
1. Introduction
The timing and duration of vegetation growing seasons have changed across much of the Earth's terrestrial ecosys-
tems over the last several decades (Buitenwerf et al., 2015; Hua et al., 2021; Park et al., 2016; Piao et al., 2007). 
Observed trends of advanced spring and delayed autumn increased the growing season length (GSL) globally. 
The increased GSL is generally thought to result in increased gross primary productivity (GPP) (Buermann 
et al., 2018; Dragoni et al., 2011; Keenan et al., 2014; Piao et al., 2019), which reflects the total amount of carbon 
absorbed by vegetated ecosystems during a unit time period. However, GSL changes in green leaf development 
might not always synchronize with changes in GPP photosynthetic duration, and geographically heterogene-
ous patterns of leaf greenness intensity changes, so called greening and browning, complicate this relationship, 
particularly at high latitudes (C. Chen et al., 2019; Huang et al., 2018; Y. Liu et al., 2021; Zhu et al., 2016). Since 
global greening and browning trends alter the photosynthetic competence of vegetation in sequestering carbon, 
they significantly affect ecosystem GPP. Understanding the interactive roles of changes in GSL and leaf green-
ness is critical to infer global carbon dynamics and future climate change.

Eddy-covariance (EC) flux towers provide direct measurements of GPP but over limited spatial extents 
(Baldocchi, 2020). By using EC measurements, previous studies have investigated the sensitivity of annual GPP 
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(ΣGPP) to GPP-based photosynthetic seasonal and physiological covariates. For example, Xia et al. (2015) found 
that over 90% of the ΣGPP variation can be explained by photosynthetic GSL and annual maximum GPP. Follow-
ing the same method, Zhou et al. (2016) and Zhou et al. (2017) supported the conclusion and found that changes 
in maximum GPP explain more variability in ΣGPP than the start and end of photosynthetic timing. However, 
whether a similar relationship holds for leaf-greenness-based phenology and physiology, and how the relationship 
varies by biome and space, remains unclear. More importantly, although GPP upscaling methods that relies on 
leaf greenness related measurements (Jung et al., 2019; Le Quéré et al., 2016) have been developed to estimate 
large spatial scale vegetation productivity, the comparison between impacts of GSL changes in green leaf devel-
opment on vegetation productivity with that of GSL changes in photosynthetic duration over large spatial scales 
have rarely been studied.

In contrast, satellite remote sensing provides spatially continuous long-term observations of green leaf development 
and GSL at global scale (Ganguly et al., 2010; Gray et al., 2019). Satellite-observed land surface phenology (LSP) data 
are the only source of global green leaf GSL information (Caparros-Santiago, 2021; Piao et al., 2019) and has been 
widely incorporated into both process-based and data-driven ecological models to upscale field-based measurements 
of GPP from eddy covariance towers to larger areas (Falge et al., 2002; Richardson et al., 2010, 2013). However, scal-
ing up GPP by directly using LSP may be challenging because LSP measures the period of green leaf development 
rather than photosynthesis, ecosystem-scale phenology measured by LSP data sets do not always accurately capture 
the seasonality of GPP, and annual maximum GPP in Xia et al. (2015) is not necessarily reflected by annual maxi-
mum of leaf greenness. Moreover, although large-scale ΣGPP responses to leaf greenness changes have been inves-
tigated (Huang et al., 2018; Keenan et al., 2014), few studies have explored how changes in green-leaf-based GSL 
and maximum greenness jointly regulate geographic and interannual variation in ΣGPP across large spatial scales, 
and how the effects vary by biome and space, even though both processes occur simultaneously in many ecosystems. 
Additionally, many previous studies used methods that required multiple years of EC data for each site, thus excluding 
a large number of sites with insufficient data. This constrained our knowledge about the relationship between satel-
lite green-leaf observations and ΣGPP to relatively few sites and biomes (F. Liu et al., 2021; J. Zhang et al., 2022). 
Therefore, investigating the nature and magnitude of how satellite LSP observations explain ΣGPP variation, as well 
as the joint effect of changes in green-leaf-based GSL and maximum greenness on ΣGPP at large spatial scales across 
multiple biomes, are helpful to understanding how satellite observations can be used to upscale knowledge derived 
from field-measured photosynthesis and study climate change induced dynamics in the global carbon cycle.

