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Abstract

We consider a linear regression model with serially correlated errors. It is well
known that with exogenous regressors Generalized Least-Squares is more efficient than
Ordinary Least-Squares (OLS). However, there are usually three main reasons advanced
for adopting OLS instead of GLS. The first is that it is generally believed that OLS
is valid whether the regressors are exogenous (uncorrelated with past errors) or not,
while GLS is only consistent when dealing with pre-determined regressors (uncorrelated
with current and future errors). Second, OLS is more robust than GLS. Third, the
gains in accuracy can be minor and the inference can be misleading (e.g., bad coverage
rates of the confidence intervals). We show that all three claims are wrong. The
first contribution is to dispel the fact that OLS is valid only requiring pre-determined
regressors, while GLS is valid only with exogenous regressors. We show the opposite
to be true. The second contribution is to show that GLS is indeed much more robust
that OLS. By that we mean that even a blatantly incorrect GLS correction can achieve
a lower MSE than OLS. The third contribution is to devise a feasible GLS (FGLS)
procedure valid whether or not the regressors are exogenous, which achieves a MSE
close to that of the correctly specified infeasible GLS. We also briefly address issues
related to correcting for heteroskedastic errors.
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1 Introduction

We consider a linear regression model with serially correlated errors. If the regressors are
strictly exogenous (i.e., uncorrelated with the errors at all leads and lags), Generalized
Least-Squares (GLS) is BLUE, hence more efficient than Ordinary Least-Squares (OLS).
If the regressors are pre-determined (i.e., uncorrelated with current and future values of
the errors), GLS is no longer unbiased but is consistent and asymptotically efficient. With
exogenous regressors OLS is consistent, though not efficient. Early work concentrated on
fixed regressors or equivalently exogenous regressors. This remained the case well into the
80s; e.g., Amemiya (1986). Contributions to construct GLS estimates include Cochrane and
Orcutt (1949), Prais and Winsten (1954), Durbin (1970), Amemiya (1973), among others.

The limit distributions of both the OLS and GLS estimators were well known but it was
not well established how to consistently estimate the limit variance of the OLS estimate.
Spurred by the development of the Generalized Method of Moments (GMM) by Hansen
(1982) econometricians started to tackle this problem. Early contributions (in a more general
non-linear context) include White (1984), White and Domowitz (1984), Newey and West
(1987) and a comprehensive treatment was provided by Andrews (1991) who used results
from the theory of spectral density estimation developed much earlier. Since then all the
theoretical and empirical work has concentrated on OLS and a flood of papers have been
devoted to deliver improved estimates of the limit variance of OLS so that the confidence
intervals have accurate finite sample coverage rates. This continues to this day. There is
barely any mention or work about GLS in the theoretical and empirical literature. One is
simply satisfied using OLS with a complete disregard for ways to improve the properties of
the estimate per se; e.g., bias, variance and MSE (mean-squared errors). The goal is only to
provide good estimates of the confidence interval of the OLS estimate.

There are generally three main reasons for adopting OLS instead of GLS. 1) It is generally
believed that OLS is valid whether the regressors are exogenous or not (i.e., uncorrelated
with past errors or not), while GLS is inconsistent with non-exogenous regressors. This view
is now taught early on in undergraduate textbooks; e.g., Stock and Watson (2019), ch. 16.
2) When applying GLS one needs to choose a specification to model the nature of the serial
correlation in the errors. It is then argued that an incorrect specification can lead to worse
results than using OLS; i.e., it is believed that while OLS is sub-optimal relative to GLS,
it is more robust than GLS, which can deliver worse outcomes (e.g., higher MSE) when

not choosing a proper specification for the serial correlation in the errors; see, e.g., Engle



(1974), Judge et al. (1985), p. 281, and Choudhury et al. (1999). 3) Even with a decent
specification, the gains in accuracy can be minor and the inference can be misleading; e.g.,
bad coverage rates using standard estimates of the asymptotic variance to construct the
confidence intervals. Our goal is to show that all three claims are wrong. For simplicity, our
focus is on the linear model with linear short-memory stationary processes for the errors.

The first contribution is to dispel the belief that OLS is valid with non-exogenous regres-
sors, while GLS is valid only with exogenous regressors. We show the opposite to be true, in
general. The proof is trivial and the misconception likely arose from a misconceived notion
of exogenous versus pre-determined regressors when the errors are correlated. Simulation
evidence substantiate the results. Non-exogenous regressors can cause severe asymptotic
bias to the OLS estimate, while the GLS estimates are consistent. Unlike OLS, GLS is also
consistent when the regressors include lagged dependent variables.

The second contribution is to show that GLS is indeed much more robust that OLS. By
that we mean that even a blatantly incorrect GLS correction can achieve a lower MSE than
OLS. To illustrate this fact, we take a simple AR(1) correction with parameter p. We show
that, in most cases, GLS will have lower MSE than OLS for a wide range of processes and
values of p, as long as p is of the same sign as the first-order covariance of the residuals.
A simple procedure that pre-tests for serial correlation and applies a GLS correction with
a randomly drawn value of p with the same sign as the estimated first-order correlation
of the estimated residuals will not do worse than OLS. This result is important because it
shows that GLS can be applied with a misspecified structure and still yield improvements
over OLS. Also, it shows that issues of bias in the estimate of the parameters used to apply
GLS will only have a second-order effect, they will not make GLS less efficient than OLS.
However, in practice we can certainly do better by choosing a good specification for the error
process in order to achieve the lowest possible MSE and good finite-samples coverage rates
for the confidence intervals. This calls for a good feasible GLS (FGLS) procedure.

