ∈ 𝑁𝑟)
𝑁
𝑗=1

𝑁

𝑖=1

= 1 

2. 0 ≤ 𝜆𝑟𝑡 ≤ 1, ∀𝑟, 𝑡. Notice that under Assumption 1, this condition converts to 0 <

𝜆𝑟𝑡 ≤ 1, ∀𝑟, 𝑡. To see that 𝜆𝑟𝑡 ≠ 0, use the relation 1(𝑡 ∈ 𝑇𝑖) = 1(𝑖 ∈ 𝑁𝑡). 

𝜆𝑟𝑡 =∑
1(𝑖 ∈ 𝑁𝑟)1(𝑖 ∈ 𝑁𝑡)

∑ 1(𝑗 ∈ 𝑁𝑟)
𝑁
𝑗=1 ∑ 1(𝑠 ∈ 𝑇𝑖)

𝑇
𝑠=1

𝑁

𝑖=1

≠ 0 

 

By assuming T finite, define 

𝑀𝑘 = max {𝜃1
(𝑘), … , 𝜃𝑇

(𝑘)
}

𝑚𝑘 = min {𝜃1
(𝑘), … , 𝜃𝑇

(𝑘)
}
  ∀𝑘 

Then there exists 𝑟̅, a function of k, and  𝑟̅ ∈ {1,2, … , T}  s.t. 

𝑀𝑘+1 = 𝜃𝑟̅
(𝑘+1) =∑𝜆𝑟̅𝑡𝜃𝑡

(𝑘)

𝑇

𝑡=1

≤∑𝜆𝑟̅𝑡𝑀𝑘

𝑇

𝑡=1

= 𝑀𝑘 

Inequality holds by condition 2 and the last equality results from condition 1. 

Similarly we have 𝑚𝑘+1 ≥ 𝑚𝑘 

⇒ 𝑀0 ≥ 𝑀1 ≥ ⋯ ≥ 𝑀𝑘 ≥ 𝑀𝑘+1 ≥ 𝑚𝑘+1 ≥ 𝑚𝑘 ≥ ⋯ ≥ 𝑚1 ≥ 𝑚0 

So {𝑀𝑘}𝑘=1
∞  and {𝑚𝑘}𝑘=1

∞  are both monotonic and bounded. By Monotone Convergence 

Theorem, their limits exist and are finite. 

lim
𝑘→∞

𝑀𝑘 = 𝑀 and lim
𝑘→∞

𝑚𝑘 = 𝑚 

WTS: M = m, so fixed effects converge to constant. 
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Proof: 

By lim
𝑘→∞

𝑀𝑘 = 𝑀 and lim
𝑘→∞

𝑚𝑘 = 𝑚, 

∀ε, ∃𝐿1  𝑠. 𝑡. ∀𝑘 > 𝐿1,   |𝑀𝑘 −𝑀| <
𝜀

3
 

 ∃𝐿2  𝑠. 𝑡. ∀𝑘 > 𝐿2,   |𝑚𝑘 −𝑚| <
𝜀

3
 

∃𝐿3  𝑠. 𝑡. ∀𝑘1, 𝑘2 > 𝐿3,   |𝑀𝑘1 −𝑀𝑘2| <
𝜀

6
𝜆 

∃𝐿4  𝑠. 𝑡. ∀𝑘1, 𝑘2 > 𝐿4,   |𝑚𝑘1 −𝑚𝑘2| <
𝜀

6
𝜆 

where λ ≡ min {λ𝑟𝑡: λ𝑟𝑡 ≠ 0}. By T being finite, λ > 0. Note that under Assumption 1, λ =

min{λ𝑟𝑡} > 0. 

