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A B S T R A C T   

The timing of leaf emergence in temperate and boreal forests is changing, which has profound implications for a 
wide array of ecosystem processes and services. Spring phenology models, which have been widely used to 
predict the timing of leaf emergence, generally assume that a combination of photoperiod and thermal forcing 
control when leaves emerge. However, the exact nature and magnitude of how photoperiod and temperature 
individually and jointly control leaf emergence is the subject of ongoing debate. Here we use a continuous 
development model in combination with time series of land surface phenology measurements from MODIS to 
quantify the relative importance of photoperiod and thermal forcing in controlling the timing of canopy greenup 
in eastern temperate and boreal forests of North America. The model accurately predicts biogeographic and 
interannual variation in the timing of greenup across the study region (median RMSE = 4.6 days, median bias =
0.30 days). Results reveal strong biogeographic variation in the period prior to greenup when temperature and 
photoperiod influence greenup that covaries with the importance of photoperiod versus thermal controls. 
Photoperiod control on leaf emergence is dominant in warmer climates, but exerts only modest influence on the 
timing of leaf emergence in colder climates. Results from models estimated using ground-based observations of 
cloned lilac are consistent with those from remote sensing, which supports the realism of remote sensing-based 
models. Overall, results from this study suggest that apparent changes in the sensitivity of trees to temperature 
are modest and reflect a trade-off between decreased sensitivity to temperature and increased photoperiod 
control, and identify a transition in the relative importance of temperature versus photoperiod near the 10 ◦C 
isotherm in mean annual temperature. This suggests that the timing of leaf emergence will continue to move 
earlier as the climate warms, and that the magnitude of change will be more pronounced in colder regions with 
mean annual temperatures below 10 ◦C.   

1. Introduction 

There is overwhelming evidence that leaf emergence is occurring 
earlier in temperate and boreal forests (Menzel et al., 2006; Schwartz 
et al., 2006). However, a number of recent papers have concluded that 
the sensitivity of leaf emergence to changes in temperature has 
decreased in recent decades (Fu et al., 2015; Piao et al., 2017) and that 
the period when trees are sensitive to thermal forcing is becoming 
shorter (Fu et al., 2019; Güsewell et al., 2017; Wenden et al., 2020). 
These results complicate interpretation of observed trends and exacer
bate challenges involved in forecasting how the phenology of trees will 

change in the future. These challenges are further complicated by 
fundamental issues in the way that the sensitivity of phenological events 
to temperature is generally quantified (Keenan et al., 2019). Because 
changes in phenology impact important ecosystem functions (Keenan 
et al., 2014; Richardson et al., 2013), understanding how changes in 
climate affect phenology is critical to forecasting how ecosystems will 
respond to future climate change (Peñuelas et al., 2009; Piao et al., 
2019). 

To address this, a variety of recent studies have focused on improving 
understanding of bioclimatic controls on plant phenology (Liu et al., 
2017; Zohner et al., 2016). Results from both lab- and field-based 
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experimental studies have provided insights (Montgomery et al., 2020; 
Richardson et al., 2018a), but are limited by the fact that phenological 
behavior in controlled laboratory- and field-based warming experiments 
differs from behavior observed in natural ecosystems (Clark et al., 
2014a; Wolkovich et al., 2012). Further, the manner in which envi
ronmental conditions are perturbed in such experiments (e.g., 2 ◦C 
warming) is not representative of climate changes expected in the 
future, which are predicted to occur gradually, but with large year-to- 
year variability (Schewe et al., 2019; Walther et al., 2002). These is
sues are compounded by the fact that the geographic sampling of data 
sets used in these studies is often limited and does not reflect the full 
biogeographic range of species examined (Richardson et al., 2013). 
Hence, geographic variation in the relative importance of different 
climate drivers on phenology, both within and across plant commu
nities, is not well understood (Piao et al., 2019). 

One widely used strategy for investigating the response of plant 
phenology to climate change is to calibrate mechanistic models using 
weather data in combination with long-term records of phenology 
collected on the ground (Basler, 2016; Fu et al., 2019) or from remote 
sensing (Liu et al., 2017; Melaas et al., 2018). In addition to thermal 
controls, photoperiod is widely assumed to control the timing of leaf 
emergence by regulating the entrance of ecodormancy, triggering 
thermal forcing to stimulate bud swelling and leaf emergence (Chuine 
et al., 2016; Jackson, 2009; Körner and Basler, 2010). Hence, many 
models include explicit representation of photoperiod (e.g., Blümel and 
Chmielewski, 2012; Masle et al., 1989; Basler, 2016; Migliavacca et al., 
2012). To capture the role of thermal forcing, mechanistic models 
generally use aggregated bioclimatic variables such as growing degree 
days or winter chilling as their primary inputs. However, Clark et al. 
(2014a) have suggested that the use of such aggregated quantities is 
problematic because values for prescribed variables required by these 
models (e.g., start date of forcing accumulation) are not identifiable. 