The third contribution is to devise a FGLS procedure valid with pre-determined regres-
sors whether or not they are exogenous, which achieves a MSE close to that of the infeasible
GLS procedure that uses the true structure (and parameters) of the serial correlation in the
errors. Care must be applied. For instance, for an AR(1) process the usual procedure of
Cochrane and Orcutt (1949) will not work. It is based on estimating the autocorrelation
parameter using the OLS residuals. Since OLS is inconsistent when the regressors are not
exogenous, this approach fails. Instead, we propose a procedure based on a generalization

of the so-called Durbin (1970) regression, whose coefficients are consistent with or without



exogenous regressors. Using the resulting quasi-differenced series, we apply an autoregressive
approximation of order, say kp, with k7 chosen using the Bayesian Information Criterion
(BIC); see Schwarz (1978). The simulations show that the resulting FGLS estimate performs
surprisingly well in finite samples. It delivers estimates having lower MSE than OLS, often by
a wide margin. The finite sample coverage rates of the confidence intervals constructed using
the standard asymptotic distribution are very close to the nominal level with lengths much
shorter than using OLS with heteroskedasticity and autocorrelation consistent standard er-
rors. We provide extensive evidence for both exogenous and non-exogenous regressors. In
most cases, the MSE of the FGLS is close to that of the infeasible GLS estimate.

A non-trivial exception for which OLS remains valid with serially correlated errors and
non-exogenous regressors pertains to k steps ahead predictive regressions as examined in,
e.g., Hansen and Hodrick (1980). Under rational expectations, the errors are M A(k—1) and
the regressors are uncorrelated with the errors. Still, we show that GLS is valid and leads to
much more efficient estimates, contrary to what is asserted in Hansen and Hodrick (1980). In
the Supplement, we also consider the case with both serial correlation and heteroskedasticity
in the errors. We propose a two-step GLS procedure suggested by Gonzélez-Coya and Perron
(2022) to fit the heteroskedasticity and further reduce the MSE.

The consistency of the GLS and FGLS procedure requires pre-determined regressors
(uncorrelated with current and future errors). This condition is certainly less contentious
than the exogeneity assumption that requires the regressors to be uncorrelated with past
errors. It also holds in well specified models. In such cases, it makes sense to argue that
the regressors are pre-determined otherwise one could forecast future errors, which should be
unforecastable, i.e., pure random noise. Nevertheless, it is still possible to have a misspecified
model or a model with some lagged endogeneity, which implies that OLS is consistent while
GLS is not because the regressors are not pre-determined. However, correlation between
past regressors and future errors implies that the errors are correlated with some observable
variables. This is a problem of an omitted variable being available or not as observations. If
the omitted variable is observed (e.g., a lagged value of some covariate), then one includes
the relevant lag as regressor. This purges all correlation between past regressors and cur-
rent errors so that we effectively have a context with pre-determined regressors and GLS
is efficient. When the omitted variable is unobserved, things are more complex. OLS can
be consistent while GLS is not. However, these are knife-edge cases in the sense that mi-
nor changes in the specification renders OLS inconsistent; e.g., adding lagged regressors or

having the omitted unobserved variable being serially correlated.



The rest of the paper is structured as follows. Section 2 provides the general setup and
motivation. It also provides results about the conditions under which OLS and GLS are
consistent. Section 3 discusses the robustness of GLS. Section 4 presents preliminary issues
related to the feasible GLS estimate proposed. Section 5 presents the main Feasible GLS
procedures for the general case with an invertible short-memory stationary process for the
errors. Issues related to the inclusion of lagged dependent variables and the importance of
the assumption of pre-determined regressors are also included. Section 6 presents extensive
simulations about the finite sample properties of the OLS and FGLS estimates and how
close they are to achieving the precision of the infeasible GLS estimate, for a wide variety
of processes for the serial correlation in the errors. Both cases with exogenous and non-
exogenous regressors are covered. Section 7 provides brief concluding remarks. A Supplement

contains some technical derivations, additional material and simulation results.

2 General setup and motivation'
Consider a scalar time series of random variable y; generated by:
w=zb+u, t=1,...,T, (1)

where 7} = (114, ..., 7k is a vector of regressors (or explanatory variables), 8’ = (84, ..., 5;)

a vector of unknown coefficients, 7' is the sample size. In matrix notation: y = X+ u, with

!/

y = (y1,.,yr), u = (uy,....,ur) and X = (2,...,a%)".
estimate of #is f = (X'X )_1 X'y. We assume that the errors follows the linear process

The ordinary least-squares (OLS)

up = C(L)er = Y72 cjerj, (2)

where ¢y = 1. The roots of C(L) are outside the unit circle, so that u; is invertible and
has an infinite autoregressive representation. Also, Z;io Jlejl < oo, so that u; is a short-
memory processes. For now, we assume that e; ~ i.i.d. (0,0?) (independent and identically

distributed errors). We consider heteroskedastic errors in the Supplement.