In this study, by using extensive EC measurements provided by the FLUXNET2015 project (Pastorello et al., 2020) 
in combination with global time series of LSP observations from NASA's Moderate Spatial Resolution Imaging 
Spectroradiometer (MODIS) from 2000 to 2014, we investigated the strength of the covariance between LSP 
and GPP seasonality and modeled how satellite-observed green leaf phenology and maximum greenness control 
ΣGPP across global terrestrial ecosystems. We explored questions including How well do seasonal metrics of 
satellite-observed greenness explain large-scale variation in ΣGPP? Do changes in phenology have biome-dependent 
effects on ΣGPP? And, how effective would satellite-observed metrics be in estimating ΣGPP spatially and interan-
nually? We first compared the consistency between satellite observed leaf phenology and EC-derived GPP season-
ality, then replicated previous studies using EC-derived photosynthetic GSL and maximum GPP to estimate ΣGPP, 
and finally evaluated the performance of using satellite LSP-derived green leaf GSL and maximum greenness in 
inferring ΣGPP. We used Bayesian hierarchical models that allowed us to use all available observations, even at 
sites with only a few years of EC data, to quantify the variation of the relationship between ΣGPP and green leaf 
phenology within and across global biomes and flux sites. We found that satellite LSP-derived GSL had less ΣGPP 
sensitivity to GPP derived GSL by ∼30% and that the GSL-ΣGPP relationship varies by biome type and flux site. 
This site-level variability might highlight the role of local climate factors in controlling productivity. Importantly, 
we also found that maximum greenness exerted stronger control on ΣGPP than LSP-derived GSL, suggesting that 
future leaf greening trends, represented by trends of increasing maximum greenness, would increase global vege-
tation productivity more than extending the time period of green leaf development.

2. Methods
2.1. Data Sets

We obtained GPP measurements of 166 EC flux sites distributed across the globe (Figure 1) from the FLUX-
NET2015 project (https://fluxnet.org/data/fluxnet2015-dataset/). Although the flux data set provides decades 
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of EC measurements until 2014, we only used the EC data within 2000–2014 because this time period matches 
with MODIS observations. Then, we filtered out site-years data that contain continuous missing values with 
more than 45 days. After data preprocessing, there were 1,110 site-years data left, representing 11 biome types 
(Figure 1). To identify which GPP variable in the data set was better for studying phenology, we undertook a 
sensitivity analysis (Figure S1 in Supporting Information S1) by calculating GPP-based phenometrics from each 
daytime GPP variable in the FLUXNET2015 data set. As no significant differences were found among those GPP 
variables, we chose GPP_DT_VUT_REF, which represents daytime GPP using a Variable U-star (U*) Threshold 
(Pastorello et al., 2020), to conduct this research. We extracted daily GPP time series (FULLSET_DD) as well as 
ΣGPP measurements for each site-year (FULLSET_YY) from the FLUXNET2015 data to conduct this analysis. 
Here, a site-year is defined as a calendar year at each site.

To analyze EC measurements with satellite LSP observations, we extracted satellite LSP data from 2000 to 
2014 for flux site locations from the MCD12Q2 v6 product (https://lpdaac.usgs.gov/products/mcd12q2v006/) 
(Ganguly et  al.,  2010; Gray et  al.,  2019). This data product provides global, annual LSP estimates at 500 m 
spatial resolution based on daily time series of the two-band enhanced vegetation index (EVI2, Jiang et al., 2008). 
The MCD12Q2 LSP product uses spline functions to smooth the EVI2 time series and percentage thresholds to 
extract phenological dates. The estimated phenometrics include Greenup, MidGreenup, Maturity, Peak, Senes-
cence, MidGreendown, and Dormancy, representing 15%, 50%, 90%, and 100% of annual EVI2 amplitude in 
spring and autumn, respectively.

2.2. GPP-Based Seasonality Estimation and Evaluation

To compare with satellite LSP phenometrics, we applied the MCD12Q2 LSP algorithm (Gray et al., 2019) to 
the daily GPP time series to retrieve annual GPP-based seasonality metrics as well as annual maximum GPP 
(GPPmax) and annual minimum GPP (GPPmin). We followed the same procedure of MCD12Q2 phenometrics esti-
mation, whereby for any particular year, we first gathered daily GPP measurements for the full calendar year plus 
6 months before and after and then smoothed the time series using a spline function. The GPP-based seasonality 
metrics were then estimated by the same percentage thresholds as MCD12Q2 but were based on GPP amplitude. 
We obtained 866 site-years of GPP seasonality metrics out of the 1,110 site-years of EC measurements from 

Figure 1. The distribution of eddy-covariance flux towers used in this study. (a) Number of sites and (b) number of site-years per biome type used in this study. The 
biome type is determined by the International Geosphere-Biosphere Program classification data provided in the FLUXNET2015 data set.
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the algorithm. There were 244 site-years data that had GPP values but the annual amplitudes derived from the 
smoothed spline function were too low (<4 gCm −2 yr −1) to estimate reliable seasonality.