Let L = max{𝐿1, 𝐿2, 𝐿3, 𝐿4} + 1, then ∀𝑘1, 𝑘2 ≥ 𝐿 

{
 
 
 

 
 
 |𝑀𝑘1 −𝑀| <

𝜀

3

|𝑚𝑘1 −𝑚| <
𝜀

3

 |𝑀𝑘1 −𝑀𝑘2| <
𝜀

6
𝜆

|𝑚𝑘1 −𝑚𝑘2| <
𝜀

6
𝜆

 

Without loss of generality, take 𝑘1 = 𝐿, 𝑘2 = 𝐿 + 1. If at L-th iteration, time fixed effects 

are constant, it is trivial that this linear system is stabilized at this specific fixed point. 

Otherwise, there are two cases for 𝜃(𝐿). 

(1) ∃𝑡0 𝑠. 𝑡.𝑚𝐿 < 𝜃𝑡0
(𝐿)
< 𝑀𝐿 

(2) 𝜃𝑡
(𝑘)
= {

𝑀𝑘

𝑚𝑘
 ∀𝑡 

In case (1), suppose 𝑟̅𝐿 and 𝑟𝐿are such that 𝑀𝐿+1 = ∑ 𝜆𝑟̅𝐿𝑡𝜃𝑡
(𝐿)𝑇

𝑡=1  and 𝑚𝐿+1 =

∑ 𝜆𝑟𝐿𝑡𝜃𝑡
(𝐿)𝑇

𝑡=1 . 



28 

 

|𝑀𝑘1 −𝑀𝑘2| = 𝑀𝐿 −𝑀𝐿+1

= 𝑀𝐿 −∑𝜆𝑟̅𝐿𝑡𝜃𝑡
(𝐿)

𝑇

𝑡=1

≥ 𝑀𝐿 − ∑ 𝜆𝑟̅𝐿𝑡𝑀𝐿

𝑡≠𝑡0

− 𝜆𝑟̅𝐿𝑡0𝜃𝑡0
(𝐿)

= 𝜆𝑟̅𝐿𝑡0(𝑀𝐿 − 𝜃𝑡0
(𝐿))

≥ 𝜆(𝑀𝐿 − 𝜃𝑡0
(𝐿)) 

⇒ 𝑀𝐿 − 𝜃𝑡0
(𝐿) <

𝜀

6
 

|𝑚𝑘1 −𝑚𝑘2| = 𝑚𝐿+1 −𝑚𝐿

=∑𝜆𝑟𝐿𝑡𝜃𝑡
(𝐿) −𝑚𝐿

𝑇

𝑡=1

≥ ∑ 𝜆𝑟𝐿𝑡𝑚𝐿

𝑡≠𝑡0

+ 𝜆𝑟𝐿𝑡0𝜃𝑡0
(𝐿) −𝑚𝐿

= 𝜆𝑟𝐿𝑡0(𝜃𝑡0
(𝐿) −𝑚𝐿)

≥ 𝜆(𝜃𝑡0
(𝐿) −𝑚𝐿) 

⇒ 𝜃𝑡0
(𝐿) −𝑚𝐿 <

𝜀

6
 

By these two inequalities: 𝑀𝐿 −𝑚𝐿 = 𝑀𝐿 − 𝜃𝑡0
(𝐿) + 𝜃𝑡0

(𝐿) −𝑚𝐿 <
𝜀

3
 

In case (2), simply let 𝑡0 be such that 𝜃𝑡0
(𝐿) = 𝑚𝐿 in either one of the inequalities, then 𝑀𝐿 −

𝑚𝐿 <
𝜀

6
<

𝜀

3
. 

|𝑀 −𝑚| ≤ |𝑀 −𝑀𝐿| + |𝑀𝐿 −𝑚𝐿| + |𝑚𝐿 −𝑚|

<
𝜀

3
+
𝜀

3
+
𝜀

3
= 𝜀 

So M = m.∎ 
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Proof of Theorem 2: 

Model specification in matrix form: 

𝑌 = 𝑋𝛽 + 𝐷𝛼𝛼 + 𝐷𝜃𝜃 + 𝑢 

The estimator of 𝛽 from this regression is the LSDV estimator, 𝛽̂𝐿𝑆𝐷𝑉.  

