Technical Appendix

TA.1. System Reduction

Here, I derive the closed-form vector equations (28), describing how the endogenous variables respond to financial and productivity shocks to each industry, to a first-order approximation. Given system of log-linearized equations, we want to reduce the system of $3 M^{2}+5 M+2$ equations to one of M flows and M driving processes.

First, define some notation. $\forall z_{i t}$, let z_{t} be an M-by-1 vector $z_{t} \equiv\left[\begin{array}{c}\tilde{z}_{1 t} \\ \vdots \\ \tilde{z}_{M t}\end{array}\right]$. And $\forall z_{i j t}$ let z_{t} by a M^{2}-by- 1 vector such that

$$
z_{t} \equiv\left[\begin{array}{c}
\tilde{z}_{11 t} \\
\tilde{z}_{21 t} \\
\vdots \\
\tilde{z}_{M 1 t} \\
\tilde{z}_{12 t} \\
\tilde{z}_{22 t} \\
\vdots \\
\vdots \\
\tilde{z}_{M M t}
\end{array}\right]
$$

Let industry output be denoted by y_{i} instead of x_{i}, so that $x_{i j}$ unambiguously denotes intermediate goods use. Let I_{M} denote the M-by-M identity matrix, and $1_{M x 1} \otimes I_{M}$ and $I_{M} \otimes 1_{M x 1}$ be M^{2}-by- M matrices of zeros and ones such that

$$
1_{M x 1} \otimes I_{M} \equiv\left[\begin{array}{c}
I_{M} \\
\vdots \\
I_{M}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & 1 \\
& & \\
1 & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{M} \bigotimes 1_{M x 1} \equiv\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
1 & 0 & & 0 \\
0 & 1 & & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
0 & 1 & & 0 \\
& \vdots & \vdots & \\
0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & 1 \\
\vdots & \vdots & \ddots & \\
0 & 0 & & 1
\end{array}\right]
$$

Let $p_{\text {num }}$ and $c_{\text {cum }}$ respectively denote 1-by- 1 values for the price and household consumption of the numeraire good in equilibrium at t. (Note that by definition, the price of the numeraire doesn't change; hence $\left.p_{\text {num }, t}=0 \forall t\right)$. Let $\operatorname{diag}(\cdot)$ be the diagonal operator, putting its vector argument into the diagonal of a square matrix of zeros. Let $x \bullet y$ denote the element-wise product of matrices x and y. Let starred variables denote observed or calibrated coefficients; e.g. $\frac{p_{i} c_{i}^{*}}{p_{i} x_{i}^{*}}$ denotes the share of consumption of industry i 's total output, observed from inputoutput tables.

Re-write equilibrium system of log-linear equations using the above notation.

$$
\begin{gather*}
x_{t}=\Omega_{x \phi} \phi_{t}+\Omega_{x y} y_{t}+\Omega_{x p} p_{t} \tag{1}\\
\tilde{w}_{t} \overrightarrow{1}_{M x 1}+n_{t}=\phi_{t}+p_{t}+y_{t} \tag{2}\\
p_{t}+c_{t}=p_{n u m, t} \overrightarrow{1}_{M x 1}+c_{n u m, t} \overrightarrow{1}_{M x 1} \tag{3}\\
\ell_{t}=\Omega_{\ell p} p_{t}+\Omega_{\ell y} y_{t}-x_{t} \tag{4}\\
\nu_{t}=x_{t}-\Omega_{\nu y} y_{t} \tag{5}\\
\phi_{t}=\Omega_{\phi B} B_{t}-\Omega_{\phi \nu} \nu_{t}-\Omega_{\phi \ell} \ell_{t} \tag{6}
\end{gather*}
$$

$$
\begin{gather*}
y_{t}=\Omega_{y c} c_{t}+\Omega_{y x} x_{t} \tag{7}\\
y_{t}=z_{t}+\Omega_{y n} n_{t}+J_{y x} x_{t} \tag{8}\\
\cdot \tag{10}\\
\tilde{N}_{t}=\Omega_{N n} n_{t} \\
(1+\epsilon) \tilde{N}_{t}=\Omega_{N c} c_{t}
\end{gather*}
$$