To evaluate the consistency between the GPP-based seasonality metrics and the satellite LSP data, we iteratively 
searched through each GPP seasonality metric for a potential match of the same type of LSP phenometric within a 
certain time period window (±185 days), centered on the GPP metric date. If all of the corresponding LSP phenomet-
rics in a site-year were found, the site-year was marked as “match,” otherwise “no-match.” The search window is wide 
enough to capture potential matches, and the consistency between the GPP seasonality metrics and the LSP phenomet-
rics was then evaluated by linear regression. Among the matched phenometrics and GPP metrics, we linearly regressed 
GPP seasonality metrics against LSP phenometrics. Besides reporting R 2 and root mean squared error (RMSE) from 
the linear regression, the mean relative deviation (MRD) and mean absolute deviation (MAD) were also calculated to 
quantify the differences between LSP phenometrics and GPP seasonality metrics. Specifically, MRD evaluates bias in 
the GPP and EVI2 metrics, while MAD quantifies the absolute deviation between the two data sources. With N defined 
as the total number of matched site-years, the formulas of MRD and MAD were used as follows:

MRD = 1∕� ∗ Σ�
�=1(GPP ������� − EVI 2 �ℎ����������) (1)

MAD = 1∕� ∗ Σ�
�=1

|

|

|

|

GPP ������� − EVI 2 �ℎ����������
|

|

|

|

 (2)

The “no-match” site-years were also investigated by comparing their time series data of MODIS EVI2 and EC 
measured GPP, respectively. Five reasons for their mismatch were investigated: EVI2 data missing, GPP data 
missing, EVI2 amplitude too low to retrieve LSP, GPP amplitude too low to retrieve GPP seasonality metrics, and 
both LSP and GPP metrics exist but do not match. Note that since the MCD12Q2 LSP product only processed 
pixels with annual EVI2 amplitude greater than 0.1 to distinguish between EVI2 data missing and EVI2 ampli-
tude too low to retrieve LSP, we utilized the MCD43A4 Nadir Bidirectional Reflectance Distribution Function 
(BRDF)-Adjusted Reflectance (NBAR) data set (Schaaf & Wang, 2015).

We also investigated the consistency of GPP seasonality metrics with LSP from single pixels, 3-by-3 pixel 
windows, and 5-by-5 pixel windows, respectively. The values in pixel windows were aggregated by mean and 
median. We found that single pixel LSP represents GPP seasonality metrics the best with higher R 2 values, lower 
RMSE values, compared with pixel window based aggregated LSP (result not shown). So, we used single-pixel 
LSP to conduct further analysis in this study.

2.3. Annual GPP Model Analysis

To understand the phenology and physiology effects on ΣGPP, inspired by Xia et  al.  (2015), we introduced 
five nested Bayesian hierarchical regression models representing different hypotheses. The Bayesian framework 
allows partial pooling (Gelman & Hill, 2006) that accounts for the unbalanced number of site-years for catego-
ries of biome types and flux sites. More importantly, the Bayesian hierarchical models help us understand the 
site-level and biome-level effects by capturing the variability of model coefficients among flux sites and biome 
types. The models considered are as follows:

Model 1 ∶ � ∼ �
(

�0 + �1��� + �2�max + �3�min, �2
�
)

 (3)

Model 2 ∶ � ∼ �
(

�0� + �1��� + �2�max + �3�min, �2
�
)

�0� ∼ �
(

�0, �2
0

)
 (4)

Model 3 ∶ � ∼ �
(

�0� + �1���� + �2��max + �3��min, �2
�
)

��� ∼ �
(

��, �2
�
)

, � = 0, 1, 2, 3
 (5)

Model 4 ∶ � ∼ �
(

�0� + �1���� + �2��max + �3��min, �2
�
)

�0� ∼ �
(

�0, �2
0

)

��� ∼ �
(

��, �2
�
)

, � = 1, 2, 3

 (6)
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Model 5 ∶ � ∼ �
(

�0� + �1���� + �2��max + �3��min, �2
�
)

��� ∼ �
(

��� , �2
0

)

��� ∼ �
(

��, �2�
)

, � = 0, 1, 2, 3

 (7)

where Y represents ΣGPP; j represents biome type; k represents flux site; Zmax and Zmin represent the annual 
maximum and minimum of GPP or EVI2; μn, ηn, n = (0, 1, 2, 3) represent the mean values of the population 
distribution of intercepts and slopes at biome and site levels, respectively; 𝐴𝐴 𝐴𝐴2

