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A B S T R A C T

Dense time series of Landsat 8 and Sentinel-2 imagery are creating exciting new opportunities to monitor, map,
and characterize temporal dynamics in land surface properties with unprecedented spatial detail and quality. By
combining imagery from the Landsat 8 Operational Land Imager and the MultiSpectral Instrument on-board
Sentinel-2A and -2B, the remote sensing community now has access to moderate (10–30 m) spatial resolution
imagery with repeat periods of ~3 days in the mid-latitudes. At the same time, the large combined data volume
from Landsat 8 and Sentinel-2 introduce substantial new challenges for users. Land surface phenology (LSP)
algorithms, which estimate the timing of phenophase transitions and quantify the nature and magnitude of
seasonality in remotely sensed land surface conditions, provide an intuitive way to reduce data volumes and
redundancy, while also furnishing data sets that are useful for a wide range of applications including monitoring
ecosystem response to climate variability and extreme events, ecosystem modelling, crop-type discrimination,
and land cover, land use, and land cover change mapping, among others. To support the need for operational LSP
data sets, here we describe a continental-scale land surface phenology algorithm and data product based on
harmonized Landsat 8 and Sentinel-2 (HLS) imagery. The algorithm creates high quality times series of vege-
tation indices from HLS imagery, which are then used to estimate the timing of vegetation phenophase transi-
tions at 30 m spatial resolution. We present results from assessment efforts evaluating LSP retrievals, and provide
examples illustrating the character and quality of information related to land cover and terrestrial ecosystem
properties provided by the continental LSP dataset that we have developed. The algorithm is highly successful in
ecosystems with strong seasonal variation in leaf area (e.g., deciduous forests). Conversely, results in evergreen
systems are less interpretable and conclusive.

1. Introduction

Land surface phenology (LSP) measurements provide critical in-
formation related to land surface properties and ecosystem function (De
Beurs and Henebry, 2004; Melaas et al., 2016; Morisette et al., 2009). In
natural ecosystems, the timing of phenological events has been used to
quantify the impact of climate change on growing seasons (Körner and
Basler, 2010; Peñuelas, 2009; Piao et al., 2019; Richardson et al.,
2013), to distinguish among vegetation communities with different
phenological triggers (Møller et al., 2008; Sherry et al., 2007), and to
characterize the sensitivity of ecosystem processes to climate change
(Friedl et al., 2014; Keenan et al., 2014b). In agro-ecosystems,

phenology is diagnostic of management practices (e.g., sowing and
harvest dates, irrigation), crop types, and crop yields (Bolton and Friedl,
2013; Kucharik, 2006; Sacks et al., 2010). More generally, the nature,
magnitude, and timing of LSP dynamics provide a wealth of useful in-
formation that is increasingly being used for mapping land cover, land
use, and land cover change (Kennedy et al., 2014; Zhu and Woodcock,
2014a).

The earliest studies leveraging LSP information were focused on
agriculture and used time series of Landsat imagery (e.g., Badhwar,
1984). However, because Landsat data acquisitions are relatively in-
frequent, most LSP studies have used data from coarse spatial resolution
instruments such as AVHRR, SPOT Vegetation, MERIS, and MODIS (de
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Beurs and Henebry, 2005; Delbart et al., 2008; Justice et al., 1985; Reed
et al., 1994; White et al., 1997; Zhang et al., 2017). Over the last two
decades, as data from coarse spatial resolution instruments in general,
and from MODIS in particular, have become more available and easier
to process, LSP algorithms, data products, and applications have rapidly
expanded and matured (e.g., Ganguly et al., 2010; Jönsson and
Eklundh, 2002; Zhang et al., 2003). For many applications, however,
information is required at finer spatial resolutions than is afforded by
MODIS. Newly available imagery from Sentinel-2A and -2B, in combi-
nation with data from Landsat 8, largely resolves this constraint. At
present, however, no operational LSP product is available at moderate
spatial resolution (30 m). The algorithm and data products described in
this paper are designed to fill this gap. Specifically, the goals of this
paper are threefold:

1. To describe a new algorithm for estimating the timing of land sur-
face phenophase transitions from time series of moderate spatial
resolution remotely sensed imagery;

2. To describe and characterize a continental data product that will be
available to the community based on this algorithm; and

3. To provide an initial characterization of the data product quality
based on comparisons with in-situ measurements of phenology and
LSP results from MODIS.

In the sections that follow we provide background and context for
this work, followed by a description of the algorithm and data sets that
we have developed. We then present results that illustrate the nature
and quality of data sets that can be generated from blended time series
of Landsat 8 and Sentinel-2 imagery and conclude the paper with a
discussion of key results and implications of this work.

2. Background

Information related to land surface phenology is widely recognized
to be important for three main reasons. First, phenology “is perhaps the
simplest process in which to track changes in the ecology of species in
response to climate change” (Parry et al., 2007). Reflecting this, a large
and growing literature has documented how the phenology of ecosys-
tems is changing (Cleland et al., 2007; Parmesan and Yohe, 2003;
Richardson et al., 2013). Second, because phenological dynamics affect
numerous ecosystem functions, improved information related to phe-
nology is critical to understanding how changes in phenology impact
and propagate through the diverse array of ecosystem processes that are
linked to phenology. For example, phenology is known to strongly in-
fluence water, carbon, and energy fluxes (Keenan et al., 2014b;
Richardson et al., 2012; Wolfe et al., 2016; Moon et al., 2020), and
there is increasing evidence that changes in phenology arising from
climate change are cascading across trophic levels, leading to complex
and poorly understood ecosystem changes (Beard et al., 2019; Møller
et al., 2008; Sherry et al., 2007; Thackeray et al., 2010). Third, in-
formation related to phenology is increasingly being used in applied
ecosystem science and in land cover, land use, and land cover change
applications (Miller and Morisette, 2014). In particular, information
related to stand-level phenology is important to ecologists and land
managers for whom phenology provides important diagnostics related
to species composition, forest health, invasive species, and other eco-
system processes (Morisette et al., 2009). In agricultural systems, a
diverse array of applications ranging from crop yield prediction to
monitoring and mapping rangelands are affected by phenology (Butt
et al., 2011; Funk and Budde, 2009; Kumar and Goh, 1999; Sankey
et al., 2013). As a result, information related to phenology is identified
as a critical variable required for the UN's Global Climate Observing
System (GCOS, 2016), the IPCC's Fifth Assessment Report (Cramer
et al., 2014), and the United States National Climate Assessment
(Melillo et al., 2014).

A key limitation of current phenology data sets is that they are only

available at two very different spatial scales and resolutions.
Specifically, ground-based observations from networks such as the
National Phenology Network (USA-NPN) and the PhenoCam Network
(Seyednasrollah et al., 2019; https://phenocam.sr.unh.edu/webcam/)
provide point-based measurements at local scale. At the other extreme,
coarse spatial resolution remote sensing provides information at con-
tinental to global scales (e.g., Ganguly et al., 2010), but does not resolve
ecologically important processes at landscape scale (Elmore et al.,
2012; Fisher et al., 2006). Further, a variety of studies have demon-
strated that land surface phenology metrics derived from coarse spatial
resolution remote sensing and in situ observations of phenology col-
lected at local scale provide different information. Most of this incon-
sistency can be attributed to mismatch between the spatial resolution of
available remote sensing data products (i.e., 500-m MODIS) and the
scale(s) of processes captured by ground-based measurements. In par-
ticular, the timing of local-scale phenological events, especially in
landscapes that are topographically complex, fragmented, or affected
by human management, is not resolved in coarse spatial resolution land
surface phenology products. This issue limits the utility of coarse spatial
resolution products for applications focused on questions and processes
occurring at landscape scale, and points to the need for land surface
phenology information at spatial resolutions capable of resolving
landscape-scale properties and processes.