where matrix and vector coefficients are given by

$$
\begin{gathered}
\Omega_{x \phi} \equiv 1_{M x 1} \bigotimes I_{M} \quad \Omega_{x y} \equiv 1_{M x 1} \bigotimes I_{M} \quad \Omega_{x p} \equiv\left(1_{M x 1} \bigotimes I_{M}-I_{M} \bigotimes 1_{M x 1}\right) \\
\Omega_{\ell p} \equiv\left(1_{M x 1} \bigotimes I_{M}-I_{M} \bigotimes 1_{M x 1}\right) \quad \Omega_{\ell y} \equiv 1_{M x 1} \bigotimes I_{M} \\
\Omega_{\nu y} \equiv I_{M} \bigotimes 1_{M x 1} \\
\Omega_{\phi B} \equiv \operatorname{diag}\left({\frac{B_{i}}{r_{i} \phi_{i}}}^{*}\right) \quad \Omega_{\phi \ell}=\Omega_{\phi \nu} \equiv\left[\alpha \operatorname{diag}\left(\frac{\ell_{c i} \nu_{c i}^{*}}{r_{i} \phi_{i}}\right)\left(I_{M} \bigotimes 1_{M x 1}\right)\right]^{T} \\
\Omega_{y c} \equiv \operatorname{diag}\left(\frac{p_{i} c_{i}^{*}}{p_{i} x_{i}^{*}}\right) \quad \Omega_{y x} \equiv\left[\operatorname{diag}\left(\frac{p_{i} x_{c i}^{*}}{p_{i} x_{i}^{*}}\right)\left(I_{M} \bigotimes 1_{M x 1}\right)\right]^{T} \\
\Omega_{y n} \equiv \operatorname{diag}(\eta) \quad J_{y x} \equiv\left[\left(\operatorname{diag}\left(\overrightarrow{1}_{M^{2} x 1}-\eta^{I}\right) \bullet \operatorname{diag}(\omega)\right)\left(I_{M} \bigotimes 1_{M x 1}\right)\right]^{T}
\end{gathered}
$$

where $\omega=\left[\omega_{11} \omega_{21} \cdots \omega_{M 1} \omega_{12} \omega_{22} \cdots \cdots \omega_{M M}\right]^{T}$ is a M^{2}-by- 1 vector, and $\eta^{I} \equiv\left(\eta_{1} \cdots \eta_{M} \eta_{1} \cdots \eta_{M} \cdots \cdots \eta_{M}\right)^{T}$ is a M^{2}-by- 1 vector ($\vec{\eta}$ stacked on itself M times).

$$
\begin{gathered}
\Omega_{w c} \equiv\left[\operatorname{diag}(\beta) \overrightarrow{1}_{M x 1}\right]^{T} \\
\Omega_{N n} \equiv\left[\operatorname{diag}\left(\frac{n_{i} *}{N}\right) \overrightarrow{1}_{M x 1}\right]^{T}
\end{gathered}
$$

$$
\Omega_{N c}=\Omega_{w c}
$$

Now reduce the system by solving it algebraically. Plug (4) and (5) into (6):

$$
\begin{gather*}
\phi_{t}=\Omega_{\phi B} B_{t}-\Omega_{\phi \nu}\left(x_{t}-\Omega_{\nu y} y_{t}\right)-\Omega_{\phi \ell}\left(\Omega_{\ell p} p_{t}+\Omega_{\ell y} y_{t}-x_{t}\right) \\
=\Omega_{\phi B} B_{t}+\left(\Omega_{\phi \ell}-\Omega_{\phi \nu}\right) x_{t}+\left(\Omega_{\phi \nu} \Omega_{\nu y}-\Omega_{\phi \ell} \Omega_{\ell y}\right) y_{t}-\Omega_{\phi \ell} \Omega_{\ell p} p_{t} \tag{12}
\end{gather*}
$$

Noting that $p_{\text {num }, t}=0$, replace (3) and (12) into (1).
$x_{t}=\Omega_{x \phi} \Omega_{\phi B} B_{t}+\Omega_{x \phi}\left(\Omega_{\phi \ell}-\Omega_{\phi \nu}\right) x_{t}+\left[\Omega_{x \phi}\left(\Omega_{\phi \nu} \Omega_{\nu y}-\Omega_{\phi \ell} \Omega_{\ell y}\right)+\Omega_{x y}\right] y_{t}+\left(\Omega_{x p}-\Omega_{x \phi} \Omega_{\phi \ell} \Omega_{\ell p}\right) c_{n u m, t} \overrightarrow{1}_{M x 1}+\underset{(13)}{\left(\Omega_{x \phi} \Omega_{\phi \ell} \Omega_{\ell p}-\Omega_{x p}\right)} c_{t}$
So

$$
\begin{equation*}
x_{t}=A B_{t}+D y_{t}+E c_{n u m, t} \overrightarrow{\mathrm{1}}_{M x 1}+F c_{t} \tag{14}
\end{equation*}
$$

