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A B S T R A C T

Vegetation phenology is widely acknowledged to be a sensitive indicator of the response of ecosystems to climate
change, and phenological shifts have been shown to exert substantial impacts on ecosystem function, biodi-
versity, and carbon budgets at multiple scales. Therefore, long-term records of the phenology of the vegetated
land surface are critical in exploring the biological response to environmental change at regional to global scales.
Land surface phenology (LSP) from satellite observations has been extensively used to monitor the dynamics of
terrestrial ecosystems in the face of a changing climate. Here we introduce and describe the global land surface
phenology (GLSP) product derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) data at a gridded
spatial resolution of 500m. This new product will provide continuity for the Moderate Resolution Imaging
Spectroradiometer (MODIS) GLSP product that has been produced on an operational basis since 2001. The VIIRS
GLSP algorithm uses daily VIIRS Nadir BRDF (Bidirectional Reflectance Distribution Function)-Adjusted
Reflectance (NBAR) data as the primary input to calculate the two-band enhanced vegetation index (EVI2) at
each 500m pixel. The temporal EVI2 trajectory is modeled using a hybrid piecewise logistic function to track the
seasonal vegetation development, detect phenological transition dates, calculate the magnitude of vegetation
greenness development, and characterize the confidence of phenology detections. The VIIRS GLSP algorithm has
been implemented across the contiguous United States, and the resulting phenological metrics have been
evaluated through comparisons with species-specific field phenological observations, Landsat phenology re-
trievals, and the MODIS phenology detections. The results demonstrate that the VIIRS GLSP metrics are of high
quality and are in a good agreement with the other independent satellite and field observations. The results also
indicate that the uncertainty in the VIIRS GLSP retrievals is primarily associated with missing high quality
observations in VIIRS EVI2 time series.

1. Introduction

Vegetation phenology can be a sensitive indicator of biological re-
sponses to environmental change (Cleland et al., 2012; Ivits et al., 2012;
Morisette et al., 2009). Long-term records of vegetation phenology,
observed from both species-specific in situ data and satellite observa-
tions, have been used to explore the dynamics of biospheric processes at
regional to global scales (Cleland et al., 2007; Korner and Basler, 2010;
Parmesan and Yohe, 2003; Richardson et al., 2013; Walther, 2010).
Because vegetation phenology is a parameter that is readily observable
and easily understood by the public, it is widely acknowledged to be a
key indicator that can be used to track ecosystem responses to climate
change by the Intergovernmental Panel on Climate Change (IPCC,

2007, 2014), the United States Global Change Research Program
(USGCRP, 2010, 2015), and the Environmental Protection Agency
(EPA, 2016).

The phenological dynamics of vegetation influence a host of eco-
physiological processes including hydrological processes (Gerten et al.,
2004; Hogg et al., 2000; Vivoni, 2012), biogeochemistry and nutrient
cycling (Campbell et al., 2009; Cooke and Weih, 2005), land-atmo-
sphere interactions (Heimann et al., 1998; Puma et al., 2013), and
terrestrial carbon cycling across a wide range of ecosystem and climatic
regimes (Baldocchi et al., 2001; Churkina et al., 2005; Gray et al., 2014;
Richardson et al., 2009). The presence and absence of foliage affects
land surface albedo (Moore et al., 1996; Ollinger et al., 2008; Wang
et al., 2017; Williamson et al., 2016), and exerts strong controls on
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surface radiation budgets and the partitioning of net radiation between
latent and sensible heat fluxes (Chen and Dudhia, 2001; Vivoni, 2012).
Therefore, accurate and timely information related to the spatio-
temporal dynamics of vegetation phenology is required for investiga-
tions focused on monitoring climate change and modeling biospheric
processes. While some data sets related to the phenology of particular
plant species have been collected at specific sites and across networks,
remote sensing provides the only realistic way to observe and monitor
phenological dynamics and changes at landscape to global scales on a
systematic basis.

Phenological metrics characterizing seasonality in the vegetated
land surface have been widely observed from remotely sensed data at
regional to global scales over the past three decades. To distinguish
these metrics from direct measurements of plant phenology collected on
the ground, remote sensing-based observations of phenology are gen-
erally referred to as land surface phenology (LSP) (de Beurs and
Henebry, 2004; Friedl et al., 2006; Henebry and de Beurs, 2013). Sa-
tellite remote sensing data at a moderate spatial resolution provide
global daily measurements of land surface properties, and therefore are
well-suited for monitoring the seasonal patterns and trends due to re-
gional to global phenological variation and change (de Beurs and
Henebry, 2005; Henebry and de Beurs, 2013; Reed et al., 1994; White
et al., 1997; Zhang et al., 2003; Zhang et al., 2014). As a result, ex-
ploiting the growing archive of global optical satellite data, such as the
Advanced Very High Resolution Radiometer (AVHRR), the Moderate
Resolution Imaging Spectroradiometer (MODIS), and SPOT-VEGETAT-
ION, a number of algorithms have been developed to detect LSP at
regional and global scales. These algorithms rely on a time series of
vegetation indices (VI) that are smoothed to reduce noise in weekly to
biweekly values. The most commonly used smoothing methods include
moving-window averages (Reed et al., 1994), Fourier harmonic ana-
lyses (Moody and Johnson, 2001), asymmetric Gaussian function-fits
(Jonsson and Eklundh, 2002), piece-wise logistic functions (Zhang
et al., 2003), Savitzky–Golay filters (Chen et al., 2004), quadratic
models based on degree-day accumulations (de Beurs and Henebry,
2004; Henebry and de Beurs, 2013), and polynomial curve fitting
(Bradley et al., 2007). Smoothed VI time series are then used to detect
phenological metrics based on a wide array of methods that identify the
timing of the start and end of a vegetation growing season, including
threshold-based techniques (Jonsson and Eklundh, 2002; White et al.,
1997), harmonic analyses (Jakubauskas et al., 2001; Moody and
Johnson, 2001), and inflection point estimates within the time series of
vegetation indices (Moulin et al., 1997; Zhang et al., 2003). However,
considerable differences still exist among the various phenological de-
tection methods (de Beurs and Henebry, 2010; White et al., 2009).

Although a great number of LSP products have been developed
using different methods and satellite observations, most of them have
been produced for specific regions and time periods for specific re-
search purposes. To date, the MODIS Land Cover Dynamics Product
(MCD12Q2) is the only global land surface phenology (GLSP) product
that is produced on an operational basis from 2001 to present (Ganguly
et al., 2010; Zhang et al., 2006; Zhang et al., 2003), and is publically
accessible (https://lpdaac.usgs.gov/dataset_discovery/MCD12Q2). This
product (MCD12Q2) employs MODIS enhanced vegetation index (EVI)
data, computed from the MODIS nadir bidirectional reflectance dis-
tribution function (BRDF)-adjusted reflectance (NBAR) data (Schaaf
et al., 2002) to generate 500m gridded phenological metrics on an
annual basis (Ganguly et al., 2010).

As the MODIS sensors on both Terra and Aqua are aging and nearing
the end of their duty cycles (expected to continue operating through
early 2020s), the Visible Infrared Imaging Radiometer Suite (VIIRS),
launched on the Suomi National Polar-orbiting Partnership (NPP)
platform in October 2011, is being used to continue the record of
measurement provided by the MODIS instruments (Goldberg et al.,
2013; Justice et al., 2013). The VIIRS instrument represents a new
generation of moderate-resolution imaging radiometer that follows the

legacy of the MODIS and AVHRR sensors (Justice et al., 2013; Román
et al. 2012). In support of this, an operational VIIRS product is being
implemented to continuously monitor the dynamics of global land
surface phenology and to establish a long-term phenological data re-
cord for the post-MODIS era. This product will provide consistent
spatial and temporal estimates of the timing and magnitude of vege-
tation phenological development across the globe, and will be suitable
for characterizing and understanding interannual-to-decadal scale
ecosystem variation in response to environmental change. This paper
provides an overview of the 500m VIIRS GLSP product generation,
including the algorithm development and product evaluation.

