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A B S T R A C T

Vegetation phenology contributes to, and is diagnostic of, seasonal variation in ecosystem processes and exerts
important controls on land-atmosphere exchanges of carbon, water, and energy. Satellite remote sensing pro-
vides a valuable source of data for monitoring the phenology of terrestrial ecosystems and has been widely used
to map geographic and interannual variation in land surface phenology (LSP) over large areas. The Visible
Infrared Imaging Radiometer Suite (VIIRS) land surface phenology product provides global data sets char-
acterizing the annual LSP of terrestrial ecosystems, and is designed to support long-term continuity of LSP
measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS). We used data from VIIRS and
MODIS to evaluate the agreement and characterize the similarities and differences between LSP data from each
instrument. Specifically, we compare data from the Collection 6 MODIS Land Cover Dynamics (LCD) product
with data from the newly developed VIIRS LSP product over the most common land cover types in North
America. To do this, we assessed the overall agreement between time series of vegetation indices from VIIRS and
MODIS, evaluated the correspondence between retrieved phenometrics from each instrument, and analyzed
sources of differences between phenometrics from the each product. As part of this analysis, we also compared
phenometrics from MODIS and VIIRS with phenometrics derived from Landsat Analysis Ready Data and
PhenoCam time series. Results show that two-band enhanced vegetation index (EVI2) values from VIIRS and
MODIS are similar (R2 > 0.81; root mean square deviation < 0.062), but that VIIRS EVI2 time series show
more high frequency variation than time series from MODIS. Further, even though the VIIRS and MODIS pro-
ducts are generated using different instruments and algorithms, phenometrics from each product are similar and
show only minor differences within and across land cover types. Systematic differences between phenometrics
from the two products were generally less than one week (absolute bias 4.8 ± 3.0 days), and RMSDs were less
than two weeks for most phenometrics across different land cover classes (10.7 ± 4.3 days). Comparison of
VIIRS and MODIS LSP data with corresponding metrics estimated from Landsat and PhenoCam data consistently
showed high agreement among the data sets. Overall, results from this analysis indicate that the VIIRS LSP
product provides excellent continuity with the MODIS record. However, studies attempting to create high-fi-
delity long-term LSP time series by merging these products should exploit the overlap period of MODIS and
VIIRS to estimate land cover-specific corrections for modest systematic bias in the MODIS LCD product relative
to the VIIRS LSP product.
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1. Introduction

Phenology is an important functional attribute of terrestrial eco-
systems and is widely used as a diagnostic indicator of climate change
impacts on ecosystem properties and processes (Richardson et al.,
2013). In particular, green leaf phenology regulates a number of im-
portant surface biophysical properties and processes including land
surface albedo (Moore et al., 1996; Ollinger et al., 2008), surface energy
budgets (Dorman and Sellers, 1989; Ryu et al., 2008), the partitioning
of surface radiation between latent and sensible heat fluxes (Hogg et al.,
2000; Schwartz, 1992), and aerodynamic and surface resistances
(Blanken and Black, 2004; Zhao et al., 2016). Therefore, accurate re-
presentation of spatiotemporal dynamics in vegetation phenology is
important for a variety of topics in both basic and applied ecological
sciences ranging from monitoring the impact of climate change on
species and communities, to modeling seasonal variation in ecosystem
processes (Chen et al., 2016; Menzel et al., 2006; Peñuelas et al., 2009;
Richardson et al., 2010).

Prior to the era of Earth observation satellites, observations of ve-
getation phenology were collected via field surveys, which recorded the
timing of discrete phenological events for individual species, such as
flowering and leaf emergence in spring and leaf coloration and leaf
drop in fall (e.g., Caprio, 1957). These data continue to be collected and
have substantial value. However, because field surveys generally focus
on a limited set of plants and species at the local scale, generalizing and
upscaling results from field data (e.g., to the scale of entire biomes) is
challenging. In the last several decades, satellite remote sensing has
been shown to provide a powerful complement to field observations
that can be used to monitor and characterize the nature, magnitude,
and timing of changes in land surface phenology at regional to global
scales. Because of its 30+ year record of measurements, the Advanced
Very High Resolution Radiometer (AVHRR) has been widely used for
this purpose (Buitenwerf et al., 2015; Dardel et al., 2014; de Beurs and
Henebry, 2005; Fang et al., 2001; Fensholt and Rasmussen, 2011; Guay
et al., 2014). However, the coarse spatial resolution of AVHRR data, in
combination with uncertainty in radiometric calibration, low quality
snow and cloud detection, broad spectral channels, and errors in geo-
location introduce considerable uncertainty to time series of vegetation
indices and phenological metrics derived from this instrument
(Gutman, 1999; Ju and Masek, 2016; Nagol et al., 2009; Sulla-Menashe
et al., 2018; White et al., 2009).

The Moderate Resolution Imaging Spectroradiometer (MODIS) on-
board NASA's Terra (since 1999) and Aqua (since 2002) platforms have
provided high quality global imagery at 250, 500, and 1 km spatial
resolution that is well-suited for retrieving land surface phenology
(Ganguly et al., 2010; Zhang et al., 2003). In particular, the MODIS
Land Cover Dynamics (LCD) product (MCD12Q2) provides annual
measurements of global land surface phenology at 500 m spatial re-
solution and has been successfully used to explore a variety of climate-
ecosystem relationships at large spatial scales (Friedl et al., 2014;
Hufkens et al., 2012; Keenan et al., 2014; Zhang et al., 2004). However,
the MODIS sensors are well-beyond their original design life and are
expected to cease operation in the coming years. To provide continuity
with both MODIS and AVHRR, the Visible Infrared Imaging Radiometer
Suite (VIIRS) was launched in October 2011 as a part of the instrument
suite onboard the Suomi National Polar-Orbiting Partnership (NPP).
With the launch of the first Joint Polar Satellite System (JPSS-1) in
November of 2017, VIIRS provides the operational basis for long-term
continuity of the MODIS land product suite (Justice et al., 2013). In
support of this vision, a new operational land surface phenology (LSP)
product has been developed based on VIIRS data (Zhang et al., 2018b)
and is designed to provide long-term continuity with the MODIS LCD
product.

Because the VIIRS LSP and MODIS LCD products are derived from
different instruments and are based on different algorithms, differences

in the data products are unavoidable. To evaluate the similarities and
differences between these two data products and, more specifically, to
address the question of whether the VIIRS product provides continuity
with the MODIS product for long-term studies of land surface phe-
nology, here we present a systematic comparison of the Collection 6
MODIS LCD product (Gray et al., 2019) and the newly developed VIIRS
LSP product (Zhang et al., 2018b). Several studies have previously
examined correspondence between satellite-based LSP metrics and both
in-situ measurements of phenology (Ganguly et al., 2010; Liang et al.,
2011; Zhang et al., 2006) and other proxies of vegetation phenology
such as time series of gross primary productivity derived from flux
networks (Melaas et al., 2013; Park et al., 2016; Sakamoto et al., 2010).
Preliminary assessment of the overall accuracy of the VIIRS LSP product
is presented elsewhere (Zhang et al., 2017b, 2018a). Here we focus on a
product-to-product comparison, and specifically address the question of
whether the VIIRS and MODIS products can be used jointly for studies
that require time series of land surface phenology measurements. To do
this, we systematically compared the operational VIIRS LSP and MODIS
LCD products across the Contiguous United States (CONUS) and Eastern
Canada, focusing on three sub-regions that span a wide range of climate
and land cover types in the Northeastern United States, Eastern Canada,
the Central U.S, and the Southwestern U.S. Our analysis includes three
elements. First, we assessed the agreement between phenophase tran-
sition metrics (hereafter, phenometrics; e.g., the timing of greenness
increase onset) from each product. Second, we conducted a compre-
hensive evaluation to attribute differences between the two products to
(1) differences in MODIS versus VIIRS input data and their associated
quality, and (2) differences in the algorithm used to generate each
product. Third, we conducted a multi-scale comparison of the MODIS
LCD and VIIRS LSP products against phenometrics derived from
Landsat (Melaas et al., 2016) and from the PhenoCam Dataset V1.0
(Richardson et al., 2018a).