where
$A \equiv\left[I_{M^{2}}-\Omega_{x \phi}\left(\Omega_{\phi \nu}-\Omega_{\phi \ell}\right)\right]^{-1} \Omega_{x \phi} \Omega_{\phi B} \quad D \equiv\left[I_{M^{2}}-\Omega_{x \phi}\left(\Omega_{\phi \nu}-\Omega_{\phi \ell}\right)\right]^{-1}\left[\Omega_{x \phi}\left(\Omega_{\phi \nu} \Omega_{\nu y}-\Omega_{\phi \ell} \Omega_{\ell y}\right)+\Omega_{x y}\right]$
$E \equiv\left[I_{M^{2}}-\Omega_{x \phi}\left(\Omega_{\phi \nu}-\Omega_{\phi \ell}\right)\right]^{-1}\left(\Omega_{x p}-\Omega_{x \phi} \Omega_{\phi \ell} \Omega_{\ell p}\right) \quad F \equiv\left[I_{M^{2}}-\Omega_{x \phi}\left(\Omega_{\phi \nu}-\Omega_{\phi \ell}\right)\right]^{-1}\left(\Omega_{x \phi} \Omega_{\phi \ell} \Omega_{\ell p}-\Omega_{x p}\right)$
Also plug (3) and (12) into (2). This yields
$\tilde{w}_{t} \overrightarrow{1}_{M x 1}+n_{t}=\Omega_{\phi B} B_{t}+\left(\Omega_{\phi \ell}-\Omega_{\phi \nu}\right) x_{t}+\left[\left(\Omega_{\phi \nu} \Omega_{\nu y}-\Omega_{\phi \ell} \Omega_{\ell y}\right)+I_{M}\right] y_{t}+\left[I_{M}-\Omega_{\phi \ell} \Omega_{\ell p}\right] c_{n u m, t} \overrightarrow{1}_{M x 1}+\left(\Omega_{\phi \ell} \Omega_{\ell p}-I_{M}\right) c_{t}$
which implies

$$
\begin{equation*}
\tilde{w}_{t} \overrightarrow{1}_{M x 1}+n_{t}=\Omega_{\phi B} B_{t}-G x_{t}+H y_{t}+J c_{n u m, t} \overrightarrow{1}_{M x 1}+K c_{t} \tag{15}
\end{equation*}
$$

where

$$
G \equiv-\left(\Omega_{\phi \nu}-\Omega_{\phi \ell}\right) \quad H \equiv\left(\Omega_{\phi \nu} \Omega_{\nu y}-\Omega_{\phi \ell} \Omega_{\ell y}+I_{M}\right) \quad J \equiv\left(I_{M}-\Omega_{\phi \ell} \Omega_{\ell p}\right) \quad K \equiv\left(\Omega_{\phi \ell} \Omega_{\ell p}-I_{M}\right)
$$

Plugging (3) into (9) yields

$$
\begin{equation*}
\left(\text { IGNORE) } \quad \tilde{w}_{t}=\Omega_{w c} c_{n u m, t} \overrightarrow{1}_{M x 1}\right. \tag{16}
\end{equation*}
$$

And plugging (10) into (11) yields

$$
\begin{equation*}
(1+\epsilon) \Omega_{N n} n_{t}=\Omega_{N c} c_{t} \tag{17}
\end{equation*}
$$

So far, the reduced system is given by (7), (8), and (14)-(17). Now plug (14) into (7) to obtain

$$
\begin{equation*}
y_{t}=L c_{t}+O B_{t}+P c_{n u m, t} \overrightarrow{1}_{M x 1} \tag{18}
\end{equation*}
$$

where

$$
L \equiv\left[I_{M}-\Omega_{y x} D\right]^{-1}\left(\Omega_{y c}+\Omega_{y x} F\right) \quad O \equiv\left[I_{M}-\Omega_{y x} D\right]^{-1} \Omega_{y x} A \quad P \equiv\left[I_{M}-\Omega_{y x} D\right]^{-1} \Omega_{y x} E
$$

Now plug (15) into (17).

$$
\begin{equation*}
\left(\Omega_{N c}-(1+\epsilon) \Omega_{N n} K\right) c_{t}=(1+\epsilon) \Omega_{N n}\left(\Omega_{\phi B} B_{t}-G x_{t}+H y_{t}+J c_{n u m, t} \overrightarrow{1}_{M x 1}-\tilde{w}_{t} \overrightarrow{1}_{M x 1}\right) \tag{19}
\end{equation*}
$$

Plug (14) into (15).

$$
\begin{equation*}
n_{t}=\left(\Omega_{\phi B}-G A\right) B_{t}+(H-G D) y_{t}+(J-G E) c_{n u m, t} \overrightarrow{1}_{M x 1}+(K-G F) c_{t}-\tilde{w}_{t} \overrightarrow{1}_{M x 1} \tag{20}
\end{equation*}
$$