2.1 The case with i.i.d. errors

For the sake of exposition, suppose first that u; = ¢; ~ i.i.d. (0,0?). A condition for OLS to

be unbiased is that E [e;|X]| = 0, for all ¢, referred to as exogenous regressors. This is often

!The material in this section was first discussed in Perron (2021). This paper now supersedes it.



seen as unrealistic for most time series empirical applications in economics. It is generally

believed that the most we can hope for is to have “pre-determined” regressors such that:
E [et|$t7xt—17 "'7x1] =0, (3)

i.e., regressors uncorrelated with current and future errors. Throughout, we shall maintain

that this is the case. What is problematic is that in many applications, we have

Elei|risr, o ar] # 0, (4)

so that the regressors are not exogenous; e.g., Stock and Watson (2019), pp. 588-597.
Asymptotically, it is also well known that the main condition for consistency (apart from
technical requirements) is that E(z.e;) = 0, i.e., errors contemporaneously uncorrelated with
the regressors. Regressors that are not pre-determined nor strictly exogenous are permitted
provided the errors are ¢.7.d.. Things are very different if the errors are serially correlated.
We argue that for OLS to be consistent, the errors need to be exogenous. On the other
hand, Generalized Least-Squares (GLS) is consistent under the sole requirement of having

predetermined regressors; exogeneity is not needed.

Remark 1. The terminology used differ in the literature. What we label as pre-determined
18 sometimes referred to as exogenous, and what we refer to as evogenous is labeled as strictly

exogenous; e.g., Stock and Watson (2019), p. 573. We shall continue with our terminology.

2.2 Conditions for the Consistency of OLS

Turning to the case with w; serially correlated, it is well known that the main condition

(again apart from technical issues) for the consistency of the OLS estimate is that

This condition is usually seen as unproblematic apart from obvious cases of omitted variables
in u; correlated with some regressor, or the presence of lagged dependent variables. The
only problem is then that the limit variance is different from that obtained assuming i.7.d.
errors and calls for the use of the so-called heteroskedasticity and autocorrelation consistent

covariance matrix estimates, HAC estimates for short.

Proposition 1. OLS is inconsistent with non exogenous regressors, i.e., when E e}z, ;] #
0, for all least one j with ¢; #0 (j=1,...,T —1).



Proof: The proof is trivial upon substitution of (2) in (5), so that F(z; Z;ZO cjer—j) =0
is required. In general, this implies the requirement E(xe;—;) = 0 or E(e;x+;) = 0, which
is unlikely to be satisfied given (4). What is required for OLS to be consistent is that the
regressors be exogenous, since we already assume pre-determined regressors.[]

Of course, one can find knife-edge examples for which OLS is consistent even if serial
correlation is present. For example, z; is correlated with e; o but u; = e; + c1e,_1 + c36;_3.
Such cases are, however, unlikely to hold in practice. See also Remark 3 below.

Another way of assessing this result is to argue that a regression with serially correlated
errors is dynamically misspecified. Consider an AR(1) model of the form u, = pu;_1 + e;.
Then, F [u|z;] = 0 implies that z; is strictly exogenous with respect to e; since E [uz]x;] =
pE(ui—1|zy) + E(e]ze) = 0 if E(ui—1|x) = 0 or equivalently E(e;_;|z;) = 0, in general. In

other words, E(y;|x;) = x}0 only if x; is exogenous.

Remark 2. It can be argued that the conditions for exogeneity and pre-determinedness
should be analyzed via the relationship between the regressors x; and the errors u;. Then,
a traditional statement is the following: a) x; is exogenous if E(u|xy,...,x7) = 0, and pre-
determined when E(ui|xy,...,x;) = 0. b) OLS is consistent if

E(uixy) = 0. (6)

See Stock and Watson (2019), p. 575. Note that if u, is serially correlated, it must
depend on at least some past values of u;. Let the autoregressive representation of uy
be u; = Z;; aju_; + e, then the condition E(uxy) = 0 for consistency requires that

Bl (3772, ajus—j + e)] = 0, which holds with evogenous regressors, i.e., when
E(ui i1, z7) = 0, (7)
Hence, arguing that E(uxy) = 0 holds requires exogenous regressors when specified by (7).