2. Data and methods

2.1. Overview of land surface phenology product algorithms

To provide context for the analyses and results we describe below,
we first provide an overview of the MODIS LCD and VIIRS LSP pro-
ducts, focusing on their primary similarities and differences.
Specifically, there are three main steps in each land surface phenology
algorithm: (1) preprocessing of vegetation index time series to remove
spurious values, (2) time series smoothing or model fitting to create
continuous time series without gaps, and (3) identification of pheno-
metrics (Fig. 1). Space does not allow for a complete description of each
algorithm. For more detailed information, please see Zhang et al.
(2018b) and Gray et al. (2019).

Both products use daily nadir bidirectional reflectance distribution
function (BRDF)-adjusted reflectance (NBAR) products (VNP43IA4 for
VIIRS and MCD43A4 for MODIS) to compute time series of the two-
band enhanced vegetation index (EVI2; Jiang et al., 2008) at each pixel,
which serves as the primary input to both algorithms (Fig. 1a). Note
that the MODIS NBAR product is produced using MODIS observations
from both Terra and Aqua; whereas, the VIIRS NBAR product is gen-
erated using VIIRS observations only from Suomi NPP. Spurious EVI2
values caused by snow-contamination are replaced by “background
values”, which represent the minimum snow-free EVI2 at each pixel
(Zhang et al., 2006). To reduce data volumes, daily NBAR data are
sampled every 3 days in the VIIRS LSP algorithm, while in the MODIS
LCD algorithm daily NBAR data are sampled every 5 days. Both pro-
ducts use snow flags included as part of the NBAR product (VNP43IA2
for VIIRS and MCD43A2 for MODIS) from each instrument to identify
snow-contaminated values. The VIIRS product also uses land surface
temperature as an additional constraint (Zhang et al., 2018b), while the
MODIS product uses the normalized-difference snow index (NDSI) to
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flag snow-contaminated pixels (Gray et al., 2019).
To create smooth and gap-filled data, the VIIRS LSP algorithm first

applies a Savitzky-Golay filter to EVI2 time series. A hybrid piecewise
logistic model (HPLM) is then fit to the smoothed time series at each
pixel (Fig. 1b). New in Collection 6, the MODIS LCD algorithm removes
outliers and generates smoothed EVI2 time series in a single step using
penalized cubic splines (Fig. 1c). For the VIIRS LSP, phenometrics are
identified using the rate of change in curvature of the fitted HPLM;
whereas, the MODIS LCD approach uses prescribed thresholds in the
amplitude of variation in EVI2 for each phenological cycle (Fig. 1d and
e, respectively). In the VIIRS LSP algorithm two local maxima in the
rate of change of curvature during the “green-up” phase are used to
identify phenometrics. Specifically, the day of year (DOY) corre-
sponding to each of these maxima identifies the timing of greenup and
maturity onset, and the date corresponding to the minimum rate of
change in the curvature corresponds to the DOY when EVI2 reaches
50% of its seasonal amplitude. For the MODIS product, the timing of
greenup onset, mid-greenup, and maturity onset are retrieved as the
DOY when the splined EVI2 time series first crosses 15%, 50%, and 90%
of its seasonal amplitude, respectively. In both products, corresponding
phenometrics during senescence, or “green-down” (i.e., senescence
onset, mid-senescence, and dormancy onset) are identified in a similar
manner.

2.2. Intercomparison of land surface phenology products

To compare the two products, we used a stratified random sample of
pixels located in three 10° by 10° tiles in North America that encompass
a wide range of climate and land cover types (tiles H12V04, H11V04,
and H08V05; Fig. 2). In each tile, we identified the three dominant
vegetated land cover types based on the Collection 6 MODIS Land Cover

Type product (MCD12Q1; Sulla-Menashe et al., 2019). Note, however,
that for tile H08V05 (centered over the arid southwestern United
States), pixels belonging to the Barren or Sparsely Vegetated class in the
MCD12Q1 product, which are defined as having < 10% vegetation
cover, were excluded from the evaluation. Previous work has shown
that discrepancies between phenometrics derived from VIIRS and
MODIS are often associated with the low quality of EVI2 time series
(Zhang et al., 2018b). Thus, we excluded pixels where differences in
phenometric values between the two products were unusually large
(viz., > 90 days). This step resulted in 0–4% of pixels from the original
sample being removed from each land cover type in each of the tiles for
each phenometric (Table A1). Finally, prior to performing our assess-
ment, we applied a 3 × 3 moving window median filter to each phe-
nometric in each product to account for the fact that the effective
spatial resolutions of NBAR data are > 500 m and are different for each
sensor (~565 m × 595 m and 833 m × 618 m in the VIIRS and MODIS
NBAR products, respectively; Campagnolo et al., 2016).

2.3. Attribution of differences related to sensors versus algorithms

To evaluate and attribute sources of differences between the two
products, we performed three sets of analyses. First, because differences
in EVI2 time series derived from MODIS versus VIIRS are an obvious
source of disagreement, we evaluated the overall agreement and quality
of model fits to VIIRS and MODIS NBAR EIV2 time series. To do this, we
used a randomly selected set of 10,000 pixels from each of the three
dominant land cover types in each of the three tiles included in our
analysis. To quantify the agreement between observations and fitted
time series, we calculated the growing season agreement index (AI) for
all pixels as defined by Zhang et al. (2018b):

Fig. 1. Schematic of the algorithms used to create the VIIRS LSP and MODIS LCD products. Panel (a) is a sample of VIIRS EVI2 time series for a single pixel. Panels (b)
and (d) illustrate the VIIRS algorithm, while panels (c) and (e) illustrate the MODIS algorithm.
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where n is the number of observations, P(i) is the modeled value for the
ith observation, O(i) is the EVI2 for the ith observation, and Ō is the
mean EVI2 across the time series at each pixel. The VIIRS and MODIS
products use 3-day and 5-day composites, respectively, to reduce data
volumes and noise in EVI2 time series. However, because the purpose of
this analysis is to compare the quality of input data for both products,
we applied the same criteria for both sources of EVI2 data. Specifically,
we used 3-day composited EVI2 values from both MODIS and VIIRS in
2013, selecting either the best quality EVI2 value or the maximum
value composite, if more than one high quality value was available in
each 3-day period.

Second, we assessed how differences in both input data and algo-
rithms introduce differences in phenometrics from each of the two
products. To account for differences in input data, we estimated phe-
nometrics from VIIRS and MODIS NBAR EVI2 time series using the
VIIRS LSP algorithm and compared the resulting phenometrics. Then,
to assess the contribution of using different algorithms, we applied both
VIIRS LSP and MODIS LCD algorithms to MODIS NBAR EVI2 time
series. Note that we used MODIS data for this analysis because MODIS
EVI2 time series were less noisy than corresponding time series from
VIIRS (see Results section), thereby minimizing differences caused by
noise in input data.