Then plug (14) and (20) into (8).

$$
\begin{equation*}
y_{t}=Q z_{t}+R B_{t}+S c_{n u m, t} \overrightarrow{1}_{M x 1}+T c_{t}-U \tilde{w}_{t} \overrightarrow{1}_{M x 1} \tag{21}
\end{equation*}
$$

where
$Q \equiv\left[I_{M}-J_{y x} D-\Omega_{y n}(H-G D)\right]^{-1} \quad R \equiv Q\left[\Omega_{y n}\left(\Omega_{\phi B}-G A\right)+J_{y x} A\right] \quad S \equiv Q\left[\Omega_{y n}(J-G E)+J_{y x} E\right]$

$$
T \equiv Q\left[\Omega_{y n}(K-G F)+J_{y x} F\right] \quad U \equiv Q \Omega_{y n}
$$

Combine (21) with (18).

$$
\begin{equation*}
c_{t}=V z_{t}+W B_{t}+X c_{n u m, t} \overrightarrow{1}_{M x 1}-A_{2} \tilde{w}_{t} \overrightarrow{1}_{M x 1} \tag{22}
\end{equation*}
$$

where

$$
V \equiv[L-T]^{-1} Q \quad W \equiv[L-T]^{-1}(R-O) \quad X \equiv[L-T]^{-1}(S-P) \quad A_{2} \equiv[L-T]^{-1} U
$$

The goal is to make use of (22), (16), and (19) to solve for $c_{n u m, t}, c_{t}, \tilde{w}_{t}$. But first, we need to replace x_{t} and y_{t} in (19) using (18) and (14).

Now we want to re-write (19) replacing x_{t} and y_{t} using (21) and (14). First get rid of y_{t} in (14) using (18). This yields

$$
\begin{equation*}
x_{t}=(A+D O) B_{t}+(D L+F) c_{t}+(D P+E) c_{n u m, t} \overrightarrow{1}_{M x 1} \tag{23}
\end{equation*}
$$

Plugging this into (19) yields
$\left(\Omega_{N c}-(1+\epsilon) \Omega_{N n} K\right) c_{t}=(1+\epsilon) \Omega_{N n}\left(\left[\Omega_{\phi B}-G(A+D O)\right] B_{t}-G(D L+F) c_{t}+H y_{t}+[J-G(D P+E)] c_{n u m, t} \overrightarrow{1}_{M x 1}-\tilde{w}_{t} \overrightarrow{1}_{M x 1}\right)$
And now plugging (18) into this yields
$\left(\Omega_{N c}-(1+\epsilon) \Omega_{N n} K\right) c_{t}=(1+\epsilon) \Omega_{N n}\left(\left[\Omega_{\phi B}-G(A+D O)+H O\right] B_{t}+[H L-G(D L+F)] c_{t}+[H P+J-G(D P+E)] c_{n u m, t} \overrightarrow{1}_{(25)} \underset{\left.{ }_{x 1}-\tilde{w}_{t} \overrightarrow{1}_{M x 1}\right)}{ }\right)$
This implies

$$
\begin{equation*}
\left(B_{2}-E_{2}\right) c_{t}=D_{2} B_{t}+F_{2} c_{n u m, t} \overrightarrow{1}_{M x 1}-G_{2} \tilde{w}_{t} \overrightarrow{1}_{M x 1} \tag{26}
\end{equation*}
$$

where

$$
\begin{gathered}
G_{2} \equiv(1+\epsilon) \Omega_{N n} \quad B_{2} \equiv\left(\Omega_{N c}-G_{2} K\right) \quad D_{2} \equiv G_{2}\left[\Omega_{\phi B}-G(A+D O)+H O\right] \\
E_{2} \equiv G_{2}[H L-G(D L+F)] \quad F_{2} \equiv G_{2}[H P+J-G(D P+E)]
\end{gathered}
$$

I now use (22) and (26), which contain $\mathrm{M}+1$ separate equations, to solve for c_{t} and \tilde{w}_{t}, which contain $\mathrm{M}+1$ unknowns. (Recall that $c_{\text {num,t }}$ is contained in c_{t}). First, suppose that the numeraire good is good M , so that $\tilde{p}_{M, t}=0$ and $\tilde{c}_{n u m, t}=\tilde{c}_{M, t}$. Also let $V_{M}, A_{2, M}, W_{M}$, and X_{M}, denote the M'th rows of the M-by-M matrices V, A_{2}, W, and X, respectively. Then the M'th row of (22) is given by

$$
\tilde{c}_{M, t}=V_{M} z_{t}+W_{M} B_{t}+X_{M} \overrightarrow{1}_{M x 1} \tilde{c}_{M, t}-A_{2, M} \overrightarrow{1}_{M x 1} \tilde{w}_{t}
$$

which implies

$$
\begin{equation*}
\tilde{w}_{t}=\frac{1}{A_{2, M} \overrightarrow{1}_{M x 1}}\left(V_{M} z_{t}+W_{M} B_{t}+\left[X_{M} \overrightarrow{1}_{M x 1}-1\right] \tilde{c}_{M, t}\right) \tag{27}
\end{equation*}
$$

