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1 Introduction

Estimating and testing for multiple structural changes in the linear regression model has

been an active research area in theoretical econometrics and empirical economics over the

past decades. See Perron (2006) and Casini and Perron (2019) for comprehensive surveys.

In particular, Bai and Perron (1998, 2003) provided a theoretical framework and computa-

tional algorithms to estimate and test for multiple structural changes at unknown dates in

linear regression models, where the regressors are non-trending or regime-wise stationary 1.

General forms of heteroskedasticity and serial correlations are permitted in the error term

with possible structural changes in variance provided they occur at the same time as those

in the coe¢ cients. A number of useful theoretical developments extended these methods

to wide range of popular empirical settings; e.g., Perron and Zhu (2005) analyzed models

with a linear time trend as a regressor, Kejriwal and Perron (2008, 2010a) considered cointe-

grated regressions with integrated or I(1) regressors as well as stationary ones, Perron and

Yamamoto (2014, 2015) considered models with endogenous regressors.

Here, we provide a hands-on guide for methods in the R (R Core Team 2023) pack-

age mbreaks to implement a comprehensive analysis of issues related to multiple structural

changes in the coe¢ cients of linear regression models proposed by Bai and Perron (1998,

2003). They are based on an e¢ cient method to estimate multiple structural changes by

minimizing the overall sum of squared residuals (SSR) using the so-called dynamic program-

ing algorithm. We also cover methods for constructing the con�dence intervals of the break

dates, testing for the presence of structural changes and selecting the number of structural

changes. Although the theoretical framework and computation algorithms are built for mod-

els with non-trending and regime-wise stationary regressors, some components are valid even

when the regressors have deterministic and stochastic trends. Appropriate modi�cations can

be made when the regressor is a linear time trend or the regressors include I(1) variables.

We also give some guide for these cases, although the readers should refer to the exact re-

sults obtained in the aforementioned papers for details. Note that the original program of

the mbreaks package was developed by Pierre Perron in the Gauss programming language.

Later, the program was translated into a version of the MATLAB language. These are avail-

able on the author�s website for non-pro�t academic purposes.2 In addition, the mbreaks
1Throughout, we use the terminology �stationary�in a rather loose way. More precisely what is required

is short-memory stationarity, or mixing-type conditions so that the partial sums of the variables scaled by
T�1=2 (with T the sample size) converge to a scaled Wiener process, also called Brownian motion. We will
stick with the label �stationary�since it makes the exposition less cumbersome.

2The existing R package strucchange (Zeileis et al., 2002) can deal with some structural change tests
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package enables plotting the conditional mean functions with and without accounting for

structural changes.

This article has the following structure. Section 2 explains the models and the e¢ cient

dynamic programming algorithm to estimate multiple break dates when the number of breaks

is known. Methods for constructing the con�dence intervals of the break dates, testing for

the presence of structural changes and selecting the number of structural changes are also

outlined. Section 3 explains the main functions of the mbreaks package to implement these

methods in R and provides the entire list of options speci�c to each function. The plotting

function is also explained. Section 4 presents two empirical examples to illustrate how the

results are presented and how these can be used in subsequent more general analyses with

the proper R program presented in the Appendix. Section 5 concludes.

2 Econometric framework

This section discusses the main model of interest. We then discuss methods related to the

e¢ cient dynamic programming algorithm to estimate multiple break dates when the number

of breaks is known, the construction of the con�dence intervals for the break dates, testing

for the presence of structural changes and selecting the number of structural changes.

2.1 Model and estimation

We suppose that we have a sample of T observations for the variables fyt; x0t; z0tg. These are
related by the following multiple linear regression model that speci�es a partial structural

change structure with m break dates (or m+ 1 regimes):

yt = x
0
t� + z

0
t�j + ut; t = Tj�1 + 1; :::; Tj;

for j = 1; :::;m + 1. The m break dates are denoted by fT1; � � � ; Tmg with the convention
that T0 = 0 and Tm+1 = T . The scalar yt is the dependent variable at time t, xt and zt
are p � 1 and q � 1 vectors of regressors at time t, � and �j, j = 1; :::;m + 1, are the

corresponding vectors of coe¢ cients and ut is the error term. In the mbreaks package, yt, xt
and zt are speci�ed as y, x and z. In the following, we may label the entire set of regressors

such as CUSUM tests of Brown et al. (1975) and tests for single break at some unknown date discussed in
Andrews (1993) and Andrews and Ploberger (1994). Zeileis et al. (2003) discussed methods of estimating
multiple break points suggested by Bai and Perron (2003) in the same package. However, it does not cover
comprehensive tools to deal with multiple structural change models such as con�dence intervals and tests
for multiple structural changes.
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by wt = [x0t; z
0
t]
0. We assume E(wtut) = 0. The case with this last assumption violated,

namely the presence of endogenous regressors, was investigated in Perron and Yamamoto

(2014, 2015) and will be discussed in Section 4.2.

There must be an interval with minimal length h between any two adjacent break dates

including the beginning and end of the sample, T0 and Tm+1. In standard applications, h is

speci�ed as a small fraction of the total sample h = �T with a trimming parameter � 2 (0; 1),
so that the two break dates are asymptotically distant as T ! 1. Typical choices of the
trimming parameter are � = 0:05; 0:10 or 0:15 and this can be speci�ed by the option eps1 in

the mbreaks package. Note that the maximum number of structural changes is constrained

by this choice. For example, if � = 0:15, a maximum of �ve structural changes can be

considered. If � = 0:10, at most eight, no matter how large T is. This trimming in relation

to the sample size is needed when conducting hypothesis testing for structural change or

when estimating the con�dence intervals since each segments must increase with the sample

size to obtain consistent estimates of some relevant quantities. If one is solely interested in

estimating the break dates, h can be directly speci�ed as a �xed integer via the option h,

where h � q. For example, if we set h = 15, at most 5 structural changes are considered

when T = 100, but as many as 65 structural changes can be considered when T = 1; 000.