To address this need, the LSP community has increasingly focused
on moderate spatial resolution imagery from Landsat for mapping and
monitoring phenology. Fisher et al. (2006) and Elmore et al. (2012)
demonstrated that long term average land surface phenology can be
accurately estimated from multi-year time series of Landsat imagery,
and established that landscape-scale patterns in phenology (which
cannot be detected in coarse spatial resolution instruments such as
MODIS) are clearly discernible in Landsat imagery. More recently,
Melaas et al. (2013, 2016) developed a method that estimates the
timing of leaf emergence and fall senescence at annual time steps from
Landsat, and used data from several data sources to demonstrate the
accuracy and realism of their Landsat-based LSP retrievals across a
range of sites. A key limitation of the approach described by Melaas
et al. (2013), however, is that it requires long time series (i.e., > 10
years) and is best suited for retrospective analysis in “side-lap” regions
between adjacent Landsat scenes where data density high. More re-
cently, Jönsson et al. (2018) demonstrated the feasibility of retrieving
interannual variation in phenology from Sentinel-2, thereby over-
coming limitations imposed by Landsat's 16-day repeat period. Building
on this legacy, here we describe an algorithm that leverages the legacy
of existing LSP algorithms developed for MODIS and Landsat to provide
continental-scale estimates of LSP metrics from a combination Landsat
8 and Sentinel 2 imagery at 30-meter spatial resolution.

3. Methods

The algorithm we developed uses harmonized Landsat 8 and
Sentinel 2 (HLS) data (Claverie et al., 2018) to create science data sets
(SDSs; summarized in Supplementary materials) that provide estimates
of LSP metrics at 30 m spatial resolution. The general approach is based
on the algorithm used to produce the Collection 6 MODIS Land Cover
Dynamics product (MCD12Q2; Gray et al., 2019), but includes several
key refinements we implemented to address issues that are specific to
estimating LSP metrics from HLS data. Hereafter, we refer to this al-
gorithm as the multi-sensor land surface phenology (MS-LSP) algo-
rithm, which includes the following key elements: (1) creating time
series of the two band Enhanced Vegetation Index (EVI2) from HLS
data; (2) removing outliers and filling missing EVI2 values during
dormant periods; (3) interpolating observed EVI2 values to daily time
series; (4) identifying vegetation cycles in the time series; and (5) ex-
tracting and recording phenometrics for each vegetation cycle. The
algorithm is applied to time series of HLS EVI2 values that include the
year of interest with six-month buffers prepended and appended (i.e.,
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24 months total) to prevent interpolation artifacts at the beginning and
end of the time-series. Because of the very large data volumes, all data
processing was performed on Amazon Web Services (AWS).

3.1. Data

The HLS V1.4 dataset, which is currently available for all of North
America (and selected tiles in other regions of the world), provides
radiometrically ‘harmonized’ time series of surface reflectance imagery
from the Operational Land Imager (OLI) instrument onboard Landsat 8
and the MultiSpectral Instrument (MSI) onboard Sentinel-2A and
Sentinel-2B. Together, imagery from these three instruments provide
moderate spatial resolution (30 m) observations of the entire North
American continent every 1–4 days, depending on latitude (Li and Roy,
2017).

The harmonization process applied to MSI and OLI image data in-
cludes consistent atmospheric correction, cloud screening, geolocation,
normalization of illumination and view angles, and spectral bandpass
adjustments across sensors. Landsat OLI and Sentinel-2 MSI data are
atmospherically corrected using the Land Surface Reflectance Code
(LaSRC; Vermote et al., 2018), and the HLS product includes masks for
clouds, cloud shadows, and snow that are generated using a combina-
tion of LaSRC and the Fmask algorithm (Zhu and Woodcock, 2014b).
Landsat data are co-registered to the Sentinel-2 grid using the AROP
algorithm (Gao et al., 2009), and Sentinel-2 10 m and 20 m data are
resampled to 30 m to provide imagery with consistent spatial resolution
across both sensors. Imagery from the OLI and MSI sensors are cor-
rected for view angle effects using the method developed by Roy et al.
(2016) and are normalized to account for variation in illumination
angle following the approach of Zhang et al. (2016). Finally, because
the spectral band passes are slightly different for the OLI and MSI, MSI
band data are adjusted to match those of OLI using linear corrections
estimated using a global sample of Hyperion hyperspectral imagery. For
more complete details regarding the algorithm used to create HLS data,
please see Claverie et al. (2018).

The HLS dataset begins in 2013 with the launch of Landsat 8.
Sentinel-2A is added to the time series in October of 2015, and since the
launch of Sentinel-2B in March 2017, imagery from all three satellites
are included in the time series. Because Sentinel-2A and -2B did not
originally acquire imagery at full duty cycle over North America, 2018
is the first growing season with imagery available at the maximum
possible revisit frequency. We used the most current version of HLS
available at the time of this writing (HLS V1.4) to generate the results
presented here. The HLS dataset is provided as ~110 km by 110 km
tiles using the Military Grid Reference System (MGRS). For North
America, the data set includes a total of 2913 tiles. For this study, HLS
data from mid-2015 to mid-2019 were used to retrieve phenophase
transition dates for the 2016–2018 growing seasons.

To support topographic correction of surface reflectance imagery, a
1 arc-second (~30 m) digital elevation model (DEM) was obtained for
North America from the 3D Elevation Program (3DEP) at the United
States Geological Survey (USGS). This DEM is a blended product that
uses the highest quality topographic information available, and is pri-
marily derived from a combination of LiDAR data, interferometric
synthetic aperture radar data, and contour maps. For this work, the
3DEP DEM was re-projected, tiled, and resampled to 30 m to align with
the HLS tile grid. Where present, missing data were filled using data
from the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) global DEM.

3.2. HLS preprocessing

3.2.1. Cloud, shadow, snow, and water masking
Flags identifying the presence of clouds, cloud shadows, and snow

are included in the HLS quality assurance (QA) data. However, inter-
rogation of HLS QA flags for Sentinel-2 data revealed errors of

commission for clouds and cloud shadows.1 Because high frequency
observations are critical for monitoring phenology, for this work we
disregarded the HLS QA flags for clouds and applied the newly released
version of Fmask (Fmask 4.0; Qiu et al., 2019) to Sentinel-2 images.
Because this issue was restricted to Sentinel 2 imagery, we retained QA
information related to clouds and cloud shadows for Landsat 8 data.
Note that Fmask 4.0 was designed to run on top of atmosphere re-
flectance. For this work, we adapted the algorithm to run directly on
HLS surface reflectance images and found reduced errors of commission
for clouds and cloud shadows compared to the original HLS QA flags for
Sentinel-2 images. The Global Surface Water Dataset (Pekel et al.,
2016), which was derived from Landsat imagery at 30 m spatial re-
solution, was used to identify and exclude pixels dominated by surface
water.