Then (26) implies

$$
\left(B_{2}-E_{2}\right) c_{t}=D_{2} B_{t}+\left(F_{2} \overrightarrow{1}_{M x 1}\right) \tilde{c}_{M, t}-\frac{G_{2} \overrightarrow{1}_{M x 1}}{A_{2, M} \overrightarrow{1}_{M x 1}}\left(V_{M} z_{t}+W_{M} B_{t}+\left[X_{M} \overrightarrow{1}_{M x 1}-1\right] \tilde{c}_{M, t}\right)
$$

Define the scalar Q_{3} as

$$
Q_{3} \equiv \frac{G_{2} \overrightarrow{1}_{M x 1}}{A_{2, M} \overrightarrow{1}_{M x 1}}
$$

Then the above implies

$$
\left(B_{2}-E_{2}\right) c_{t}=\left(D_{2}-Q_{3} W_{M}\right) B_{t}-Q_{3} V_{M} z_{t}+\left(F_{2} \overrightarrow{1}_{M x 1}-Q_{3}\left[X_{M} \overrightarrow{1}_{M x 1}-1\right]\right) \tilde{c}_{M, t}
$$

which yields

$$
\begin{equation*}
\tilde{c}_{M, t}=\frac{1}{R_{3}}\left(B_{2}-E_{2}\right) c_{t}-\frac{1}{R_{3}}\left(D_{2}-Q_{3} W_{M}\right) B_{t}+\frac{1}{R_{3}} Q_{3} V_{M} z_{t} \tag{28}
\end{equation*}
$$

where R_{3} is a scalar.

$$
R_{3} \equiv F_{2} \overrightarrow{1}_{M x 1}-Q_{3}\left[X_{M} \overrightarrow{1}_{M x 1}-1\right]
$$

Combining (28) and (27) yields

$$
\begin{equation*}
\tilde{w}_{t}=S_{3} z_{t}+T_{3} B_{t}+U_{3} c_{t} \tag{29}
\end{equation*}
$$

where

$$
\begin{gathered}
S_{3} \equiv \frac{1}{A_{2, M} \overrightarrow{1}_{M x 1}}\left(V_{M}+\left[X_{M} \overrightarrow{1}_{M x 1}-1\right] \frac{1}{R_{3}} Q_{3} V_{M}\right) \\
T_{3} \equiv \frac{1}{A_{2, M} \overrightarrow{1}_{M x 1}}\left(W_{M}-\left[X_{M} \overrightarrow{1}_{M x 1}-1\right] \frac{1}{R_{3}}\left(D_{2}-Q_{3} W_{M}\right)\right) \\
U_{3} \equiv \frac{1}{A_{2, M} \overrightarrow{1}_{M x 1}}\left(\left[X_{M} \overrightarrow{1}_{M x 1}-1\right] \frac{1}{R_{3}}\left(B_{2}-E_{2}\right)\right)
\end{gathered}
$$

Now, plugging (28) and (29) into (22) yields

$$
\left(I_{M}-X \overrightarrow{1}_{M x 1}\left[\frac{1}{R_{3}}\left(B_{2}-E_{2}\right)\right]\right) c_{t}=\left(V+X \overrightarrow{1}_{M x 1} \frac{1}{R_{3}} Q_{3} V_{M}\right) z_{t}+\left(W-X \overrightarrow{1}_{M x 1} \frac{1}{R_{3}}\left(D_{2}-Q_{3} W_{M}\right)\right) B_{t}-A_{2} \overrightarrow{1}_{M x 1} \tilde{w}_{t}
$$

$$
\left(I_{M}-X \overrightarrow{1}_{M x 1}\left[\frac{1}{R_{3}}\left(B_{2}-E_{2}\right)\right]\right) c_{t}=\left(V+X \overrightarrow{1}_{M x 1} \frac{1}{R_{3}} Q_{3} V_{M}\right) z_{t}+\left(W-X \overrightarrow{1}_{M x 1} \frac{1}{R_{3}}\left(D_{2}-Q_{3} W_{M}\right)\right) B_{t}-A_{2} \overrightarrow{1}_{M x 1}\left(S_{3} z_{t}+T_{3} B_{t}+U_{3} c_{t}\right)
$$