In recent years, data-driven models based on state-space represen
tations of phenological processes have been developed that overcome 
many of the weaknesses of both mechanistic and experimental ap
proaches (e.g., Clark et al., 2014b; Qiu et al., 2020; Senf et al., 2017; 
Seyednasrollah et al., 2018). By modeling phenological dynamics 
directly from data, these models avoid issues arising from mis
specification of functional relationships between forcing variables and 
processes that regulate phenological development (Clark et al., 2014b). 
Building on this approach, here we use a data-driven spring onset model 
in combination with gridded weather data and time series of ground- 
based and remotely sensed observations of spring greenup dates to 
explore biogeographic patterns in photoperiod and thermal controls on 
the timing of spring greenup. Specifically, we use this model to: (1) 
quantify the relative importance of thermal forcing, photoperiod, and 
winter chilling in controlling spring greenup; (2) identify the pre-season 
period when plants are sensitive to bioclimatic controls; and (3) char
acterize how covariance among thermal forcing, photoperiod, and the 
length of the pre-season period control the biogeography of spring 
greenup in deciduous forests of eastern temperate and boreal North 
America. 

2. Methods 

2.1. Study region 

The study region includes the Northern Forests and Eastern 
Temperate Forest ecoregions included in Level I of the US EPA Ecor
egions of North America (Fig. A1). To distinguish deciduous forests from 
evergreen forests and other land cover types within the study area, the 
500 m Collection 6 MODIS Land Cover Type product was used. This 
product provides annual land cover maps based on machine learning 
that are post-processed using a multi-temporal state-space modeling 
framework that reduces spurious land cover change introduced by 
classification uncertainty in individual years (Abercrombie and Friedl, 

2016; Sulla-Menashe et al., 2019). 
The continuous development spring onset model (Section 2.3) is 

estimated on an equal-area grid, where each grid cell is 4.67 km × 4.67 
km (10 × 10 MODIS pixels; ~22 km2). In each grid cell, only pixels 
labeled as deciduous broadleaf or mixed forests throughout the entire 
study period from 2001 to 2017 were included in the analysis. To ensure 
analyses were based on grid cells dominated by deciduous forest cover, 
we excluded model grid cells where the fraction of MODIS pixels labeled 
as deciduous broadleaf or mixed forests was less than 50% (Fig. A1). 

2.2. Spring greenup and meteorological data 

To identify the timing of springtime leaf emergence from 2001 to 
2017, we used the Collection 6 MODIS Land Cover Dynamics product 
(MCD12Q2; Gray et al., 2019). This product uses time series of the two- 
band Enhanced Vegetation Index (EVI2) to identify the timing of six key 
phenophase transition dates during each growing season in each 500-m 
MODIS pixel. Numerous studies have reported that this product provides 
a reliable measure of vegetation phenology (Moon et al., 2019; 
Richardson et al., 2018b) and seasonal changes in ecological function 
and surface biophysical characteristics (Melaas et al., 2013; Moon et al., 
2020). For this analysis, we use the MCD12Q2 ‘greenup’ metric, which is 
defined by the Land Cover Dynamics product as the day of year (DOY) 
during the greenup phase in spring when the EVI2 time series at each 
pixel crosses 15% of its seasonal amplitude (Gray et al., 2019). 

To provide the meteorological data required for model estimation, 
we used the Version 3 Daymet dataset for North America (Thornton 
et al., 2017) (https://daymet.ornl.gov). This data set uses digital 
elevation data in association with a land-water mask and meteorological 
observations collected at ground-based stations to create gridded time 
series of surface meteorological fields at daily time step and 1 km spatial 
resolution for the period 1980 to present. For this work, we used daily 
maximum and minimum 2-m air temperatures from 2000 to 2017 along 
with day-length, resampled to 500 m and co-registered to the MODIS 
data over all grid cells included in our analysis. 

2.3. Continuous Development Spring Onset Model 

To estimate the sensitivity of different climatological controls on 
springtime phenology, we developed a continuous development spring 
onset model (hereafter, CDSOM) based on a hierarchical Bayesian 
framework that predicts the timing of springtime greenup using three 
drivers: photoperiod, thermal forcing, and chilling units. The original 
form of this model was proposed by Clark et al. (2014b), who used the 
same general approach to show that because conventional process-based 
phenology models (e.g., Hufkens et al., 2018.) aggregate daily air tem
perature time series into cumulative sums or mean values for each year 
or season, they misrepresent how thermal forcing controls the timing of 
phenology. 

Similar to Clark et al. (2014b), the CDSOM we use here tracks the 
continuous response of phenological development to variation in envi
ronmental controls at daily time step. To do this, the model uses a state- 
space framework that includes an unobservable latent state (h), which 
responds continuously to environmental controls and captures ecolog
ical responses to bioclimatic forcing: 

hg,s,d+1 = hg,s,d + δhg,s,d (1)  

where hg, s, d is the latent state for grid cell g and sample (i.e., pixel) s on 
day d. In this framework, δhg, s, d is the increment in h from day d to day d 
+ 1, which is estimated using: 

δhg,s,d =

{ (
Xg,s,d × βg

)(
1 − hg,s,d

/
hmax

)
for δhg,s,d ≥ 0

0 for δhg,s,d < 0 (2)  

where Xg, s, d is a matrix of predictor variables that includes the daily 
mean temperature (Tg, s, d), day-length (i.e., photoperiod; Lg, s, d), and 
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chilling units (CUg, s; defined below) on each day, and where daily mean 
temperature is computed as the average of daily maximum and mini
mum temperatures from Daymet in each 500 m MODIS pixel. βg is a 
vector of estimated model coefficients for each grid cell (g), and hmax is 
the final state value of h, which is prescribed to be 100. Note that: (1) 
even though a linear formulation is used to describe the relationship 
between model predictors and coefficients, the model accommodates 
nonlinear responses in phenological responses to environmental con
trols using an asymptotic limit for the latent state (i.e., hg, s, d/hmax); and 
(2) the latent state increment is always non-negative. 