Remark 3. There is one non-trivial exception for which OLS remains valid when the errors
are serially correlated and the regressors are mot exogenous. This pertains to multi-steps
ahead predictive regressions as examined, for instance, in the influential work of Hansen and
Hodrick (1980). In their framework, it is supposed that E(yi |P:) = a1, where ®; is the

information set available at time t. Then,

Yerk = Ty + Uggn (8)

with w gk = Yok — E(yiak|Pr) so that the errors terms are forecast errors from using the best

predictor based on x;. It can be shown that uyyy is an M A(k — 1) process. Since xz, C Dy,
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E(zyur) = 0 and OLS is consistent. When using all observations from t = 1,....,T — k,
estimating (8) by OLS involves overlapping observations. Following our notation, we can
write (8) as vy = x},_ .0 + us, where uy = Zj:é cier—;. OLS is then consistent only requiring
pre-determined regressors so that Elx;_y Z;:é cjer—;] = 0. Hence, such cases involve no
issue related to exogenous regressors and the fact that the regressors are pre-determined is a
result of the rational expectations hypothesis. This is a knife-edge case where the structure
of the model imposes some strict conditions. Still, as discussed in Remark 5 below, GLS

remains consistent with non-exogenous regressors.

To summarize, the purpose of this section is to clarify the conditions under which OLS
is consistent. Nothing new is offered. The main condition still remains E(z,u;) = 0. One
often read that GLS should not be applied because it requires exogenous regressors (more on
that in the next section). Since OLS is routinely applied, some researchers may think that
issues of exogeneity are irrelevant for the consistency of OLS and only argue that it is enough
to ensure that the regressors and the shocks (the e;) are contemporaneously uncorrelated.
Stating the condition as F(x; Z;:o cjer—j) = 0 (for the linear processes considered) makes it
clear that exogeneity of the regressors with respect to all past errors is needed. Stating that
E(zu;) = 0 and E(ug|ziy1,...,x7) # 0 are in general incompatible unless one deals with

predictive regressions discussed in Remark 3, for which issues of exogeneity are irrelevant.

2.3 Conditions for the Consistency of GLS

Since u; is assumed stationary, let V' (u) = €2, a symmetric, non-singular, and positive definite
matrix. Then, there exists a non-singular matrix D such that D’D = Q~!. Note that D can
be selected to be lower triangular. For instance, the Cholesky decomposition gives 2 = LL/
with L lower triangular. We can set D = L' which will be lower triangular. Then, the
GLS estimate is given by g6 = (X'Q72X) "' X’Q 1y and, using (1),

Bars — 8= (X'Q'X) ' X'Q ' = (X'D'DX) "' X'D'Du.
The main condition for consistency is that
plimr oo T X'Q 'y = plimy o T7' X' D' Du = 0. (9)

It is also assumed throughout this section that the correct structure of the errors is used,
i.e., the true covariance matrix €2 is used. Hence, when referring to GLS, we only consider
infeasible GLS correctly specified for now. In later sections, we discuss how to construct

feasible GLS estimate that have the same limit distribution as the infeasible one.



Proposition 2. With pre-determined regressors, exogenous or not, GLS is consistent.

Proof: Note that Du has mean zero and variance DQD’ = [ since D'DQD’ = Q~1QD' = D’
and using the fact that D is non-singular. Hence, we can write Du = e, a vector of primitive
1.1.d. errors with unit variance, given the scaling. Since D is lower triangular, the elements

of DX are of the form 22:1 di;x’;, which for row ¢ involves only current and past z’s. Hence,
E[X'D'Du) = B[y, (X5, diy)'ed], (10)

which is zero requiring only pre-determined regressors. Therefore, GLS is consistent without
the need for exogenous regressors. Note that this result does not rely on errors having a
linear structure, though it requires a stationarity assumption. [J

Consider AR(1) errors, u; = pu;_1 + ¢;. Ignoring the first observation for simplicity,

1 0 0

—p 1

and

plimy oo T X'D'Du = plimy oo T3 (2 — pryy) (ur — pug_1).

For this quantity to converge to zero, the conditions often advanced for (9) to hold are
E(zuy) = E(xpu—y) = E(zi—qu;) = 0. It is then generally believed that the condition
E(x4u;—1) = 0 is problematic following (4); see Stock and Watson (2019), pp. 584-585, who
use this reasoning to argue that GLS and FGLS require exogenous regressors and, hence,
have limited appeal in practice. But this overlooks the fact that u; is a composite of the
fundamental sources of variations, namely e;, and ignores the structure of the model. Also,
assessing exogeneity conditions based on the relation between x; and u; is not appropriate.
Since the GLS regression is y* = X* + e, where y* = Dy and X* = DX, issues related to
the exogeneity of the regressors need to be analyzed via the relation of X* to e and not of

X to u. There are no more u’s in the model. Indeed, we can write (9) as
T-1(DX) (Du) =T 'S0, (2 — pre—i) €. (12)

Thus, for consistency, we need E (z; — pri—1)e; = 0, or E(xie;) = E(x4—16;) = 0, for all
t, which is satisfied as long as the regressors are predetermined. There is no need to as-

sume exogenous regressors. Then under the condition of predetermined regressors, one can
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consistently estimate [ using the quasi-difference regression

(yt - P?Jt—l) = (xt - th—l)lﬁ + €t (t = 27 7T) (13)

Remark 4. [t is useful to expand on the condition (12). Suppose we apply GLS with some
arbitrary value |p*| < 1. Then, with D* as defined by (11) with p* instead of p,

TH(DX) (D*u) = T3, (w— peea) (we — prury)
= T Y, (= p'wa) (e — (p = p")usa)
= T Zthz (@ — pai-1) (&0 — (p — p7) (-1 + pus—2)).