$$
V_{3} c_{t}=W_{3} z_{t}+A_{4} B_{t}
$$

where

$$
\begin{gathered}
V_{3} \equiv I_{M}-X \overrightarrow{1}_{M x 1}\left[\frac{1}{R_{3}}\left(B_{2}-E_{2}\right)\right]+A_{2} \overrightarrow{1}_{M x 1} U_{3} \\
W_{3} \equiv V+X \overrightarrow{1}_{M x 1} \frac{1}{R_{3}} Q_{3} V_{M}-A_{2} \overrightarrow{1}_{M x 1} S_{3} \\
A_{4} \equiv W-X \overrightarrow{1}_{M x 1} \frac{1}{R_{3}}\left(D_{2}-Q_{3} W_{M}\right)-A_{2} \overrightarrow{1}_{M x 1} T_{3}
\end{gathered}
$$

Thus, the closed-form expression for c_{t} is

$$
c_{t}=c \operatorname{Coeff} z z_{t}+c \operatorname{CoeffB} B_{t}
$$

where

$$
c C o e f f z z_{t} \equiv V_{3}^{-1} W_{3} \quad c \operatorname{Coeff} B B_{t} \equiv V_{3}^{-1} A_{4}
$$

Given this closed-form expression, we can now similarly find closed-form expressions for all of the other variables in the system. Then (29) implies a closed-form expression for \tilde{w}_{t}.

$$
\begin{equation*}
\tilde{w}_{t}=w \operatorname{Coeff} z z_{t}+w \operatorname{CoeffB} B_{t} \tag{30}
\end{equation*}
$$

where

$$
\begin{gathered}
w \operatorname{Coeff} z \equiv S_{3}+U_{3} c \operatorname{Coeff} z \\
w \operatorname{Coeff} B \equiv T_{3}+U_{3} c \operatorname{CoeffB}
\end{gathered}
$$

And similarly for (28).
$\tilde{c}_{M, t}=\left(\frac{1}{R_{3}}\left(B_{2}-E_{2}\right) c \operatorname{Coeff} z+\frac{1}{R_{3}} Q_{3} V_{M}\right) z_{t}+\left(\frac{1}{R_{3}}\left(B_{2}-E_{2}\right) c \operatorname{Coeff} B-\frac{1}{R_{3}}\left(D_{2}-Q_{3} W_{M}\right)\right) B_{t}$
Thus,

$$
\begin{equation*}
\tilde{c}_{M, t}=c^{n} \operatorname{Coeff} z z_{t}+c^{n} \text { CoeffBB } B_{t} \tag{32}
\end{equation*}
$$

where

$$
\begin{gathered}
c^{n} \operatorname{Coeff} z \equiv \frac{1}{R_{3}}\left(B_{2}-E_{2}\right) c \operatorname{Coeff} z+\frac{1}{R_{3}} Q_{3} V_{M} \\
c^{n} C o e f f B \equiv \frac{1}{R_{3}}\left(B_{2}-E_{2}\right) c \operatorname{Coeff} B-\frac{1}{R_{3}}\left(D_{2}-Q_{3} W_{M}\right)
\end{gathered}
$$

Using (18) I obtain

$$
y_{t}=L\left(c \operatorname{CoeffB} B_{t}+c \operatorname{Coeff} z z_{t}\right)+O B_{t}+\left(P \overrightarrow{1}_{M x 1}\right)\left(c^{n} \operatorname{CoeffB} B_{t}+c^{n} \operatorname{Coeff} z z_{t}\right)
$$

which implies

$$
\begin{equation*}
y_{t}=y \operatorname{CoeffB} B_{t}+y \operatorname{Coeff} z z_{t} \tag{33}
\end{equation*}
$$

where

$$
\begin{gathered}
y \operatorname{Coeff} B \equiv O+\text { LcCoeff } B+\left(P \overrightarrow{1}_{M x 1}\right) c^{n} \operatorname{Coeff} B \\
y \operatorname{Coeff} z \equiv L c C o e f f z+\left(P \overrightarrow{1}_{M x 1}\right) c^{n} \operatorname{Coeff} z
\end{gathered}
$$

Using (23) I obtain
$x_{t}=(A+D O) B_{t}+(D L+F)\left(c \operatorname{CoeffB} B_{t}+c \operatorname{Coeff} z z_{t}\right)+\left[(D P+E) \overrightarrow{1}_{M x 1}\right]\left(c^{n} \operatorname{CoeffB} B_{t}+c^{n} \operatorname{Coeff} z z_{t}\right)$
which implies

$$
\begin{equation*}
x_{t}=x \operatorname{CoeffB} B_{t}+x \operatorname{Coeff} f z_{t} \tag{34}
\end{equation*}
$$

where

$$
\begin{gathered}
x \operatorname{Coeff} B \equiv(A+D O)+(D L+F) c \operatorname{Coeff} B+\left[(D P+E) \overrightarrow{1}_{M x 1}\right] c^{n} \text { Coeff } B \\
x \operatorname{Coeff} z \equiv(D L+F) c \operatorname{Coeff} z+\left[(D P+E) \overrightarrow{1}_{M x 1}\right] c^{n} \operatorname{Coeff} z
\end{gathered}
$$