For example, Lu and Perron (2010) develop a model that predicts a given number of mean

changes in the variance of some asset returns; e.g., 15 for a sample of about 10,000 daily

observations on the log absolute returns of the S&P 500 index. Since breaks can occur

consecutively, they set h = 1.

The mbreaks package provides as estimates of the unknown break dates, the values

fT̂1; � � � ; T̂mg that minimize the overall sum of squared residuals. once these are obtained,

one can recover the regression coe¢ cients. If p = 0, xt is null and all the coe¢ cients related

to zt are subject to change. This is called a pure structural change model. If p � 1, we have
a partial structural change model in which the estimate of the parameter vector � depends

on all segments. Adopting a partial structural change model can be bene�cial in terms of

increased e¢ ciency. However, care must be applied not to constrain parameters that can

change.

In the standard setting, the regressors wt = [x0t; z
0
t]
0 are assumed to be non-trending and

regime-wise stationary. The usual heteroskedasticity and serial correlation corrections can be

applied to construct the relevant con�dence intervals. This can be done using only adjacent

regimes when the researcher wants to allow the variance or autocovariance of ut to change

at the same date as the parameters. If the researcher is con�dent that the distribution of ut
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is stable, the full sample can be used.

2.2 An e¢ cient algorithm to estimate the break dates

The estimation of the multiple break dates is based on the least squares principle. Suppose

we know the number of structural changes m. Then, the least squares estimates of � and �j
are obtained by minimizing the sum of m-partitioned squared residuals with �j being speci�c

to the segment between t = Tj�1 + 1 and Tj so that the SSR over the entire sample isPm+1
j=1

PTj
t=Tj�1+1

(yt � x0t� � z0t�j)2:

Let �̂(fTjgmj=1) and �̂(fTjg
m
j=1) denote the estimates accounting for them-partition at fT1; � � � ; Tmg.

If we plug these in the above SSR, the objective function becomes

ST (T1; � � � ; Tm) �
Pm+1

j=1

PTj
t=Tj�1+1

[yt � x0t�̂(fTjg
m
j=1)� z

0
t�̂(fTjg

m
j=1)]

2;

while the estimated break dates fT̂1; � � � ; T̂mg are such that

fT̂1; � � � ; T̂mg = arg min
T1;��� ;Tm

ST (T1; � � � ; Tm):

A straightforward algorithm of this optimization is based on a grid search procedure. How-

ever, it requires least squares operations of order O(Tm) and may incur prohibitive compu-

tational burden. To avoid this problem, the mbreaks package uses an algorithm with least

squares operations of order O(T 2) at most. In fact only O(T ) matrix inversions are needed.

The key idea is that, with a sample of size T , the total number of possible segments is at

most T (T +1)=2. If we consider a matrix with the vertical axis representing the initial date

of the segment and the horizontal axis being the ending date of the segment, then a upper

triangular matrix can be constructed with each entry representing the estimated SSR for any

one of the possible segments.3 Then, for any value of m, the following algorithm compares

possible combinations to achieve a global minimum of the SSR.

Let us �rst consider the case of p = 0. Once the SSRs of the relevant segments are

computed and stored in the upper triangular matrix, the algorithm based on the principle of

dynamic programming proceeds via a sequential estimation of optimal one break partition

that allows a possible break from observations h to T �mh. Then, the next step searches
for optimal two break partitions. Such partitions have ending dates ranging from 3h to

3In practice, less than T (T + 1)=2 segments are permissible as some minimum distance between each
break is usually imposed.
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T � (m � 2)h. For each of these possible ending dates, one break partition can be inserted
to achieve the minimal SSR. The method continues sequentially until a set of optimal m� 1
break partitions are obtained. The �nal step is to see which of these optimal m � 1 break
partitions yields an overall minimal SSR with an additional segment.

If p � 1, since the estimate of � depends on them break partitions, an iterative procedure
is required. We start with some initial values of �, say ��, and apply the above mentioned

algorithm for p = 0 with yt � x0t�� as the dependent variable. After obtaining the m

break partitions fT �1 ; � � � ; T �mg, we update estimates of � and �j via the OLS regression
yt = x0t� + z

0
t�j + ut where the regimes are de�ned by fT �1 ; � � � ; T �mg. Then, using the

updated estimate for �, we iterate the dynamic programming algorithm for the p = 0 case to

update the m break partitions. This procedure is continued until the change in the objective

function ST (T1; � � � ; Tm) becomes smaller than some arbitrary ". To avoid local minima, an
appropriate choice of the initial value of � is required to start the iteration. To this end,

we �rst apply the dynamic programming algorithm with treating all coe¢ cients as being

subject to change and obtain the m break partitions fT a1 ; � � � ; T amg and the break coe¢ cients
�a1; � � � ; �am+1 (we also obtain estimates for � in each segment). Then, we estimate � using
the OLS regression yt � zt�aj = xt� + ut over the entire sample and use it as an initial value
for �. In the mbreaks package, the initial value for � is speci�ed by the options fixb and

betaini. The convergence criteria " is speci�ed by the option eps and the maximum number

of iteration is set by the option maxi.

Here, the assumption that wt be non-trending or regime-wise stationary is not needed.

Indeed, the break fraction estimator (T̂j=T ) is shown to be consistent to the true break

fraction as T ! 1, irrespective of the nature of wt (subject to technical conditions). Fur-
thermore, the asymptotic distributions of the OLS coe¢ cient estimates in each segment are

not a¤ected by the uncertainty of the break dates. Hence, standard inference for the sub-

sample coe¢ cients in each segment can be implemented as if the estimated break dates were

known.

There is another method of estimating multiple break dates using a sequential procedure.