𝑦𝑦 , 𝐴𝐴 𝐴𝐴2

𝑛𝑛 , and 𝐴𝐴 𝐴𝐴2𝑛𝑛 , 𝑛𝑛 = (0, 1, 2, 3) are the 
corresponding variances. Model 1 is the simplest model that explores whether ΣGPP can be explained by GSL 
and Zmax and Zmin; Model 2 considers background GPP/EVI2 variability among biome types; Model 3 explores 
the variability of covariates among biome types; Model 4 adds site-level intercepts to test the importance of 
considering site-level background GPP/EVI2 rates; Model 5 is the full model that considers both site-level and 
biome-level variability. Cross validation was used to determine the significance of model fit improvements when 
the model complexity increases. By using GPP-metrics-based models as benchmarks, we are able to understand 
the effects of phenology and physiology on annual carbon uptake and evaluate the capability of satellite obser-
vations in capturing these effects. The GSL values were calculated by the duration between MidGreenup and 
MidGreendown dates, representing the timing of the time series reaching 50% of amplitude in spring and autumn, 
estimated from GPP time series for GPP-metrics-based models or obtained from the MCD12Q2 LSP product for 
EVI2-metrics-based models. MidGreenup and MidGreendown phenometrics were selected to characterize the 
timing of productivity because they are highly correlated with other metrics (e.g., earlier or later) but are retrieved 
more robustly from satellite EVI2 time series. Note that evergreen plants also have leaf-based seasonality and that 
can be captured by satellite observations (R. Wang et al., 2019). To compare the sensitivity of ΣGPP to model 
covariates, the standardized models with centered and scaled covariates were also implemented. Note that to 
exclude the influence of multiple phenological cycles and cross-calendar-year phenology on ΣGPP calculation, 
we focused on the data with a single phenological cycle and locate at Northern Hemisphere only in this modeling 
analysis. The GPP-based phenological cycles were determined by the fitted spline function same as producing the 
MCD12Q2 LSP product (Gray et al., 2019).

The Bayesian hierarchical models were implemented by JAGS software (v4.3.0) and R programming language 
(v3.6.3). All parameters in the models were assigned uninformative prior distributions to let data dominate the 
calculation of posterior distributions. We summarized the parameter posterior distributions by median values and 
95% credible intervals (CIs) obtained from samples of Markov Chain Monte Carlo by JAGS. All the R scripts are 
available online (See Data Availability Statement).

3. Results
3.1. Phenometrics Comparison

To compare the GPP seasonality metrics with MODIS LSP phenometrics, we first aligned their dates individu-
ally (Figure S2 in Supporting Information S1). Of the 1,110 site year GPP seasonality metrics data, 758 (68%) 
matched phenometrics with the MODIS LSP; 124 (11%) did not have GPP seasonality metrics due to missing 
GPP values; 96 (9%) were left because MODIS LSP did not provide phenometric values; 11 partially matched 
with the MODIS LSP phenological cycle. That is, not all GPP seasonality metrics in a phenological cycle could 
be definitively matched with equivalent MODIS LSP phenometrics. Note that the MCD12Q2 algorithm can 
produce up to 2 phenological cycles in a year; and only one of them did not find a match at all. 120 (11%) of the 
site-years of data had GPP and EVI2 amplitudes that were too low to reliably estimate GPP seasonality metrics 
and MODIS LSP phenometrics so they were assigned NAs; this could also be considered consistent between EC 
measurements and satellite LSP observations.

The regression analysis suggests that LSP measurements from MODIS had general agreement with EC meas-
urements across sites but exhibit systematic bias among deciduous and evergreen vegetation. Specifically, 
MidGreenup and MidGreendown from LSP measurements estimate later start of GSL for evergreen vegetation 
and later end of GSL for deciduous vegetation, relative to corresponding metrics from EC measurements (Figure 2, 
Table 1). For deciduous sites, the satellite-observed MidGreenup showed strong agreement with corresponding 
estimates derived from EC measurements (MRD = 2 days, R 2 = 0.78, p-value < 0.05). However, MidGreen-
down LSP measurements showed significant systematic bias relative to EC-derived estimates (MRD = −14 days, 
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R 2 = 0.79, p-value < 0.05). At evergreen sites, however, MidGreenup from LSP observation was systematically 
late relative to EC estimates (MRD = −23 days, R 2 = 0.47, p-value < 0.05) and MidGreendown was only weakly 
correlated with EC measurements (MRD = −3 days, R 2 = 0.16, p-value < 0.05). The consistent MidGreenup and 
MidGreendown biases for deciduous and evergreen are representative for most phenometrics considered in spring 
and autumn (Figure S6 and Table S1 in Supporting Information S1).

3.2. Annual GPP Sensitivity

Nearly all of the variance in large-scale ΣGPP is explained by three characteristics of seasonality in the EC 
measurements: GSL, growing season maximum GPP (GPPmax), and growing season minimum GPP (GPPmin) 
(Figures 3a and 3b); the model with both biome- and site-level effects (Model 5) explained 98% of variance in 
ΣGPP, with a RMSE of 73.65 gCm −2 yr −1 (Figure 3b). This corresponds to roughly 5% of the average ΣGPP 
across all site-years. These results are consistent with results from previous studies (Xia et  al.,  2015; Zhou 
et al., 2016) but are based on more site-years of EC measurements and a different model structure.