Therefore, assuming pre-determined regressors, i.e., E(x.e;) = E(x;_1e;) = 0, for all t, what
is needed for consistency is either a) exogenous regressors so that E(zie—1) = E(xie,_9) =
E(xi_1e,_9) = 0, irrespective of the value of p and p*; or b) non-exogenous regressors and
p = p*. Accordingly, if the regressors are exogenous, GLS is consistent using any value of
p*, including 0, so that OLS is consistent, a well-known result, see above. On the other
hand, with non-exogenous regressors, we need p = p* for consistency, i.e., the correct value
of the parameter of the serial correlation in u,. Of importance is the fact that when p # 0,
the value p* = 0 is not permitted, showing that OLS is indeed inconsistent as claimed above

using other arguments. This result can be extended to more general cases.
An important corollary of the proof of Proposition 2 is the following.
Corollary 1. Unlike OLS, GLS is consistent with lagged dependent variables as regressors.

The result follows given that (10) remains 0 when x; includes lagged dependent variables
given Ely,_je;] = 0 (j > 1). Since in the original model estimated by OLS, a lagged
dependent variable is not pre-determined with respect to u; OLS is inconsistent. The GLS
transformation can be viewed as a way to obtain a regression with pre-determined regressors

with respect to the relevant errors, namely e;.

Remark 5. Contrary to the claim made by Hansen and Hodrick (1980), GLS is consistent
with predictive regressions of the type discussed in Remark 3. This follows trivially since (10)
is satisfied if the regressors only include lagged values at delay k, i.e., the GLS regression
still only involves predetermined regressors with respect to the errors e;. We show in the

Supplement, Section S.2, that even for this case GLS performs much better.



3 The Robustness of GLS

It is often argued that GLS may be less robust than OLS because a wrong choice of the
specification of the process generating the dynamics may lead GLS to have worse properties
than OLS, e.g., higher MSE. We show that this is incorrect. In fact GLS is much more robust
than generally believed. To have meaningful comparisons, we assume exogenous regressors
so that both OLS and GLS are consistent. Note first that GLS is consistent even when using
a misspecified model when the errors are exogenous. Suppose you assume that V(u) = €,
while the correct specification is V(u) = Q. Let Q! = D.D, and Q' = D'D. Then,

TX' O u=T'X'0'D e =T"Y(HX)e 2 0,

since HX with H = X'Q;1D! is simply a linear combination of all the regressors, which
are uncorrelated with the errors at all leads and lags (and current value). We shall show
that when adopting a simple AR(1) specification, it is possible to obtain GLS estimates that
performs no worse than OLS, and most often much better, irrespective of the true data-
generating process for the errors, as long as it is stationary. For reasons that will become
clear, we apply an AR(1) GLS with some known value p, i.e., OLS applied to the regression
(13). We ignore the initial condition for simplicity. We investigate the relative MSE of OLS
and GLS. We have the following result proved in the Supplement.

Theorem 1. Let u; be a stationary process with finite mean and variance. Let BG g be the
estimate constructed applying OLS to the regression (13) for a given value p. Also let x; be
a scalar such that plimy_o TS0 0,2y = Ro(j), core(j) = Re(§)/Re(1), with similar
definitions for cor,(j). Also, h.,(0) is the spectral density function at frequency zero of xyuy,
Rau(1) = J7_cos(A) by (M) hu(N)dX, and Rpu(2) = J7_cos(2A\)ha (M) hu(AN)dA with hy(X) and
hy(X), the spectral density function of x; and u;, respectively. Then,

limg oo (MSE(B15)/ MSE(Bg,5)) < 1

02 = 2p(1 + p?) Rou(1)/hzu(0) 4 p? Rou(2) [ hau(0) < 2% cory(1)% — 2p(1 + p?) cory(1).

The result in the previous Theorem is useful but opaque as far as obtaining useful insights
given the level of generality. The following corollary considers the case with 7.i.d. regressors.

While still restrictive, the results allow important insights.
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Corollary 2. Under the same conditions, as in Theorem 1, except that x; ~ i.i.d.(0,02).
limy_, oo (MSE(B¢15)/ MSE(Bops)) < 1 if

p/(2(1 4 p*))(1 + cor,(2)) < cory(1) when p >0,
p/(2(1 4 p*))(1 + cor,(2)) > cory(1) when p < 0.

A necessary condition for such inequalities to hold is that pcor,(1) > 0. To explore the

intuitive content, suppose that u; is an AR(1) process with parameter p, and p > 0. Then,

If p = p,, the condition is trivially satisfied, as expected. Moreover, it is satisfied unless
Py < 0.27, in which case we need 0 < p < 2p,. As will transpire from the simulations
results, pcor,(1) > 0 is nearly also a sufficient condition unless cor, (1) is small. This is
quite a strong result. It says that applying GLS with an AR(1) specification will lead to an
estimate with lower MSE than OLS for a wide range of data-generating processes for u; by
simply quasi-differencing the data with a parameter p that has the same sign as cor, (1), the
first-order correlation coefficient of w;. If cor,(1) = 0, OLS performs better. This can occur
with serial correlation implying cor,(1) = 0 and cor,(j) # 0 for some j > 1. An example
is an M A(2) process of the form u, = e, + 02¢, 5. We view such cases as knife-edge ones.
When cor, (1) is small, the same results holds for a range given by 0 < p < 2p,,.