In 1st iteration of our algorithm: 

1) Demean over i, the index of fixed effect 𝛼 

𝑀𝛼𝑌 = 𝑀𝛼𝑋𝛽 +𝑀𝛼𝐷𝜃𝜃 +𝑀𝛼𝑢

= 𝑀𝛼𝑋𝛽 + 𝐷𝜃𝜃 − 𝑃𝛼𝐷𝜃𝜃 +𝑀𝛼𝑢

= 𝑀𝛼𝑋𝛽 + 𝐷𝜃𝜃 + 𝐷𝛼𝛼̃ + 𝑀𝛼𝑢 

where 𝑀∙ denotes the annihilator matrix projecting the variables to the orthogonal space of 

some corresponding dummy variables, e.g. 𝑀𝛼 = 𝐼 − 𝑃𝛼 = 𝐼 − 𝐷𝛼(𝐷𝛼
′𝐷𝛼)

−1𝐷𝛼
′ . By Frisch-

Waugh-Lovell (FWL) Theorem, the estimator from this regression model is identical to 

𝛽̂𝐿𝑆𝐷𝑉. 

2) Demean over t, the index of fixed effect 𝜃 

𝑀𝜃𝑀𝛼𝑌 = 𝑀𝜃𝑀𝛼𝑋𝛽 +𝑀𝜃𝐷𝛼𝛼̃ + 𝑀𝜃𝑀𝛼𝑢

= 𝑀𝜃𝑀𝛼𝑋𝛽 +𝑀𝜃𝑀𝛼𝐷𝜃𝜃 +𝑀𝜃𝑀𝛼𝑢 

𝑀𝜃𝑀𝛼𝐷𝜃𝜃 = 𝐷𝛼𝛼̃ + 𝐷𝜃𝜃̃ represents the remaining fixed effects after 1 iteration.  

𝛼̃ = −(𝐷𝛼
′𝐷𝛼)

−1𝐷𝛼
′𝐷𝜃𝜃 

𝜃̃ = (𝐷𝜃
′𝐷𝜃)

−1𝐷𝜃
′𝑃𝛼𝐷𝜃𝜃 

The above equations are consistent with the fixed effect updating formula (2). Applying 

FWL Theorem once again on the above model, the estimator of 𝛽 remains identical to 

𝛽̂𝐿𝑆𝐷𝑉. Due to the remaining two-way fixed effects, we can apply FWL Theorem 

continuously for each demeaning in our iteration process. The estimator from each iteration 

with the correct specification of regression model should be the same as 𝛽̂𝐿𝑆𝐷𝑉. 

 

In k-th iteration of our algorithm: 
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The correct specification of model is 

𝑌̃(𝑘) = 𝑋̃(𝑘)𝛽 + 𝐷̃𝜃
(𝑘)
𝜃 + 𝑢̃(𝑘) 

where   

𝑋̃(𝑘) = (𝑀𝜃𝑀𝛼)
𝑘𝑋 

𝑌̃(𝑘) = (𝑀𝜃𝑀𝛼)
𝑘𝑌 

𝐷̃𝜃
(𝑘)
= (𝑀𝜃𝑀𝛼)

𝑘𝐷𝜃 

𝑢̃(𝑘) = (𝑀𝜃𝑀𝛼)
𝑘𝑢 

Denote 𝑀̃(𝑘) = 𝐼 − 𝐷̃𝜃
(𝑘)
(𝐷̃𝜃

(𝑘)′𝐷̃𝜃
(𝑘)
)−1𝐷̃𝜃

(𝑘)
′  and transform the model to  

𝑀̃(𝑘)𝑌̃(𝑘) = 𝑀̃(𝑘)𝑋̃(𝑘)𝛽 + 𝑀̃(𝑘)𝑢̃(𝑘) 

and by FWL Theorem, the estimator with absorption of remaining fixed effects is  𝛽̂𝑅𝐹𝐸
(𝑘)

=

(𝑋̃(𝑘)
′
𝑀̃(𝑘)𝑋̃(𝑘))

−1
𝑋̃(𝑘)

′
𝑀̃(𝑘)𝑌̃(𝑘) ≡ 𝛽̂𝐿𝑆𝐷𝑉, ∀k. 