Third, to provide an assessment of how data-induced uncertainties
impact phenometrics, we performed a statistical simulation experiment
wherein EVI2 time series and noise were simulated and used to estimate
phenometrics. To do this, we first fit logistic models to EVI2 time series
and retained the model residuals. We then treated the modeled EVI2
time series as truth and the model residuals as instrument-induced er-
rors, generated simulated EVI2 time series using non-parametric boot-
strapping (Efron, 1979), and estimated phenometrics from the simu-
lated EVI2 time series. To do this, we used the same data set of 10,000

randomly selected pixels from each land cover type in each of the tiles
described above.

2.4. Comparison with results from the Landsat phenology algorithm

We used results from the Landsat Phenology Algorithm (LPA) de-
scribed by Melaas et al. (2013, 2016) to provide an independent source
of land surface phenology information that could be compared with
VIIRS LSP and MODIS LCD results. The LPA exploits the temporal
density of observations available in overlap regions between adjacent
Landsat scenes (hereafter, “sidelaps”), and provides estimates of the
DOY associated with the start and end of the growing season (SOS and
EOS, respectively) at 30 m spatial resolution that are equivalent to the
mid-greenup and mid-senescence dates from VIIRS and MODIS (Fig. 1).
Comparison of LPA results against local-scale in-situ measurements
indicate the LPA provides high quality estimates of SOS and EOS,
especially for SOS (Melaas et al., 2016).

For this analysis, we generated LPA results using USGS Landsat
Analysis Ready Data in 22 sidelaps distributed across the Central and
Northeastern U.S (Fig. 2) in 2013 and 2014. This data set includes
Landsat 8 imagery, which increases data density, and the LPA im-
plementation used here incorporates the topographic correction de-
scribed by Tan et al. (2013), which is important in regions where to-
pographically-induced variation in Landsat surface reflectance affects
LPA results (E. Melaas, pers. comm.). For each sidelap, corresponding
values for mid-greenup and mid-senescence dates from the VIIRS LSP
and MODIS LCD products were extracted, and data from all three
sources were up-scaled to 1500 m spatial resolution (i.e., 3 × 3500 m
pixel windows) using the mean of all available 30 m LPA retrievals and
the median of VIIRS LSP and MODIS LCD values in each 1500 m cell. To
minimize deviations caused by missing data in LPA retrievals (e.g.,
caused by clouds), we excluded all 1500 m cells where fewer than 100
LPA SOS or EOS values out of ~2500 pixels were available. To explore
how our results varied as a function of geographic variation in

Fig. 2. Map of the study area showing three VIIRS and MODIS tiles (H12V04, H11V04, and H08V05), 22 Landsat sidelap regions, and 34 PhenoCam sites used in the
analysis. The background image shows the IGBP land cover type across the study area from the Collection 6 MODIS Land Cover Type product in 2013.
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ecological conditions, we stratified our analysis based on the EPA level
II ecoregions (Omernik, 1987; Omernik and Griffith, 2014).

2.5. Comparison with phenometrics from the PhenoCam dataset V1.0

To provide a second source of independent assessment data, we
used phenometrics estimated using time series of PhenoCam imagery.
PhenoCam is a continental-scale network that uses near-surface ima-
gery from digital cameras to track vegetation phenology at high tem-
poral resolution (Richardson et al., 2018a). The PhenoCam Dataset
V1.0 (Richardson et al., 2018a) includes about 750 site-years of ob-
servations that characterize vegetation phenology in all major ecosys-
tems across North America. For this work, we used all PhenoCam site-
years for which corresponding VIIRS and MODIS phenometrics were
available, again focusing on the date of mid-greenup and mid-senes-
cence. More specifically, we used phenometrics derived from Green
Chromatic Coordinate (GCC; Sonnentag et al., 2012) time series corre-
sponding to the date when GCC values reach 50% of their seasonal
amplitude during the greenup and green-down periods for each site-
year. For this comparison, we only used data from the sites where the
vegetation type of the region of interest in PhenoCam imagery corre-
sponded to the MODIS land cover type surrounding the PhenoCam site.
Specifically, sites where > 5 pixels within 3 × 3500 m windows cen-
tered over the site had land cover labels that were different from the
PhenoCam vegetation type were excluded from the analysis. The re-
sulting data set included 34 sites and a total 109 phenometrics (53 and

56 site-years for SOS and EOS, respectively; Table A2). In addition, to
illustrate some of the challenges associated with comparison of results
from data streams with such different spatial resolutions, we also pre-
sent a comparison of GCC and EVI2 time series (and corresponding
phenometrics) at the Jasper Ridge PhenoCam site.

3. Results

3.1. Baseline comparison of the VIIRS LSP and MODIS LCD products

To evaluate the overall agreement between the VIIRS LSP and
MODIS LCD products, Fig. 3 shows maps of phenometrics derived from
the VIIRS LSP and MODIS LCD products in 2013 for each of the three
tiles included in our analysis. Table 1 presents statistics summarizing
the agreement between phenometrics derived from each product
(stratified by land cover type). Fig. 4 shows scatterplots illustrating
agreement between phenometrics for the two products. Fig. 5 presents
year-to-year agreement from 2013 to 2014 in the bias and RMSD be-
tween VIIRS LSP and MODIS LCD phenometrics. Overall, results in-
dicate that phenometrics were in close agreement across land cover
types, with phenometrics corresponding to the mid-point in the green-
up and green-down periods (mid-greenup and mid-senescence) showing
the strongest agreement. The maximum difference in mean pheno-
metrics was less than two weeks in woody savannas in temperate re-
gions (cf., tiles H12V04 and H11V04). In general, however, mean va-
lues across the study region and all six phenometrics showed

Fig. 3. Images showing the timing of greenup onset, maturity onset, senescence onset, and dormancy onset (day of year) from the VIIRS LSP and the MODIS LCD
products in 2013. Each tile is dominated by different land cover types: forests in the Northeastern U.S. and Eastern Canada (H12V04), croplands in the Central U.S.
(H11V04), and shrublands and grasslands in the Southwestern U.S (H08V05). In the columns, VI and MO denote the VIIRS and MODIS products, respectively.
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differences that were less than one week, with slightly larger differences
during green-down (i.e., senescence onset, mid-senescence, and dor-
mancy onset) than during green-up. RMSDs and bias between pheno-
metrics from the MODIS LCD and VIIRS LSP products were consistent
across products, and showed no systematic patterns of deviation as a
function of location (tile) or land cover type.

Systematic differences between the two products (i.e., bias: VIIRS -
MODIS phenometrics) were generally less than one week (absolute bias
4.8 ± 3.0 days; mean ± one standard deviation), and root mean
square deviations (RMSDs) were less than two weeks for most pheno-
metrics across land cover classes (10.7 ± 4.3 days) (Table 2). At the
same time, modest systematic biases are clearly evident for some phe-
nometrics. For example, mean values for maturity onset from VIIRS
were systematically earlier than those from MODIS (−3.6 ± 1.4 days).
Similarly, mean senescence onset dates were later for VIIRS than for
MODIS (6.6 ± 3.4 days). Moreover, dormancy onset dates from VIIRS
were earlier than from MODIS in forest- and cropland-dominated tiles
(−4.4 ± 4.3 days). The largest biases were located in woody savannas
and were associated with earlier greenup and later dormancy in the
MODIS LCD product (12.2 and 8.0 days earlier and 8.3 and 9.0 days
later for the forest and croplands tiles, respectively). Semi-arid land
cover types (viz., shrublands, grasslands, and savannas) showed modest
levels of disagreement across products (i.e., higher RMSDs;
14.7 ± 3.4 days), reflecting higher variation and uncertainty in land
surface phenology in semi-arid land cover types that are characterized
by low seasonal amplitude in EVI2. Overall, however, agreement was
high and bias was low between phenometrics for the two products. In
addition, bias and RMSDs between the products across two consecutive
years (2013 and 2014) were consistent across land cover types in each
of the tiles (Fig. 5).