Using (20) I obtain

$$
\begin{gathered}
n_{t}=\left(\Omega_{\phi B}-G A\right) B_{t}+(H-G D)\left(y \operatorname{CoeffBB} B_{t}+y \operatorname{Coeff} z_{z_{t}}\right)+\left[(J-G E) \overrightarrow{1}_{M x 1}\right]\left(c^{n} \text { CoeffBB }_{t}+c^{n} \operatorname{Coeff} z_{z_{t}}\right)+\ldots \\
\ldots+(K-G F)\left(c \operatorname{CoeffB} B_{t}+c \operatorname{Coeff} z z_{t}\right)-\overrightarrow{1}_{M x 1}\left(w \operatorname{CoeffBB} B_{t}+w \operatorname{Coeff}^{\prime} z_{t}\right)
\end{gathered}
$$

which implies

$$
\begin{equation*}
n_{t}=n \operatorname{CoeffB} B_{t}+n \operatorname{Coeff} f z_{t} \tag{35}
\end{equation*}
$$

where
$n \operatorname{CoeffB} \equiv\left(\Omega_{\phi B}-G A\right)+(H-G D) y \operatorname{CoeffB}+\left[(J-G E) \overrightarrow{1}_{M x 1}\right] c^{n} \operatorname{CoeffB}+(K-G F) c \operatorname{CoeffB}-\overrightarrow{1}_{M x 1} w \operatorname{CoeffB}$

$$
n \operatorname{Coeff} z \equiv(H-G D) y \operatorname{Coeff} z+\left[(J-G E) \overrightarrow{1}_{M x 1}\right] c^{n} \operatorname{Coeff} z+(K-G F) c \operatorname{Coeff} z-\overrightarrow{1}_{M x 1} w \operatorname{Coeff} z
$$

Using (10) I obtain

$$
\tilde{N}_{t}=\Omega_{N n}\left(n C o e f f B B_{t}+n C o e f f z z_{t}\right)
$$

which implies

$$
\begin{equation*}
\tilde{N}_{t}=N \operatorname{CoeffB} B_{t}+N \operatorname{Coeff} f z_{t} \tag{36}
\end{equation*}
$$

where

$$
\text { NCoeffB } \equiv \Omega_{N n} n \operatorname{CoeffB} \quad \text { NCoeff } z \equiv \Omega_{N n} n \operatorname{Coeff} z
$$

Using (3) I obtain

$$
p_{t}=\overrightarrow{1}_{M x 1}\left(c^{n} \operatorname{CoeffB} B_{t}+c^{n} \operatorname{Coeff} z z_{t}\right)-c \operatorname{CoeffB} B_{t}-c \operatorname{Coeff} z z_{t}
$$

which implies

$$
\begin{equation*}
p_{t}=p \operatorname{CoeffB} B_{t}+p \operatorname{Coeff} z z_{t} \tag{37}
\end{equation*}
$$

where

$$
p \operatorname{CoeffB} \equiv \overrightarrow{1}_{M x 1} c^{n} \operatorname{CoeffB}-c \operatorname{CoeffB} \quad \text { CCoeff } z \equiv \overrightarrow{1}_{M x 1} c^{n} \operatorname{Coeff} z-c \operatorname{Coeff} z
$$

Using (4) I obtain
$\ell_{t}=\Omega_{\ell p}\left(p \operatorname{CoeffB} B_{t}+p \operatorname{Coeff} z z_{t}\right)+\Omega_{\ell y}\left(y \operatorname{CoeffB} B_{t}+y \operatorname{Coeff} z z_{t}\right)-x \operatorname{CoeffB} B_{t}-x \operatorname{Coeff} z z_{t}$ which implies

$$
\begin{equation*}
\ell_{t}=\ell \operatorname{Coeff} f B_{t}+\ell \operatorname{Coeff} z z_{t} \tag{38}
\end{equation*}
$$

where

$$
\begin{aligned}
\ell \operatorname{CoeffB} & \equiv \Omega_{\ell p} p \operatorname{CoeffB}+\Omega_{\ell y} y \operatorname{Coeff} B-x \operatorname{Coeff} B \\
\ell \operatorname{Coeff} z & \equiv \Omega_{\ell p} p \operatorname{Coeff} z+\Omega_{\ell y} y \operatorname{Coeff} z-x \operatorname{Coeff} z
\end{aligned}
$$