The results in Figures 3a and 3b demonstrate that GPP phenology effectively explains geographic and interannual 
variance in ΣGPP measured at EC tower sites. However, because EC towers provide a sparse and nonrepresenta-
tive sample of global terrestrial ecosystems, it is difficult to use these data to draw inferences regarding large-scale 
dynamics in GPP arising from changes in phenology. To explore how well leaf greenness based phenological and 

Table 1 
Regression Statistics for Comparison of Phenometrics in Figure 2 From Eddy-Covariance Versus Land Surface Phenology 
Measurements

Phenometric Slope Intercept R 2 MRD MAD

Evergreen MidGreenup 1.00 (±0.15) −23.2 (±21.07) 0.47 −22.81 23.39

Deciduous MidGreenup 0.83 (±0.03) 23.12 (±4.93) 0.78 1.82 15.36

Evergreen MidGreendown 0.51 (±0.16) 126.42 (±42.26) 0.16 −3.32 16.84

Deciduous MidGreendown 0.76 (±0.03) 46.16 (±8.45) 0.79 −14.03 23.30

Note. MRD = mean relative deviance and MAD = mean absolute deviation.

Figure 2. Phenometrics comparison. Comparison of the phenometrics derived from Flux gross primary productivity time 
series and Moderate Spatial Resolution Imaging Spectroradiometer (MODIS) two-band enhanced vegetation index time 
series for (a) MidGreenup (50% greenness in spring) and (b) MidGreendown (50% greenness in autumn). Box plots show the 
distributions of flux phenometrics (“F”) and MODIS phenometrics (“M”). Note that no significance tests were performed 
for the internal box plots as they already show the big differences between flux and MODIS phenometric groups; small 
differences (e.g., <5 days) could be caused by uncertainties contained in both data sets, although they may be significant. We 
provide mean absolute deviation (mean relative deviation) in the corresponding table to better quantify pairwise differences.
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physiological metrics derived from satellite LSP observations explain ΣGPP, we estimated a Bayesian hierarchi-
cal model with the same basic form but using the matched MODIS LSP metrics (GSL, minimum and maximum 
EVI2) at Northern Hemisphere as proxies for corresponding metrics derived from EC measurements (Figures 3c 
and 3d). Compared to models fitted using EC-derived seasonality metrics, models estimated using MODIS LSP 
metrics yielded weaker agreement with in situ measurements of ΣGPP (Figures 3c and 3d). The LSP-based model 
with site-level effects (Model 5) showed strong overall correlation with ΣGPP (R 2 = 0.88) but the RMSE was 
nearly double than that obtained using metrics based on EC measurements (190.45 gCm −2 yr −1). These results 
indicate that satellite-based LSP metrics are able to estimate ΣGPP but include substantial uncertainty. Consist-
ent with results based on EC-derived seasonality metrics, the strong positive relationship between ΣGPP and 
LSP-derived GSL and EVI2max (Figure 3e) demonstrate that satellite-based observations of green leaf duration 
and maximum greenness (e.g., Keenan et al., 2014; Park et al., 2016) explain a large proportion of variability in 
ΣGPP across global terrestrial ecosystems.

Models estimated from MODIS LSP metrics suggest a smaller magnitude of green-leaf-based GSL effect on 
ΣGPP relative to the EC metrics-based models. To quantify this, we estimated models using standardized EC- 
and LSP-derived metrics, which allowed us to compare the magnitude of coefficients (i.e., the relative sensitivity 
of ΣGPP) for each predictor variable across models (Figure 3e). After controlling for EVI2max and EVI2min, the 
influence of satellite LSP-derived GSL was roughly half the magnitude of GSL derived from EC measurements 
after controlling for GPPmax and GPPmin. An increase of one standard deviation in EC-derived GSL increased 
the standard deviation in ΣGPP by 0.48 (0.33–0.63, 95% Bayesian CI), versus 0.27 (0.04–0.50) for GSL derived 
from MODIS LSP, controlling for GPPmax and GPPmin. Controlling for GPPmax and GPPmin and extending the 
photosynthetic GSL by 1 day in the model estimated from EC-derived metrics leads to an increase in ΣGPP of 
7.2 gCm −2 yr −1 but only 5.0 gCm −2 yr −1 in the corresponding LSP-metrics-based model controlling for EVI2max 
and EVI2min. Stated more directly, the result suggests that GSL changes in green leaf development had roughly 
30% less effect on ΣGPP on average across biomes compared to changes in photosynthetic duration.