A simple GLS with an AR(1) specification will beat OLS for a wide range of quasi-
difference parameters whatever the true DGP for u;. So not only can we misspecify the
nature of the serial correlation but also allow a wide range of values for the quasi-difference
parameter, and still have GLS perform better than OLS. Of course, we are not saying that
adopting a simple AR(1) with a value of p having the same sign as cor,(1) is the best. For
that, we need a FGLS procedure that yields an estimate asymptotically equivalent to GLS
with the correct specification for u;. We will cover in Section 5, a method to achieve this
goal. We could extend the results to have alternative GLS procedures, e.g., some AR(k). The
results would be much more complex, though qualitatively similar. Hence, such extensions
would add little to the main message, namely the robustness of GLS.

We illustrate these issues using simulations. We consider the following DGP:
Yo = o+ By +

where z; ~ i.d.d. (0,1). We set (o, ) = (0,1), without loss of generality. The sample

size is T' = 200. For the errors u;, we consider the following specifications: 1) AR(1):
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up = pyui—1 + e p, = {—0.5,0.0,0.2,0.5,0.8}; 2) AR(2): w; = pte—1 + Puatit—2 + €
(Pu1s Puz) = {(1.34,-0.42),(0.5,—-0.3),(—0.5,0.3), (0.0,0.3),(0.5,0.3)}; 3) MA(1): w =
e + 0eiq; 0 = {—0.7,-0.4,0.5}; 4) ARMA(1,1): u = pyur—1 + e + Oer_1; (p,,0) =
{(-0.5,-0.4),(0.2,-0.4),(0.2,0.5), (0.5,—0.4),(0.5,0.5),(0.8,—0.4),(0.8,0.5)}. Through-
out, e; ~ i.i.d. N(0,0?2) independent of z; for all ¢ and j so that the regressors are exogenous,
otherwise OLS would be inconsistent and the comparisons meaningless. We set 02 = 02 = 1.
For all cases, we consider a range of values for the parameters. These are chosen mostly arbi-
trarily, except for the first pair of the AR(2) case, which are typical estimates for detrended
U.S. real GDP; e.g., Blanchard (1981). In all cases, we adopt an AR(1) specification with
different values of the quasi-differencing parameter p. The results are presented in Table
1. The first column reports the value of cor, (1) and the main entries are the MSE of GLS
relative to the MSE of OLS for various value of p in the range (—0.9,0.9). We shall discuss
the purpose of the values reported in the last column later.

It is most instructive to start with the AR(1) case. When p, = 0, as expected OLS is best
and GLS has higher MSE. When p,, = —0.5, GLS has lower MSE for all negative values of
p and, vice versa, when p, = 0.5,0.8, GLS has lower MSE for all positive values of p. When
p, = 0.2, a small value, things are more complex. Here, GLS is best when p € (0.1,0.4)
but marginally worse than OLS when p € (0.5,0.9) (and, of course also worse when p is
negative). These results are what one would expect from Theorem 1, in particular the fact
that when p, < 0.5 GLS is better when 0 < p < 2p,. The results for the other cases are
qualitatively similar and in accordance with the theory. When cor, (1) is “large”, GLS has
smaller MSE than OLS when the sign of the quasi-difference parameter is the same as the
sign of cor,(1). If cor,(1) is “small” GLS is better when p is in the vicinity of cor,(1). Of
special interest is the AR(2) case with (p,;, pu2) = (1.34, —0.42), which is roughly typical of
many macroeconomic time series given the strong serial correlation. In this case, the gains in
MSE reduction over OLS are of the order of 95% when p € (0.6,0.9). These are substantial
gains, which can be obtained by merely using an incorrect AR(1) process with a wide range
of values of p. This illustrates strong robustness to using GLS.

The theoretical and simulation results suggest a very simple procedure to obtain a GLS
estimate that is (almost) never worse than OLS, subject to very minor random deviations.
First use a test for serial correlation at delay one; we use the LM test of Godfrey (1978). If
the test does not reject the null hypothesis of no serial correlation, then use OLS. This will
occur when cor, (1) is “small”. If the test rejects, estimate cor, (1) via the sample first-order

serial correlation of the OLS residuals. If it is positive (negative), use any positive (negative)
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value of the quasi-differencing parameter p. To make clear that any value of p will do, in
the simulations we simply draw p from a Uniform distribution with support (0.1,0.9) when
positive value are required and with support (—0.1, —0.9) when negative values are in order.
The results for the relative MSE of GLS over that of OLS are reported in the last column
of Table 1 under the heading “hybrid”. They show that this hybrid-GLS procedure yields
more precise estimates for all cases, except for few minor cases due to random variations
when cor, (1) is “small”. An exception is when cor,(1) = 0 and there is correlation at higher
lags; see the AR(2) case with (p,;, p,2) = (0.0,0.3). We view this as a knife-edge case.