Using (5) I obtain

$$
\nu_{t}=x \operatorname{CoeffB} B_{t}+x \operatorname{Coeff} z z_{t}-\Omega_{\nu y}\left(y \operatorname{CoeffB} B_{t}+y \operatorname{Coeff} z z_{t}\right)
$$

which implies

$$
\begin{equation*}
\nu_{t}=\nu \operatorname{CoeffB} B_{t}+\nu \operatorname{Coeff} z z_{t} \tag{39}
\end{equation*}
$$

where

$$
\nu \operatorname{CoeffB} \equiv \operatorname{xCoeffB}-\Omega_{\nu y} y \operatorname{CoeffB} \quad \nu \operatorname{Coeff} z \equiv x \operatorname{Coeff} z-\Omega_{\nu y} y \operatorname{Coeff} z
$$

Finally, using (6) I obtain

$$
\phi_{t}=\Omega_{\phi B} B_{t}-\Omega_{\phi \nu}\left(\nu \operatorname{CoeffB} B_{t}+\nu \operatorname{Coeff} z z_{t} \nu_{t}\right)-\Omega_{\phi \ell}\left(\ell \operatorname{CoeffB} B_{t}+\ell \operatorname{Coeff} z z_{t}\right)
$$

which implies

$$
\begin{equation*}
\phi_{t}=\phi \operatorname{CoeffB} B_{t}+\phi \operatorname{Coeff} f z_{t} \tag{40}
\end{equation*}
$$

where

$$
\phi \operatorname{CoeffB} \equiv \Omega_{\phi B}-\Omega_{\phi \nu} \nu \operatorname{CoeffB}-\Omega_{\phi \ell} \ell \operatorname{CoeffB}
$$

$$
\phi \operatorname{Coeff} z \equiv-\Omega_{\phi \nu} \nu \operatorname{Coeff} z-\Omega_{\phi \ell} \ell \operatorname{Coeff} z
$$

Thus, equations (30)-(40) yield the closed form solution of the behavior of the economy to liquidity and productivity shocks.

Since, in the model, $G D P=w N$, then the first-order approximated percentage change in GDP is given by

$$
\begin{gathered}
G \tilde{D} P_{t}=\tilde{w}_{t}+\tilde{N}_{t} \\
=w \operatorname{CoeffB} B_{t}+w \operatorname{Coeff} z z_{t}+N \operatorname{CoeffB} B_{t}+N C o e f f z z_{t} \\
=(w \operatorname{Coeff} B+N C o e f f B) B_{t}+(w \operatorname{Coeff} z+N C o e f f z) z_{t}
\end{gathered}
$$

Constructing Liquidity and Productivity Shocks

Using this solution for y_{t} and n_{t} given by (33) and (35), I constructing industry-level liquidity and productivity shocks (B_{t} and z_{t}, respectively) from observed output growth data \hat{y}_{t} and \hat{n}_{t} as follows. Solving (35) for B_{t} yields

$$
\begin{equation*}
B_{t}=[n C o e f f B]^{-1}\left(\hat{n}_{t}-n C o e f f z z_{t}\right) \tag{41}
\end{equation*}
$$

Plugging this into (33) yields

$$
\begin{equation*}
\hat{y}_{t}=y \operatorname{Coeff} B\left([n \operatorname{CoeffB}]^{-1}\left(\hat{n}_{t}-n \operatorname{Coeff} z z_{t}\right)\right)+y \operatorname{Coeff} z z_{t} \tag{42}
\end{equation*}
$$

Solving this for z_{t} yields

$$
\begin{equation*}
z_{t}=Q_{3}^{-1} \hat{y}_{t}-Q_{3}^{-1} y \operatorname{CoeffB}[n \operatorname{CoeffB}]^{-1} \hat{n}_{t} \tag{43}
\end{equation*}
$$

where

$$
Q_{3} \equiv y \operatorname{Coeff} z-y \operatorname{CoeffB}[n \operatorname{CoeffB}]^{-1} n \operatorname{Coeff} z
$$

Then plugging (43) back into (41) yields

$$
\begin{equation*}
B_{t}=[n \operatorname{CoeffB}]^{-1}\left(\hat{n}_{t}-n \operatorname{Coeff} z z_{t}\right) \tag{44}
\end{equation*}
$$

Thus, the shocks at time t which hit each industry are observed fluctuations in output and employment, filtered for the effects of credit and input-output linkages in propagating them to other industries, and are given by (43) and (44).