3.2. Analysis and attribution of differences across products

Comparison of time series derived from VIIRS and MODIS clearly
shows that EVI2 time series from each instrument are highly similar,
but that MODIS EVI2 time series are smoother and have less high

frequency noise relative to VIIRS EVI2 time series. To illustrate, Fig. 6
presents representative EVI2 time series from each sensor for a single
pixel from each of six land cover classes. To provide a more compre-
hensive and quantitative assessment, Table 3 shows results for linear
regressions between MODIS and VIIRS EVI2 times series (where MODIS
EVI2 is the independent variable in each linear regression), along with
the agreement index (AI) for spline and double-logistic model fits to
MODIS and VIIRS EVI2 time series (respectively), based on a sample of
10,000 pixels stratified by land cover type from each tile. The estimated
regression models have slopes that range from 0.986 to 1.051, inter-
cepts that range from −0.004 to 0.012, and RMSDs range from 0.020 to
0.062, which demonstrate that the EVI2 time series from MODIS and
VIIRS are highly comparable with no significant biases. However, es-
timated AI values for penalized cubic splines fit to MODIS EVI2 time
series have slightly higher agreement than double logistic functions fit
to VIIRS EVI2 time series, which reflects the greater flexibility of cubic
splines relative to logistic functions, in combination with modestly
higher noise levels in EVI2 data from VIIRS.

To more fully explore the sources of disagreement between pheno-
metrics from the VIIRS LSP and MODIS LCD products, Fig. 7 shows four
scatterplots that attribute observed bias and RMSDs between pheno-
metrics from each product (Table 2) to two key sources: (1) those
arising from differences in the input data (i.e., MODIS versus VIIRS);
and (2) those arising from differences in the algorithm used to estimate
phenometrics (i.e., the MODIS LCD algorithm versus the VIIRS LSP al-
gorithm). To generate these results, we computed phenometrics using
the VIIRS LSP algorithm applied to EVI2 time series from both MODIS
and VIIRS, and we computed phenometrics from both algorithms using
MODIS EVI2 time series (i.e., thereby isolating the magnitude of bias
and variance introduced by the algorithm). We used the VIIRS LSP al-
gorithm in the former case because the VIIRS LSP product is designed to
replace the MODIS LCD product, and we used MODIS data in the latter
case because MODIS EVI2 data are less noisy than VIIRS EVI2 data. In
Fig. 7, the vertical axes correspond to the biases (Fig. 7a and c) and
RMSDs (Fig. 7b and d) between the MODIS LCD and VIIRS LSP products
from Table 2. In Fig. 7a and b, the horizontal axes correspond to biases

Table 1
Summary statistics (mean, x , and standard deviation, σ) for each tile, stratified by the three dominant land cover types from Fig. 3, excluding barren and sparsely
vegetated pixels. IGBP land cover was derived from the Collection 6 MODIS Land Cover Type product: 4: deciduous broadleaf forests; 5: mixed forests; 7: open
shrublands; 8: woody savannas; 9: savannas; 10: grasslands; 12: croplands.

Tile ID IGBP % Product Greenup onset Date at mid-greenup Maturity onset Senescence onset Date at mid-senescence Dormancy onset

x σ x σ x σ x σ x σ x σ

Forests 5 32 VIIRS 131 12 152 10 173 12 232 12 260 8 289 11
MODIS 122 12 149 9 174 9 223 10 264 6 294 14

4 26 VIIRS 123 10 140 8 157 10 230 10 266 8 301 13
MODIS 116 9 137 7 160 8 218 11 270 6 298 10

8 20 VIIRS 126 15 145 14 166 16 232 12 266 11 300 16
MODIS 113 14 139 13 168 15 225 13 274 10 309 14

Croplands 12 53 VIIRS 137 19 164 15 191 16 234 14 262 14 292 20
MODIS 139 20 167 16 194 13 232 13 262 15 297 20

8 11 VIIRS 129 14 148 12 168 13 228 13 264 11 300 15
MODIS 121 13 144 11 171 12 225 12 275 10 310 14

4 8 VIIRS 131 11 147 9 164 10 228 11 263 9 298 14
MODIS 125 10 145 9 168 9 221 10 271 7 300 10

Shrublands/
grasslands

7 33 VIIRS 181 34 199 28 211 42 246 40 273 41 301 43
MODIS 180 38 202 28 215 41 244 41 269 40 304 38

10 22 VIIRS 153 57 172 52 146 83 184 82 211 84 240 89
MODIS 153 57 175 53 152 81 181 80 208 81 244 83

9 7 VIIRS 131 59 150 56 151 66 199 64 231 63 266 65
MODIS 126 56 153 56 156 64 191 63 224 62 274 52
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and RMSDs computed using phenometrics estimated using the VIIRS
LSP algorithm applied to both VIIRS and MODIS EVI2 data (isolating
the effect of input data). In Fig. 7c and d, on the other hand, the hor-
izontal axes correspond to differences computed using phenometrics
derived from the VIIRS LSP and MODIS LCD algorithms applied to
MODIS EVI2 data (isolating the effect of the algorithms).

The results shown in Fig. 7a demonstrate that bias in phenometrics
between the two products (i.e., bias in the product-to-product com-
parison) are uncorrelated with bias induced from input data, and that
the magnitude of bias derived from input data is much smaller than the
magnitude of bias between the two products. Fig. 7c, however, shows
that biases induced by algorithm differences have the same magnitude
and are correlated with the biases found in the product-to-product
comparison. These results imply that the majority of systematic bias
between the two products can be attributed to differences in the algo-
rithms, not the input data (see also, Figs. A1 and A2 in the Appendix).
Fig. 7b and d, on the other hand, show that RMSDs are correlated and
have similar magnitude, and so differences in input data and algorithms

contribute equally to non-systematic differences (i.e., random errors)
between the products.

To further quantify how noise in input data affects errors in esti-
mated phenometrics, Fig. 8 shows results from the statistical simulation
described in Section 2.3, where the vertical axes in Fig. 8a and b cor-
respond to the RMSD values from the two products in Table 2, and the
horizontal axes correspond to the RMSDs in phenometric retrievals
induced by the inherent uncertainties in both VIIRS and MODIS NBAR
data across land cover types within each tile. These results show that
despite high agreement between NBAR EVI2 time series from MODIS
and VIIRS, and excellent model fits to time series, errors arising from
noise in EVI2 time series can introduce considerable uncertainty into
the phenometrics. More specifically, when noise levels in input data are
low, differences in phenometrics are mostly due to algorithmic un-
certainty; as noise levels increase, errors in phenometrics are mostly
caused by noise in the input data. Overall, errors from phenometrics
estimated using MODIS NBAR data are marginally (but consistently)
lower than those from VIIRS NBAR data (7.3 versus 8.7 days on overall

Fig. 4. Comparison of phenometrics from the VIIRS LSP and the MODIS LCD products in 2013, stratified by the three most common land cover types in each tile. Red
indicates high density and light purple indicates low density of observations. The dashed lines show 1:1 agreement. See caption of Table 1 for IGBP class names and
statistical summaries for each phenometric. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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means, respectively), and these errors are strongly correlated
(R2 = 0.98, p < 0.001; Fig. 8c).