 

However, under our regression specification without remaining fixed effects, the OLS 

estimator from this iteration is as following: 

𝛽̂(𝑘) = (𝑋̃(𝑘)
′
𝑋̃(𝑘))

−1
𝑋̃(𝑘)

′
𝑌̃(𝑘) 

 

We only need to show 𝛽̂(𝑘) → 𝛽̂𝑅𝐹𝐸
(𝑘)

= 𝛽̂𝐿𝑆𝐷𝑉, as k → ∞. 

Proof:  

The remaining fixed effects 𝐷̃𝜃
(𝑘)
𝜃 = (𝑀𝜃𝑀𝛼)

𝑘𝐷𝜃𝜃 = 𝐷𝛼𝛼̃
(𝑘) + 𝐷𝜃𝜃̃

(𝑘) → 0 for any 

arbitrary 𝜃, as a result of Theorem 1. It implies that 𝐷̃𝜃
(𝑘)
→ 0 as k → ∞. Hence 𝑀̃(𝑘) → I 

and 𝛽̂(𝑘) → 𝛽̂𝑅𝐹𝐸
(𝑘)

. ∎ 
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Proof of Corollary 1: 

When the estimator from our algorithm converges to the LSDV estimator, the regression 

model  

𝑦̃(∞) = 𝑥̃(∞)𝛽 + 𝑢̃(∞) 

is correctly specified and the estimator 𝛽̂(∞) is unbiased. The bias of remaining fixed 

effects is 0, which indicates that the remaining fixed effects are eliminated or equivalently 

there is no longer omitted fixed effect variables in the regression error. ∎ 
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Appendix B: Implementation of TSLSFECLUS Algorithm 

B.1. Implementation Steps 

Our algorithm is programmed in SAS for ease of implementation. The main macro that 

performs the iterative procedure is TSLSFECLUS. This macro can accommodate a wide 

range of model features such as endogeneity, cluster standard error correction, and multiple 

high-dimensional fixed effects. In addition, it allows multiple specifications that differ only 

in their dependent variables to be estimated in a single call. Finally, the macro 

automatically outputs the number of iterations needed for model convergence together with 

the model estimates. The macro mainly contains the following four steps. 

1): Given model specification, identify multiple high-dimensional fixed effects to absorb. 

Set the values of maximum number of iteration 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 and the tolerance level 𝑡𝑜𝑙.  

2): Absorb fixed effects from all dependent and explanatory (including instrumental) 

variables, one by one until all the fixed effects are absorbed once. Save standardized data 𝑆1, 

and the estimated parameters of interest from model 𝑆1, labeled as {𝛽̂(1)
𝑘
}𝑘=1,2,…,𝐾. 

3): Repeat step 2) and record 𝑆2, and obtain {𝛽̂(2)
𝑘
}𝑘=1,2,…,𝐾 from estimating the model 

using 𝑆2. 

4): Calculate |∆2| = max {|
𝛽̂(2)𝑘−𝛽̂

(1)
𝑘

𝛽̂(1)𝑘
|}𝑘=1,2,…,𝐾, the maximum absolute value of 

percentage difference between adjacent iterations among K estimated parameters of interest. 

If |∆2| < 𝑡𝑜𝑙, then stop here and report coefficient estimates {𝛽̂(2)
𝑘
}𝑘=1,2,…,𝐾; otherwise, 

repeat step 2) until |∆𝑖| = max {|
𝛽̂(𝑖)𝑘−𝛽̂

(𝑖−1)
𝑘

𝛽̂(𝑖−1)𝑘
|}𝑘=1,2,…,𝐾 < 𝑡𝑜𝑙 or the maximum number of 

iterations have been reached. The reported number of iteration = min {𝑖 = {𝑖||∆𝑖| <

𝑡𝑜𝑙},𝑀𝑎𝑥𝑖𝑡𝑒𝑟}. 