It �rst estimates a single break date using the entire sample, then estimate a single break

date in each of the subsamples before and after the estimated break date. The signi�cance

of a newly found structural changes can be veri�ed using the supFT (l + 1jl) test outlined
in Section 2.5.1. This can be continued until m structural changes are found. This method

reduces the computational burden as it only requires the least squares operations at rate

O(T ). Bai (1997b) showed that when using this sequential method, the break date estimates
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are consistent even when m is underspeci�ed if the regressors are non-trending. The limit

distribution is, however, di¤erent. To remedy this problem, Bai (1997b) suggested a proce-

dure called �repartition�. This amounts to re-estimating each break date conditional on the

adjacent break dates. For example, let the initial estimates of the break dates be denoted

by (T̂ a1 ; :::; T̂
a
m). The second round estimate for the i

th break date is obtained by �tting a

one break model to the segment starting at date T̂ ai�1 + 1 and ending at date T̂
a
i+1 (with

the convention that T̂ a0 = 0 and T̂
a
m+1 = T ). The estimates obtained from this repartition

procedure have the same limit distributions as those obtained simultaneously.

2.3 Con�dence intervals for the break dates

The mbreaks package o¤ers a method to construct con�dence intervals for the break dates.

This is based on the following limiting distribution of T̂j obtained by adopting a theoretical

framework in which the magnitudes of the structural changes converge to zero as T ! 1.
For notational simplicity, we focus on the case with p = 0. It is then given by:

(�0
jQj�j)

2

(�0
j
j�j)

(T̂j � T 0j )) argmax
s
V (j)(s);

where) denotes convergence in distribution, V (j)(s) =W (j)
1 (�s)� jsj =2 if s � 0; V (j)(s) =p

�j(�j;2=�j;1)W
(j)
2 (s)� �j jsj =2 if s > 0, �j = �0

jQj+1�j=�
0
jQj�j, �

2
j;1 = �

0
j
j�j=�

0
jQj�j,

�2j;2 = �0
j
j+1�j=�

0
jQj�j. Also, W

(j)
1 (s) and W

(j)
2 (s) are independent standard Wiener

processes de�ned on [0;1), starting at the origin when s = 0. The cumulative distribution
function of argmaxs V (j)(s) is derived in Bai (1997a). To make use of this result, all we

need are estimates of �j = �j+1 � �j, Qj = (Tj � Tj�1)�1
PTj

t=Tj�1+1
ztz

0
t, and 
j being the

long-run covariance matrix estimator of ztut using data over the jth segment.

For the long-run covariance matrix estimator of ztut, the mbreaks package adopts the het-

eroskedasticity and autocorrelation consistent (HAC) covariance matrix estimator proposed

by Andrews (1991) using the Quadratic Spectral kernel with the bandwidth selected by an

AR(1) approximation. One can also use the prewhitening procedure proposed by Andrews

and Monahan (1992), i.e., a VAR(1) �lter applied to ztût where ût is the regression residuals.

The HAC covariance matrix estimator is then constructed based on the �ltered series and

the VAR(1) coe¢ cient estimates are parametrically accounted for.

Here, zt and ut have to be regime-wise stationary. In addition, if either or both are

stationary not only in the segments but also over the entire sample, the following options

for zt and ut can be used to enhance �nite sample e¢ ciency.
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� If no serial correlation is present in ut, use robust=0. Then, the long-run covariance
matrix of ztut is constructed as if ut is a martingale di¤erence sequence. If robust=1,

the HAC covariance matrix estimator is used.

� When robust=1 and the errors are not highly serially correlated, use prewhit=0. If
prewhit=1, the prewhitening procedure proposed by Andrews and Monahan (1992) is

applied.

� If the moments of zt are identical across all the segments, use hetq=0. Then, Qj =
Q for all j, which is estimated by Q̂ = T�1

PT
t=1 ztz

0
t. If hetq=1, Q̂j = (Tj �

Tj�1)
�1PTj

t=Tj�1+1
ztz

0
t for each j.

� If the long-run covariance matrices of ztut are identical across all the segments, use
hetvar=0. Then 
j = 
 for all j and is estimated using a long-run covariance matrix

estimator of ztut over the entire sample. If hetvar=1, the long-run covariance matrix is

estimated in each segment. This last option should be applied only when all segments

contain a su¢ cient number of observations.

When zt is a linear time trend, the limit distributions of the break date estimate are

provided in Perron and Zhu (2005) for a variety of cases. When zt includes I(1) variables so

that we are dealing with a cointegrating regression, the limiting distributions were derived

by Kejriwal and Perron (2008, 2010a).

2.4 Tests for the presence of structural changes

The mbreaks package provides the following two hypothesis testing procedures to investigate

the presence of structural changes. One is suitable to a speci�c situation where the number

of potential structural changes is known and the second is applicable when the number of

potential structural changes is unknown. In most empirical studies, the number of structural

changes is unknown, thus the latter test has a higher power and is more useful. Both types of

tests are based on the supremum F type tests (the supFT tests) and their asymptotic critical

values are also shown in the output of the mbreaks package. Since the null hypothesis is

that no break occurs, zt and ztut must be stationary over of the whole sample to ensure

that the provided critical values are valid. When zt includes I(1) variables and yt and zt
are cointegrated, one can use the produced test statistics in the mbreaks package but the

critical values to be used are those derived in Kejriwal and Perron (2008). In what follows,

we cover the case with p = 0 for simplicity of illustration.
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2.4.1 Tests for zero versus a �xed number of structural changes

The �rst type of hypothesis testing procedure is the supFT test for the null hypothesis of

no structural change against an alternative hypothesis of a �xed number (m) of structural

changes. Let R be the conventional matrix such that (R�)0 = (�01 � �02; � � � ; �0m � �0m+1) and
de�ne the following F test allowing serial correlation in the errors:

FT (T1; � � � ; Tm) =
1

T

�
T � (k + 1)q � p

kq

�
�̂
0
R0(RV̂ (�̂)R0)�1R�̂;

where V̂ (�̂) is an estimate of the long-run covariance matrix of �̂. Since the break fractions

are T -consistent even with correlated errors, an asymptotically equivalent version is to �rst

take the supremum of the original FT test that assume i.i.d. errors to obtain the break

points. The robust version of the test is constructed as supFT (m) = FT (T̂1; � � � ; T̂m) where
fT̂1; � � � ; T̂mg globally minimize the SSR. They are equivalent to taking the maximum value
of FT (T1; � � � ; Tm) over the set of fT1; � � � ; Tmg when the F test is constructed under the

spherical errors assumption.