To convert the continuous scale of the latent state (h) into a form that 
identifies discrete phenological events (i.e., the timing of spring greenup 
onset), a logit transformation is used: 

logit
(
Pg,s,d

)
= κ+ λ× hg,s,d (3)  

where Pg, s, d is the probability that the onset occurs at sample pixel s in 
grid g on day d, and κ and λ are the intercept and slope of the trans
formation, respectively. Because greenup onset is defined to be a 
discrete event, Pg, s, d follows a Bernoulli distribution: 

Yg,s,d ∼ Bernoulli
(
Pg,s,d

)
(4)  

where Yg, s, d indicates whether or not greenup onset has occurred for 
sample s in grid g on day d. 

Following convention, chilling units (CUg, s) were defined as: 

CUg,s =
∑cg,s

d=cg,0

I
(
Tg,s,d < Tb

)
(5) 

Hence, CUg, s is defined as the number of days below prescribed 
threshold Tb during the period after the onset of dormancy until an 
unobserved date cg, s when the chilling requirement is satisfied. Previous 
studies have suggested that boreal and temperate tree species respond to 
air temperatures ranging from − 5 to 10 ◦C as a threshold for chilling 
requirements (Hänninen et al., 2019). Here we used 0 ◦C because the 
study area covers a large range of climate conditions. Further, and more 
importantly, sensitivity analyses revealed that model results were not 
sensitive to variation in Tb (not shown), which is supported by results 
indicating that chilling control on the timing of greenup is minor (see 
Results). 

2.4. CDSOM estimation 

As we described above, the CDSOM was estimated using a regular 
grid, with each grid cell composed of 100 MODIS pixels. We excluded all 
pixels with more than one land cover type label between 2001 and 2017 
(i.e., that nominally experienced change) and excluded all cells that 
were composed of less than 50% deciduous or mixed forests. Because the 
CDSOM is computationally expensive, we used a two-stage sampling 
approach to estimate the model for randomly selected grid cells in each 
of the 13 MODIS tiles that intersect the study region. In the first stage, 
we randomly sampled grid cells within each MODIS tile that met the 
criteria listed above. If less than 300 valid grid cells were available 
within a tile, we included all valid grid cells. If more than 300 grid cells 
were available in a tile, we randomly selected a sample of 300 cells. In 
the second stage, we randomly selected MODIS pixels located in each 
grid cell across time. To minimize the impact of spatial and temporal 
correlation, we used a sub-sample of 100 pixel-years (i.e., 100 unique 
greenup dates randomly selected across 17 years) to estimate a unique 
model for each cell. Each sample was selected from a total pool of be
tween 850 and 1700 sample points (i.e., 50–100 pixels per year in each 
grid across 17 years). 

For each year, December 1st of the previous year and DOY 250 
(~Sept. 7) of the current year were used as the start and end dates of 
latent state development, respectively. Posterior sampling was per
formed using the “R2jags” package in R (Su and Yajima, 2015), with 

10,000 iterations and 3000 burn-in periods. As a final step, to reduce 
noise in our results, we excluded grid cells where estimated model co
efficients were outside 95% of the range of estimated model coefficients 
across all grid cells. This yielded a final data set consisting of 1685 grid 
cells with valid results. 

Model results from a representative grid cell are shown in Fig. 1. 
Overall, predicted onset dates are well aligned with observed onset dates 
at this grid cell, with a root-mean-square error (RMSE) of 3.7 days across 
the time series (Fig. 1a). Because the input forcing data are normalized 
prior to model estimation (i.e., having a mean of 0 and a standard de
viation of 1 for each of the input variables in each grid g and sample s), 
the posterior distributions for each model coefficient, which reflect the 
dependence of phenological development on each input variable, show 
differences that are independent of the magnitude or units of each input 
variable (Fig. 1b). Time series of the latent state generated by the model 
(Fig. 1c) provide information regarding the timing and duration of the 
pre-season period prior to greenup onset. This period has been previ
ously described as “as the most temperature-sensitive period preceding 
the phenological event” (Güsewell et al., 2017) or “the period before leaf 
unfolding for which the partial correlation coefficient between leaf 
unfolding and air temperature is highest” (Fu et al., 2015). Here we 
define this period as corresponding to the time interval when pheno
logical development is affected by bioclimatic forcing, and we use the 
CDSOM to identify the “pre-season period” as starting on the DOY when 
the latent state variable (h) starts to increase and ending on the DOY 
when greenup onset occurs (i.e., the period indicated by the arrow in 
Fig. 1c). 