The Supplement reports corresponding results when x; is an AR(1) process given by

Ty = p&p—1 + vy with vy ~i.i.d. N(0,1), with p, = 0.8. The results are qualitatively similar.

Remark 6. In the hybrid procedure discussed above, we use the OLS residuals to construct
an estimate of cor,(1). From the results in Section 2.3, the OLS estimates of the parameters
are inconsistent when the regressors are not exogenous. Here, however, the regressors are

exogenous. When constructing a FGLS estimate, we shall not need this hybrid procedure.

Remark 7. After the first draft of this paper was completed, we became aware of the work
by Koreisha and Fang (2001). They present exact bounds for the relative variance of OLS,
GLS and Feasible GLS allowing for misspecification of the process generating the errors when
constructing the FGLS estimate. The results depend on the covariance matrix of the errors,
the exact nature of the GLS structure used and the method to construct the FGLS estimate,
the regressors and the sample size. The bounds are, however, not informative and quite
complex. Accordingly they resort to simulation experiments using approximate autoregressive
processes of order 1, 7 and 14 when T = 200 to construct the FGLS estimate. In the paper,
they report results for few selected cases, which do not allow addressing several of the issues
discussed above, e.q., the effect of the sign of the quasi-difference parameter, the strength of
the correlation in the errors. They wrongly conclude that GLS (constructed using an AR

misspecification) is always better than OLS. As shown above this is not the case.

We discussed the robustness of GLS, i.e., in most cases, GLS has smaller MSE than OLS
even if we misspecify the dynamics of the errors or, when correctly specified, we use the
wrong quasi-differencing parameter. Of course, this does not lead to the best outcome as
GLS is optimal only when the correct specification is used. Hence, in order to have estimates
as good as possible (lowest MSE), we need to obtain a parameterization of the DGP for the
errors that is a good approximation to the true one without any prior knowledge about
the true structure. This leads to consider Feasible GLS (FGLS), which we tackle in the
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next section. Still, the results of this section are important in that they suggest that some
departures from the true specification due to misspecification or biased parameter estimates
will not make FGLS being less precise than OLS.

4 Issues Related to Constructing a Feasible GLS Estimate

We consider first the case with AR(1) residuals to present the main issues of interest. The

model with non-exogenous regressors is
Yo = Pry +up,  up = pugg + ey, (14)

with 2, = (1,w,)" with w, = v, + e;,_1, v, e, ~ i.i.d.N(0,1) independent of each other.
In practice, one needs a feasible version of the GLS estimate. Here, the Cochrane and
Orcutt (1949) procedure will not work since it estimates p using the OLS residuals, i.e.,
%0 = S i) S, 02, where 4, = y, — 2Bos. Without exogenous regressors,
Bo g 1s inconsistent and so will Y. A method valid without exogenous regressors is to first

estimate p using Durbin’s regression (Durbin (1970)), which simply re-writes (13) as

Y = pYr—1 + 330 — pry_1 S+ ey (15)

Then, a consistent estimate of p, say p”, can be obtained estimating (15) by OLS and using
the estimate on the lagged dependent variable. One can then construct a feasible version of

the quasi-difference regression (13) using

(?Jt - ﬁDyt—l) = (l“t - /bet—l)lﬁ + e, (t = 2, "'vT)’ (16)

to estimate 5. The estimates of S and p will be consistent with regressors exogenous or not as
long as they are pre-determined. Alternatively, one can simply estimate [ using OLS applied
directly to the Durbin regression (15), though this is less efficient since relevant constraints
are not imposed. Of course, one can iterate starting with any consistent estimate, though
we do not pursue this avenue.

It is useful to illustrate the issues via simple simulation experiments. The specifications
are the same as (14) for the AR(1) case and is y; = z}8 + u;, where 7, = (1,w;) with
wy = vy + €1, and uy = puy_q + e; is an AR(1) process; vy, e; ~ i.i.d.N(0,1) independent
of each other. We set uy = 0, without loss of generality, 5 = (1,1)’, p = 0.8 and T" = 500.
The simulations are based on 10,000 replications. Note that F (e;x;11) # 0, so that the

regressors are not exogenous. Accordingly, F(z,u;) # 0 and OLS is inconsistent. Note that
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E (e;ry) = 0 so that no “classical” endogeneity problem is present and GLS is consistent.

We consider the following regressions, where 0 = pf3:

v =z,0+u (OLS)

v =z,8+ pye—1 +x,_10 +u; (Durbin)
Yo — pye1 = (v — pri1) B+ e (GLS)
Ye — PYe—1 = (24 — ﬁft—l)l B+e (FGLS)