Similar to the con�dence intervals of the break dates, some prior knowledge on restrictions

pertaining to serial correlations in ut may improve the �nite sample properties of the tests.

In particular, the following option is available:

� Options robust and prewhit can be applied if the errors are serially correlated (and
heteroskedastic).

� If zt is imposed to have the same second moments across all the segments let hetdat=0.
Then, the long-run covariance matrix estimator is constructed accordingly.

� If the long-run covariance matrices of ztut are imposed to be identical across all seg-
ments let hetvar=0. Then, V̂ (�̂) is constructed using ztut over the entire sample. If

hetvar=1, V̂ (�̂) is constructed in each segment.

Setting hetdat=0 and hetvar=0 amounts to estimating the variance imposing the null

hypothesis, while hetdat=1 and hetvar=1 implies estimating it under the alternative hy-

pothesis. If the sample size is large enough it is recommended to estimate under the alter-

native hypothesis to avoid low or even non-monotonic power problems.
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2.4.2 Double maximum tests

One usually has no prior information regarding the true number of structural changes. Bai

and Perron (1998) introduced tests for the null hypothesis of no structural change against

an unknown number of structural changes given some upper bound M . These are called the

double maximum tests. In particular, the mbreaks package o¤ers the UDmaxT test:

UDmax T (M) = max
1�m�M

FT (T̂1; � � � ; T̂m);

where the largest number of structural changes (M) is speci�ed by option m. In the mbreaks

package, the asymptotic critical values for M = 5 are available for � = 0:05; 0:10 and 0:15,

those forM = 3 are available for � = 0:20 and those forM = 2 for � = 0:25. Note that if the

model containsm structural changes, the UDmaxT test may be slightly less powerful than the

correctly speci�ed supFT (m) test. However, the UDmaxT test has a higher power than the

supFT (m) test if the number is misspeci�ed. Also, the UDmaxT test is particularly useful

when two structural changes exist in opposite directions. Bai and Perron (2006) showed that

in such a case the supFT (1) test does not have su¢ cient power but the UDmaxT test does.

Also, the critical values do not change much asM is increased beyond 5, so that the test can

also be applied with larger values using the critical values for M = 5. Finally, simulations

in Bai and Perron (2006) showed that the UDmax T (M) test has power almost as high as

the supFT (m) test that uses the correct value of m. Hence, it is arguably the most useful

and should be used in all cases.

2.5 Selecting the number of structural changes

In this section, we discuss two avenues to select the number of structural changes. One is

based on a sequential testing procedure, the other on the use of information criteria.

2.5.1 Tests for l versus l + 1 structural changes

The mbreaks package o¤ers tests for the null hypothesis of l structural changes against an

alternative hypothesis of l + 1 structural changes. This is called the supFT (l + 1jl) test.
The method amounts to the application of l+ 1 tests of the null hypothesis of no structural

change versus an alternative hypothesis of single structural change applied to each segment

containing the observations from Tj�1+1 to Tj for j = 1; :::; l+1. It concludes for a rejection

in favour of a model with l+1 structural changes if the overall minimal value of the SSR over

all segments where an additional structural change is included is su¢ ciently smaller than
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the SSR from the model with l structural changes. The asymptotic critical values of the

supFT (l + 1jl) tests are provided in the mbreaks package for � = 0:05; 0:10; 0:15, 0:20 and
0:25 and for q ranging from 1 to 10. The level of signi�cance is chosen by the option signif.

The method of sequential testing to select the number of structural changes goes as follows.

Use the UDmaxT or supFT (1) test to establish whether at least one break is present. If so,

continue with the supFT (2j1) test. If the test fails to reject the null hypothesis, the number
of structural change is considered to be one. If the test rejects, we sequentially proceed to the

supFT (3j2) test and so on. If the supFT (l+1jl) test does not reject, then one concludes that
l breaks are present. Note that, in the presence multiple structural changes, the supFT (1j0)
test may su¤er from low power, which is why it is advisable to start using the UDmaxT test

to establish whether at least one break is present.

When zt is integrated so that we have a cointegrated system, Kejriwal and Perron (2010b)

derived the limiting distributions of the supFT (l+ 1jl) tests. The output from the mbreaks

package for these tests can be used but their signi�cance should be assessed using the critical

values provided by Kejriwal and Perron (2010b). However, there are a few caveats regarding

this procedure if zt has time trends. Yang (2017) showed that in the presence of multiple

structural changes, the �rst estimated break date needs not converge to one of the true

break dates, which invalidates the sequential testing and estimation procedure as well as the

repartition method.

2.5.2 Information criteria

Another popular class of procedures to select the number of structural changes is information

criteria. The mbreaks package provides the Bayesian Information Criterion (BIC) suggested

by Yao (1988), the modi�ed Schwarz Information Criterion (LWZ) proposed by Liu et al.