2. Algorithms for the VIIRS GLSP

The VIIRS GLSP algorithm is based on the heritage of the MODIS
land cover dynamics (MLCD12Q2) algorithm in collection 5 (Ganguly
et al., 2010). Although the details of the MODIS GLSP have been de-
scribed elsewhere (Zhang, 2015; Zhang et al., 2006; Zhang et al., 2003),
the VIIRS algorithm is different in several important elements, and so
here we provide a brief description of the algorithm used specifically for
the generation of VIIRS GLSP product.

2.1. Input data

The primary input will be the daily 500m VIIRS BRDF NBAR pro-
duct (VNP43IA4). Daily NBAR values are produced utilizing all high-
quality, cloud-cleared, and atmospherically-corrected surface re-
flectance available over a 16-day moving window to identify the best fit
parameters for the Ross-Thick/Li-Sparse-Reciprocal (RTLSR) semi-em-
pirical BRDF model (Liu et al., 2017c; Schaaf et al., 2002; Schaaf et al.,
2011; Wang et al., 2018; Wang et al., 2012). The daily retrieved BRDF
model parameters are used to correct the reflectance variations re-
sulting from off-nadir viewing geometry and to adjust the solar zenith
angle to local solar noon. The NBAR product also provides quality as-
surance (QA) flags, including the retrieval quality (high quality – NBAR
retrieval from the full inversion model; low quality - NBAR retrieval
from the back up magnitude inversion model; and fill values - no sur-
face retrievals because of cloud cover or a lack of VIIRS observations)
(Liu et al., 2017b). The presence of snow in the NBAR data is flagged in
the VIIRS BRDF\Albedo\NBAR Quality Assurance product (VNP43IA2).

To evaluate the VIIRS GLSP product, this study uses 14 tiles of VIIRS
NBAR data and the corresponding QA product (VNP43IA4 and
VNP43IA2) that were generated offline while the operational VIIRS
BRDF/Albedo/NBAR products will be released through NASA in late
2018. These tiles (h08v04, h08v05, h08v06, h09v04, h09v05, h09v06,
h10v04, h10v05, h10v06, h11v04, h11v05, h12v04, h12v05 and
h13h04) cover the entire CONtiguous United States (CONUS), southern
Canada, and northern Mexico. The data collected ranged from July
2012 to June 2015 and were used to detect phenological metrics for
2013 and 2014.

Ancillary data used by the algorithm will include VIIRS land surface
temperature (LST) and land cover types. In this study, we use the
MODIS land surface temperature product (MOD11A1) from July 2012
to June 2015 and the MODIS 500m land cover product (MCD12Q1)
from 2013 to implement the VIIRS GLSP algorithm, because NASA
gridded VIIRS LST product is still under development and there is
currently no VIIRS land cover product. The daily 1 km MODIS LST data
were resampled to a 500m grid using a nearest neighbor method to
match the spatial resolution of the NBAR data.

2.2. Preprocessing of NBAR time series

The daily two-band enhanced vegetation index (EVI2) will be cal-
culated from the red and near infrared VIIRS NBAR products to track
seasonal variation in the vegetated land surface. Note that there is no
available blue surface reflectance product to compute a conventional
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EVI, but EVI2 has been shown to be functionally equivalent to EVI
(Huete et al., 2006; Jiang et al., 2008), and has several advantages over
the NDVI which is most commonly used for monitoring vegetation.
Specifically, EVI2 is less prone to saturation over dense vegetation
cover and is less sensitive to different background soil reflectances and
non-green winter land surfaces (Huete et al., 2006; Jiang et al., 2008;
Rocha and Shaver, 2009). Moreover, phenological metrics detected
from the EVI2 time series are more comparable to in situ PhenoCam
observations than those from satellite based NDVI values (Klosterman
et al., 2014). To reduce the data volumes, while still retaining fine
temporal resolution, and to increase processing speed, daily NBAR EVI2
values will be aggregated to 3-day composites by first selecting the best
quality data within each 3-day window and selecting the maximum
value composite if more than one value is available in each 3-day
period. In parallel, the corresponding NDVI values are also recorded to
identify anomalously large EVI2 (see below).

Unusually large EVI2 values can arise from spuriously low red band
values caused by an inaccurate atmospheric correction or a variety of
other factors. To exclude these cases, anomalous EVI2 values are
identified as EVI2 values that are larger than 90% of the corresponding
NDVI values, or that are larger than 110% of any EVI2 values generated
during the previous and succeeding one-month periods. These thresh-
olds were determined from a comparison of MODIS NDVI and EVI2
time series across the globe. When such anomalous values are identi-
fied, they are treated as fill values.

To remove the effect of snow on the EVI2 data, the algorithm
identifies the minimum snow-free EVI2 value (hereafter, “the back-
ground EVI2”) for each pixel based on a two-year window that includes
the preceding half-year, the current year, and the subsequent half-year.
The background EVI2 value represents the minimum EVI2 of the soil
and vegetation mixture in an annual time series (Zhang, 2015; Zhang
et al., 2007). Assuming that vegetation is dormant during the winter (or
wherever the surface has daytime LST < 278 K), the maximum EVI2
value during the dormant phase reflects the snow-free surface back-
ground condition before the onset of the growing season. However,
reliable EVI2 values during winter are not always obtained from any
given two-year period, as there may be no cloud- and snow- free ob-
servations available. Thus, the candidate background EVI2 values are
first determined using: (1) the mean of the 50% largest cloud- and
snow-free winter EVI2 values, where the winter period is determined
based on LST < 278 K, or (2) the mean of the 10% smallest cloud-free
EVI2 values during periods where LST > 278 K appears during the
two-year window. If both cases occur, the average of these two candi-
date values is used as the background value. Otherwise, the latter is
selected if high quality EVI2 values during winter are not available.
Note that the LST is only used to identify the time period when irregular
EVI2 values are contaminated by residual snow or partial snow cover
(including under-canopy snow), rather than to determine an exact
winter period by date.

The resulting VIIRS EVI2 time series over each two-year window
will be then smoothed to further reduce any remaining noise. Persistent
cloud cover is the major issue that causes missing data in the VIIRS
NBAR product, and significantly reduces the numbers of observations
and quality of EVI2 time series. Such fill values in the EVI2 time series
are replaced using the moving average of the two neighboring high
quality values starting from the point closest to the larger EVI2 values.

Spurious phenology cycles in EVI2 time series, which frequently
arise because of variation caused by residual unscreened cloud influ-
ences in periods of persistent cloud contamination, will be removed
depending on the land cover type. Specifically, it is assumed that two
vegetation growing peaks (cycles) do not occur within six months in
forest land cover types or within two months in shrublands, grasslands,
and croplands. Where detected, these spurious cycles are flagged, and
associated EVI2 values are replaced using a moving average of the two
neighboring high quality values. Finally, after cloud-contaminated va-
lues are replaced, Savitzky-Golay filters will be applied to further

ameliorate irregular variations in the EVI2 time series.

2.3. Detection of phenological metrics

Greenup and senescence phases of vegetation growth cycles will be
identified from the smoothed EVI2 time series. These phases represent
periods at each pixel with sustained EVI2 increase or decrease, where
transitions from periods of increasing (decreasing) EVI2 to periods of
decreasing (increasing) EVI2 are identified by changes from positive to
negative slope over five-point moving windows. Short periods with
slight decreases or increases in EVI2 that result from transient processes
unrelated to vegetation cycles could still retain in some cases after
preprocessing in Section 2.2. These short periods are only removed if
the ratio of the local maximum EVI2 to the annual maximum EVI2
is< 0.25. This approach screens out short-term variations unrelated to
growth and senescence cycles, while allowing multiple growth cycles
within any 12-month period to be retained.