3.2.2. Topographic correction of imagery
Topography can influence estimated phenophase transition dates,

especially on steep north facing slopes, as changing illumination con-
ditions influence seasonal dynamics in spectral indices. For north facing
slopes, the effect of illumination angle can result in an artificially early
detection of greenup dates and late detection of greendown dates (see
Fig. S2). To reduce the impact of topography, all HLS imagery was
corrected following the rotational correction approach developed by
Tan et al. (2010, 2013) (Fig. S1). This approach fits a linear model to
the relationship between the cosine of the illumination angle and sur-
face reflectance values in each band, and then rotates the data to re-
move this relationship (see Section S2 in Supplementary materials for
complete details).

3.2.3. Secondary snow screening
The presence of snow under conifer forest canopies can cause

wintertime EVI2 values to increase because differential absorption of
red and NIR radiation by the canopy is amplified by scattering under
the canopy (Wang et al., 2015), which can lead to spurious phenolo-
gical cycles when the canopy is dormant. Similar to issues we dis-
covered with QA data for clouds, we found that HLS snow flags in re-
gions dominated by conifer forests include widespread errors of
omission (i.e., the presence of snow is underestimated). To avoid de-
tection of spurious phenological cycles under these conditions, we im-
plemented the snow screening approach proposed by Wang et al.
(2015), which uses the normalized difference water index (NDWI).
Specifically, Wang et al. (2015) demonstrated that absorption of
shortwave infrared radiation by snow causes NDWI to increase in
coniferous forests when snow is present under the forest canopy. While
Wang et al. (2015) et al. suggested a threshold of NDWI > 0.4 for snow
detection in coniferous canopies, we implemented a more conservative
approach that also incorporates spatial context. For this work, we
flagged pixels as contaminated by snow if the NDWI of the pixel
was > 0.5 and if snow was detected within 5 km of the pixel by the HLS
QA flags.

3.3. Creation of daily time EVI2 series

3.3.1. Outlier elimination
Outliers were identified and removed from HLS time series using

two approaches. First, bright anomalies (e.g., undetected clouds,
smoke) were masked using a temporal filtering approach adapted from
the MAJA cloud detection algorithm (Hagolle et al., 2017). Specifically,
an observation on date D of a time series is flagged as cloud-con-
taminated if:

1 This issue is being corrected in V1.5 of the HLS dataset, which is scheduled
for release in 2020.
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> +( (D) (D )) 0.03 1
D D

30
pre

blue blue pre
(1)

where ρblue(D) is the blue band reflectance on date D, ρblue(Dpre) is the
blue band reflectance in the first cloud free observation directly pre-
ceding D, and D − Dpre is the time difference between the two acqui-
sition dates, in days. This approach captures sharp changes in blue
reflectance caused by the presence of bright surfaces, with the threshold
for detection dependent on the amount of time between observations.
Because ρblue can also be affected by changes in land cover or surface
conditions, following Hagolle et al. (2017), an observation is not
flagged if the following condition is also met:

>( (D) (D )) 1.5( (D) (D ))red red pre blue blue pre (2)

where ρred(D) is the red reflectance on date D and ρred(Dpre) is red re-
flectance on the preceding date. Because removal of vegetation pro-
duces a greater change in red reflectance than in blue reflectance, this
additional condition prevents most changes in land cover from being
spuriously flagged as outliers. To further limit confusion between noisy
observations and real surface changes, this procedure was also run
forward in time (i.e., Dpre was replaced with the closest date following
date D), to ensure that the observation on date D was anomalous re-
lative to both the preceding and subsequent image acquisitions. Finally,
as this approach only captures bright anomalies, an additional
screening criteria was employed to identify negative outliers in the
EVI2 time series associated with undetected cloud shadows. Specifi-
cally, we employed a three point de-spiking method, where the ob-
served EVI2 value on date D (EVI2obs) was compared to a fitted EVI2
value on date D (EVI2fit) predicted via linear interpolation between the
preceding (EVI2pre) and subsequent (EVI2post) observations. Observa-
tions on date D are then masked if the gap between EVI2pre and EVIpost

was < 45 days and:

> >(EVI2 EVI2 ) 0.1 AND
EVI2 EVI2

EVI2 EVI2
2fit obs

pre
fit obs

post (3)

Observations classified as snow-contaminated were filled using the
estimated minimum snow-free EVI2 value at each pixel, which was
calculated as the 5th percentile of all snow-free EVI2 values between
2016 and 2018 at each pixel. For observations falsely detected as snow,
this procedure can introduce negative spikes in the time series. To
minimize this, the three point de-spiking approach described above was
reapplied as a final step in the process.

3.3.2. Generating daily time series of EVI2
As a final step prior to identifying phenological cycles and pheno-

metrics, HLS EVI2 data are interpolated to create time series at each
pixel at a daily time step using penalized cubic smoothing splines. Daily
time series were derived for each product year (2016–2018), resulting
in three 24-month time-series for each pixel (i.e., product year ± six
month buffers). Because noise and data gaps in time series can nega-
tively influence the realism of interpolated daily values (and by ex-
tension estimated LSP metrics), we incorporated data from years out-
side of the period of interest to reduce the impact of both sources of
uncertainty.

As changes in land condition and climatic variability can lead to
interannual variability in phenology, EVI2 values at each pixel were
first screened to only include data from other years that showed similar
timing and magnitude of phenology. This was accomplished by first
fitting a cubic spline to the entire EVI2 time series at each pixel (mid
2015 – mid 2019), and then estimating the Euclidean distance between
the fitted time series for the year of interest (24-month period) and the
fitted time series for each of the alternate years (Fig. 1b, c). The weight
assigned to EVI2 values in alternate each year (Wy) in the cubic spline
was computed as:

=

< =

W MaxW
D

D
If W then W

1

0; 0

y
y

max

y y (4)

where MaxW is the maximum allowable weight for the alternate years,
Dy is the Euclidean distance between the alternate year (y) and the year
of interest (Fig. 1b, c), and Dmax is the maximum Euclidean distance
considered. To be conservative, MaxW was set to 0.1. Hence, data from
alternate years have relatively modest impact on fitted splines when
data density during the year of interest is high. Dmax was calculated for
each pixel as the Euclidean distance between the interpolated daily
values in the year of interest and the average time series for that year
(Fig. 1d). The resulting values of Wy range from 0 to 0.1, with 0.1 re-
presenting an exact match between the interpolated EVI2 values of the
alternate year and the year of interest, and 0 representing the case
where the alternate year is a worse representation of the target year
than a time series of constant EVI2 values. For example, in Fig. 1, the
Euclidean distance between the 2016 and 2018 time series (Fig. 1c) is
larger than the Euclidean distance between the 2016 spline and a
constant time series (Fig. 1d), resulting in a weight of 0 for observations
from 2018 (Fig. 1e). As a final step, all weights for EVI2 values that
were snow-filled (including those for observations in the year of in-
terest) were multiplied by 0.5 to down-weight the influence of these
EVI2 values. The resulting weights are assigned to each observation in
each alternate year and used to fit the spline for the year of interest.
While only two alternate years are currently available for matching,
this approach appears to work well and will become more effective as
the depth of the data record increases. Note that this approach is con-
ceptually similar to that described by Jönsson et al. (2018), but is less
computationally intensive and so can be run operationally at con-
tinental scale.