(1997) and the modi�ed BIC of Kurozumi and Tuvaandorj (2011). These are de�ned as

follows:

BIC(m) = log[ST (T1; � � � ; Tm)=T ] + q(m+ 1)� (lnT )=T;
LWZ(m) = log[ST (T1; � � � ; Tm)=T ] + q(m+ 1)� c0(lnT )2+�=T;
KT (m) =

Pm+1
j=1 (T̂j � T̂j�1) log �̂

2
j +

Pm+1
j=1 q log(T̂j � T̂j�1) + 2m log T;

with c0 = 0:299 and � = 0:1 in LWZ(m) and �̂
2
j = (

PT̂j

t=T̂j�1+1
û2t )=T with ût being the OLS

residuals which account for the estimated break dates in KT (m). For all criteria, the value

m which minimizes it is considered as the number of structural changes present.
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3 Main functions and options in mbreaks package

In the mbreaks package, all the procedures discussed are implemented via the compre-

hensive main functions mdl() as well as the speci�c functions dotest(), doseqtests(),

dosequa(), doorder(), dorepart() and dofix(). For �rst-time users, we recommend using

the mdl() function, as it yields a set of outputs for the standard analysis. In this section,

we explain these functions and a plotting function plot_model(). Table I summarizes the

purposes of these functions.

Table I. Summary of main and plotting functions

comprehensive mdl() (sbtests,seqtests) supFT (m), UDmaxT , supFT (l + 1jl)

function (model) SEQ, KT, BIC, LWZ

speci�c dotest() (sbtests) supFT (m), UDmaxT

functions doseqtests() (seqtests) supFT (l + 1jl)

dosequa() (model) SEQ

doorder() (model) KT, BIC, LWZ

dorepart() (model) REPART

dofix() (model) FIX

plotting function plot_model() Plot any model above

sbtests, eqtests and model are S3 class objects. For class of model,

SEQ: model selected by the sequential testing

BIC: models selected by BIC proposed by Yao (1988)

LWZ: model selected by the modi�ed SIC proposed by Liu et al. (1997)

KT: model selected by the modi�ed BIC proposed by Kurozumi and Tuvaandorj (2011)

REPART: model selected by the sequential method proposed by Bai (1997a)

FIX: model selected by a prespeci�ed or known number of structural changes

In what follows, we show results which appear in the console by using a mean shift

model with ready-to-use data real included in the mbreaks package. The details of this

example are presented in Section 4.1, but because x_name is empty and z_name includes

only a constant, one can simply produce the results by applying the main functions, for

example, mdl(�rate�,data=real).
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3.1 Comprehensive function mdl()

The generic format of mdl() is:

> result_mdl = mdl(y_name,z_name,x_name,data,options)

In the output result_mdl, there are two objects of hypothesis testing results $sbtests

and $seqtests. $sbtests includes a summary of the supFT and UDmaxT tests as well as

the critical values assuming stationary regressors. To view the summary tables:

>print(result_mdl$sbtests)

Also, $seqtests includes a summary of the supFT (l+1jl) tests and their critical values
assuming stationary regressors. To view the summary table:

>print(result_mdl$seqtests)

Importantly, the outputs from the mdl() function include the results of model estimation

as model class in R, where the number of structural changes is selected by the sequential

testing ($SEQ) and the information criteria ($BIC, $LWZ and $KT). For the former, the level of

signi�cance is chosen by the option signif. For the latter, the results of all the three criteria

are included. For each model object the selected number of structural changes is contained

in $nbreak, the estimated break dates are in $date and their con�dence intervals are in $CI.
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Furthermore, it includes the subsample OLS coe¢ cient estimates for �j in the top rows of

$beta and their standard errors in the same position of $SE. If applicable, the full sample

OLS coe¢ cient estimates for � is in the bottom rows of $beta and their standard errors in

the same positions of $SE. The minimized SSR, the residuals and the �tted values of the �nal

model are stored in $SSR, $resid and $fitted.values, respectively. One often wants to

use some results of mdl() function as intermediate inputs for the subsequent analyses. For

example, the estimated break dates when the number of structural changes is selected by

the sequential testing will be stored in break_date object and can be retrieved via:

>break_date = result_mdl$SEQ$date

3.2 Speci�c main functions

The outputs from the mdl() function can also be produced by using the following speci�c

main functions. First, the results of the tests for the presence of structural changes are

obtained from the dotest() function.

> result_dotest = dotest(y_name,z_name,x_name,data,options)

In result_dotest, we have four objects which summarize the results. $ftest contains

the supFT (m) tests, $cv_supF includes the 10%, 5%, 2.5% and 1% critical values. $UDmax

contains the UDmaxT tests and $cv_Dmax contains their critical values. The summary tables,

which present the same as result_mdl$sbtests from the mdl() function, are obtained using:

>print(result_dotest)

Similarly, the results of the sequential tests are obtained by speci�cally using the doseqtests()

function. It contains the supFT (l + 1jl) test statistics in $supfl and their critical values in
$cv_supFl.

Second, the model estimation results from the mdl() function can also be produced using

the following speci�c functions. When the model is selected by the sequential testing, the

results are obtained using the dosequa() function.

> result_dosequa = dosequa(y_name,z_name,x_name,data,options)

Similarly, when the number of structural changes is selected by the information criteria,

the results are obtained using the doorder() function, whereas the criterion (BIC, LWZ
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or KT) may be speci�ed from the option ic in the doorder() function. If unspeci�ed, it

returns the results using KT.

> result_doorder = doorder(y_name,z_name,x_name,data,options)

For any of the model estimation results, useful results are stored as explained in Section

3.1. The summary tables, which present the same as result_mdl$SEQ from the mdl()

function, are obtained by:

>print(result_dosequa)

3.3 Speci�c main functions of other suboptimal methods

There may be an interest in the following two methods of estimating the break dates. The

�rst method is the repartition method explained in Section 2.2. The dorepart() function

implements this method and estimates multiple structural changes one at a time, while the

number of breaks are selected by the sequential testing. To do this:

> result_dorepart = dorepart(y_name,z_name,x_name,data,options)

The second method is when the number of structural changes is known or prespeci�ed.