A hybrid piecewise logistic model (HPLM) will be applied to the
times series to model each EVI2 increasing or decreasing phase in a
vegetation growth cycle. The HPLM accommodates EVI2 trajectories
that are associated with both favorable conditions and stressed condi-
tions in vegetation growth using the following formula (Zhang, 2015):
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where t is time in the day of year (DOY), a is related to the vegetation
growth period, b is associated with the rate of plant leaf development, c
is the amplitude of EVI2 variation, d is a vegetation stress factor
(Elmore et al., 2012; Melaas et al., 2013), and EVI2b is the background
(dormant season) value. In order to determine whether the plant suffers
from stress or not, the time series fit to Eqs. (1) and (2) are compared
using an index of agreement described in Section 2.4 (Eq. (5)), and the
function with the better fit is selected.

From the fitted HPLM models, the curvature K(t) and curvature
change rate K(t)′ are calculated to identify distinct phenological tran-
sition dates that correspond to a day-of-year (DOY) (Zhang et al., 2003):
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where α is the angle (in radians) of the unit tangent vector at time t
along a differential curve, s is the unit length of the curve, and EVI2(t)′
and EVI2(t)″ are the first and second derivatives of EVI2(t), respectively.

Based on the HPLM (Eqs. (1) and (2)) and the curvature change rate
(Eq. (4)), a set of phenological metrics in the VIIRS GLSP product will
be identified. During a vegetation growth period, when vegetation
transitions from a dormant phase to a greenup phase, three extreme
points are identified along K(t)′. Two maximum and one minimum va-
lues correspond, respectively, to the following phenological transition
dates: (1) greenup onset (the date of onset of EVI2 increase), (2) ma-
turity onset (the date of onset of EVI2 maximum), and (3) date at mid-
greenup phase. During a senescence period, when vegetation transitions
from the maturity phase to a senescence phase, three extreme points
(two minimum and one maximum values) are used to identify transition
dates: (4) senescence onset (the date of onset of EVI2 decrease), (5)
dormancy onset (the date of onset of EVI2 minimum), and (6) date at
mid-senescent phase. In addition, the VIIRS GLSP algorithm also retains
the EVI2 values at the greenup onset and maturity onset.

2.4. VIIRS GLSP quality assurance

Quality assurance (QA) information is included in the VIIRS GLSP
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product. To this end, information related to the HPLM model fit and the
proportion of high quality data in a EVI2 time series will be employed
to quantify the relative quality of the GLSP metrics at each pixel. The
goodness of fit characterizes discrepancies between the HPLM modeled
values and the high quality VIIRS NBAR EVI2 observations from
greenup onset to dormancy onset at each pixel using an agreement
index (AI) (Willmott, 1981; Zhang, 2015):
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where n is the number of VIIRS NBAR observations with high quality,
P(i) is the HPLM modeled value at ith observation, O(i) is the EVI2 value
with high quality, and Ō is the mean EVI2 with high quality during a
vegetation growing season.

The agreement index (AI) provides a measure of the relative error in
model estimates at each pixel. It is dimensionless and ranges from 0
(complete disagreement) to 100 (perfect fit). The AI is also sensitive to
differences between observed and modeled means (Willmott, 1981).
Thus, the AI is comparable across different biomes and climates.

The quality of the fitted HPLM model at each pixel is strongly de-
pendent on the number of high quality observations (Zhang et al.,

2009). Accordingly, the proportion of high quality (PHQ) EVI2 values
during a vegetation growing season for a given pixel is included in the
quality assurance data for that pixel. Based on a sensitivity analysis, the
error in vegetation phenology detection using logistic models is mini-
mized if the temporal resolution of the vegetation index is finer than
8 days (Zhang et al., 2009). In other words, vegetation temporal tra-
jectories can be realistically reconstructed if there is at least one high
quality EVI2 observation within each 8-day period during the vegeta-
tion growing season. In the VIIRS GLSP algorithm, the quality of ob-
servations during each growing season at each pixel is calculated as:

= ×P
N
T

100hq
hq

(6)

where Phq is the proportion of high quality observations (ranging from 0
to 100), T is the total number of 3-day EVI2 during a growing season,
and Nhq is the number of three 3-day moving windows that contain high
quality observations.

Because the four key phenological transition dates (greenup onset,
maturity onset, senescence onset, and dormancy onset) are the most
important metrics provided in the phenological product, a confidence
metric for each phenological transition date is also included in the
VIIRS GLSP product. Specifically, the local EVI2 quality around each
phenological transition date is used to describe the confidence for the
corresponding phenological transition date detection. The local EVI2

Fig. 1. Time series of VIIRS NBAR EVI2 data and HPLM-modeled curves for several randomly selected IGBP land cover types during 2013–2014. IGBP1-evergreen
needleleaf forest, IGBP4-deciduous broadleaf forest, IGBP5-mixed forest, IGBP7-open shrublands, IGBP8-woody savanna, IGBP10-graslands, IGBP12-croplands, and
IGBP14-cropland/natural vegetation mosaic.
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quality is defined as the local proportion of high quality (LPHQ) EVI2
values during the three 3-day periods before and after a specific de-
tected phenological transition date. This period is determined based on
a previous sensitivity analysis of phenology date detection (Zhang et al.,
2009). Thus, unique LPHQ values are calculated for the greenup onset,
maturity onset, senescence onset, and dormancy onset metrics at each
pixel.

3. Evaluation of VIIRS GLSP metrics

Evaluation (or validation) of satellite-derived land surface phe-
nology is one of the most critical and challenging tasks. The NASA
phenology sub-group suggests to conduct validation activities using
sites with detailed spatial and temporal ground phenological observa-
tions incorporating multiple resolution scaling opportunities across a
distributed range of biomes (https://lpvs.gsfc.nasa.gov/Pheno/Pheno_
home.html). To evaluate the VIIRS GSLP metrics, therefore, four data-
sets from different scales are exploited: (1) species-specific measure-
ments from national phenological networks, (2) observations from
higher spatial resolution Lanndsat data, (3) observations from MODIS
sensors, (4) near-surface monitoring from PhenoCam. This study in-
vestigates first three datasets since the evaluation using PheniCam has
been conducted and published (Zhang et al., 2018).

3.1. Comparison with field observations

VIIRS GLSP metrics are evaluated using independent data obtained
from the United States of America National Phenology Network (USA-
NPN; https://www.usanpn.org). The USA-NPN has developed standar-
dized methods for professionals and volunteers to observe and report on
the phenology of plants and animals (Denny et al., 2014; Rosemartin
et al., 2015). These phenological observations have been widely used to
evaluate remote sensing phenology products and to develop models for
predicting the timing of spring leaf emergence (Gerst et al., 2016; Jeong
et al., 2013; Melaas et al., 2016; Peng et al., 2017b). Here we utilize
observations of the timing of leaf bud break for all individual species
reported in the USA-NPN across the CONUS in 2013 and 2014 (which
includes observations for horticultural species such as cloned lilacs and
honeysuckles). The cloned lilac and honeysuckle observations have
been observed over a long period starting as early as the 1950s
(Rosemartin et al., 2015), and have also been widely used in the eva-
luation of satellite phenology detections, trends, and extreme events
(Allstadt et al., 2015; Ault et al., 2013; Ault et al., 2015; Zhang et al.,
2007). To evaluate the VIIRS GLSP product, species-specific timing of
leaf bud break data is compared with greenup onset dates in the VIIRS
pixels extracted at locations where the NPN data were collected. If more
than one USA-NPN observation is available within a VIIRS pixel, the
observations are simply averaged. Finally, the relative difference be-
tween VIIRS greenup onset and field observation dates is calculated and

Fig. 2. Phenological transition dates in the VIIRS GLSP detection for 2013 (geographic projection). (a) Timing of greenup onset, (b) mid-date of greenup phase, (c)
timing of maturity onset, (d) timing of senescence onset, (e) mid-date of senescence phase, and (f) timing of dormancy onset. The vertical and horizontal lines in (a)
are the locations of phenological profiles described in Fig. 3. The gray color represents either water or arid areas without detectable vegetation growth.
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their linear correlation is estimated using a geometric mean functional
regression (GMFR), a method used for regression analysis that accounts
for uncertainty in both the dependent and independent variables.