2.5. Quantifying the relative importance of bioclimatic forcing variables 

To address our goal of quantifying the relative importance (and 
geographic variation thereof) among bioclimatic controls on the timing 
of springtime phenology, we compute a normalized index with values 
that range from − 1 to +1 that captures this effect. Because each of the 
input variables in each grid g and sample s have been normalized to have 
a mean of 0 and a standard deviation of 1, model coefficients can be 
directly compared to assess the relative importance of each control 
variable. To quantify this, we calculated the relative importance (RI) of 
each control variable relative to each other variable using a normalized 
index computed from CDSOM model results. For example, to compute 
the relative importance of photoperiod versus thermal forcing in any 
given grid cell, we computed: 

RI =
βT − βL

βT + βL
(6)  

where βT and βL are the average model coefficients for thermal forcing 
and photoperiod (respectively) during the pre-season period, which are 
estimated for each grid cell by the CDSOM. 

2.6. CDSOM assessment and comparison with conventional phenology 
models 

To provide a baseline comparison against previously developed and 
widely used springtime phenology models (hereafter, the ‘conventional 
models’), we compared results from the CDSOM with four widely used 
process-based phenology models included in the “phenor” package in R 
(Hufkens et al., 2018). Specifically, we compared our results against the 
thermal time (TT) model, the photo-thermal time (PTT) model, the 
exponential photo-thermal time model (M1), and the alternating (AT) 
model, as described by Hufkens et al. (2018). These models are funda
mentally different from the CDSOM in that they assume a linear rela
tionship between spring thermal forcing and the rate of phenological 
development, and that spring onset occurs when accumulated forcing 
(after a prescribed start date) reaches a critical threshold (F*). The TT 
model relies only on thermal forcing (daily air temperature in each 
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MODIS pixel, Tg, s, d) with no additional inputs. In this model, the state of 
forcing (Sf) increases each day until F* is reached, when leaves emerge 
(Chuine et al., 1999; Hunter and Lechowicz, 1992): 

R
(
Tg,s,d

)
=

{
0 for Tg,s,d ≤ Tb

Tg,s,d − Tb for Tg,s,d ≥ Tb
(7)  

Sf =
∑t

t0

R
(
Tg,s,d

)
(8)  

where t0 is the starte date. For consistency with the CDSOM, we set t0 
and Tb to December 1st and 0 ◦C, respectively. The PTT model includes 
day-length (i.e., photoperiod; Lg, s, d) as an additional factor that regu
lates the rate of thermal forcing (Črepinšek et al., 2006; Masle et al., 
1989): 

Sf =
∑t

t0

R
(
Tg,s,d

)
×

Lg,s,d

24
(9) 

The exponential M1 model also includes photoperiod, but treats the 
relationship between photoperiod and Sf as an exponential (Blümel and 
Chmielewski, 2012): 

Sf =
∑t

t0

R
(
Tg,s,d

)
×

(
Lg,s,d

24

)k

(10)  

where k is an empirically estimated constant. Finally, the AT model 
includes the number of days when the daily mean temperature falls 
below Tb (i.e., the number of chilling days; NCD), and treats NCD as an 
exponential function that reduces the thermal forcing accumulation 
required for spring onset to occur (Cannell and Smith, 1983): 

F* = a+ b× exp[c×NCD(t) ] (12)  

where a, b, and c are empirically estimated constants, and NCD(t) is 
defined as the number of chilling days since December 1st. A table 
summarizing the variables and main characteristics of the CDSOM and 
conventional models is provided as an appendix (Table A1). 

For this analysis, we assessed model performance for both the 
CDSOM and the conventional models in two ways. First, we assessed 
results from model-based predictions for the timing of spring greenup 
based on all available years (from 2001 to 2017). Second, to provide a 
more robust assessment of model performance, we held out two years 
(2010 and 2012) with anomalously warm springs in much of the study 
region (Friedl et al., 2014), and evaluated model performance for each 
of these years. In this way, we were able to assess not only how well the 
models performed under average conditions, but also how well they 
performed under unusual springtime weather conditions that were not 
represented in the data used to estimate the models. 

2.7. CDSOM estimation using ground-based observations 

As a final element of our analysis, to complement model results based 
on remotely sensed greenup dates and to provide an independent basis 
for assessing the realism and robustness of our results, we estimated the 
CDSOM using time series of leaf unfolding dates for cloned lilac (Syringa 
x chinensis ‘Red Rothomagensis’) (Rosemartin et al., 2015). By applying 
the model to data from cloned plants, genetic variability is eliminated, 
and which allows us to investigate how differences in the timing of leaf 
unfolding between different individuals are caused by differences in 
local environmental controls. Unlike our approach using MODIS spring 
greenup dates, the model is estimated by pooling site-years across the 
region because the number of lilac leaf-out dates for each location is too 
small to accurately estimate models for each site. The dataset includes 
254 leaf unfolding dates from 60 locations across the study region, 
spanning the period from 2001 to 2008 (Fig. A1). For reasons we explain 

Fig. 1. Model results for a randomly selected grid cell. (a) Relationship between the greenup onset dates from MODIS and onset dates estimated by the model. (b) 
The distribution of model coefficients for each control variable (i.e., the relative dependence on each climate control; Therm.: thermal forcing; Photo.: photoperiod; 
Chill.: chilling units). (c) Time series of the latent state (red line) and the length of the pre-season (identified by the horizontal arrow). In panel (a), each dot (total n =
100) represents an individual pixel-year sampled from the grid cell comprised of 10 by 10 MODIS pixels across 17 years of the study period (i.e., 100 out of the total 
1700 pixel-years). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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below, we stratified the dataset into ‘warm’ versus ‘cold’ sites based on 
whether the mean annual temperature at each site is above or below 
10 ◦C. Based on this stratification, the model was applied to 182 and 72 
leaf unfolding dates for the colder and warmer regions, respectively. 