One can use the main function dofix() to estimate the model where the number of structural

changes is speci�ed via the option fixn.

> result_dofix = dofix(y_name,z_name,x_name,data,fixn, options)

Note that if fixn is not speci�ed in dofix() function, a model with m = 5 is chosen.

3.4 Plotting function

The mbreaks package o¤ers a plotting function using the ggplot2 package. The plot_model()

function produces a �gure of the following items obtained from an estimated structural

change model (result_dosequa, result_doorder, result_dorepart or result_dofix).

For example,

> plot_model(result_dosequa)

� The observed yt, �tted values ŷ(m
�)

t from a model withm� structural changes (estimated

or pre-speci�ed) and �tted values y(0)t from a model with no structural changes.

� The estimated break dates with labels in chronological order and the con�dence inter-
vals of the break dates with con�dence level 0.95 as the default value. The con�dence

level can be changed to 0.90 via the option CI.

� The con�dence interval of the conditional mean of yt when the model hasm� structural

changes. The con�dence level can be changed to 0.90 via the option CI.
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3.5 Options for the functions

For the main functions mdl() as well as dotest(), doseqtests(), dosequa(), doorder(),

dorepart(), dofix() and plot_model() the following options are available. If these are

not speci�ed, they are set at some stated default value.

� const: allows to include a constant term in zt. If const=0, zt does not include a

constant. The default value is const=1.

� eps1 : speci�es the trimming value � from f0; 0:05; 0:10; 0:15; 0:20; 0:25g. The default
value is eps1=0.15. If the input value is not one of the six values or (m+1) b�T c > T ,
it will be set to the default value. If eps1=0 is chosen, h must directly be speci�ed

and dotest(), doseqtests()and dosequa() functions are invalidated as explained in

Section 2.1.

� h: speci�es the minimum interval between the two adjacent structural changes. This

is an option speci�c to the occasion of � = 0. When � > 0, h = b�T c is automatically
set. If � = 0 and the input value is invalid, i.e. (m + 1)h > T or h < p + q, it will be

set to h = b0:15T c.

� m : speci�es the maximum number of structural changes considered in the model. The
default value is m=5. If the input value is not an integer or (m+1)h > T , it will be set

to the default value.

� signif : speci�es the level of signi�cance in the sequential testing procedures to select
the number of structural changes. The default value is signif=2 corresponding to the

5% signi�cance level. Other values are signif=1 for the 10%, signif=3 for the 2.5%,

and signif=4 for the 1% signi�cance levels, respectively.

The following options pertain to the structure of the long-run covariance matrix of wtut.

� robust : allows heteroskedasticity and autocorrelation in ut by using the HAC co-

variance matrix estimator in which the Quadratic Spectral kernel is used with the

bandwidth selected via the AR(1) approximation proposed by Andrews (1991). With

robust=0, the errors are assumed to be a martingale di¤erence sequence. The default

value is robust=1.
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� prewhit : prewhitening procedure proposed by Andrews and Monahan (1992), that
is, a VAR(1) �lter applied to wtût where ût is the regression residuals and the HAC

covariance matrix estimator is constructed based on the �ltered series and the AR1

coe¢ cient estimate are parametrically accounted for. The default value is prewhit=1.

The following options pertain to the variance of ut and the second moment matrices of

the regressors wt:

� hetvar : allows for the variance of errors ut to be di¤erent across the segments de-
termined by the estimated breaks dates when constructing the F test statistics. If

hetvar=0, the errors are assumed to have the same variance across the segments. The

default value is hetvar=1. Note that hetvar=0 is not allowed when robust=1.

� hetdat : allows for the second moment matrices of wt to be di¤erent across the seg-
ments when constructing the F test. If hetdat=0, wt is assumed to have the same

second moment matrix across the segments. The default value is hetdat=1.

� hetq : allows for the second moment matrices of wt to be di¤erent across the segments
when constructing the con�dence intervals of the break dates. If hetq=0, wt is assumed

to have the same second moment matrix across the segments. The default value is

hetq=1.

� hetomega : allows for the long-run covariance matrices of wtut to be di¤erent across the
segments when constructing the con�dence intervals of the break dates. If hetomega=0,

the long-run covariance matrix is assumed to be the same across the segments. The

default value is hetomega=1.

The following options are speci�c to estimating partial structural change models explained

in Section 2.2:

� maxi : speci�es the maximum number of iterations if no convergence is attained when
running the iterative procedure. The default value is maxi=20.

� eps : speci�es the criterion for convergence of the iterative procedure. The default
value is eps=0.0001.

� fixb : allows speci�c initial values for �. If fixb=1, the values must be supplied as
betaini of size p � 1. If betaini is an invalid value, it will set fixb=0 and use an
OLS estimate for the initial values for �. The default value is fixb=0.
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The other options:

� ic : option speci�c to the main function doorder(). If ic="BIC", the BIC will be
used to select the number of structural changes. If ic="LWZ", the LWZ will be used to

select the number of structural changes. The default value is ic="KT" and KT is used.

� fixn: option speci�c to the main function dofix(). The number of structural changes
prespeci�ed by the user. The default value is fixn=5.

� printd : allows to print intermediate outputs of the estimation procedures in the
console, if you set printd=1. The default value is printd=0 and the intermediate

outputs are suppressed.

� CI: option speci�c to the plotting function plot_model(). This speci�es the con�dence
level for the con�dence intervals of the break dates and the conditional means in the

plot. The options are 0.90 or 0.95. The default value is CI=0.95.

4 Empirical examples

The section presents two empirical examples investigated in the previous literature: a) level

shifts in the U.S. real interest rate; see Garcia and Perron (1996) and Bai and Perron (2003),

b) structural changes in the New Keynesian Phillips curve; see Perron and Yamamoto (2015).