3.2. Comparison with Landsat phenology detections

VIIRS GLSP product is also evaluated using LSP detections from
Landsat data. The USGS (United States Geological Survey) Center for
EROS (Earth Resources Observation and Science) generates atmo-
spherically corrected surface reflectance products that are freely ac-
cessible from the USGS archive (http://earthexplorer.usgs.gov/). In this
study, we detect 30m phenological dates from Landsat data in two local
regions, seperately. First, we utilize atmospherically corrected surface
reflectance products from both the Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI)
data in the overlapping zone between path 43/row 33 and path 44/row
33 in 2013, which is located in the Sierra Nevada Mountains,
California, with land cover types of oak/grass savanna, open grassland,
and mixed forest (Liu et al., 2017a). This dataset includes two Landsat 7

and two Landsat 8 overpasses during each 16-day repeat cycle. Second,
we obtain daily fused MODIS – Landsat 8 OLI time series in the central
CONUS (Landsat scene of path 26/row 31) in 2013 (Gao et al., 2017),
where croplands dominate. The fused time series from Landsat 8 OLI
and daily MODIS data provide daily surface reflectance at a spatial
resolution of 30m generated using the STARFM algorithm (Gao et al.,
2006). We hereafter refer to these two datasets as the Landsat time
series.

Using these Landsat time series, we calculate the EVI2 time series
for each region and detect six phenological transition dates using the
same approach as for the VIIRS GLSP generation at each 30-m pixel. We
then compare the VIIRS phenological dates (500m) with Landsat
phenology detections (30m) in the relatively homogeneous areas, re-
cognizing that Landsat phenological dates within a heterogeneous
VIIRS pixel may vary by as much as three months (Zhang et al., 2017c),
which makes it difficult to aggregate 30m phenological dates to 500m
scales for comparisons. To identify homogeneous pixels, the standard
deviation (SD) of the Landsat phenological dates within a VIIRS pixel is
calculated, and the SD cumulative frequency distribution is computed

Fig. 3. Profiles of greenup onset along latitude (a) and longitude (b) in 2013. The profiles are defined in Fig. 2: Lat1= 45.0°N, Lat2=37.0°N, Lat3=30.5°N,
Lon1= 81.5°W, Lon2=91.0°W, and Lon3= 81.5°W.

Fig. 4. Spatial distribution of vegetation greenness (EVI2) at greenup onset (a) and at maturity onset (b) in 2013 (geographic projection). The white color represents
either water or arid areas without detectable vegetation growth.
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for each Landsat scene. The 20% of the pixels with lowest SD in each
region are identified as the most homogeneous pixels. The Landsat
phenological dates in these pixels are then used to evaluate each of the
six VIIRS phenological dates in the gridded VIIRS pixel by calculating
the mean absolute difference (MAD) and the root mean square

difference (RMSD).

3.3. Comparison with MODIS phenology values

Intercomparison between the VIIRS and MODIS phenology

Fig. 5. Variation in the EVI2 greenness at greenup onset and at maturity onset as a function of latitude (a) and longitude (b). The profiles are defined in Fig. 2:
Latitude=37.0°N and Longitude=81.5°W. The IGBP land cover classes are: 0-water, 1-evergreen needleleaf forest, 2-evergreen broadleaf forest, 3- deciduous
needleleaf forest, 4-deciduous broadleaf forest, 5-mixed forest, 6-closed shrublands, 7-open shrublands, 8-woody savanna, 9-savanna, 10-grasslands, 11-permanent
wetlands, 12-croplands, 13-urban and built-up areas, 14-cropland/natural vegetation mosaic, 15-snow and Ice, 16-barren or sparsely vegetated.

Fig. 6. Spatial variation in the quality of the VIIRS NBAR EVI2 time series (tile h11v04 in sinusoidal projection) in 2013. (a) agreement index (AI), (b) PHQ during
the growing season, (c) LPHQ around greenup onset, (d) LPHQ around maturity onset, (e) LPHQ around senescence onset, (f) LPHQ around dormancy onset. The gray
pixels are water.
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detections is performed to characterize and quantify their similarity.
This comparison allows us to understand the sources that could cause
the differences of phenology detections from VIIRS and MODIS data
and generate a consistent long-term environmental data record of GLSP
from MODIS and VIIRS. Here we calculate the MODIS phenological
metrics using the gridded 500m MODIS NBAR product (MCD43A4
collection 6) which is produced from a combination of Terra and Aqua
MODIS data for tiles of h11v04 (central CONUS), h12v04 (northeastern
CONUS), and h08v05 (western CONUS). Although VIIRS and MODIS
GLSP products have gridded pixel sizes of 500m, the effective spatial
resolution is closer to 833m×618m for the MODIS NBAR product and
565m×595m in the VIIRS NBAR product (Campagnolo et al., 2016).
Therefore, the difference between VIIRS and MODIS phenological dates
are compared based on both the raw phenological dates and spatially
smoothed values using a 3×3 moving window.

Further, we examine the differences in the proportion of high
quality observations between the MODIS and VIIRS time series because
the quality of the time series is the major source of uncertainty in
phenology detections (Zhang et al., 2017b). This difference arises from
the fact that MODIS NBAR is produced from both Terra and Aqua
MODIS observations while the VIIRS NBAR is produced only from the
single NPP VIIRS sensor observations. The impact of EVI2 data quality
on phenology detections is investigated using LPHQ in modeling the
MODIS and VIIRS time series. Specifically, we stratify the quality of the
EVI2 time series into four categories: high quality if the
LPHQ=80–100 occurs in both the MODIS and VIIRS EVI2 datasets,
moderate quality if the LPHQ=40–80, poor quality if the
LPHQ=10–40, and other quality if the LPHQ≤ 10 or if the LPHQ in

both datasets are within different ranges. In each category, the pixel
frequency is calculated against the absolute difference of the phenolo-
gical dates between the MODIS and VIIRS detections. The pixel fre-
quency in the four quality categories is then used to evaluate the impact
of the EVI2 quality on phenology detections.

4. Results

4.1. VIIRS EVI2 temporal trajectories in various land cover types

Fig. 1 presents examples of the VIIRS NBAR EVI2 time series during
2013 and 2014, depicting vegetation seasonality across various land
cover types. Visual examination indicates that NBAR EVI2 values with
high quality (from the full BRDF model) and low quality (from the
magnitude BRDF model) track similar seasonal variation in EVI2, al-
though EVI2 values with low quality are more likely to be associated
with large uncertainty. The HPLM fits the EVI2 observations well al-
though the EVI2 curves exhibit dissimilar shapes for the different land
cover types. The agreement index (AI) between the HPLM modeled
values and high quality EVI2 observations for these cases is larger than
90%, indicating the robustness of the HPLM in tracking vegetation
seasonality. The AI is larger than 95% for deciduous and mixed forests,
croplands, and grasslands, but is lower in shrublands, savannas, and
evergreen forests where seasonality in EVI2 is weaker.