3.3. Comparison with Landsat phenology

Fig. 9 presents a comparison between phenometrics derived from
Landsat with corresponding dates derived from the VIIRS LSP and
MODIS LCD products. It shows that results from all three instruments
were in close agreement across all 22 sidelaps examined in this study.
For SOS, both products showed strong agreement with results from
Landsat (R2 = 0.94 and 0.95 for VIIRS and MODIS, respectively), with
VIIRS results tending to be biased later relative to Landsat for earlier
greenup dates, and biased earlier for later dates (95% confidence in-
terval for the slope of the regression = 1.2 ± 0.10). RMSD values were
less than five days for both VIIRS and MODIS SOS dates relative to
Landsat. For EOS, both products again showed good agreement, but not
quite as strong as those observed for SOS. EOS from MODIS exhibited
better agreement with Landsat than EOS from VIIRS (R2 = 0.57 and

0.82 for VIIRS and MODIS, respectively). Further, EOS dates from VIIRS
were biased early relative to those from Landsat. Nevertheless, overall
RMSD values were less than one week for both products. At regional
scale (i.e., aggregated to EPA level II ecoregions), both products showed
good agreement with Landsat. For SOS, RMSDs across six different
ecoregions ranged from 2.8 to 13.2 with a mean of 7.1 for VIIRS, and
from 3.0 to 16.4 with a mean of 6.8 for MODIS (Table 4). For EOS,
RMSDs ranged from 4.2 to 14.9 with a mean of 8.5 for VIIRS and from
3.3 to 10.9 with a mean of 6.4 for MODIS (Table 5).

3.4. Comparison with PhenoCam phenology

Phenometrics derived from VIIRS and MODIS showed generally
strong agreement with phenometrics estimated from PhenoCam ima-
gery, but with more scatter relative to dates estimated from Landsat
(Fig. 10). Disagreement was highest for evergreen needleleaf sites,
where phenological amplitude is low and difficult to detect using ve-
getation indices such as the GCC and EVI2. Thus, we do not expect

Fig. 5. Comparison of (a) bias and (b) RMSD between phenometrics from the VIIRS LSP and MODIS LCD products from consecutive two years (2013 and 2014). Bias
is calculated as VIIRS – MODIS; RMSD is the root mean squared deviation. Different symbols denote different land cover types in different tiles, and different colors
denote different phenometrics. Values in parentheses indicate ± 1 standard deviation. The solid and dashed lines are regression fits and 1:1 lines, respectively. See
caption of Table 1 for IGBP class names.

Table 2
Statistical agreement between the VIIRS LSP and MODIS LCD products in 2013. IGBP denotes land cover type. Bias is calculated as VIIRS – MODIS; RMSD is the root
mean squared deviation. See caption of Table 1 for IGBP class names.

Tile ID IGBP Greenup onset Date at mid-greenup Maturity onset Senescence onset Date at mid-senescence Dormancy onset

Bias RMSD Bias RMSD Bias RMSD Bias RMSD Bias RMSD Bias RMSD

Forests 5 8.9 11.2 3.1 5.3 −1.5 5.4 8.9 12.1 −4.1 6.8 −4.7 11.0
4 6.8 8.7 2.4 3.8 −2.7 4.9 12.4 15.0 −4.3 6.4 2.8 9.1
8 12.2 14.5 6.3 8.2 −2.2 5.8 7.6 12.1 −8.3 11.1 −8.3 14.2

Croplands 12 −1.3 6.7 −2.8 6.0 −3.3 5.6 2.3 5.8 0.6 7.1 −4.8 11.3
8 8.0 10.2 4.4 6.0 −3.1 6.2 3.8 9.6 −10.4 13.1 −9.0 14.4
4 5.7 7.5 2.2 3.8 −3.7 5.7 6.0 9.8 −8.8 10.4 −2.3 8.7

Shrublands/grasslands 7 −0.1 19.1 −3.6 11.3 −4.6 10.2 3.1 12.2 4.9 12.5 0.2 16.4
10 −0.3 16.5 −3.1 11.6 −5.7 10.7 4.9 13.7 4.6 12.9 −1.7 16.6
9 3.6 18.1 −2.4 12.5 −5.4 12.3 10.1 18.6 7.4 17.6 −4.5 21.6
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strong correspondence between ground-based and satellite-derived re-
trievals in these systems. Other land cover types (e.g., deciduous
broadleaf forests and croplands), on the other hand, showed agreement
that was comparable to those obtained with Landsat-derived SOS and
EOS dates (Table 6).

It is important to understand that PhenoCam and coarse spatial

resolution sensors, such as VIIRS and MODIS, observe the surface with
very different fields of view. Hence, comparison of VIIRS LSP and MODIS
LCD products with PhenoCam results depends heavily on the representa-
tiveness of the region of interest in PhenoCam imagery used to generate
GCC time series relative to the field of view captured by 500 m MODIS and
VIIRS pixels. Fig. 11 illustrates this issue at the Jasper Ridge PhenoCam

Fig. 6. NBAR EVI2 time series from VIIRS (diamonds) and MODIS (circles), stratified by the three most common land cover types in each tile during 2013 and 2014.
Each dot represents 3-day composites NBAR EVI2 value from each instrument. See caption of Table 1 for IGBP class names.

Table 3
Linear regression and AI statistics for EVI2 time series from VIIRS and MODIS, stratified by the three most common land cover types in each tile. See caption of
Table 1 for IGBP class names. RMSD is the root mean squared deviation; 25%, 50%, 75% represent the 1st quartile, median, and 3rd quartile, respectively.

Tile ID IGBP Linear regression Agreement index

Slope Intercept R2 RMSD Product Mean 25% 50% 75%

Forests 5 0.986 0.007 0.809 0.058 VIIRS 95.6 94.6 96.9 98.1
MODIS 98.7 98.5 99.0 99.3

4 1.016 0.012 0.880 0.062 VIIRS 97.9 97.5 98.4 98.9
MODIS 99.0 98.8 99.1 99.4

8 1.051 −0.004 0.889 0.057 VIIRS 96.7 96.0 97.6 98.4
MODIS 98.8 98.7 99.2 99.4

Croplands 12 1.015 0.002 0.960 0.043 VIIRS 98.3 98.0 98.6 99.1
MODIS 99.4 99.3 99.5 99.7

8 1.024 −0.002 0.933 0.046 VIIRS 97.9 98.0 98.9 99.3
MODIS 99.3 99.3 99.5 99.6

4 1.014 0.002 0.942 0.044 VIIRS 98.8 98.8 99.2 99.4
MODIS 99.5 99.4 99.5 99.6

Shrublands/grasslands 7 1.018 0.011 0.913 0.020 VIIRS 86.9 84.4 93.0 96.9
MODIS 95.2 94.4 97.3 98.5

10 1.018 0.009 0.934 0.023 VIIRS 91.5 90.5 96.6 98.5
MODIS 96.6 96.5 98.5 99.4

9 1.016 0.008 0.899 0.024 VIIRS 89.8 87.1 94.4 97.7
MODIS 96.5 95.7 98.2 99.3
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site, which provides a good illustration of this challenge. Specifically,
Fig. 11a shows the 500 m MODIS and VIIRS pixel overlain on 30 m
Landsat imagery centered over the Jasper Ridge PhenoCam site, and

Fig. 11b shows the region of interest used to generate GCC time series from
PhenoCam imagery. As these two panels show, a large portion of the land
cover located within the 500 m pixel consists of tree cover. The PhenoCam

Fig. 7. Differences in phenometrics from MODIS LCD versus VIIRS LSP derived from differences in input (EVI2 time series) versus algorithms. Panels (a) and (b)
illustrate differences in phenometrics arising from different input data, while panels (c) and (d) illustrate differences in phenometrics arising from the different
algorithms. Bias represents differences in phenometrics; RMSD is the root mean squared deviation. Values in parentheses indicate ± 1 standard deviation. The solid
and dashed lines are the regression and 1:1 lines, respectively. Different shapes denote different land cover types in different tiles and different colors denote different
phenometrics. See Fig. 5 for symbols and colors legends.