4.1 Level shifts in the US real interest rate

We investigate structural changes in the mean parameter �j of the mean shift model:

yt = �j + ut; for t = 1; :::; T;

and j = 1; :::;m+ 1 with yt being the U.S. real interest rate series from 1961Q1 to 1986Q3.

The mbreaks package includes a ready-to-use data set real in which the real interest rate

data is labelled as rate. We allow serial correlation in the errors ut by using the HAC

covariance matrix estimator with prewhitening. These can be speci�ed using the options

robust=1 and prewhit=1, which are default settings. Here, we use the dosequa() function

to select the number of structural changes by the sequential testing.

> result_rate = dosequa(�rate�, data = real)

> print(result_rate)
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The following output shows that, consistent with Bai and Perron (2003), a model with

three structural changes in level is selected and the estimated break dates are 24 (1966Q4), 47

(1972Q3) and 79 (1980Q3). Their 95% con�dence intervals are [1965Q2, 1970Q2], [1969Q1,

1973Q1] and [1980Q1, 1981Q2], respectively. The output also presents the coe¢ cient esti-

mate �̂ in each regime: 1.824% for the �rst regime, 0.866% for the second regime, -1.796%

for the third regime and 5.643% for the fourth regime. Their standard errors computed using

the HAC covariance matrix estimator with prewhitening are presented in parentheses.

As result_rate contains the estimated model with three structural changes, the condi-

tional means with and without structural changes are plotted by

> plot_model(result_rate)

In Figure I, the black line shows the data yt, the blue line corresponds to the conditional

mean of yt when the three structural changes are accounted for. The red long line is the

conditional mean of yt when no structural changes are considered. The estimated three break

dates are indicated by the vertical dotted lines in purple with their con�dence intervals by

short red lines in the bottom of the �gure.
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Figure I. Plot of the conditional mean of the US. real interest rates from the
plot_model() function

4.2 Structural changes in the New Keynesian Phillips curve model

Perron and Yamamoto (2015) studied structural changes in the New Keynesian Phillips curve

model proposed by Gali and Gertler (1999). They considered the following linear model:

�t = �+ 
�t�1 + �mct + �Et�t+1 + ut for t = 1; :::; T;

where �t is the in�ation rate and mct is a marginal cost measure, which here is the labor

income share, at time t. Et is the expectation operator conditional on information available

up to time t; hence Et�t+1 is the expected in�ation rate for the next period. The mbreaks

package includes a ready-to-use data set nkpc from Kurmann (2007) and we use inf and

inflag for �t, �t�1, respectively, and lbs formct. The sample period is 1960Q1-1997Q4. An

alternative choice for mct is the GDP gap (ygap) and this can be implemented by replacing

lbs with ygap in the following procedures.

As the expectation term Et�t+1 is unobservable, we take the strategy of using �t+1
(inffut) to proxy Et�t+1 in the regression model. However, such a regression model su¤ers

from endogeneity problem as the expectation errors �t+1 � Et�t+1 absorbed in the error
term are correlated with the proxy variable �t+1. In assessing structural changes, if some

regressors are endogenous, i.e., correlated with the errors, one can simply consider the pro-
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jection of the regressors on the space spanned by the instrumental variables (IVs) to estimate

and test for multiple structural changes (Perron and Yamamoto, 2014). In addition, when

the reduced-form has structural changes, the generated regressors may not be regime-wise

stationary. Thus, the con�dence intervals of the break dates by the IV method need to

account for this fact. Perron and Yamamoto (2015) showed that it is preferable to simply

estimate the break dates and test for structural changes using the usual OLS framework, as

it delivers estimates of the break dates with higher precision and tests with higher power

compared to those obtained using the IV method. In this empirical example, we adopt the

strategy of Perron and Yamamoto (2015) and estimate and test for structural changes by

the OLS method even if endogeneity is an issue. The main reason why OLS is preferable is

that even if the parameter estimates of the coe¢ cients are inconsistent the changes are, in

general, consistent. Also, it is more e¢ cient since it avoids the use of generated regressors

which have less variations especially when the instruments are weak. This is done only to

get better estimates of the break dates and more powerful tests for structural changes. Once

the structural changes are identi�ed, the coe¢ cients are estimated by using the IV method

applied to each segment.

Let us consider the full structural change model and now use the comprehensive function

mdl(). Following Perron and Yamamoto (2015), we specify the options prewhit=0, eps1=0.1

and m=5 but these speci�c choices do not qualitatively a¤ect the main empirical results.

> result_nkpc=mdl(�inf�,c(�inffut�, �inflag�, �lbs�),

data=nkpc,prewhit=0,eps1=0.1,m=5)

The results of the tests for the presence of structural changes and those of the sequential

tests are stored in $sbtests and $seqtests, respectively. They are of course the same as

the original results of Perron and Yamamoto (2015). In $sbtests, the UDmaxT test is 69.63

and exceeds the 1% critical value (20.75), suggesting the presence of structural changes in

the New Keynesian Phillips curve model.

> result_nkpc$sbtests
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In $seqtests, the supFT (2j1) test is 11.408 and is smaller than the 10% critical value

(16.70). Thus, there is only one structural change in the model.

> result_nkpc$seqtests

In result_nkpc$SEQ, we see that the estimated break date is 125 which corresponds to

1991Q1. The OLS coe¢ cient estimates and their standard errors are also produced, although

these su¤er from endogeneity bias and are invalid.

> result_nkpc$SEQ
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The next step is to split the entire sample into the two subsamples ([1960Q1, 1991Q1] and

[1991Q2, 1997Q4]) and conduct the IV estimation for each segment. Following the literature,

we consider the set of instruments available at period t�1. We use the �rst lagged variables
of in�ation (inflag), labor income share (lbslag), GDP gap (ygaplag), interest spread

(spreadlag), wage in�ation (dwlag) and commodity price (dcplag) as the set of IVs.