4.2. Spatial pattern of VIIRS phenological transition dates

Fig. 2 presents geographic patterns in the six phenological transition

Fig. 7. Cumulative pixel proportion (%) for the average quality of VIIRS EVI2 time series in 2013–2014. (a)–(c) show the local proportion of high quality (LPHQ)
values around the greenup onset, maturity onset, senescence onset, and dormancy onset for tiles h11v04, h12v04, and h08v05. (d) indicates the HPLM agreement
index and the proportion of high quality (PHQ) EVI2 observations during the vegetation growing season.
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dates from the VIIRS GLSP. As expected, the spatial pattern of these
phenological dates differs across the CONUS. The pattern is spatially
distinctive and very similar for the greenup and dormancy onsets, al-
though the timing shifts along latitude in the eastern and central
CONUS, where local gradients are interrupted by mountainous areas
and by croplands. Over the western CONUS, however, the timing of
greenup and dormancy onsets do not display such coherent spatial
patterns. Similar to the greenup and dormancy onset, the mid-greenup
and senescence dates also show geographic patterns, but are less dis-
tinct spatially. In contrast, the geographic patterns in both maturity and
senescence onsets are very similar across central and eastern CONUS.

Latitudinal and longitudinal gradients in greenup are illustrated in
Fig. 3. Timing of greenup onset depends strongly on latitude but the
pattern is different in eastern and western regions (Fig. 3a). At 81.5°W,
where forests dominate, greenup onset shows a clear gradient from
DOY 60 in the south to DOY 150 in the north. It is interrupted by
mountains (the Appalachian Mountains and the Allegheny Mountains
located around 36°N–38°N), with a delay as large as one month, and by
croplands (located around 42.8°N–44.3°N), with a delay as large as one
and a half months relative to surrounding areas. In the central CONUS
along the 91.0°W where croplands dominate, greenup onset is influ-
enced by the timing of cultivation. Although a latitude gradient is
evident, variation in greenup onset relative to neighboring pixels is
distinctive because (1) natural vegetation tends to green up earlier than
crops and (2) the timing of crop planting and subsequent greenup varies
by crop types, e.g., corn (maize) is planted earlier than soybean. In the
western region along at 108.5°W, greenup timing among neighboring

pixels show high local variability, with differences as large as three
months. Although the timing of greenup onset shows no latitudinal
dependence from 35.5°N southwards, a distinct latitudinal gradient is
identifiable from 37°N northwards. In contrast, longitudinal profiles
show complex patterns (Fig. 3b) in which greenup shifts later from the
west coast to the Rocky Mountains, shows a weak gradient that reflects
changes in elevation on the eastern slope of the Rocky Mountains, and
remains relatively stable with little variation as a function of longitude
in the eastern region. All three profiles reveal that the timing of greenup
display substantially variability from 100°W westwards, and that in the
eastern CONUS, notable differences are observable between the
southern (~30.5°N) and northern (45°N) regions.

4.3. Spatial patterns in LSP amplitude

Fig. 4 presents maps showing the EVI2 amplitude at each pixel,
based on the EVI2 values on the greenup and maturity onset dates.
Overall greenness displays a distinct spatial variation across the
CONUS, in which EVI2 is low in the most western CONUS (except in the
northwest), and high in eastern regions. However, the EVI2 value on
the greenup onset date shows much more spatial variation than the
corresponding values on the maturity date. EVI2 greenness at greenup
onset is slightly lower in croplands relative to the surrounding natural
vegetation, but is slightly higher in the southern region than in the
northern region. In contrast, the EVI2 greenness at maturity onset is
generally> 0.4 in the eastern region, with the highest EVI2 values in
the central CONUS croplands and in the eastern deciduous forests.

Fig. 8. Comparisons of the VIIRS LSP detections with the USA-NPN observations during 2013 and 2014: (a) regression for leaf bud break across all species
(y=−4.57+ 0.977x, R=0.655, n=5821), (b) regression for leaf bud break in lilac and honeysuckle clones only (y= 1.06+1.03x, R=0.500, n=705), (c) the
relative difference in days calculated as the USA-NPN observations minus the VIIRS detections. The dashed lines in panels (a) and (b) are the 1:1 lines.
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Overall, unlike the phenological transition dates, the EVI2 greenness is
more strongly dependent on land cover types than latitudinal or long-
itudinal gradients.

Profiles of EVI2 greenness as a function of latitude and longitude
reflect variation in land cover types (Fig. 5). The profile along 81.5°W
provides EVI2 greenness variations from the south to the north
(Fig. 5a). From 34°N southwards, where land cover is complex (al-
though mixed forests and woody savannas dominate), the EVI2 at
greenup onset is quite high (ranging from 0.3–0.4) and the EVI2 at
maturity onset varies primarily between 0.4 and 0.6, resulting in a re-
latively modest EVI2 amplitude during the growing season. In the re-
gion between 35°N–40°N, where deciduous forests dominate, the EVI2
at greenup onset is< 0.25, while the EVI2 at maturity onset is over
0.70, leading to the largest EVI2 amplitudes (~0.5). In the regions from
40°N–44°N, which are covered by croplands (including croplands and
natural vegetation mosaics), the EVI2 amplitude is large, and only
slightly smaller than those from deciduous forests. From 46°N north-
ward, the evergreen and mixed forests display lower EVI2 values at
maturity onset, with associated EVI2 amplitudes of ~0.2. Along long-
itude at 37°N (Fig. 5b), however, EVI2 values at both the greenup and
maturity onset are relatively large, with considerable variation among
neighboring pixels from 118°W westward, where the land cover

includes a mosaic of evergreen forests, mixed forests, savannas, grass-
lands, and croplands. EVI2 values on both phenological dates in the
region from 118°W to 81.4°W gradually increases, and the EVI2 am-
plitude increases accordingly. EVI2 values are very small in open
shrublands and barren lands, and increase in grasslands, croplands
(including croplands/natural vegetation mosaics), and in deciduous
and mixed forests.

4.4. Assessment of the quality of VIIRS phenology detections

The quality of the VIIRS NBAR EVI2 data is illustrated using three
tiles across the CONUS: tile h11v04 (central CONUS), h12v04 (north-
eastern CONUS), and h08v05 (western CONUS). Tile h11v04 includes
53% croplands and 22% cropland/natural vegetation mosaics; tile
h12v04 contains 70% of deciduous and mixed forests; and tile h08v05
is comprised of land cover types including shrublands (56%), savannas
(8%), grasslands (13%) and barren (9%).

In the central CONUS (tile h11v04), the AI between the HLPM
modeled EVI2 and the high quality EVI2 observations during the
growing season is> 80% (Figs. 6a and 7d), which indicates that the
HLPM captures the temporal EVI2 trajectory effectively for individual
pixels. The PHQ of the EVI2 observations during the vegetation growing

Fig. 9. Spatial pattern of the phenological timing detected from Landsat (a–d) and VIIRS time series (e–f) in the overlap zone between Landsat path 43/row 33 and
path 44/row 33 in California in 2013. The four phenological transition dates are greenup onset (a and e), maturity onset (b and f), senescence onset (c and g), and
dormancy onset (d and h). The land cover type is shown in (i).
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season is> 60% for most pixels, although it is somewhat higher in
western areas than in eastern regions (Figs. 6b and 7d). This indicates
that the EVI2 time series is of overall high quality. However, the LPHQ
of EVI2 observations around each phenological transition date is unique
and differs greatly across the region (Fig. 6c–f). This implies that the
time and duration of cloud contaminated observations exhibit high
spatial variation during the growing season. For the four key pheno-
logical transition dates, the LPHQ is largest around the senescence
onset, followed by maturity onset, greenup onset, and dormancy onset.
Accordingly, the proportion of pixels with LPHQ > 60% is about 75%
around senescence onset, 62% around maturity onset, 55% around
greenup onset, and 50% around dormancy onset (Fig. 7a).