Fig. 8. Analysis of errors in phenometrics between the VIIRS LSP and MODIS LCD products versus errors introduced by uncertainties in input data. Panels (a) and (b)
illustrate errors in phenometrics between the two products versus errors arising from uncertainties in VIIRS and MODIS input data, respectively; panel (c) illustrates
relationship between errors arising from uncertainties in VIIRS and MODIS input data. Values in parentheses in panel (c) indicate ± 1 standard deviation. The solid
and dashed lines are the regression and 1:1 lines, respectively. Different shapes denote different land cover types in different tiles and different colors denote different
phenometrics. See Fig. 5 for symbols and colors legends.
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Fig. 9. Comparison of the VIIRS LSP and MODIS LCD products with phenometrics derived from Landsat in 2013 and 2014. Different colors denote different Landsat
sidelaps and different shapes denote different years (circles: 2013; triangles: 2014). Values in parentheses indicate ± 1 standard deviation. The solid and dashed lines
are the regression and 1:1 lines, respectively. See Tables 4 and 5 for statistical summaries for each product in each sidelap.

Table 4
Statistical agreement of the VIIRS LSP and MODIS LCD products with SOS transition dates derived from Landsat in 2013. Bias is calculated as VIIRS – Landsat and
MODIS – Landsat; RMSD is the root mean squared deviation; x is the mean and σ is one standard deviation. Ecoregions are the EPA level 2 ecoregions: AH: Atlantic
Highlands; CUP: Central USA Plains; MWP: Mixed Woods Plains; MWS: Mixed Woods Shield; OA: Ozark/Ouachita-Appalachian Forests; TP: Temperate Prairies.

Spring

Site name Ecoregion Latitude/longitude Landsat VIIRS MODIS

x σ x σ Bias RMSD x σ Bias RMSD

Bartlett AH 44.62/–71.19 143 6.9 142 4.6 −0.5 5.8 140 4.0 −2.9 7.0
Hubbard AH 43.90/–71.40 135 4.6 137 4.4 2.1 4.6 137 3.6 1.4 4.0
Philadelphia AH 40.52/–75.63 124 9.1 133 7.8 9.0 11.5 131 11.3 7.1 11.5
Utica AH 43.19/–74.73 137 5.1 138 3.8 1.6 4.2 136 5.5 −0.9 4.4
Rockford CUP 41.76/–89.11 166 14.4 160 13 −6.5 8.9 164 15.2 −2.3 6.4
Urbana CUP 40.51/–87.99 171 11.5 165 10.3 −5.9 9.5 174 10.1 3.2 7.3
Alexandria MWP 46.03/– 95.34 167 12.4 162 8.6 −5.0 9.6 164 10.8 −3.7 8.4
Allegheny MWP 41.76/–78.29 136 2.5 136 2.6 −0.3 2.9 135 3.5 −0.8 3.0
Cary MWP 41.77/–73.66 129 3.1 131 3.6 2.3 3.5 130 4.3 1.8 3.6
Green Bay MWP 46.04/–89.16 151 4.0 152 3.9 0.6 4.1 149 3.1 −1.8 4.2
Harvard MWP 42.47/–71.89 132 2.2 134 2.5 1.6 2.8 134 2.6 2.1 3.1
Madison MWP 43.19/–90.18 145 10.3 142 8.1 −3.4 7.4 140 10.6 −5.2 8.2
Minneapolis MWP 44.61/–92.77 165 17.5 161 11.8 −4.1 10.9 161 15.3 −4.0 9.9
Proctor MWP 44.62/–72.68 134 4.1 137 4.1 3.1 4.6 134 4.5 0.4 4.2
Saginaw MWP 43.19/–84.00 142 11.9 150 12.1 7.8 13.2 150 17.4 8.7 16.4
South bend MWP 41.76/–86.02 146 14.3 147 11 0.3 8.3 148 15.8 1.4 8.2
Syracuse MWP 43.19/–76.27 132 5.0 138 6.7 5.8 9.0 132 7.9 −0.5 7.2
Boundary waters MWS 47.46/–91.71 157 2.5 157 3.7 −0.1 3.4 156 3.5 −0.9 3.6
Mackinac MWS 46.04/–84.53 146 4.5 150 5.5 4.7 5.9 143 5.8 −2.3 4.4
Harrisburg OA 40.52/–77.17 127 6.4 132 5.9 5.6 8.9 131 9.3 4.5 10.3
Des Moines TP 41.76/– 92.20 164 15.8 158 14.2 −5.8 9.4 166 16.6 1.7 8.0
Sioux TP 43.19/–94.78 182 7.5 176 9.6 −6.2 8.3 181 9.7 −1.3 5.2
Average – – 147 8.0 147 7.2 0.3 7.1 147 8.7 0.3 6.8
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Table 5
Statistical agreement between the VIIRS LSP and MODIS LCD products with EOS transition dates derived from Landsat in 2013. Bias is calculated as VIIRS – Landsat
and MODIS – Landsat; RMSD is the root mean squared deviation; x is the mean and σ is one standard deviation. See Table 4 for the ecoregions.

Autumn

Site name Ecoregion Landsat VIIRS MODIS

x σ x σ Bias RMSD x σ Bias RMSD

Bartlett AH 265 6.8 262 6.1 −3.4 6.1 267 5.0 2.0 5.7
Hubbard AH 273 4.7 267 5.6 −5.8 7.4 272 5.1 −1.3 3.3
Philadelphia AH 280 5.8 274 5.3 −6.1 8.5 282 7.5 1.1 7.1
Utica AH 268 3.0 268 5.6 −0.4 4.8 274 8.4 5.5 9.5
Rockford CUP 268 7.6 267 6.5 −0.5 5.0 269 8.7 0.8 4.5
Urbana CUP 259 6.8 260 5.6 0.6 4.4 259 5.5 −0.3 4.1
Alexandria MWP 270 5.1 265 6.9 −4.6 8.2 272 9.9 2.2 8.1
Allegheny MWP 274 3.0 268 4.0 −6.6 7.6 273 5.3 −0.9 5.2
Cary MWP 280 4.7 276 4.6 −4.3 6.1 280 5.3 0.0 5.3
Green Bay MWP 270 3.5 257 5.0 −12.4 13.6 270 4.5 0.2 4.3
Harvard MWP 279 4.3 273 4.5 −5.7 6.7 277 5.1 −2.0 3.5
Madison MWP 276 7.2 268 7.6 −7.8 11.2 279 10.1 2.9 9.0
Minneapolis MWP 272 6.4 269 8.9 −3.4 9.3 273 9.9 1.3 7.9
Proctor MWP 271 3.6 267 6.2 −4.4 6.7 273 8.0 2.0 7.3
Saginaw MWP 275 5.9 269 6.6 −6.2 9.2 276 9.9 1.0 8.2
South Bend MWP 275 10.0 266 7.4 −9.6 12.4 273 12.0 −2.3 7.4
Syracuse MWP 276 3.8 268 6.3 −7.9 9.6 281 7.9 4.9 8.2
Boundary waters MWS 268 3.1 258 5.7 −10.2 11.6 268 5.2 −0.9 4.7
Mackinac MWS 274 5.9 261 7.7 −13.0 14.9 277 9.5 3.2 8.0
Harrisburg OA 283 7.0 270 7.7 −13.0 14.6 276 8.5 −7.6 10.9
Des Moines TP 264 8.3 267 7.3 2.5 5.4 267 8.3 2.5 4.9
Sioux TP 266 4.1 267 4.9 1.2 4.2 266 4.4 0.5 3.6
Average – 272 5.5 267 6.2 −5.5 8.5 273 7.5 0.7 6.4