Figure 3. Bayesian hierarchical model results. (a) Gross primary productivity (GPP) metrics-based model with biome-level 
intercepts and slopes (Model 3); (b) GPP metrics-based model with site-level intercepts and slopes (Model 5); (c) Moderate 
Spatial Resolution Imaging Spectroradiometer (MODIS) LSP-based model with biome-level intercepts and slopes (Model 
3); (d) MODIS LSP-based model with site-level intercepts and slopes (Model 5); (e) Comparison showing the normalized 
effect of GPP metrics- and LSP-based models on model results with site-level intercepts and slopes. Bars show 95% Bayesian 
credible intervals. The larger red and blue points in panel (e) show the overall effect across all biomes from the LSP- and 
GPP-derived metrics, respectively. ΣGPP (Unit: gCm −2 yr −1) is the annual GPP at each EC tower.
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The magnitude of the GSL effect in models estimated using both EC metrics and MODIS LSP metrics varied 
across biomes. Overall, variance in the GSL effect across biomes was smaller in the EC metrics-based models 
(4.7  gCm −2  yr −1) than in the LSP metrics-based models (7.6  gCm −2  yr −1) (Figures  3e and  4, Figure S3 in 
Supporting Information S1). Croplands (CRO) and deciduous broadleaf forest had the largest GSL effects, with 
values of 8.4 and 8.2 gCm −2 yr −1, respectively, in the EC metrics-based model, and 7.2 and 6.2 gCm −2 yr −1, 
respectively, in the LSP metrics-based model. Evergreen needleleaf forest and grasslands (GRA) showed lower 
GSL effects, with a value of 6.0 and 6.3 gCm −2 yr −1 estimated by the EC metrics-based model, compared with 
3.9 and 1.9 gCm −2 yr −1 estimated by the LSP metrics-based model. While the EC metrics-based model iden-
tified a substantial GSL effect on ΣGPP in Wetlands (WET) (7.67 gCm −2 yr −1), the LSP metrics-based model 
found  almost no effect of GSL on GPP. In general, the LSP metrics-based model had a smaller estimated GSL 
effect on ΣGPP and larger uncertainty ranges for most biome types compared to the EC metrics-based model. The 
magnitude of the differences regarding the role of GSL between EC metrics- versus LSP metrics-based models 
varies among different places on Earth depending on their dominant vegetation types.

Relative to the EC metrics-based models, the LSP metrics-based models showed greater sensitivity to site-level 
variability in ΣGPP. In the EC metrics-based models, the biome-level model (Model 3) explained the large major-
ity of variance in ΣGPP (R 2 = 93%), and accounting for site-level variability (Model 5) provided only modest 
improvement (R 2 = 98%) (Figures 3a and 3b). Indeed, cross-validation experiments indicate that accounting for 
site-level variability did not significantly improve the model (Figure S7 in Supporting Information S1). In the LSP 
metrics-based models, however, inclusion of site-level variability (Model 5) increased the proportion of explained 
variance in ΣGPP from 55% to 84% (Figures 3c and 3d), with similar results achieved in cross-validation experi-
ments (Figure S7 in Supporting Information S1). Stated another way, ΣGPP modeled using LSP-derived phenol-
ogy metrics is more sensitive to site-to-site variation in phenological metrics than corresponding metrics and 
models based on EC measurements. In fact, inclusion of site-specific intercepts (Model 4) explained the largest 
proportion of variance in ΣGPP in the LSP metrics-based models (Figure S7 in Supporting Information S1). This 
suggests that phenological and physiological metrics derived from LSP observations do not capture differences 
in overall productivity across the EC sites included in this analysis; that is, sites with the same GSL, EVI2max, and 
EVI2min derived from LSP metrics can have significantly different ΣGPP.

The EC metrics- and LSP metrics-based models indicate that ΣGPP is more sensitive to GPPmax and EVI2max, 
respectively, than GSL (Figure 3e). Normalized GPPmax and EVI2max effects were both about 60% larger than 

Figure 4. Growing season length coefficients (β1) for each site (smaller points) and biome (bigger points) type from the EC 
metrics- and land surface phenology metrics-based models. The numbers at the bottom of the figure show the number of sites 
(the first row) and number of site-years (the second row) for each biome type. Biome types are cropland (CRO), deciduous 
broadleaf forest, evergreen needleleaf forest, grassland, mixed forest, and wetland. Vertical lines show Bayesian 95% credible 
intervals.
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normalized GSL effects. Holding GSL and GPPmin constant, an increase in GPPmax of one standard deviation 
increases ΣGPP by 0.77 (0.58–0.94) standard deviations. The corresponding sensitivity in the LSP-based model 
was 0.43 standard deviations (0.17–0.70). Similar to GSL, biome-level variability in ΣGPP associated with varia-
bility in GPPmax and EVI2max was higher in the EC metrics-based model. In fact, EVI2max, which represents maxi-
mum leaf greenness was nonlinearly related to the GPPmax at each site (Figure S8 in Supporting Information S1). 
At the same time, variance in GPPmax increases with EVI2max (Figure S8 in Supporting Information S1), which 
suggests that while maximum leaf greenness is a good indicator of mean maximum vegetation productivity, other 
factors exert substantial control on GPPmax at local scale.