In tile h12v04 the LPHQ < 60% appears in about 75% of the land
pixels at dormancy onset, and in about 50% of the pixels at greenup,
maturity, and at senescence onsets (Fig. 7b). The PHQ during the
growing season is also relatively poor, although the agreement index is
high (Fig. 7d). In contrast, in the arid and semiarid environments of tile
h08v05, the LPHQ is larger than 60% for each phenological transition
date in> 90% of land pixels (Fig. 7c). However, the HPLM agreement
index is relatively poor with AI < 80% in 25% of pixels because of the
irregular EVI2 variations and the indistinguishable seasonality
(Fig. 7d). In addition, interannual variation in the LPHQ between 2013
and 2014 (not shown) is substantial.

4.5. Evaluation of phenology detections in VIIRS GLSP

4.5.1. Comparison with field observations
Fig. 8 compares the VIIRS phenology detection dates with USA-NPN

ground level phenological observations. The geometric mean functional
regression indicates that VIIRS greenup onset date is very comparable
with the timing of leaf bud break for both the USA-NPN observations
and individually for the lilac and honeysuckle clone data. The slope is
close to one, implying that the phenological timing from VIIRS GLSP
reflect the field observations very well, both spatially and inter-
annually. The negative intercept in the relationship for all plant species
reveals that the VIIRS detections are biased 5 days early compared to
the USA-NPN observed spring events. The intercept of one in the re-
lationship for the lilac and honeysuckle clones indicates that VIIRS
detections represent nearly identical timing of leaf bud break in these
two species.

Further analysis indicates that the relative difference between the
VIIRS detections and the USA-NPN observations for all plants and for
just the lilac and honeysuckle clones is< 10 days and 15 days in 59%
and 72% of samples, respectively, and<15 days in 70% and 78% of
samples, respectively (Fig. 8c).

4.5.2. Comparison with high resolution satellite detections
Fig. 9 presents the phenological timing detected from Landsat and

VIIRS data in 2013 in the Sierra Nevada Mountains, California. Visual

Fig. 10. Scatterplots of phenological transition dates detected from Landsat and VIIRS data in the path overlap zone between Landsat WRS-2 path 43/row 33 and
path 44/row 33 in California. Note that the samples are from pixels with relatively homogeneous phenological dates that differ greatly between grasslands/savannas
and forests. MAD is mean absolute difference and RMSD is root mean square difference.

Table 1
Mean absolute difference (in days) in the phenological dates between the VIIRS and Landsat detections in the overlapping zone between Landsat path 43/row 33 and
path 44/row 33 in California in 2013.

Land cover Greenup onset Date at mid-greenup phase Maturity onset Senescence onset Date at mid-senescence onset Dormancy onset

Grasslands 7.6 6.4 4.4 8.9 9.7 10.3
Savannas 4.4 3.1 4.1 13.2 16.1 15.0
Mixed forests 8.3 7.1 7.5 17.3 15.6 13.8

X. Zhang et al. Remote Sensing of Environment 216 (2018) 212–229

222



inspection shows that the spatial patterns are similar between the
Landsat and VIIRS detections for the four key phenological transition
dates. The phenological timing for both datasets is earlier in the
southern region, which is dominated by grasslands and savannas, and is
later in the northern region, which is covered with mixed forests and
woodlands.

An analysis, based on 20% of the most homogeneous pixels, in-
dicates that the mean absolute difference (MAD) in phenological dates
ranges from 4 to 6 days during the greenup phase (i.e. greenup onset,
date at mid-greenup phase, and maturity onset) and from 8 to 10 days
during the senescence phase (i.e. senescence onset, date at mid-senes-
cence phase, and dormancy onset) (Fig. 10). The corresponding RMSE
is 5–8 days and 9–14 days, respectively. All of the sample pairs are
distributed along the 1:1 line, although the Landsat detections tend to
be biased slightly later relative to the VIIRS detections. Comparison of
phenological dates stratified by the dominant land cover types in this
region indicates that the MAD is smaller in savannas during the greenup
phase and smaller in grasslands during the senescence phase (Table 1).

Fig. 11 presents a comparison between phenological detections from
VIIRS and those estimated from fused MODIS-Landsat OLI data (30m)
in 2013 in the central CONUS. In 20% of the most homogeneous pixels
that are dominated by croplands (corn and soybean) and forests, the
MAD between these two sets of land surface phenology detections
is< 5 days for all transition dates except maturity onset, and the RMSD
is< 8 days for all six phenological timing metrics. The samples are
generally distributed along the 1:1 line without an obvious bias.

4.5.3. Comparison with MODIS phenology detections
The similarity between the VIIRS and the MODIS phenology de-

tections is illustrated using the greenup onset (as it is the most im-
portant phenological metric in a vegetation growth cycle). Overall, the
greenup onset dates from these two products are comparable and
without bias, with median differences of< 1 day between the VIIRS

and MODIS greenup onset. > 50% and 76% of pixels show greenup
onset differences of< 5 days and 10 days, respectively, in tiles h11v04
and h12v04. The timing differences are somewhat larger in tile h08v05,
which shows differences of< 5 days and 10 days in 44% and 66% of
pixels, respectively.

After fine-scale heterogeneity caused by local heterogeneity and
differences in the effective size of MODIS and VIIRS pixels were filtered
by spatially smoothing the greenup onset dates using a 3×3 moving
window, the similarity of the VIIRS detections to the MODIS detections
greatly increases (Fig. 12). Specifically, after applying this filtering,
greenup onset differences of< 5 days and< 10 days account for 68%
and 91% of pixels across the tile h12v04, respectively. Relatively large
differences are still evident in evergreen forests and shrublands, while
small differences are found in mixed and deciduous forests. Patterns of
differences in the greenup onset in tile h11v04 are similar to those in
tile h12v04. However, the proportion of pixels in tile h11v04 for each
land cover type is larger than 63% and 87% for differences of< 5
and< 10 days, respectively. In semiarid land cover types (tile h08v05),
the difference between the VIIRS and MODIS phenology detections is
somewhat larger. Over 58% and 78% of pixels exhibited differences
of< 5 and< 10 days, respectively, with larger differences in the
evergreen forests and savannas.

Fig. 13 shows the frequency of pixels stratified by the local pro-
portion of high quality (LPHQ) observations around each phenological
transition date from the MODIS and VIIRS NBAR EVI2 time series in
2013. Around the four key phenological dates, the proportion of pixels
with a low LPHQ is generally higher in the VIIRS EVI2 time series than
in the MODIS EVI2 time series, indicating that there are more pixels in
the MODIS time series that have higher LPHQ relative to the VIIRS EVI2
time series, although this difference varies among phenological onset
periods (events) and across regions. In tile h11v04, the LPHQ for the
MODIS EVI2 time series is only slightly larger than that in the VIIRS
time series. For example, the pixel proportion with a LPHQ > 80% is

Fig. 11. Comparison of the six phenological dates detected from the VIIRS NBAR EVI2 (500m) and the fused MODIS-Landsat OLI data (30 m) in 2013 for a location in
the central US (Landsat WRS-2 path 26/row 31). Note that the samples are from pixels with relatively homogeneous phenological dates that differ greatly between
croplands and forests. MAD is mean absolute difference and RMSD is root mean square difference.
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only 4%, 7%, 8%, and 7% larger in the MODIS than in the VIIRS data
around the greenup, maturity, senescence, and dormancy onset dates,
respectively (Fig. 13a). In tile h12v04, the proportion of pixels with
LPHQ > 50% is 15%, 19%, 1%, and 8% higher in the MODIS NBAR
time series than in the VIIRS NBAR data around the four key pheno-
logical dates, respectively, and the proportion with LPHQ > 80% is
34%, 20%, 5%, and 5% larger in the MODIS NBAR time series than in
the VIIRS NBAR time series (Fig. 13b).