Fig. 10. Comparison of the VIIRS LSP and MODIS LCD products with phenometrics derived from PhenoCam imagery in 2013 and 2014. SOS and EOS represent the
DOY at mid-greenup and mid-down for the VIIRS and MODIS products, respectively. Different colors denote different vegetation types (see panel a) at each
PhenoCam site (DB: deciduous broadleaf; EN: evergreen needleleaf; AG: agricultural; GR: grassland; SH: shrubland). Values in parentheses indicate ± 1 standard
deviation. The solid and dashed lines are the regression and 1:1 lines, respectively. See Table 6 for the statistical agreement between PhenoCam and both VIIRS and
MODIS SOS and EOS dates, for each vegetation type.
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region of interest (Fig. 11b), however, includes only herbaceous vegeta-
tion. As a result, the PhenoCam GCC time series (Fig. 11c) captures the
phenology of grasses at the site, which is different from the phenology
measured in EVI2 time series from VIIRS and MODIS that includes sub-
stantial contributions from over-story tree phenology. This target mis-
match leads to clear differences in observed phenology, especially during
the green-down phase.

4. Discussion

The land product suite from MODIS provides an 18-year (and
growing) record of global land properties and processes during an era
when global environmental change has been accelerating. Originally
designed as a research mission, MODIS has evolved to provide a critical
source of time series observations supporting operational

Table 6
Statistical agreement between the VIIRS LSP and MODIS LCD products with phenometrics derived from PhenoCam imagery. n is the number of site-years; bias is
calculated as VIIRS – PhenoCam and MODIS – PhenoCam; RMSD is the root mean squared deviation. See Fig. 10 for the vegetation type.

Vegetation type n PhenoCam VIIRS MODIS

x σ x σ Bias RMSD x σ Bias RMSD

Spring
DB 38 137 7.7 141 8.3 4.2 8.3 138 7.1 1.4 5.8
EN 5 116 7.6 144 7.6 28.0 28.8 139 3.0 23.2 24.0
AG 5 152 11.9 153 6.5 0.4 10.1 151 3.8 −1.2 11.5
GR/SH 5 134 57.2 135 63.5 1.0 11.9 129 65.1 −4.4 10.4

Autumn
DB 38 271 13.7 268 8.3 −2.9 13.7 274 6.7 3.1 11.2
EN 6 314 9.6 275 19.5 −39.3 41.7 277 9.1 −37.2 37.3
AG 6 270 29.3 274 12.8 3.7 18.7 279 13.6 9.0 21.5
GR/SH 6 191 82.9 213 78.0 22.2 31.1 217 75.2 26.5 41.1

Fig. 11. VIIRS and MODIS pixels over the Jasper Ridge PhenoCam site (a), a PhenoCam image and region of interest used to generate GCC time series (b), and time
series of EVI2 from VIIRS, and MODIS, along with GCC from PhenoCam (c). Phenometrics from each time series are shown as vertical lines. In panel (a), the solid and
dashed green lines represent a 3 by 3 window and the 500 m pixel centered at the camera's location, respectively; the yellow lines indicate the field of view of the
PhenoCam. In panel (b), the yellow box represents the extracted region of interest from PhenoCam imagery. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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environmental monitoring and global change science. With the MODIS
era approaching its end, the VIIRS instrument has been designated to
provide continuity with measurements and products from MODIS. In
this paper, we evaluated the suitability of the VIIRS Land Surface
Phenology product for providing long-term continuity with the MODIS
Land Cover Dynamics product, focusing on two main elements. First,
we performed an extensive comparison of the MODIS LCD and VIIRS
LSP products, focusing on the nature, magnitude, and sources of dif-
ferences between the products. Second, we compared both products
against two independent sources of land surface phenology data.

4.1. Comparison of MODIS LCD and VIIRS LSP products

Our results indicate that the MODIS LCD and VIIRS LSP products are
qualitatively and quantitatively similar, but also identify subtle differ-
ences arising from three key sources:

(i) Instrument differences. Although VIIRS was originally conceived to
provide observation continuity with MODIS (Justice et al., 2013),
the properties of these two sensors are different, which results in
modest discrepancies between operational products from each in-
strument. Most importantly in the context of this work, both the
VIIRS LSP and MODIS LCD products use NBAR surface reflectance
as their primary input. Our analysis identified modest differences
in NBAR EVI2 time series from VIIRS versus MODIS that propagate
into the VIIRS LSP and MODIS LCD products (Figs. 7 and 8).
Consistent with Liu et al. (2017), who reported that the VIIRS
NBAR product is comparable with the MODIS NBAR product, our
results suggest that NBAR EVI2 time series from each sensor are in
good agreement and do not show systematic differences or biases
(Fig. 6 and Table 3). However, similar to Zhang et al. (2017a), AI
values computed from VIIRS and MODIS NBAR EVI2 time series
indicate that EVI2 time series from MODIS are more stable than
those from VIIRS. In addition, errors in phenometrics induced by
uncertainty in VIIRS NBAR data were larger than those induced by
uncertainty in MODIS NBAR data (Fig. 8). While we are not able to
conclusively attribute this difference to a specific source, the most
likely explanation for observed differences in EVI2 time series is
lower data density available from VIIRS relative to MODIS. Spe-
cifically, NBAR data from VIIRS are based on a single (1:30 pm
equatorial) overpass, whereas MODIS NBAR data are computed
using observations from both the morning (10:30 am equatorial)
MODIS-Terra and afternoon (1,30 pm equatorial) MODIS-Aqua
overpasses (Zhang et al., 2017a).

(ii) Differences in NBAR EVI2 pre-processing. Both algorithms depend on
successful retrieval of a “background” or seasonal minimum EVI2
value at each pixel. The VIIRS LSP algorithm uses land surface
temperature in addition to snow flags from the VIIRS NBAR pro-
duct to identify and remove snow-contaminated pixels, while the
MODIS LCD algorithm only uses snow flags from the MODIS NBAR
product in combination with NDSI values. These approaches reflect
modestly different assumptions regarding the quality of NBAR
snow flags, and have the potential to induce subtle differences
between the two products. In particular, the MODIS LCD product
tends to have slightly longer growing season lengths than corre-
sponding values from the VIIRS LSP product in temperate regions
(e.g., forests and croplands tiles, Table 2 and Fig. 4). This effect
appears to be limited to temperate regions, and we did not find
other examples or evidence of significant and systematic differ-
ences between phenometrics from each product. In addition, dis-
agreement between VIIRS LSP and MODIS LCD phenometrics was

more prevalent in semi-arid land cover types (i.e., higher RMSDs
for shrublands and grasslands in Table 2). This issue is not un-
expected because low seasonal amplitude in the EVI2 time series
(as shown in Fig. 6) tends to increase uncertainty in estimated LSP
metrics (Fig. 8), and because subtle differences in smoothing and
gap filling will lead to differences in estimated phenometrics
(Fig. 7).