3.4. Multisource land surface phenology (MS-LSP) algorithm

3.4.1. Identifying phenological cycles
Phenological cycles are identified as periods of sustained increase in

daily interpolated EVI2 values followed by sustained periods of de-
crease, subject to heuristics related to the duration and magnitude of
variation in EVI2 values associated with each candidate cycle. Local
maxima in EVI2 time series (i.e., potential peaks in individual growth
cycles) are identified as the day of year (DOY) where the local slope of
daily EVI2 values changes sign from positive to negative. The resulting
candidate peaks are sorted by EVI2 magnitude, and then each candidate
cycle (i.e., associated with a local peak) is analyzed to: (1) identify the
DOY corresponding to the start and end of the greenup and greendown
segments associated with each peak; and (2) eliminate spurious cycles.

To implement this approach, we used a recursive procedure that
identifies and evaluates candidate cycles across 24-month periods
(Fig. 2). Individual vegetation growth cycles are identified by searching
the period before and after each local peak in daily EVI2 time series,
and selecting start (and end) dates based on the nearest local EVI2
minima for which the difference in EVI2 between the local minimum
and maximum is greater than or equal to 0.1 and is also greater than or
equal to 35% of the total range of variation in EVI2 over the 24-month
period. The start of each cycle is constrained to occur between 185 days
and 30 days prior to the peak of the cycle, with the earliest start re-
quired to occur after the previous peak. The end date for the cycle is
identified using the same procedure, but is applied in the opposite
temporal direction. If the amplitude of the cycle does not meet the
criteria above, both before and after the peak, the candidate peak is
excluded. This process is repeated recursively until all candidate peaks
during the 24-month period centered over the year of interest are either
eliminated or identified as belonging to valid vegetation cycles, starting
with the EVI2 peak possessing the lowest value, and ending with the
peak possessing the highest EVI2 value.

This procedure is illustrated in Fig. 2a, which is adapted from the
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MCD12Q2 product user guide (Gray et al., 2019). First, candidate peaks
are identified and sorted by their EVI2 magnitude; in Fig. 2a, this would
yield peaks labeled as E, A, D, C, and B. The starting point for the cycle
associated with peak E is identified at e, and the EVI2 amplitude be-
tween e and E is calculated. While the EVI2 amplitude between e and E
exceeds 0.1, E is eliminated because the amplitude is < 35% of the total
range in EVI2 over the 24-month interval. Next, the cycle associated
with peak A is eliminated because even though the EVI2 amplitude
between a and A exceeds 0.1 and the 35% threshold, the greendown
portion (from A to b) does not.

To illustrate the process associated with identifying the start and
end of a given cycle, Fig. 2a identifies the search window corresponding
to the growth cycle associated with peak D (peak D would be assessed
third, following peaks E and A). The start of the cycle is identified as
corresponding to the DOY when EVI2 is minimum between the pre-
ceding peak (C) and 30 days prior to D. However, because peak C
is > 185 days prior to peak D, the search window does not extend all
the way back to C, and instead starts 185 days prior to peak D. The end
date is identified as corresponding to the DOY when EVI2 is minimum

during the period between 30 days after D and the next valid peak.
However, since peak E was eliminated and is no longer a valid peak, the
end of the search window for peak D reaches the end of the time series.
Within this search window, e represents the minimum and is therefore
identified as the end date for the cycle associated with peak D. Simi-
larly, the search window for the start date for peak B extends back to
the start of the time series because peak A was eliminated, and point a
would be identified as the start date associated with peak B. Based on
this algorithm, valid vegetation cycles would be identified for peaks B,
C, and D. All heuristics described above (e.g., minimum EVI amplitude
of 0.1) were adopted from the MCD12Q2 C6 algorithm (Gray et al.,
2019), which provides consistency between phenophase transition
dates estimated from the MS-LSP and MCD12Q2 products.

3.4.2. Identifying phenophase transition dates and EVI2 metrics
Identification of phenophase transition dates is performed on each

valid vegetation cycle, and all valid vegetation cycles are associated
with the calendar year in which the peak EVI2 occurs (i.e., the year of
interest) (e.g., in Fig. 2a, only phenometrics associated with peak C

Fig. 1. Interpolation of daily EVI2 time series for 2016 using a weighted cubic spline approach for a deciduous forest pixel that experienced a landcover change in
2018. a) Time-series of EVI2 including parts or all of three analysis years (target year, 2016, + six month buffer on either side). b) Euclidean distance between 2016
and 2017 fitted time series. c) Euclidean distance between 2016 and 2018 fitted time-series. d) Euclidean distance between 2016 fitted time series and a time-series
assuming a constant EVI2 (average EVI2). e) Calculation of weighted spline for 2016, with observations from 2017 and 2018 weighted based on Euclidean distance
(Eq. (4)). As the Euclidean distance in panel c is greater than in panel d, 2018 was assigned a weight of 0.

Fig. 2. a) Example time series showing the identification of vegetation cycles. A, B, C, D, and E correspond to potential cycle peaks, while a, b, c, d, e, and f
correspond to potential cycle minimums. b) Once a cycle is determined valid, phenometrics are derived for the detected cycle.
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would be included for 2018). The first metric (number of vegetation
cycles) is determined by counting the number of valid peaks in the year
of interest. While the total number of cycles each year is included in the
product, phenometrics and associated QA flags are only included for up
to two growth cycles. In rare cases where more than 2 cycles are pre-
sent, growth cycles included in the product are selected based on the
magnitude of EVI2 amplitude. That is, if there are 3 cycles, the number
of vegetation cycles will be 3, but phenophase transitions will not be
included for the cycle with the lowest EVI2 amplitude (n.b., only 0.03%
of pixels across North America had > 2 cycles in 2018).

Once the cycles to be included in the product are selected, the start
of greenup, greenup midpoint, and maturity dates are retrieved as the
DOYs in the greenup period when the EVI2 time series cross 15, 50, and
90% of the EVI2 amplitude in each cycle (Fig. 2b). Similarly, start of
senescence, senescence midpoint, and dormancy are identified as the
DOYs in the greendown segment when the EVI2 time series crosses 90,
50, and 15% of the EVI2 amplitude. The integrated EVI2 metric is
calculated as the sum of daily EVI2 values between the segment start
and end dates (i.e., not from the start of greenup and dormancy). EVI2
amplitude and maximum values are also recorded for each cycle. If no
valid vegetation cycles are detected in a calendar year, the number of
cycles is set to 0 and the maximum and amplitude of daily EVI2 are
recorded for the year of interest, but no dates are recorded. Quality
flags are estimated for all metrics associated with each greenup and
greendown phase based on the density of observations and the quality
of spline fits during each growth phase. Details regarding QA flags are
provided in the Supplementary materials.

3.5. Algorithm assessment

3.5.1. Comparison to PhenoCam data
To provide an independent assessment of phenological retrievals,

MS-LSP 50% greenup and 50% greendown dates were compared to
phenophase transition dates derived from the PhenoCam Network of
digital cameras (v2.0, Seyednasrollah et al., 2018). The PhenoCam
Network v2.0 dataset includes times-series of observations from digital
cameras for 393 sites across North America and Europe from 2000 to
2018, with the majority of sites in North America. Half hour imagery is
processed for each site to produce daily and 3-day time series of the
green chromatic coordinate (GCC), which is calculated as:

= + +G Green/(Blue Red Green)CC (5)

For each image, GCC is averaged for all pixels within a prescribed
region of interest (ROI) corresponding to the dominant plant function
type at the site. Three day time series of GCC are then used to derive
phenophase transition dates, which include dates corresponding to 50%
GCC increase and decrease (i.e., analogous to the MS-LSP product). To
facilitate comparison between MS-LSP and PhenoCam results, pheno-
phase transitions dates were extracted from MS-LSP results using the
median value within 3 × 3 pixel windows surrounding each
PhenoCam. In order for a site to be included in any given year (i.e., a
site-year), at least 6 of 9 pixels within the 3 × 3 window were required
to have phenophase predictions for the given year. For PhenoCams
located in heterogeneous landscapes, the coordinates of the camera
locations were manually adjusted to ensure that they aligned with the
plant functional type being observed. In total, 204 PhenoCams with a
total of 393 site-years were included in the analysis.