The quality of MODIS and VIIRS time series significantly impacts
the discrepancy between MODIS and VIIRS GLSP detections. This can
be illustrated by plotting the greenup onset differences as a function of
LPHQ (Fig. 14). The cumulative proportion of pixels with small dif-
ferences between the VIIRS and MODIS greenup onset dates is highest
when LPHQ=80–100, followed by LPHQ=40–80, LPHQ=10–40,
and LPHQ=others. In tile h11v04, the proportion of pixels is 60%,
53%, 53%, and 38% for greenup onset differences less than five days for
a LPHQ=80–100, LPHQ=40–80, LPHQ=10–40, and
LPHQ=others, respectively, and is 86%, 78%, 76%, and 63% for the
differences less than ten days (Fig. 14a). In tile h12v04, the proportion
of pixels is 60%, 43%, 42%, and 20% for differences less than five days
for the LPHQ=80–100, LPHQ=40–80, LPHQ=10–40
LPHQ=others, respectively, and 86%, 68%, 66%, and 36% for phe-
nological differences less than ten days (Fig. 14b). Similar impacts are
found for other phenological onsets dates (results are not shown here.)
These results suggest that retrieved phenological dates are highly

comparable between the MODIS and VIIRS detections if the quality of
EVI2 time series from both datasets are similarly high, but that the
differences can be quite large if their corresponding EVI2 quality values
are low or very different.

5. Discussion

Implementation of the VIIRS GLSP algorithm across the CONUS
demonstrates its ability to detect the phenological metrics across the
seasonal pattern of vegetation growth. The resultant products reveal
clear spatial patterns in phenological transition dates. VIIRS GLSP
phenological transition dates show latitudinal gradients in the eastern
and central CONUS, although these gradients are frequently interrupted
by mountains and croplands. In contrast, the VIIRS GLSP phenological
dates show no regular pattern as a function of latitude in the arid
western CONUS. Along longitudinal transects, the phenological dates
vary irregularly in the western CONUS, but remain relatively stable in
the central and eastern CONUS. The overall spatial pattern of greenup
onset over the CONUS is consistent with available phenology detections
from AVHRR and MODIS (Ganguly et al., 2010; Julien and Sobrino,
2009; Tan et al., 2011; Zhang et al., 2014), but local differences can be
substantial. Overall, our results demonstrate that the VIIRS GLSP pro-
duct provides comprehensive and consistent phenological dates
throughout a vegetation growing season, including the greenup onset,
maturity onset, senescence onset, dormancy onset, and the dates at mid-

Fig. 12. Comparison of the greenup onset dates between the VIIRS and MODIS detections in 2013 for tiles (a) h11v04, (b) h12v04, and (c) h08v05. Total - all land
cover types, LC1-evergreen forest, LC2-mixed forests and deciduous forests, LC3 – open shrublands and close shrublands, LC4 – savannas and woody savannas, LC5 –
grasslands, LC6 – cropland and natural vegetation mosaic.
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greenup and mid-senescence phases. The VIIRS GLSP product also
characterizes the magnitude in phenological variation in vegetation
greenness at greenup onset, maturity onset, and throughout the
growing season. Note the latter is not presented here. Spatial patterns in
greenness depend strongly on land cover type, where greenness am-
plitude is larger in deciduous forests, mixed forests, and croplands, and
smaller in shrublands and grasslands.

In addition to the phenological dates and the greenness magnitude
during the growing season, the VIIRS GLSP product also provides cor-
responding metrics of confidence and quality in the phenology

detections. The confidence in phenology detections is controlled by the
quality of time series provided by VIIRS. The VIIRS NBAR product
provides reliable vegetation indices for cloud-free observations because
the atmospheric and bidirectional effects have been corrected (Liu
et al., 2017b). However, missing land surface observations caused by
cloud cover introduce gaps in VIIRS NBAR time series. The overall data
quality, quantified using the proportion of high quality observations
and the agreement index between the HPLM and the high quality EVI2
observations during each growing season offers assessments of the
quality of the time series for phenology detections. The agreement

Fig. 13. Variation of pixel frequency against the local proportion of high quality (LPHQ) observations around the four key phenological transition dates between the
MODIS and VIIRS NBAR EVI2 time series in 2013.

Fig. 14. Cumulative proportion of pixels varying with the absolute difference (days) between the VIIRS and MODIS greenup onset dates for four categories of local
EVI2 quality (LPHQ) during 2013 in (a) tile h11v04 and (b) tile h12v04.
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index is particularly important for quantifying a measure of confidence
in phenology detections in arid environments, where the cloud-con-
taminated observations are generally limited but temporal variation in
EVI2 is subtle and somewhat irregular.

The frequency of missing observations around the timing of
greenup, maturity, senescence, and dormancy onset is inconsistent
across pixels and between years, although there is generally more cloud
contamination in humid climates than in arid climates. Large amounts
of missing observations generally lead to lower confidence in VIIRS
GLSP detections, which is evident in results from the comparison be-
tween MODIS and VIIRS time series around greenup onset dates.
Similar impacts of the time-dependent local data quality of the other
phenological transition dates are also significant, although these details
are not presented here. However, it should be noted that poor quality of
EVI2 time series data will result in lower confidence in phenology de-
tections, but do not necessarily lead to large errors.

Assessment of the VIIRS GLSP product quality based on reference
data is important but is currently challenging: in situ observations that
are both temporally and spatially matched with VIIRS footprints do not
exist and are not likely to become available anytime soon. Here rely on
extensive comparative evaluations, using a variety of independent data
sources to improve our understanding of VIIRS GLSP quality. In a se-
parate study (Zhang et al., 2018), the six phenological transition dates
from VIIRS GLSP product have been compared with PhenoCam ob-
servations across the CONUS. Those results demonstrate that the mean
absolute difference between the VIIRS EVI2 and PhenoCam phenolo-
gical dates is 7–11 days in the greenup phase and 10–13 days in the
senescence phase as based on 164 site-years during 2013 and 2014
across multiple land cover types. But, again, it is important to note that
PhenoCam phenological dates provide a local estimate that does not
reflect the spatial unit of measurement acquired by VIIRS.

The quality assessment evaluations presented in this study indicate
that the VIIRS GLSP algorithm provides high quality representations of
in-situ phenology. Comparison with species-specific observations from
the USA-NPN suggests that the VIIRS greenup onset reflect the leaf bud
break timing across plant species quite well, although with a systematic
lag of 5 days. The mean absolute difference between the VIIRS greenup
onset and the leaf bud break timing in all plant species was< 10 days
for most VIIRS pixels. Comparison using only cloned lilacs and hon-
eysuckles show even stronger agreement. It is well-known that species-
specific leaf bud break timing is not exactly the same as satellite-based
phenological detections because of the mismatch between individual
species in ground observations and vegetation community sensed
within a satellite pixel (Ganguly et al., 2010; Liang and Schwartz, 2009;
Morisette et al., 2009; White et al., 2009; Zhang and Goldberg, 2011).
However, phenological timing is primarily driven by local weather and
the response of underlying vegetation types (Delbart et al., 2015; Mazer
et al., 2015; Piao et al., 2007; Piao et al., 2015; Wu et al., 2014), which
results in spatial continuity or gradual variation in phenological tran-
sition dates across regions with coexisting species presenting similar
phenological dates. As a result, although species-specific observations
and VIIRS detections are not necessarily comparable for each individual
VIIRS pixel and their difference can be quite large, the large number of
samples available from the USA-NPN observations across the CONUS
that are used in this study exhibit consistent spatial and interannual
covariation with VIIRS phenology detections.