 

B.2. Sample Call of TSLSFECLUS 

Below is a sample call of our two macros in SAS. The second macro can be called directly 

if only one iteration is desired, such as if there is only one high-dimensional fixed effect: 

Libname junk “directory for storing temporary data sets”; 

 

%auto_iter( 

indsn=in_data,                    /* input data */ 

tol=0.0001,                         /* tolerance level for convergence */ 

maxiter=100,                      /* maximum number of iteration */ 
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betasefinal=out_beta,         /* output data for storing estimates from all iterations */ 

fevarcount=2,                     /* number of absorbed fixed effects */ 

tempdir=junk                      /* directory for storing temporary data sets */ 

); 

 

*which calls the following core macro iteratively; 

%TSLSCLUS_iterFE( 

runtitle='two-way FE model',     /* running title */ 

indata = &indsn.,                        /* input data for each iteration: &indsn. for the first 

iteration, standardized data for subsequent iterations */  

depvar = outcome,                      /* dependent variable */ 

endog = y,                                   /* endogenous variable */ 

inst = z,                                       /* instrumental variable */ 

exog = x,                                     /* exogenous variable */ 

fe = i c t,                                      /* variables defining absorbed fixed effects */ 

FE_iter = 1,                                 /* incremental on iteration number */ 

cluster = c,                                   /* variable defining cluster level */ 

othervar = w,                               /* other variables to be carried along to final dataset for 

final analysis*/ 

tempdir = junk,                            /* directory for storing temporary data sets */ 

regtype = TSLS,                          /* TSLS or OLS */ 

showmeans = no,                         /* yes or no to showing sample summary statistics */ 

showrf = no,                                /* yes or no to showing reduced form results of TSLS 

model */ 

showols = no,                              /* yes or no to OLS without cluster correction */ 

dosurveyreg = no,                        /* yes or no to doing PROC SURVEYREG */ 

wide = no,                                    /* yes or no to wide format output table */ 

estresult=betasecurr /* data set for outputting estimates from current iteration 

*/ 

); 

 

 

B.3. Clustering Standard Errors 

In many economic settings, standard errors are not necessarily independent but correlated 

within groups (e.g., schools, households, etc.), a phenomenon known as “clustered standard 

errors”. For example, student performance may be correlated within schools, and health 

spending is likely to be correlated within households. Suppose we allow errors to cluster at 

G level. Let g denote gth element in G. Following Cameron and Miller (2015), clustered 

errors can be expressed as: 

𝐸(𝑢𝑖𝑡𝑔𝑢𝑗𝑠𝑔′|𝑥𝑖𝑡𝑔, 𝑥𝑗𝑠𝑔′) = 0 unless 𝑔 = 𝑔′ 
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Then the cluster-robust variance estimator (CRVE) can be written as: 

𝐶𝑅𝑉𝐸 = (𝑋̃′𝑋̃)−1∑𝑣𝑔
′𝑣𝑔

𝐺

𝑔=1

(𝑋̃′𝑋̃)−1 

where 𝑋̃ is a (∑ 𝑇𝑖𝑖 ) × 𝐾 matrix of the demeaned 𝑋s of the converged model, 𝑣𝑔 =

∑ 𝑒𝑖𝑡𝑥̃𝑖𝑡𝑖𝑡∊𝑔   and 𝑒𝑖𝑡 = 𝑦̃𝑖𝑡 − 𝛽̂
′𝑥̃𝑖𝑡. 

In the empirical estimation, we calculate cluster-robust standard errors by applying the 

above formula to the converged model where (𝑥̃𝑖𝑡, 𝑦̃𝑖𝑡) are the demeaned values. 

 