3.5.2. Comparison to MODIS Collection 6 MCD12Q2 data
As a complement to the comparison with PhenoCam data, we

compared MS-LSP 50% greenup and 50% greendown results to corre-
sponding values from the MODIS Collection 6 MCD12Q2 product.
MCD12Q2 is produced at 500 m from daily Collection 6 MODIS nor-
malized BRDF-adjusted reflectance data, using the algorithm described
in Sections 3.4.1 and 3.4.2. The products were compared across 16
MODIS tiles spanning central and eastern US and Canada, and

compared at a spatial scale of 3 × 3 MODIS pixels. To do this, median
phenophase dates in 3 × 3 MODIS pixel windows were calculated from
both MS-LSP and MCD12Q2 data. The comparison was performed
twice: Once for land cover types with natural vegetation only, and once
for all vegetated pixels. Land cover was determined using the 30 m land
cover classification for North America produced by the North American
Land Change Monitoring System (NALCMS) for the year 2010 (http://
www.cec.org/tools-and-resources/map-files/land-cover-2010-landsat-
30m). Natural vegetation was defined as all forest, shrub, grassland,
and lichen/moss classes (classes 1–13 in the NALCMS classification
scheme). For the sake of this comparison, QA scores were used to ex-
clude pixels flagged as having low quality in the MS-LSP product
(Supplementary materials for details on QA). MODIS pixels with < 25%
coverage of MS-LSP pixels (following application of landcover and QA
rules) were excluded from the analysis, along with MODIS pixels with
QA scores of “fair” or “poor”.

4. Results

4.1. Sample results from the MS-LSP data product

Continental and regional maps of key metrics included in the MS-
LSP product reveal impressive fidelity and spatial detail in both large-
scale and landscape-scale phenology. Continental patterns in the timing
of spring greenup and fall greendown (Fig. 3a, b) show strong geo-
graphic variation related to climate forcing and land use. In springtime,
a strong (but heterogeneous) latitudinal gradient in the timing of
greenup is clearly evident, superimposed on regional patterns related to
land use (e.g., croplands) and moisture limitations (e.g., mid-to-late
summer greenup in Northern Mexico and the Southwestern US arising
from Monsoon precipitation). Relative to greenup, geographic variation
in the timing of greendown shows weaker latitudinal gradients and less
pronounced signatures from large-scale agriculture. Senescence in
water limited ecosystems of western North America is clearly evident in
California, east of the Rocky Mountains, and in the Southwestern US.

Continental-scale patterns in growing season length and EVI2 am-
plitude reflect geographic patterns in vegetation productivity, season-
ality, and land use across the continent (Fig. 3c, d). For example, large
seasonal amplitude in EVI2 associated with deciduous forests in eastern
North America are clearly evident. Similarly, agricultural regions
throughout the continent also show large amplitudes in growing season
EVI2 (e.g., the Mississippi Valley, the corn and wheat belts, central
valley of California., etc.). In contrast, and as expected, EVI2 amplitude
is lowest in boreal and arctic regions and in arid and semi-arid areas of
Mexico and the western US, although localized patches of high EVI2
amplitude associated with irrigated agriculture are clearly evident in
these latter regions. Growing season length shows geographic patterns
similar to those observed in the timing of greenup, with a strong lati-
tudinal gradient and local patterns associated with land use (croplands)
and moisture availability in semi-arid regions.

Comparison of MS-LSP results against corresponding results from
the MCD12Q2 product at regional scale (Fig. 4) reveals, in stark detail,
fine scale patterns in phenology captured by the 30 m spatial resolution
of HLS that are not captured by MODIS. Fig. 4a illustrates variability in
greenup associated with land use patterns and water availability in a
semi-arid region of central California centered over the Salinas Valley.
A strong seasonal cycle that peaks in the summer and is diagnostic of
irrigated agriculture is clearly evident in the center of the panel. Sur-
rounding grasslands and oak savannas, on the other hand, show
greenup occurring during late fall and early winter driven by pre-
cipitation. Because natural vegetation in this region is either water-
limited (e.g., on south facing slopes) or dominated by evergreen forests
(e.g., higher elevation areas and north facing slopes), many pixels do
not have detectable vegetation dynamics. However, where present, the
30 m resolution of HLS allows fine scale patterns in vegetation phe-
nology to be captured in a way that was previously not feasible.
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Field-to-field variability in crop phenology is also well captured by
the MS-LSP algorithm, which allows crop phenology and greenness to
be assessed across and within individual fields (Fig. 4b). Other land use
patterns are also well represented, including earlier vegetation greenup
in the built-up area located in the bottom of Fig. 4b, as well distinct
patterns of vegetation phenology along roads and streams. Finally,
Fig. 4c reveals elevation gradients in deciduous forest phenology in
Great Smoky Mountain National Park on the border of Tennessee and

North Carolina. Delayed leaf emergence in higher elevation forests is
evident in the bottom right corner of the panel, and fine-scale variation
in greenup is well-captured in lower elevation areas (e.g., lower left
quadrant). In addition, land use patterns are clearly identifiable outside
the park, with croplands greening up earlier than adjacent natural ve-
getation (upper left quadrant). Comparison of MS-LSP results against
those from the MCD12Q2 product for all three cases (5a, b, c) clearly
illustrates the amount of fine-scale variation included in the MS-LSP

Fig. 3. Continental maps of (a) 50% greenup DOY, (b) 50% greendown DOY, (c) growing season length, calculated as the number of days between 50% greenup DOY
and 50% greendown DOY, and (d) EVI2 amplitude derived from HLS data for 2018. If no cycles were recorded, then EVI2 amplitude represents the amplitude of
splined EVI2 values for the calendar year. Zoom-ins for a, b, and c in panel A are shown in Fig. 4.
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results that is not resolved in the MCD12Q2 data set.
To illustrate the character and quality of vegetation index time

series provided by HLS, Fig. 5 shows EVI2 time series for the locations

labeled a, b, c and d in the lower panel of Fig. 4a. Fig. 5a shows EVI2
time series for a pixel centered over an area dominated by woodlands
where the overstory oak species are winter deciduous. The phenology is

Fig. 4. Maps of 50% greenup DOY for MODIS C6 and MS-LSP for three locations highlighted in Fig. 3a. (a) Salinas Valley in California; (b) agricultural fields in North
Dakota; (c) Great Smoky Mountains on the border of Tennessee and North Carolina. EVI2 time-series for points a, b, c, and d in the Salinas Valley are shown in Fig. 5.