3. Results 

The CDSOM accurately predicts biogeographic and interannual 
variation in the timing of springtime greenup across the study region. 
The median RMSE between predicted and observed spring greenup dates 
was 4.6 days (Fig. 2), which is roughly equivalent to the uncertainty in 
spring greenup dates estimated from MODIS (Moon et al., 2019). In
spection of results from the conventional spring onset models show that 
median RMSEs were ~ 20% larger (~5.5 days vs. 4.6 days) relative to 
those obtained from the CDSOM (Fig. 2b). Further, RMSEs for years with 
anomalous springs (2010 and 2012) were unchanged for the CDSOM, 
but increased by roughly 2 days for conventional models when 2010 and 
2012 were excluded during model estimation (Fig. 3). For completeness, 
Fig. A2 shows the relationship between anomalies in MODIS greenup 
dates and anomalies in predicted onset set dates, and demonstrates that 
the CDSOM outperforms the conventional models in capturing year-to- 
year variations in spring onset dates. These results suggest that the 
CDSOM not only provides more accurate predictions of greenup relative 
to predictions from conventional phenology models, but that the 
CDSOM more effectively captures the impact of geographic and year-to- 
year variation in bioclimatic controls. More generally, the accuracy of 
CDSOM results indicates that the model realistically captures the nature 
and magnitude of ecophysiological responses to interannual and 
biogeographic variation in climate controls that regulate the timing of 
greenup. 

The dependence of spring greenup on thermal forcing estimated by 
the CDSOM is higher in Northern Forests than in Eastern Temperate 
forests (Fig. 4), but overall differences, while statistically significant, are 
modest (Fig. 4d). In contrast, dependence on photoperiod control ex
hibits systematic geographic variation across the study domain, with 
large differences between each ecoregion. Eastern Temperate Forests, 
which are warmer, show substantially higher dependence on 

photoperiod relative to the Northern Forests ecoregion, which is much 
cooler (Fig. 4b and d). This difference is especially pronounced in 
Eastern Canada where dependence on photoperiod is low, versus the 
Southern United States, where photoperiod dependence is high. 
Dependence of spring onset on chilling units is uniformly low 
throughout the study region, which indicates that the influence of 
chilling control, relative to photoperiod and thermal forcing, is effec
tively negligible (Fig. 4c and d). 

Geographic patterns in the RI of photoperiod versus thermal forcing 
indicates that photoperiod exerts proportionally more control on the 
timing of spring greenup in warmer regions, while thermal forcing ex
erts proportionally more control in colder regions (Fig. 5a). By plotting 
the RI in climate space (i.e., as a function of mean annual temperature 
and precipitation) (Fig. 5b), the pattern becomes even more clear. In 
regions where mean annual temperature is above ~10 ◦C, photoperiod 
exerts stronger control on the timing of spring greenup than thermal 
forcing. Conversely, in regions where mean annual temperature is less 
than ~10 ◦C, thermal forcing is more important. RI values near the 10 ◦C 
isotherm in mean annual temperature are generally close to zero, indi
cating equal influence of thermal forcing and photoperiod (plotted as 
purple points in Fig. 5). These results suggest that the 10 ◦C isotherm in 
mean annual temperature identifies a transition zone between regions 
where thermal forcing versus photoperiod is more dominant. 

Results from applying CDSOM to ground-based observations of leaf 
unfolding dates for cloned lilac reveal that even though the individual 
lilac plants are genetically identical, the relative dependence of leaf 
unfolding dates on thermal forcing versus photoperiod depends on local 
bioclimatic conditions (Fig. 6). Consistent with previous studies (Basler 
and Körner, 2012; Schwartz et al., 2006), model coefficients and RI 
values indicate that leaf unfolding in cloned lilac depends more strongly 
on thermal forcing than on photoperiod, irrespective of location. How
ever, thermal control is stronger in colder regions and RI values are 
significantly smaller (i.e., thermal control is less dominant) in warm 
sites than in cold sites. In addition, comparison of cloned lilac data 
against greenup dates from MODIS for the same location show that 
MODIS greenup dates are biased late relative to lilac unfolding dates 
(Fig. A3), especially in warmer areas with earlier greenup dates, which 