The VIIRS GLSP results show good agreement with phenology de-
tections from 30m Landsat data. Our evaluation demonstrates that all
six phenological transition dates in VIIRS GLSP are closely comparable
to Landsat detections with an absolute difference< 10 days in rela-
tively homogeneous VIIRS pixels, and the agreement in croplands, sa-
vannas, and forests is similar. Although both the VIIRS and Landsat
phenological dates are derived from the same vegetation index, the
30m pixel footprint of Landsat data is better able to monitor phenology
for small areas with homogeneous vegetation types, thus offering a
more realistic dataset for assessing error and uncertainty in the VIIRS

GLSP product (Klosterman et al., 2014; Kovalskyy et al., 2012). In ad-
dition, Landsat-derived phenology has an advantage over ground based
measurements for spatiotemporally matching with the VIIRS GLSP pixel
footprint and providing more reliable comparative evaluations.

Comparison of VIIRS GLSP results with MODIS GLSP results allow
us to understand differences and similarities between these two pro-
ducts. This comparison is critical to establish a long-term environ-
mental data record of land surface phenology with the VIIRS GLSP that
extends the established record from MODIS. Comparison of phenolo-
gical transition dates in mixed and deciduous forests, croplands, and
semiarid savannas and shrublands revealed that GLSP detections from
MODIS and VIIRS are similar, without bias, and that their difference in
most pixels is< 10 days (although this discrepancy is larger in semiarid
savannas and shrublands). Differences between MODIS and VIIRS GLSP
arises from several sources. First, vegetation indices produced from
MODIS and VIIRS are not necessarily consistent (Vargas et al., 2013),
and the biases between the MODIS and VIIRS EVI2 time series can be
inconsistent in both space and time (Zhang et al., 2017b). Second, there
are more cloud-free retrievals in MODIS NBAR EVI2 time series than in
the VIIRS NBAR EVI2 time series because the MODIS NBAR product
uses observations from the MODIS instrument on both Terra and Aqua
(Wang et al., 2012), whereas, the VIIRS NBAR product is generated
from only the VIIRS onboard Suomi NPP (i.e., from a single, early
afternoon overpass) (Liu et al., 2017b). Third, although the nominal
gridded spatial resolution of both the MODIS and VIIRS NBAR products
is 500m, the effective pixel footprint (area) is 1.34 times of the 500m
grid area for the VIIRS data and 2.06 times of that for the MODIS data
(Campagnolo et al., 2016). As a result, inconsistencies between VIIRS
GLSP and MODIS GLSP products do exist. Post-processing of MODIS
and VIIRS GLSP products, with a 3× 3 moving windows to spatially
smooth the data, can significantly mitigate this difference, although this
then reduces the spatial details to some degree.

Finally, VIIRS GLSP is characterized using time series of EVI2 while
various other phenology products from other sensors have been derived
from NDVI. Therefore, comparisons between EVI2 and NDVI phenology
retrievals might provide some further context in utilizing VIIRS GLSP.
However, no direct comparison is performed in this paper, as a variety
of previous studies have already demonstrated the advantages of EVI2
time series for phenology detections over NDVI data. Specifically,
comparison of phenological metrics between VIIRS EVI2 and NDVI
detections in 164 sites-year during 2013–2014 across the CONUS has
shown that their mean absolute difference (MAD) is< 6 days in spring
phenophase transition dates while it is 10.5–18.4 days in autumn se-
nescence phenophase transition dates (Zhang et al., 2018). Compared
with the PhenoCam phenology as a proxy for ground observations, it
has been further demonstrated that the uncertainty (MAD) is
6.9–11.0 days for VIIRS EVI2 detections and 7.3–11.1 days for VIIRS
NDVI detections in spring phenophase transition dates while it is
10.0–13.0 days for VIIRS EVI2 detections and 16.1–23.3 days for VIIRS
NDVI detections in autumn phenophase transition dates (Zhang et al.,
2018). This result reveals that EVI2 data could provide better phe-
nology detections than NDVI, particularly during senescence phases.
This pattern is also supported by the phenological metrics derived from
Landsat and MODIS time series. Relative to field measurements, the
uncertainty in greenup onset is 11 days from Landsat EVI and 18 days
from Landsat NDVI (White et al., 2014). Further, MODIS EVI phenology
is relatively better than MODIS NDVI phenology when compared with
PhenoCam phenological dates for deciduous forests in the northwestern
CONUS (Klosterman et al., 2014), with ground observed phenology
from both USA-NPN and AmeriFlux observations across the CONUS
(Peng et al., 2017a), and 81 site-year flux tower observations in the
Northern Hemisphere boreal zone (Karkauskaite et al., 2017). These
differences are mainly associated with the following factors: (1) NDVI is
sensitive to background reflectance (soil background brightness and
moisture condition) (Bausch, 1993; Huete et al., 1985) and the sa-
turation at densely vegetated areas (Gitelson, 2004; Huete et al., 2002;
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Vina et al., 2004); however, EVI2 (or EVI) reduces sensitivity to soil and
atmospheric effects, and remains sensitive to variation in canopy den-
sity where NDVI becomes saturated (Huete et al., 2006; Rocha and
Shaver, 2009). (2) NDVI and EVI2 characterize different biophysical
properties of vegetation. Indeed, the EVI2 is more sensitive to vegeta-
tion gross primary production (GPP), net primary production (NPP),
and FPAR (the fraction of photosynthetically active radiation) absorbed
by chlorophyll (FPARchl); whereas, the NDVI is more representative of
the total leaf variation on a vegetation canopy (including leaves with
and without photosynthetic activities) and the FPAR absorbed by the
canopy (FPARcanopy) (Huete et al., 2013; Q.Y. Zhang et al., 2009; Zhang
et al., 2005).

6. Conclusions

This paper provides an overview of the algorithm that is being used
to generate the VIIRS global land surface phenology product, and pre-
sents preliminary results produced for the CONUS. The HPLM used for
the VIIRS GLSP product models vegetation greenness phenology using
biophysically meaningful parameters, allows for both symmetric and
asymmetric EVI2 greenness development (Elmore et al., 2012; Melaas
et al., 2013), and identifies key phenological transition dates using the
change rate of greenness curvature instead of predefined thresholds.
Thus, the VIIRS GLSP algorithm is able to detect phenological dates
across a range of vegetation types and climate regimes.

Results from the comprehensive evaluation of the VIIRS GLSP across
the CONUS demonstrates that the product provides high quality results
and should meet the needs of the scientific community for character-
izing large scale phenological dynamics and change. The VIIRS GLSP
product will be produced operationally and globally by NASA from
2012 forward on a yearly basis starting in late 2018. It is a level 3
product and follows the structure and file format in the high level of
global VIIRS data. The details of the phenological metric layers and
data format are described in the VIIRS GLSP user guide (Zhang et al.,
2017a). Note that more extensive and comprehensive evaluations will
be conducted outside of the CONUS as these data become available,
using multiple years of data to assure a continuous high quality GLSP
data record. These efforts will include evaluations of VIIRS GLSP results
using field observations and PhenoCam data in Europe and Asia, and
using phenology data in diverse ecoregions using the NASA Harmo-
nized Landsat-Sentinel-2 (HLS) data (https://hls.gsfc.nasa.gov/), which
is producing a consistent, harmonized surface reflectance product from
Landsat-8 OLI (Operational Land Imager) and Sentinel-2 MSI (Multi-
Spectral Instrument) data (Claverie et al., 2016). Finally, the VIIRS
GLSP will also be improved by the incorporation of VIIRS observations
from the JPSS1 platform, which was launched on November 18, 2017
(Goldberg et al., 2013).
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