Fig. 5. EVI2 time-series from 2018 in and around Salinas Valley, California for points labeled a, b, c, and d in Fig. 4a, showing a range of vegetation dynamics, along
with 50% greenup and greendown dates labeled with vertical dashed lines. Note that no phenology was detected for panel (c).
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Fig. 6. Transect of DOY corresponding to 50% greenup (a) and 50% greendown (b) dates for 2018 extending from the southeastern to northeastern US. Solid red line
indicates the median date from HLS, while shaded area represents the 25th to 75th percentile of observations within a 2.5 km radius. Blue line shows the elevation.
Panels (c) and (d) show 50% greenup and 50% greendown, respectively, for a subsection of the transect from 34.5° to 36.5° N. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Boxplots of DOYs corresponding to (a) 15%
and (b) 50% greenup for soybeans, corn, and winter
wheat in Kansas from September 2017 to September
2018. The red vertical lines indicate the timing of
50% crop emergence across the state according to
USDA crop statistics for the 2018 growing season
(same vertical lines in each panel). As the 2018
winter wheat crop is planted in the fall of 2017, we
separated winter wheat cycles based on if the 15%
greenup date occurred in 2017 or 2018. Interestingly,
many of the winter wheat pixels that reached 15%
greenup in 2017 did not reach 50% greenup until the
following spring, resulting in a wide distribution of
50% greenup dates for winter wheat in panel b. For
each group, 10,000 random pixels were sampled
across the state, stratified by the 2018 CDL. (For in-
terpretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article.)
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subtle, but clearly captures leaf emergence by overstory trees in spring,
followed by senescence and leaf drop in late fall. Fig. 5b, on the other
hand, presents EVI2 time series over an irrigated cropland, with pro-
nounced phenology that peaks in late summer. Fig. 5c shows EVI2 time
series for an open canopy evergreen shrubland that does not exhibit
detectable phenology, and Fig. 5d shows time series for a grassland
pixel that shows clear, but moderate, phenology with a peak in late
winter caused by wintertime precipitation. In addition to illustrating
and demonstrating the ability of HLS time series to identify a range of
different phenological dynamics, the quality and density of EVI2 time
series in each case is impressive.

Fig. 6a shows 50% vegetation greenup dates for a transect extending
from 33° to 47° N for pixels classified as natural vegetation by the
NALCMS 30-m landcover map of North America. The DOY values along
this transect exhibit substantial local variability arising from topo-
graphy superimposed on a strong latitudinal gradient in greenup dates
that range from ~DOY 100 in the south to ~DOY 150 in the north. To
illustrate the magnitude of local covariation between the timing of
greenup and topography, Fig. 6c shows the correspondence between
elevation and greenup dates for a subsection of the transect in Fig. 6a
located between 34.5° and 36.5° N in which topographic variation is
substantial. Greendown dates, on the other hand, show much weaker
latitudinal gradients and topographic variation relative to those ob-
served for greenup (Fig. 6b, d); the total gradient in greendown over the
transect is only about 20 days (i.e., less than half the gradient observed
in greenup dates). The correspondence between elevation and green-
down dates was also weak (notably so between 34.5° and 36.5° lati-
tude), suggesting that other factors (e.g., photoperiod) control the
timing of greendown, whereas in spring, temperature dominates the
timing of greenup.

A particularly compelling example of the MS-LSP results is pre-
sented in Fig. 7, which shows the distribution of 15% (Fig. 7a) and 50%
(Fig. 7b) greenup dates for soybean, corn, and winter wheat across
Kansas based on the USDA's 2018 Cropland Data Layer (USDA-NASS,
2018). To account for the phenological cycle of winter wheat, all re-
corded vegetation cycles that occurred between September 2017 and
September 2018 are included. The red vertical lines show the date on
which 50% of the crop had emerged according to the USDA's state level
Crop Progress and Conditions report for the 2018 growing season,
which indicated that 50% of the winter wheat crop had emerged by Oct
25, 2017, while 50% of corn and soybeans had emerged by May 18 and
May 31, 2018, respectively. Two peaks are identified for winter wheat
(one in mid-to-late fall, the second in early spring) that capture the life
cycle of this crop, with the first peak closely corresponding to the
timing of emergence given by the USDA. For corn and soybeans, the
timing of 15% greenup amplitude captures differences in planting dates
for these two crops that also correspond closely to USDA statistics for
50% crop emergence (Fig. 7a). By the time fields with corn and soy
crops reach 50% of their greenup amplitude, the lag in soybean phe-
nology relative to corn is more evident (Fig. 7b).

4.2. Comparison of MS-LSP results with results from MODIS and
PhenoCam

The relationship between 50% greenup dates derived from HLS and
those derived from PhenoCams was strongest for deciduous broadleaf
(R2 = 0.90, RMSE = 6.3 days) and grassland (R2 = 0.82,
RMSE = 12.1 days) sites, while the relationship was weakest for
evergreen needleleaf (R2 = 0.15, RMSE = 21.9 days) and agricultural
sites (R2 = 0.07, RMSE = 41.6 days, Fig. 8). The statistical relationship
between MS-LSP results and PhenoCam for agricultural sites was ne-
gatively impacted by a number of large outliers, but a large proportion
of sites show close correspondence. Visual inspection of PhenoCam
imagery at the outlier agriculture sites reveal early emergence of weeds
in most of these cases, which are not screened in the PhenoCam data
and that explain much of this disagreement (examples in Fig. S4). At

evergreen sites, 63 of 96 site-years had an EVI2 amplitude > 0.1;
however many sites had gaps in EVI2 time-series caused by snow.
Therefore, only 25 site-years during the greenup period and 36 during
the greendown period were classified as moderate to high quality (see
Section 1.2 in Supplementary materials for details on QA). While the
number of site-years was small for wetlands, a moderately strong re-
lationship was found for this land cover type (R2 = 0.41,
RMSE = 16.4 days).

Relative to greenup, relationships between 50% greendown dates
from MS-LSP results and PhenoCams were weaker for both deciduous
broadleaf (R2 = 0.53, RMSE = 18.5 days) and grassland sites
(R2 = 0.70, RMSE = 31.3 days) (Fig. 9). Agreement was stronger at
evergreen needleleaf and agricultural sites compared to 50% greenup,
but RMSEs were slightly worse than those observed for 50% greenup.
Wetlands displayed weaker relationships for 50% greendown dates
(R2 = 0.32, RMSE = 31.9 days) than for 50% greenup dates, but this
was primarily caused by single large outlier.

Fig. 10 shows the correspondence between MS-LSP results and the
MODIS Collection 6 Land Cover Dynamics product (MCD12Q2) for 50%
greenup and 50% greendown dates based on a random sample of
100,000 MODIS pixels selected across the eastern United States and
Canada for both natural vegetation (Fig. 10a, c) and for all landcover
types (Fig. 10b, d). For natural vegetation, the correspondence was
strong for both greenup (r = 0.98) and greendown (r = 0.94), with a
smaller RMSE for greenup (RMSE = 5.5 days) than greendown
(RMSE = 10.3). For greenup, results from the MS-LSP showed a small
positive bias of 4.2 days relative to MODIS (i.e., MS-LSP greenup later
than in MCD12Q2), where the bias appears to increase for later greenup
dates (> DOY 150). Bias was smaller for greendown (−1.8 days), for
MS-LSP results relative to MODIS. When pixels from all landcover types
were included in the comparison (panels b and d), correspondence was
slightly weaker for both greenup (r = 0.93) and greendown (r = 0.88).
Relative to pixels that only included natural vegetation, the RMSE for
greenup doubled (RMSE = 10.0), and was accompanied by a larger bias
for later greenup dates (> DOY 150). For greendown, overall agree-
ment was similar between natural vegetation (panel c) and all land-
cover types (panel d); however, more outliers were present when all
landcover types were included.