Fig. 2. Continuous Development Spring Onset Model (CDSOM) performance. (a) Geographic variation in model root-mean-square error (RMSE) between greenup 
onset dates observed from MODIS and onset dates predicted by the CDSOM model. (b) Boxplots showing the distribution of RMSEs for the CDSOM model and four 
widely used conventional spring greenup models. M1: The exponential photo-thermal time model; PTT: The photo-thermal time model; TT: The thermal time model; 
AT: The alternating model. In panel (b), boxplots are presented in increasing order of magnitude with respect to mean RMSE. 
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supports the conclusion that lilacs are sensitive to temperature. 
Finally, results from the CDSOM reveal patterns of covariance among 

pre-season period length, photoperiod, and thermal forcing that jointly 
control the timing of greenup that are not captured in conventional 
models. In particular, geographic variation in the pre-season period is 
strongly and negatively correlated with geographic variation in the 
relative importance of photoperiod on spring greenup. Fig. 7b shows 
that this relationship follows a power law, where photoperiod control 
decreases (R2 = 0.70, p < 0.001) as the length of the pre-season period 
increases. Fig. 7b also reveals modest heteroscedasticity in the rela
tionship between pre-season period length and photoperiod control, 
which reflects the fact that spring greenup in locations with cooler mean 
annual temperatures and longer pre-seasons have lower dependence on 
photoperiod and higher dependence on thermal forcing (Fig. 5). In 
contrast, the relationship between pre-season period and dependence on 
thermal forcing is statistically significant, but much weaker (R2 = 0.13; 
Fig. A4). 

4. Discussion 

We assessed the relative importance of photoperiod, chilling, and 
thermal forcing in controlling the timing of leaf emergence in Eastern 
Temperate and Boreal Forest ecoregions of North America. To do this, 
we used a hierarchical Bayesian model in combination with time series 
of land surface phenology measurements from remote sensing. The 
former provides a data-driven framework for investigating how different 
bioclimatic controls influence the timing of leaf emergence (Clark et al., 
2014b; Seyednasrollah et al., 2020); the latter provides a robust and 
repeatable means of measuring and monitoring phenological dynamics 
over large areas (Bolton et al., 2020; Zhang et al., 2018). 

The core hypotheses that motivate this research include two main 
elements. First, the ecophysiological processes that control leaf emer
gence respond continuously to variation in environmental controls 
throughout pre-season period prior to greenup in a manner that is not 
represented in conventional models (Clark et al., 2014b). Second, rather 
than simply acting as a cue for entering ecodormancy, photoperiod ex
erts continuous control on the timing of greenup during the pre-season 
period. The results presented in this study suggest that both hypothe
ses are supported. The preseason period, which corresponds to the 
period when the CDSOM latent state variable (h) responds to bioclimatic 
forcing (Fig. 1c), ranges from roughly 2–12 weeks over the study domain 
(Fig. 7a). Throughout this period, changes in h reflect the net effect of 
daily changes thermal and photoperiod controls. By estimating the 
model in a spatially explicit fashion over a large geographic and climatic 

range, CDSOM results provide an empirical basis for quantifying not 
only how thermal forcing and photoperiod individually and jointly in
fluence the timing of greenup, but more generally, how the length of the 
preseason period and relative importance of photoperiod versus thermal 
forcing vary over the study domain. 

Conventional models calibrated using long-term observations of 
phenological events such as those used in this study have been widely 
used to simulate and forecast phenological events for decades (Chuine 
and Régnière, 2017). Like the CDSOM, these models generally use air 
temperature, photoperiod, and chilling units in different configurations 
and combinations to parameterize the response of plants to bioclimatic 
controls and predict the timing of phenophase transitions (Basler, 2016; 
Hufkens et al., 2018). However, as we described previously, Clark et al. 
(2014a, 2014b) argue that most conventional phenology models are 
fundamentally limited because: (1) they aggregate measurements with 
substantial day-to-day variability over periods of weeks-to-months into 
single parameters and therefore do not capture how short-term vari
ability in control variables influences the timing of leaf emergence; (2) 
they rely on parameters that are not identifiable; and (3) they do not 
account for uncertainty in model predictors or leaf emergence data. As a 
solution, Hänninen et al. (2019) argue that carefully designed factorial 
experiments provide the most robust basis for improving understanding 
of processes that control leaf emergence, and hence, for developing and 
testing process-based models. However, implementing such studies is 
difficult and expensive, and collecting sufficient sample data to support 
robust and generalizable models is generally not possible. Reflecting 
these challenges, results from a meta-analysis of warming studies 
showed that phenological changes observed in such experiments do not 
replicate the magnitude of phenological responses to natural variation in 
air temperature observed in natural systems (Wolkovich et al., 2012). 

Data-driven models like the CDSOM are not a panacea, but they do 
resolve several of the issues discussed above. In addition to addressing 
the three limitations identified by Clark et al. (2014a, 2014b), functional 
relationships among control variables in CDSOM are entirely estimated 
from data. Hence the CDSOM avoids issues related to misspecification of 
functional relationships that are inherent to conventional models. 
Further, by exploiting time series of remote sensing observations 
collected over large areas that span nearly two decades, the CDSOM 
results presented here capture and reflect a much broader range of 
climate regimes and climate variability than is generally possible using 
designed experiments. Indeed, we posit that natural variability captured 
through interannual variability in climate over large geographic scales 
provides an important and useful strategy for characterizing and un
derstanding the sensitivity of plant phenology to climate change (Friedl 