GPPmin and EVI2min play a modest role in regulating ΣGPP uptake in most, but not all, biome types (Figure 3e). 
The normalized coefficient of GPPmin ranged from −0.03 to 0.27 (40% less than the normalized GPP GSL effect) 
and the normalized coefficient of EVI2min ranged from −0.07 to 0.33 (20% less than the normalized EVI2 GSL 
effect). The effects of GPPmin and EVI2min were both weakly negative in mixed forest (MF), while other biomes 
were weakly positive. Since GPPmin and EVI2min were contributed by evergreen trees in MF while GPPmax and 
EVI2max were contributed by both evergreen and deciduous trees, when controlling for the EVI2max/GPPmax and 
GSL, a higher EVI2min/GPPmin value means a lower amplitude and fewer leaves being developed by deciduous 
trees, yielding a lower overall ΣGPP. However, in pure evergreen ecosystems, a lower amplitude does not neces-
sarily mean a lower annual GPP. The effects of both GPPmin and EVI2min variables are slightly lower than 95% 
significance level (Amrhein et al., 2019) based on our data, but ignoring the minimum seasonal productivity or 
aggregating maximum and minimum metrics into the seasonal amplitude may obscure important factors that are 
diagnostic of total seasonal carbon update, especially in evergreen systems which have higher minimum green-
ness and smaller greenness amplitude.

4. Discussion
The result that EVI2max had a larger effect on ΣGPP indicates that increases in maximum leaf greenness are 
more associated with ΣGPP than increases in the growing season duration of green leaves. Generally speaking, 
more green leaves results in larger increases in annual productivity compared to longer green leaf duration due 
to advanced spring and/or delayed autumn. Previous studies have shown that while regional decreases in leaf 
greenness are present in the satellite record (Jong et al., 2012; Sulla-Menashe et al., 2018), so-called “greening” 
of global vegetated land areas has been ongoing since at least the early 1980s (C. Chen et  al., 2019; Huang 
et al., 2018). Satellite observations and ecological models suggest that this greening is diagnostic of enhanced 
terrestrial vegetation productivity and has potential to mitigate climate warming by increasing the terrestrial 
carbon sink (Piao et al., 2020). However, although no consensus has been reached, a variety of studies have also 
suggested that increases in early and mid-growing season productivity might negatively impact end-of-season 
GPP, effectively offsetting early season increases in GPP (Buermann et  al.,  2018; Lu & Keenan, 2022; Piao 
et al., 2008; Zani et al., 2020). Therefore, improved understanding of how changes in leaf greenness and GSL 
jointly impact ΣGPP is required to forecast future change in large-scale carbon budgets. Our results (Figure 3e) 
indicate that greening trends casued by maximum greenness increasing might have a larger impact on the net 
carbon uptake of terrestrial vegetation than changes in GSL of leaf development.

Our results showing that satellite LSP-derived metrics had a smaller GSL effect on ΣGPP compared to EC-based 
metrics might have important implications for the use of remotely sensed LSP metrics to infer vegetation produc-
tivity at regional, continental, and global scales (e.g., Keenan et al., 2014; Richardson et al., 2010, 2013). The 
smaller magnitude of green leaf based GSL effect on ΣGPP has the potential to bias understanding regarding 
if and how changes in the satellite LSP-derived growing season of terrestrial ecosystems impact the sign and 
magnitude of net carbon fluxes. Future warming is expected to extend both the leaf and photosynthetic GSLs in 
many ecosystems, thereby potentially increasing ΣGPP (Hua et al., 2021; Piao et al., 2019). However, our results 
suggest that leaf GSL changes had smaller effect on ΣGPP than photosynthetic GSL changes, but the extended 
leaf GSL in spring and autumn (Buermann et al., 2018; Piao et al., 2007, 2008; Wolf et al., 2016) might increase 
carbon loss by ecosystem respiration, and thus reduce the total net carbon uptake.