5. Discussion

5.1. Advantages of moderate versus coarse resolution LSP data

The sample results we present above clearly demonstrate the ad-
vantages of moderate spatial resolution (30 m) land surface phenology
data relative to conventional products generated from coarse resolution
instruments such as MODIS or AVHRR. In particular, the key novelty
and benefit of the MS-LSP data product is its ability to characterize
landscape-scale properties in land surface phenology. Because it was
previously only possible to operationally map and monitor LSP over
large areas at coarse spatial resolution, the vast majority of LSP studies
have focused on characterizing the nature and magnitude of changes in
large scale phenology in response to climate variability and change
(Piao et al., 2019). The MS-LSP product will be available at continental
scale and so will continue to support these types of studies. Indeed, by
providing a more highly resolved characterization of landscape-scale
variation in phenology, the MS-LSP product provides a rich basis for
new investigations in this area. Equally important, however, is the
ability of the MS-LSP product to resolve seasonal dynamics in vegeta-
tion at much finer spatial resolution than was previously possible,
thereby supporting new opportunities to exploit LSP measurements for
a broad range of new applications (e.g., Elmore et al., 2012).

The sample results and analyses we present in this paper are not
designed to be comprehensive, but rather, to illustrate the diversity of
new applications that the moderate spatial resolution LSP products
have the potential to support. Examples that we illustrate include

D.K. Bolton, et al. Remote Sensing of Environment 240 (2020) 111685

10



Fig. 8. Comparison of 50% greenup dates between MS-LSP and PhenoCams for five land cover or land use types. Only high and moderate quality MS-LSP retrievals
are included.

Fig. 9. Comparison of 50% greendown dates between MS-LSP and PhenoCams for five land cover or land use types. Only high and moderate quality MS-LSP
retrievals are included.
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identification and characterization of microclimatic controls on phe-
nology induced by topography, the ability to capture sub-field level
phenology in crops, and characterization of phenological differences
across different land cover types, plant functional types, and land uses.
In arid and semi-arid systems that are especially vulnerable to climate
change and where vegetation cover is sparse and patchy, the MS-LSP
product captures landscape-scale variation in vegetation phenology
arising from local variation soil properties, topography, and hydrology
that is not detectable in coarse resolution LSP products. Similarly, our
results showing that elevation and latitude exert stronger control on
greenup than greendown illustrates demonstrates the ecological sig-
nificance of the MS-LSP product, as temperature is a strong control on
spring greenup (Lechowicz, 1984; Friedl et al., 2014), while the timing
of greendown is controlled by a range of confounding factors, such as
temperature, photoperiod, precipitation, and drought (Xie et al., 2015;
Gill et al., 2015). Hence, the availability of MS-LSP data products at 30-
meter spatial resolution provides valuable new information that sup-
ports both basic science focused on the impact of climate change and
variability on ecosystem properties and processes, as well as more ap-
plied efforts focussed on ecosystem management and planning (e.g.,
Morisette et al., 2009).

5.2. Assessment of MS-LSP algorithm results

Assessment of LSP data products continues to present substantial
challenges. Because land surface phenology metrics are estimated from
time series of vegetation indices measured via satellite remote sensing,
collection of directly comparable ground measurements is difficult. In
the past, most studies have used measurements collected by observers
on the ground, PhenoCams, or ecosystem flux data collected from eddy
covariance towers (e.g., Melaas et al., 2016), none of which provide
directly comparable ground-based analogues to satellite-based LSP
measurements. Eklundh et al. (2011) and Balzarolo et al. (2011) de-
scribe measurements collected in Europe that use multispectral sensors
mounted on towers that provide the most direct comparison to EVI2
times series from HLS data. Unfortunately, however, comparable

measurements are not available in North America for assessment of MS-
LSP results.

For this work, we used two primary sources of assessment data:
phenometrics from the PhenoCam network and LSP metrics from
MODIS. Comparison of MS-LSP results against corresponding metrics
from PhenoCam showed excellent agreement in locations with plant
functional types that are strongly deciduous (e.g., deciduous forests,
grasslands) and where land cover tends to be uniform below the 30-m
spatial resolution of the MS-LSP product. In more heterogeneous or less
strongly deciduous systems (e.g., evergreen needleleaf forests) agree-
ment is lower. Overall agreement between PhenoCam and MS-LSP re-
sults was weaker for fall phenometrics than for spring phenometrics,
but was still substantial.

These results are broadly consistent with previous studies based on
both Landsat (e.g., Melaas et al., 2016) and MODIS (e.g., Moon et al.,
2019; Soudani et al., 2008). More generally, however, the assessment
results we present here reinforce well-known challenges surrounding
comparison of phenometrics estimated from satellite remote sensing
against corresponding metrics from PhenoCams. Specifically, dis-
agreement in phenometrics estimated from PhenoCams versus MS-LSP
results are introduced by differences in the canopy-scale field of view of
PhenoCams versus the landscape-scale resolution of HLS pixels, and
differences in the nature of and character of PhenoCam GCC measure-
ments versus HLS EVI2 time series. PhenoCam GCC are extracted from
regions of interest in RGB images acquired at oblique view angles that
capture individual tree canopies (typically ~5–10 m across), while MS-
LSP results are based on 30 m BRDF-corrected red and near infrared
surface reflectance measurements acquired from near-nadir view an-
gles. Hence, it's unsurprising that phenometrics estimated from each
source do not perfectly agree. In spring, changes in surface properties
are dominated by changes in leaf area (Keenan et al., 2014a). Hence,
phenometrics extracted from GCC and EVI2 time series tend to show
good agreement at relatively homogenous sites in strongly deciduous
systems. In fall, on the other hand, changes in surface reflectance are
largely driven by changes in leaf pigments, which tend to be more
gradual and variable within landscapes relative to leaf development in

Fig. 10. Comparison between MS-LSP and MODIS 50% greenup and greendown dates for 2018 across the eastern United States based on MS-LSP pixels corre-
sponding to (a, c) natural vegetation classes and (b, d) all land cover types in MODIS pixels. The comparison is made at the scale of 3 × 3 MODIS pixels.
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spring. Hence, it's not surprising that correlation between GCC and EVI2
is lower in fall than in spring. Further, because of their oblique view
angles, PhenoCams tend to be more sensitive to changes in sparse ve-
getation cover (e.g., emergent weeds) than near-nadir viewing sa-
tellites, which contributes to differences observed between PhenoCam
and satellite-derived greenup dates across agricultural sites (Figs. 8 and
9, S4). Despite these issues, correspondence between phenometrics
from PhenoCams and MS-LSP was generally high and the results in
Figs. 8 and 9 provide support regarding the overall quality of the MS-
LSP phenometrics.