Our analysis illustrates how the results from the mbreaks package can be incorporated

in subsequent analyses. In the �rst stage regression, structural changes in the reduced-

form model are possible. Using the sequential testing, we found two structural changes

in 1973Q1 and 1980Q4. Hence, the �tted values of the endogenous regressor (inffut)

on the IVs by accounting for those two structural changes are created (Xpred). In the

second stage regression, we regress the dependent variable (inf) on Xpred and the exogenous

regressors (inflag and lbs) segmented into the two subsamples [1960Q1, 1991Q1] and

[1991Q2, 1997Q4]. Table II reports the coe¢ cient estimates and standard errors equivalent

to Perron and Yamamoto (2015) in each segment. See Appendix for the R program.

Table II. IV coe¢ cient estimates in the New Keynesian Phillips Curve model
with structural changes
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�t�1 mct Et�t+1 const.

1960Q1-1991Q1 0.302 0.001 0.683 0.000

(0.070) (0.007) (0.067) (0.001)

1991Q2-1997Q4 0.130 0.042 -0.328 0.001

(0.157) (0.036) (0.385) (0.005)

Note: Standard errors are in parentheses.

5 Conclusion

This article provided a hands-on guide for an R package mbreaks to implement a compre-

hensive analysis of issues related to multiple structural changes in the coe¢ cients of linear

regression models proposed by Bai and Perron (1998, 2003). The proposed R package is

available from CRAN (R Core Team, 2023). It o¤ers methods for constructing the con�-

dence intervals of the break dates, testing for the presence of structural changes and selecting

the number of structural changes. Although the theoretical framework and computation al-

gorithms are built for models with non-trending or regime-wise stationary regressors, some

results are still useful even when the regressors have a linear time trend or I(1) variables,

or even when some regressors are endogenous. The mbreaks package provides methods of

constructing the con�dence intervals of the break dates, testing for the presence of structural

changes and selecting the number of structural changes by using the main functions mdl() as

well as dotest(), doseqtests(), dosequa(), doorder(), dorepart(), dofix() and to plot

the conditional mean functions with and without structural changes. A list of the entire set

of options to specify in these functions is provided. Two empirical examples illustrate how

to use these functions in practice, how the results are presented as well as how the results

can be used in subsequent more general analyses. We hope that this will provide valuable

tools to implement state-of-the-art methods to deal with multiple structural changes in a

wide range of empirical analyses.
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Appendix: R program to obtain the second-stage coe¢ cient estimates in
Section 4.2

data(nkpc)
T = dim(nkpc)[1]

##### First stage regression #####
#endogenous variable
X_e = as.matrix(nkpc$inffut,drop=FALSE)

#instrumental variables
instruments = c(�inflag�,�lbslag�,�ygaplag�,�spreadlag�,�dwlag�,�dcplag�)
Z = as.matrix(nkpc[,instruments])
Z = cbind(rep(1,T),Z)

#estimate the break dates in the first stage
mdl1 = dofix("inffut",instruments,data=nkpc,fixn=2,prewhit=0,eps1=0.1,m=5)
Tr1 = mdl1$date[1]
Tr2 = mdl1$date[2]

# generate the second-stage regressors (entire sample)
tind1r = seq(1, mdl1$date[1],1)
tind2r = seq(mdl1$date[1]+1,mdl1$date[2],1)
tind3r = seq(mdl1$date[2]+1,T,1)
Z1 = Z[tind1r,]
Z2 = Z[tind2r,]
Z3 = Z[tind3r,]
X_e1 = X_e[tind1r,]
X_e2 = X_e[tind2r,]
X_e3 = X_e[tind3r,]
Xh_e1 = Z1%*%solve(t(Z1)%*%Z1)%*%t(Z1)%*%X_e1
Xh_e2 = Z2%*%solve(t(Z2)%*%Z2)%*%t(Z2)%*%X_e2
Xh_e3 = Z3%*%solve(t(Z3)%*%Z3)%*%t(Z3)%*%X_e3
Xpred = rbind(Xh_e1,Xh_e2,Xh_e3)

##### Second stage regression #####
#independent variables
Y = as.matrix(nkpc[,�inf�,drop=FALSE])
#second-stage regressors
Xh = as.matrix(nkpc[,c(�inflag�,�lbs�)])
Xh = cbind(rep(1,151),Xh,Xpred)

#sructural change tests and break date estimate by OLS
regressors = c(�inffut�, �inflag�, �lbs�)
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mdl2 = mdl("inf",regressors,data=nkpc,m=5,eps1=0.1,prewhit=0)
T1 = mdl2$SEQ$date

# partition the second-stage regressors
tind1 = seq(1,T1,1)
tind2 = seq(T1+1,T,1)
Xh1 = Xh[tind1,]
Xh2 = Xh[tind2,]
Y1 = Y[tind1,1,drop=FALSE]
Y2 = Y[tind2,1,drop=FALSE]

#subsample coefficients and standard errors
beta1 = solve(t(Xh1)%*%Xh1)%*%t(Xh1)%*%Y1
beta2 = solve(t(Xh2)%*%Xh2)%*%t(Xh2)%*%Y2
k = dim(Xh)[2]
res1 = Y1-Xh1%*%beta1
res2 = Y2-Xh2%*%beta2
hac1 = correct(Xh1,res1,0)
hac2 = correct(Xh2,res2,0)
vhac1 = solve(t(Xh1)%*%Xh1)%*%hac1%*%solve(t(Xh1)%*%Xh1)
vhac1 = vhac1*(T1-k)
vhac2 = solve(t(Xh2)%*%Xh2)%*%hac2%*%solve(t(Xh2)%*%Xh2)
vhac2 = vhac2*(T-T1-k)
stdhac1 = sqrt(diag(vhac1))
stdhac2 = sqrt(diag(vhac2))
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