Fig. 3. RMSE results across models for anomalous years. (a) Boxplots of RMSEs for each model for 2010 and 2012. (b) Boxplots showing increase in RMSEs for model 
predictions for all years versus anomalous years (i.e., RMSEs for 2010 and 2012 – RMSEs for 2001–2017) at each grid cell. CDSOM: continuous development spring 
onset model; M1: The exponential photo-thermal time model; PTT: The photo-thermal time model; TT: The thermal time model; AT: The alternating model. Boxplots 
are presented in increasing order of magnitude with respect to mean RMSE. 
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et al., 2014). 
Moreover, and perhaps most importantly, while the patterns pre

sented in Figs. 4-7 are superficially consistent with results from previous 
studies suggesting that the timing of spring greenup in deciduous forests 
has become less sensitive to thermal forcing and that the so-called 
‘temperature sensitive period’ of temperate and boreal trees is chang
ing (Fu et al., 2019, 2015; Piao et al., 2017). We suggest that this 
inference may be spurious. Specifically, results from the CDSOM show 
that thermal forcing control on the timing of greenup is heterogeneous 
and exhibits weak covariance with pre-season period. Hence, apparent 
decreases in temperature sensitivity actually reflect shorter pre-season 
periods with increased photoperiod control (Keenan et al., 2019). 
Stated another way, as the climate warms, higher temperatures tend to 
increase the relative importance of photoperiod, while dependence on 
temperature has remained relatively constant. Further, in regions where 
mean annual temperature is below ~10 ◦C, which encompasses a 

significant proportion of the temperate zone and all of the boreal zone, 
photoperiod control is modest and thermal forcing is clearly the domi
nant control. Indeed, our results suggest that the biogeographic range in 
which the relative importance of photoperiod control is increasing is 
restricted to locations with mean annual temperatures between 
~8–10 ◦C, and hence, is relatively narrow. 

The simplest explanation for why photoperiod control varies 
geographically is provided by the “law of the minimum”, which states 
that plant growth is controlled by the scarcest resource rather than by 
the total resources available (Liebig, 1841). Our results are, to a first 
order, consistent with this law. In cold regions (i.e., identified here as 
regions where mean annual temperature is less than ~10 ◦C; Fig. 5), 
temperature is the primary limiting factor that controls the timing of 
greenup. In warmer regions where temperature is less limiting, light (or 
moisture) becomes the primary limiting resource. Invoking a similar 
argument, Park et al. (2019) suggest that extensive areas of high-latitude 

Fig. 4. Geographic variation in the dependence of spring greenup onset date to: (a) thermal forcing, (b) photoperiod, and (c) chilling units. In panel (d), boxplots 
show the distribution of model coefficients for each control variable during the pre-season period prior to leaf emergence in Northern Forests (blue) versus Eastern 
Temperate Forests (red). Differences between the means in both cases are statistically significant (p < 0.001). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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ecosystems that were previously constrained by temperature are 
becoming more sensitive to photoperiod. Further, the results from our 
study are consistent with recent experimental results from Zohner et al. 
(2016), who concluded that springtime phenology in deciduous trees at 
lower latitudes tended to depend more strongly on photoperiod, while 
species at high latitudes leafed out independent of photoperiod. Hence 
our results are consistent with both long-established and more recent 
ecological literature. 

Lastly, it is important to note several limitations of the current study. 
First, rather than modeling the role of chilling in controlling spring 
greenup using continuous (i.e., daily) forcing (Hänninen et al., 2019; 
Murray et al., 1989), the CDSOM uses chilling units, which provide an 
accumulated measure chilling requirements. This suggests that the role 

of the chilling units may not be fully accounted for in this study, and may 
explain the relatively minor role of chilling units in predicting the timing 
of spring greenup that we observed in this study (Fig. 4c and d) (c.f., 
Heide and Prestrud, 2005; Laube et al., 2014). Second, to capture the 
effect of thermal forcing, the CDSOM used daily mean temperature as 
opposed to other measures of thermal forcing such as daily maximum 
and minimum temperature, which some studies have suggested may be 
better predictors. However, results from CDSOM using daily maximum 
and minimum temperatures as inputs did not show significant differ
ences from results based on daily mean temperatures (not shown), and 
more generally, results from studies that have explored this question are 
somewhat inconsistent (c.f., Huang et al., 2020; Piao et al., 2015; Shen 
et al., 2018). That said, because continuous development models are 
explicitly designed to capture the effects of short-term variability in 
forcing variables, selection of optimal metrics to this variability is 
clearly important and merits more investigation. 

5. Conclusions 

Changes in springtime phenology are among the most obvious and 
observable responses of organisms to climate change, but the mecha
nisms behind these changes are poorly understood (Parmesan and Yohe, 
2003; Piao et al., 2019). By directly estimating and mapping the 
geographic dependence of greenup on photoperiod and thermal forcing, 
results from this study elucidate how the nature and magnitude biocli
matic control on spring phenology depend on geography and climate, 
and provide a novel and nuanced explanation for why the temperature 
sensitivity of deciduous forests appears to be decreasing. Specifically, 
our results indicate that apparent changes in temperature sensitivity 
may reflect a misinterpretation of the data, and where present, observed 
decreases actually reflect increased dependence on photoperiod. The 
results also help to clarify the mechanisms behind observed changes and 
have important implications for a variety of ecological processes, such as 
the role of safety mechanisms that are widely ascribed to photoperiod 
constraints on spring phenology (Körner and Basler, 2010). For example, 
Fig. 5 shows that the relative importance of photoperiod decreases as 