(iii) Differences in the method used for EVI2 time series modeling.
Currently, there is no consensus in the land surface phenology
community regarding optimal methods and algorithms for deriving
land surface phenology metrics. The algorithm used to generate
the VIIRS LSP product uses a logistic model to provide a simple,
bounded, and continuous function for modeling EVI2 variation
associated with leaf emergence, maturation, and senescence
(Zhang, 2015). This approach is widely used for modeling phe-
nological dynamics in biological systems, and provides a frame-
work that is widely accepted and interpretable. The Collection 6
MODIS LCD product, on the other hand, uses penalized cubic
splines to model temporal variation in NBAR EVI2 time series
(Gray et al., 2019). Unlike logistic models, local fitting techniques
such as splines are more flexible and are therefore able to capture a
broader range of temporal dynamics (e.g., asymmetric phenology;
Verma et al., 2016). At the same time, because penalized cubic
splines provide local fits to data, they are more sensitive to gaps
and high frequency variation in EVI2 time series. Hence, in situa-
tions where missing data are pervasive, penalized cubic splines are
less robust than logistic models (Zhang et al., 2018b). Further, the
different methods for selecting transition dates in each algorithm
(i.e., the curvature change rate versus amplitude threshold) can
introduce differences between the two products, and Klosterman
et al. (2014) report that landscape heterogeneity can introduce
uncertainty in curve fit estimates during green-down. Consistent
with these results, our analyses show that differences between
MODIS LCD and VIIRS LSP results in mixed forests are marginally
larger than those found in deciduous broadleaf forests during the
green-down phase, especially for senescence onset (IGBP 5 versus
4; Table 2), and we find larger differences in EOS than in SOS (e.g.,
Fig. 11).

4.2. Comparisons with independent data

In addition to comparing results from each algorithm and product,
we also assessed agreement of each product with LSP measurements
from Landsat and PhenoCam data. Results from Landsat have the ad-
vantage of being estimated from remote sensing using instrumentation
with similar spectral properties to MODIS and VIIRS, but at finer spatial
resolution. The PhenoCam Dataset V1.0 (Richardson et al., 2018a)
based on digital repeat photography, on the other hand, provides a
source of “near-surface” remote sensing that covers a wide range of
biomes. Results from these comparisons show that the VIIRS LSP and
MODIS LCD products both agree well with phenometrics derived from
Landsat (Fig. 9). Across six ecoregions spanning the Central and
Northeastern U.S, the mean RMSD for SOS was roughly one week for
both products (Table 4). RMSDs between Landsat EOS and corre-
sponding metrics from MODIS and VIIRS were modestly higher, but
were also on the order of one week (Table 5). Interestingly, even though
agreement with Landsat SOS was lower at local scale for both the
MODIS LCD and VIIRS LSP products, overall mean RMSD at the scale of
ecosystems was comparable across instruments, which suggests that
even though local uncertainty in SOS retrievals is significant, they do
not appear to be biased. EOS values for the MODIS LCD product show
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modestly higher agreement with Landsat EOS dates relative to VIIRS
LSP values. However, closer inspection indicates that overall bias for
both products is similar and quite low, which implies that such differ-
ences may be explained by the fact that the LPA uses cubic splines to fit
EVI time series from Landsat (i.e., similar to the MODIS LCD product),
while the VIIRS LSP does not.

Evaluation of satellite-derived land surface phenology products with
PhenoCam-derived phenometrics is challenging, and lower agreement
between phenometrics from PhenoCam and both the MODIS LCD and
VIIRS LSP products can be explained by two main factors. First, because
PhenoCams do not generally provide imagery acquired in near infrared
wavelengths (Yang et al., 2014), phenometrics from PhenoCam are
estimated using a vegetation index based on visible bands (i.e., GCC,
Sonnentag et al., 2012). Richardson et al. (2018b) performed a com-
prehensive assessment of GCC time series and phenometrics derived
from PhenoCam against both MODIS NDVI and LCD data using the
PhenoCam Dataset V1.0, and showed good agreement in both cases.
However, similar to our results, they identified differences in the sensor
field of view, in combination with landscape heterogeneity, as key
sources of disagreement. Consistent with Richardson et al. (2018b), our
results show that, with the exception of evergreen needleleaf sites,
phenometrics derived from PhenoCam GCC time series agree reasonably
well with the VIIRS LSP and MODIS LCD products, but that sub-pixel
heterogeneity within satellite-based remote sensing pixels can cause
substantial discrepancies in estimated phenometrics (Fig. 11).

5. Conclusion

Phenology is a fundamental regulator of many ecological processes,
is readily observable and easily understood by the public, and is widely
viewed to be an important diagnostic of ecosystem response to climate
change. Thus, high-quality long-term records related to phenology,
including those derived from satellite remote sensing, are essential. In
this paper, we evaluated and quantified similarities and differences
between two operational LSP products. Our specific motivation for this
work was to address the question of whether the VIIRS LSP product
provides continuity with the MODIS LCD product for long-term studies
of land surface phenology. As part of our analysis, we compared EVI2
time series from each instrument, quantified random and systematic
differences between phenometrics from each sensor, and conducted a
multi-scale comparison of the VIIRS LSP and MODIS LCD products with
phenometrics derived from Landsat and PhenoCam imagery. Our re-
sults indicate that the VIIRS LSP product is very similar to the MODIS
LCD product and can be used to extend the MODIS record, but some
modest differences were found that users need to be aware of (and
account for) if time series of VIIRS LSP and MODIS and LCD data are
used together. In particular, we recommend that studies attempting to
create long-term LSP time series by merging phenometrics from the
MODIS LCD product with corresponding phenometrics from the VIIRS
LSP product should estimate land cover-specific adjustments (i.e., fol-
lowing the basic procedure we used in this paper) that correct for
modest systematic biases in the MODIS LCD product relative to the
VIIRS LSP product.
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Fig. A1. Comparison of phenometrics retrieved from VIIRS and MODIS NBAR EVI2 time series using the VIIRS LSP algorithm in 2013, stratified by the three most
common land cover types in each tile. IGBP land cover was derived from the Collection 6 MODIS Land Cover Type product: 4: deciduous broadleaf forests; 5: mixed
forests; 7: open shrublands; 8: woody savannas; 9: savannas; 10: grasslands; 12: croplands. Red indicates high density and light purple indicates low density of
observations. The dashed lines show 1:1 agreement.
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Fig. A2. Comparison of phenometrics retrieved from MODIS NBAR EVI2 time series using the VIIRS LSP and MODIS LCD algorithms in 2013, stratified by the three
most common land cover types in each tile. IGBP land cover was derived from the Collection 6 MODIS Collection 6 Land Cover Type product: 4: deciduous broadleaf
forests; 5: mixed forests; 7: open shrublands; 8: woody savannas; 9: savannas; 10: grasslands; 12: croplands. Red indicates high density and light purple indicates low
density of observations. The dashed lines show 1:1 agreement.
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