Differences in the timing of phenology from LSP and EC measurements may explain differences in model results 
from each data source. Our comparisons of phenophase transition dates derived from LSP and EC measurements 
of GPP are broadly consistent with prior work (D’Odorico et al., 2015; Lu et al., 2018; Shen et al., 2014) but 
are based on a much larger data set that supports additional and more nuanced interpretation. First, at deciduous 
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sites, the timing of autumn phenology in LSP measurements was biased late compared to the timing estimated 
from EC measurements (Figures 2b and 5a). The reasons for this are unclear, but this result almost certainly 
reflects complexity in the relationship between the timing of leaf coloration and decline in photosynthesis late in 
the growing season (X. Wang et al., 2020). As a consequence, LSP-derived leaf GSL was systematically longer 
than EC-derived photosynthetic GSL (Figures S4 and S5 in Supporting Information S1), which explains why the 
LSP-based model showed smaller GSL effect on ΣGPP for deciduous sites. Second, at evergreen sites, the timing 
of spring phenology from LSP measurements is biased late relative to corresponding timing from EC measure-
ments (Figures 2a and 5d), and the timing of autumn phenology from the two sources was only weakly correlated 
(Figure 2, Table 1). This result has been previously noted (e.g., Melaas et al., 2013) and arises from the fact that 
photosynthesis in conifers starts well before the timing of leaf flushing and pigment changes later in the spring 
(Barr et al., 2009; Gao et al., 2021). These differences yielded shorter leaf GSL from LSP measurements relative 
to photosynthetic GSL from EC measurements and large site-level uncertainty for evergreen vegetation observed 
by satellite LSP observations compared to EC measurements (Figures S4 and S5 in Supporting Information S1). 
More importantly, these results indicate that biome type information is critical in upscaling EC-measured GPP 
seasonality using green-leaf-based LSP observations to infer changes in global photosynthetic productivity over 
large spatial scales. Additionally, these results also highlight the importance of developing methods to better 
match remotely sensed phenology with vegetation photosynthetic activities such as solar-induced chlorophyll 
fluorescence and better vegetation indices (Gonsamo et al., 2012; Jin & Eklundh, 2014; Mohammed et al., 2019), 
although these new methods may have their own limitations such as coarser spatial resolution and shorter avail-
able time periods. We used the phenometrics available from the only global operationally produced LSP data, 
MCD12Q2, and used the same amplitude thresholds for determining GPP-based phenometrics. However, it is 
possible that different definitions may result in higher correlations between LSP and ΣGPP and that could vary 
by biome or otherwise across space.

The result that site-level variability contributes a substantial proportion of total variance in ΣGPP modeled by 
LSP metrics across sites and years is consistent with Butterfield et al. (2020), Richardson et al. (2010, 2013), 
who found that the remotely sensed phenology-productivity relationship was strong across flux sites but does 
not capture interannual variability in ΣGPP at individual sites. Local environmental factors such as temperature, 
precipitation, forest age, and soil moisture are more important regulators of GPP than leaf phenology and phys-
iology at fine spatial scales (Barr et al., 2009; Churkina et al., 2005; Piao et al., 2009; Richardson et al., 2010). 
However, when investigating ΣGPP variability across large spatial scales, we found these local environmental 
factors tended to be averaged out, so the effects of remotely sensed leaf phenology and physiology on ΣGPP 
were stabilized. In addition, factors complicating the relationship between GPP measurements and remotely 
sensed LSP metrics also contribute to the site-level variability (X. Chen et al., 2018; Peng et al., 2017; X. Zhang 
et al., 2017). Further, EC measurements are affected by site-specific characteristics such as wind direction and 
measurement height (Chu et al., 2021; Schmid, 2002), factors that cannot be captured by satellite LSP obser-
vations. Thus, the magnitude of the estimated GSL-ΣGPP relationship at any particular site depends on both 
the natural variability of the relationship and the interaction with local characteristics. Our results support the 
conclusion that it is feasible to infer large-scale spatiotemporal patterns in ΣGPP from satellite-observed leaf GSL 
but large uncertainty at fine spatial scales. Developing ways to explain this site-level variability, perhaps using 
ecological covariates, has the potential to substantially improve our models designed to upscale EC measure-
ments and infer large scale ΣGPP using satellite LSP observations.

5. Conclusion
In summary, this study suggests that satellite LSP-based green leaf phenological and physiological metrics are 
capable of inferring vegetation productivity over large spatial areas for most biome types, and satellite observed 
leaf GSL trends are meaningful for projecting carbon cycle impacts into the future. However, caution must be 
used as satellite observed leaf GSL changes do not synchronize photosynthetic GSL changes for evergreen 
vegetation in spring and deciduous vegetation in autumn. Changes in leaf GSL had a smaller effect on ΣGPP 
compared to changes in photosynthetic GSL. Moreover, although changes in leaf GSL have a significant impact 
on ΣGPP, trends of vegetation greening or browning indicated by maximum leaf greenness changes might have 
more carbon impacts than the extended leaf GSL caused by current climate warming. Therefore, changes in both 
leaf GSL and maximum greenness need to be considered in satellite LSP-based inferences regarding large-scale 
dynamics of vegetation productivity.
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Figure 5. Representative gross primary productivity (GPP) and two-band enhanced vegetation index time series along 
with estimated MidGreenup and MidGreedown dates. Black lines in the GPP time series show fitted splines. (a) Deciduous 
broadleaf forest site US-Ha1; (b) Grassland site CH-Fru; (c) evergreen needleleaf forest site CZ-BK1; and (d) Cropland site 
IT-BCi. GPP values in gCm −2 d −1.
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Data Availability Statement
The eddy-covariance flux data set can be downloaded from the website of the FLUXNET2015 project (https://
fluxnet.org/data/fluxnet2015-dataset/). The land surface phenology data set MCD12Q2 v6 is available on 
LPDAAC (MCD12Q2 v6 product (https://lpdaac.usgs.gov/products/mcd12q2v006/). R scripts of this study are 
available on GitHub (https://github.com/ncsuSEAL/flux_modis_paper).
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