Fig. 5. Relative importance (RI) of thermal forcing versus photoperiod. Circles in red and blue show locations where thermal forcing and photoperiod, respectively, 
exert stronger control on the timing of spring greenup; purple circles identify locations where the magnitude of thermal forcing and photoperiod are roughly 
equivalent. The size of each circle is proportional to the magnitude of RI in each cell. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 6. Dependence of cloned lilac leaf unfolding date on thermal forcing and 
photoperiod, and relative importance (RI). 254 total leaf unfolding dates from 
cloned lilac were divided into two groups based on mean annual temperature 
(≤ 10 ◦C, n = 182; > 10 ◦C, n = 72). The left panel plots the mean dependence 
of leaf unfolding on thermal forcing and photoperiod estimated by the CDSOM. 
The right panel plots the mean RI in each group. Positive RI indicates stronger 
control by thermal forcing relative to photoperiod. Vertical lines show ±1 
standard deviation. 

M. Moon et al.                                                                                                                                                                                                                                  



Remote Sensing of Environment 260 (2021) 112466

9

mean annual temperature decreases, which suggests that safety mech
anisms related to photoperiod provide only modest protection in colder 
climates (Richardson et al., 2018a). More generally, our results support 
the argument posited by Zohner et al. (2016) who reported that tree 
species with strong photoperiod control on leaf-out tend to be located in 
warmer regions, and challenge the idea that photoperiod provides a 
safeguard against early leaf emergence in temperate woody species. 
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Appendix A. Appendix  

Table A1 
Models descriptions.  

Model Model type Variables Main characteristics & Statistical assumptions of the model 

CDSOM Date-driven h; δh; hmax; X; T; L; CU; β; P; 
κ; λ; Y; Tb 

Phenological development responses continuously to variations in environmental controls at daily time step 
throughout pre-season period; Invoking no assumptions about functional relationships between control variables 

TT Knowledge- 
driven 

F*; Sf; T; Tb Greenup onset occurs when accumulated forcing reaches a critical threshold, which sorely relies only on thermal 
forcing with no additional factors 

PTT Knowledge- 
driven 

F*; Sf; T; Tb; L Greenup onset occurs when accumulated forcing reaches a critical threshold, but the rate of thermal forcing is regulated 
by photoperiod 

M1 Knowledge- 
driven 

F*; Sf; T; Tb; L; k Greenup onset occurs when accumulated forcing reaches a critical threshold, but the rate of thermal forcing is regulated 
by photoperiod as an exponential 

AT Knowledge- 
driven 

F*; NCD; a; b; c Greenup onset occurs when accumulated forcing reaches a critical threshold, but the rate of thermal forcing is regulated 
by the number of chilling days 

CDSOM: Continuous Development Spring Onset Model; TT: Thermal Time model (TT); PTT: Photo-Thermal Time model (PTT); M1: Exponential Photo-Thermal Time 
model (M1); AT: Alternating model; h: latent state; δh: daily latent state increment; hmax: theoretical final state of h; X: matrix of predictor variables T, L, and CU (daily 
mean temperature, day-length, and chilling units, respectively); β: vector of estimated model coefficient for T, L, and CU; P: probability that greenup onset occurs; κ and 
λ: intercept and slope for logit transformation, respectively; Y: Bernoulli trial indicating whether or not greenup onset has occurred; Tb: base temperature for chilling 
requirement; F*: critical threshold that spring greenup onset occurs when the state of forcing (Sf) reaches it; k: exponential coefficient for M1; NCD: number of chilling 
days; estimated constants for AT.  

Fig. 7. Variation in pre-season period and the relationship between greenup dependence on photoperiod and length of pre-season period. (a) Geographic pattern in 
pre-season period, and (b) log-log relationship between the dependence of greenup on photoperiod and the length of the pre-season period. 
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Fig. A1. Map of the study area. Extents of the US EPA Northern Forest and Eastern Temperate Forest Level I ecoregions, along with the proportion 500 m MODIS 
pixels labeled as deciduous forests in each grid cell according to the Collection 6 MODIS Land Cover Type product. Red crosses show the USA-National Phenology 
Network site locations where lilac data are collected. Note that because the MODIS Land Cover Type product uses a threshold of 60% cover to define forest classes, 
the map shown in Fig. A1 modestly over-represents the actual proportion of deciduous forest cover. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)  
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Fig. A2. Relationship between anomalies in MODIS onset dates and anomalies in model-predicted onset dates. Panels (a)-(e) show results for the Continuous 
Development Spring Onset Model (CDSOM), the thermal time model (TT), the photo-thermal time model (PTT), the exponential photo-thermal time model (M1), and 
the alternating model (AT), respectively. Dashed lines and correlation coefficients (r) show the results from standard major axis regression. 

Fig. A3. Relationship between MODIS greenup dates and leaf unfolding dates from the USA-NPN cloned lilac dataset. The colder (blue dots) and warmer (red dots) 
sites are divided based on mean annual temperature (i.e., colder ≤10 ◦C; warmer >10 ◦C). n (= 198) is different from the total number of USA-NPN leaf unfolding 
dates (n = 254) due to cases where no MODIS dates were available because the lilac site was not located in a location dominated by deciduous or mixed forest at the 
scale of MODIS pixels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A4. Relationship between pre-season period length and dependence on thermal forcing.  
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