Comparison of upscaled MS-LSP phenometrics against corre-
sponding data from the collection 6 MODIS Land Cover Dynamics
product showed strong agreement (r > 0.87) in both spring and fall,
but also revealed modest systematic bias in MCD12Q2 phenometrics
versus results from the MS-LSP algorithm (Fig. 10). Overall, this result
is encouraging, and, unlike assessment against PhenoCam results, this
analysis compares phenometrics that are based on the radiometric
quantities that are directly comparable. That said, it's important to note
that the comparison presented in Fig. 10 is really designed as a sanity
check on MS-LSP results and cannot be considered a rigorous validation
of MS-LSP results vis-à-vis ecological processes on the ground. Indeed,
this exercise may in fact be most useful as a basis for assessing results
from MODIS. Specifically, the small (but meaningful) bias of results
from MODIS versus the MS-LSP suggests that MCD12Q2 data may have
a modest early bias that increases with latitude. The origin of this
pattern is unclear and is the subject of ongoing investigations, but the
overall result suggests that scaling processes imbedded in coarse spatial
resolution imagery used to estimate LSP metrics may be introducing
modest bias to coarse spatial resolution LSP products (Zhang et al.,
2017). Further investigations of differences and biases between MODIS
and MS-LSP phenology are required to inform studies designed to ex-
ploit the spatial detail provided by MS-LSP products in combination
with the temporal depth of the MODIS record.

5.3. Outstanding issues and considerations

The results presented in this paper provide substantial confidence
regarding the quality of MS-LSP results. At the same time, our analysis
also reveals a number of issues that require attention in future algo-
rithm refinements or that users of the product should consider in their
applications. Below we discuss three of the most important of these
issues.

First, monitoring phenology in evergreen ecosystems using optical
remote sensing remains a challenge, both technically and scientifically.
Out of the 96 site-years of PhenoCam data at evergreen forest sites
included in this analysis, 33 site-years did not have HLS EVI2 ampli-
tudes greater than the prescribed minimum required by the MS-LSP
algorithm to identify a phenological cycle (∆EVI2 ≥ 0.1). Further, for
evergreen pixels where phenological cycles were detected, interpreta-
tion of retrieved phenometrics is ambiguous. In open forests, observed
temporal changes may reflect dynamics in understory phenology, while
in more closed forests, temporal dynamics may reflect the presence of
deciduous broadleaf trees in the overstory. Whatever the case, it's im-
portant to understand that retrieved phenometrics over regions nom-
inally identified as evergreen are almost certainly capturing changes in
sub-pixel deciduous vegetation. There may be cases where observed
HLS EVI2 phenology is also capturing leaf flushing and turnover in
needleleaf trees, but more research is needed to better understand if
and how needleleaf phenology is captured in time series optical ima-
gery such as HLS. Relative to similar challenges associated with inter-
preting results from coarse spatial resolution imagery, the 30 m re-
solution of HLS provides a stronger basis for addressing these questions.
Overall, however, the question of what seasonal changes in EVI2 are
actually capturing in evergreen systems remains difficult to precisely
define in ecological terms.

Second, it's important to understand that numerous processes

unrelated to leaf phenology can influence seasonal changes in remotely
sensed vegetation indices such as the EVI2. For example, flowering
events can alter the spectral properties of vegetation in ways that are
unrelated to green leaf phenology, leading to (for e.g.,) spurious de-
tection of vegetation greendown. Similarly, coastal marshes and man-
grove systems that experience aperiodic flooding events can exhibit
changes in vegetation indices caused by hydrology that are unrelated to
leaf phenology, and disturbance events (e.g., fire, insects) also com-
plicate interpretation of phenometrics retrieved from HLS time series.
Used appropriately and in context, the MS-LSP data set may have
substantial utility in studies focused on these processes. However, it's
important to acknowledge that because the MS-LSP algorithm uses a
spectral index specifically designed to monitor changes in leaf area,
most temporal dynamics captured by the MS-LSP product reflect dy-
namics in green leaf phenology. Whatever the use-case, it's important
that users of the product examine and interpret MS-LSP results in the
context of their specific application.

Finally, despite the ~3 day mid-latitude revisit time provided by
HLS imagery, missing data caused by persistent cloud cover continues
to present challenges for monitoring land surface phenology in areas.
To address this challenge, we implemented a gap filling method that
leverages observations from other years (Section 3.3.2). However, be-
cause only three complete growing seasons were available with data
from both Landsat 8 and Sentinel 2 (2016–2018), the time-series was
too short to effectively fill gaps in many cases. In addition, while MS-
LSP phenometrics are included in the product for 2016–2018, ob-
servation density over North America from Sentinel 2 was lower in both
2016 and 2017 relative to 2018, when the data collection was increased
to provide all available imagery. Therefore, applications using data
from 2016 and 2017 should utilize these data should do so under-
standing this context. To support this, we strongly recommend that
users examine the QA layers provided with the product, and depending
on their application screen areas flagged as having consistently high
cloud cover from their analyses.

6. Conclusions and future work

LSP algorithms and products have been developed using imagery
from coarse spatial resolution instruments for over three decades (e.g.,
Justice et al., 1986). In recent years, algorithms have been developed
using moderate spatial resolution imagery from Landsat (Fisher et al.,
2006) that demonstrate the value of LSP information at spatial re-
solutions that resolve landscape-scale properties and processes (Elmore
et al., 2016). For most locations, unfortunately, the temporal frequency
afforded by Landsat is not sufficient for operational monitoring of LSP.
However, the launch of Sentinel-2A and -2B has largely removed this
constraint. Exploiting this new capability, this paper presents a new
land surface phenology algorithm and data product based on 30-meter
spatial resolution imagery available at sub-weekly temporal frequency
from NASA's Harmonized Landsat Sentinel (HLS)product.

The algorithm we describe is being used to create a continental-
scale data land surface phenology data product at 30-meter spatial re-
solution for North America that will be available to the community via
NASA's Land Processes Distributed Active Archive Center (LP DAAC).
Moving forward, we anticipate continued improvement and refinement
of the algorithm. In particular, version 1.5 of the HLS data set, which
will address issues related to cloud screening and BRDF correction
identified in HLS version 1.4, will provide an improved basis for the
MS-LSP data product. In addition, while the MS-LSP product will in-
clude results from 2016 to present, Sentinel-2 acquisitions over North
America were less frequent prior to February 2018, when all imagery
from Sentinel-2A and -2B started being collected over North America.
Hence, by definition, data included in the MS-LSP product prior to
2018, have lower quality and should be used with caution. As the HLS
time series grows, this will become less of an issue, and because the MS-
LSP algorithm exploits historical data to support gap filling, a longer
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time series will support overall improved data quality in the product.
Finally, it's important to note that while this paper focuses on tra-

ditional LSP metrics that are included the MS-LSP product, the algo-
rithm generates two additional data sets that we do not discuss here,
but which are designed to complement the phenometric data sets in-
cluded in the product. Specifically, once fully implemented the MS-LSP
product will include: (1) synthetic imagery providing surface re-
flectance values in each HLS band for each of the seven phenophase
transition dates included in the product; and (2) long term means,
weekly anomalies in EVI2, and cumulative anomalies in EVI2 at each
pixel from HLS. The former data set is designed to provide a low-di-
mensional version of the HLS product that is free from clouds, but
which retains the majority of information related to spectral-temporal
variation in land surface properties at each pixel while dramatically
reducing data volumes and temporal correlation in the data. The latter
data set will be updated weekly and will provide near real-time in-
formation related to growing season anomalies in vegetation dynamics.
Space does not allow a detailed treatment of these additional products
and more complete descriptions and assessments will be provided in
subsequent papers. Together, however, the goal of the complete set of
science data sets included in the MS-LSP data product is to provide the
user community with a rich new resource for monitoring, mapping, and
studying landscape scale processes related to land cover, land use, and
ecosystem function and change.
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