The first is simply OLS; the second is the Durbin regression from which consistent estimates
of p and  can be obtained. The third is the infeasible GLS based on the known value of p
(to be used as a benchmark). The fourth is a feasible GLS regression for which we shall use

two estimates of p: a) that used in the Cochrane and Orcutt procedure based on

p= 1yt ty) >, 47, (17)

where @iy = 3 — 2)80.5. As argued above, this should lead to an inconsistent estimate
of 8. This method is labelled CO-FGLS. b) The estimate of p obtained from the Durbin
regression, with the method labelled as FGLS. The results are presented in Table 2.
Obviously, the bias and MSE of OLS is very large, in accordance with the fact that it is
inconsistent. The Durbin and FGLS methods lead to very small biases, in accordance with
the fact that they yield consistent estimates. The FGLS has better finite sample properties
and performs nearly as well as the infeasible GLS method. The CO-FGLS method has
surprisingly small bias (and MSE) despite being inconsistent. This can be explained as
follows. The estimate of p given by (17) has a substantial bias so that the mean of the
estimate of p is 0.63 instead of 0.8. As argued in Section 3, it is better to do any kind of GLS
method instead of OLS. Here, the quasi-differencing operation is biased but still effective in
substantially reducing the bias in the estimate of 3, though not as well as when using a less
biased and consistent estimate as provided by that obtained from the Durbin regression and
used in the FGLS method. Using simulations with 7" = 10,000, we verified that the bias
and MSE of OLS and CO-FGLS remains the same, while those for Durbin, GLS and FGLS
are nearly zero. The FGLS estimate of 3 is, however, more efficient than that obtained from
the Durbin regression with a MSE 31% smaller in the simulations. FGLS also remains more
efficient in large samples since the Durbin regression does not impose relevant restrictions;
see Remark 9 for more details. Hence, we shall only consider the FGLS method. Results
for cases involving a moving-average component are presented in Section 6 once a method

to select the truncation parameter ky is discussed, as we do next.
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Consider now the case with M A(1) errors with u;, = e; + fe;_1. Again, the regressors
are not exogenous and F(zu;) = E(zi(e; + 0e;—1)) # 0, so that OLS is inconsistent. While
the T'x T covariance matrix of u = (uq,...,ur) is a simple tri-diagonal matrix, the exact
closed form expression for either Q7! or D is very complex. However, if  is known, it can
still be computed numerically so that one can construct the infeasible GLS estimate. An
approximate GLS procedure (or approximate MLE) that yields basically equivalent results
is to use a matrix D* such that the rows of D*u are given by Z;;B(—G)jut_j, fort=1,...,T.
This is equivalent to using the fact that v, = C'(L)e; with C(L) = (1 + #L) and assuming
that |#| < 1 so that that the moving average polynomial is invertible, and we have ¢, =
> i2o(=0)u:j. Applying this transformation to (14),

Zgio(_e)jyt—j = (Z;.;()(_Q)jxt—j)lﬁ + €.

Hence, the model now only involves the error term e; which is uncorrelated with past and
current regressors, assuming pre-determined regressors. The next step is to realize that for
any reasonable value of 0, (—6)7 decreases to zero very rapidly as j increases. For instance
if # = 0.5 and 5 = 10, it is less than 0.001. Hence, one can use a regression involving some

k7 lags, for kr sufficiently large, such that

ST (=0 gy = (5o (=0 mey) B+ ex, (18)

and treat ej; as nearly white noise. Equation (18) is then the relevant GLS regression. The
next step is to obtain a consistent estimate of 6. Again, one cannot use the OLS estimate of

the residuals u; given the inconsistency. An extended Durbin regression estimated by OLS

k k
Ye = Zjil PiYt—j + Zjio ‘r:ffj(sj + €kt

yields estimates f)f (nearly) consistent for (—6)7. One then uses the feasible GLS regression

kr A kr A
Zjio /)J'Dytfj = (zjio Pijtfj)/ﬁ + €kt

Since the current and lagged regressors are (approximately) uncorrelated with ey, the GLS
estimate of § will be (nearly) consistent. Everything involving the qualification “nearly” can
be eliminated by letting kr increase to infinity. Then, the Feasible GLS estimate is asymptot-
ically equivalent to the infeasible GLS. Hence, GLS and its feasible counterpart transforms
an OLS problem requiring exogenous regressors to one only requiring pre-determined regres-
sors. The same arguments apply to any invertible short-memory linear process for the errors
u;. What is required is simply a method to select k- that increases to infinity for general

linear process involving moving average components. This is discussed in Section 5.
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Remark 8. Amemiya (1973) analyzed feasible GLS when the errors u; are an ARM A(p, q)
process approximated by an AR(kr) with kr increasing with T'. He uses the OLS residuals
and assumes “non-stochastic” regressors. Qur results show that his proposed method is valid

only under the assumption of erogenous regressors. Still, our approach is closely related.

5 FGLS for the general case

We now turn to the main feasible method recommended for all cases, except when lagged
dependent variables are included as regressors, which we discuss later. To deal with general
linear processes of the form (2), one can approximate it by some autoregression whose order
increases with T, i.e., approximate u; by u; = Zfﬁl pjui—j + ek, with kr — oo at some

appropriate rate so that ey is nearly white noise. Then (15) and (16) are replaced by
k k
Y = Zjil PiYi—j + x5 — 2;1 »T;_jfsj + ept, (19)

(e = 22550 07 yeg) = (20 = 3550 07 wey) B+ ewe, (= 2,07, (20)
where ,?)f (j =1,...,kr) are the OLS estimates of the coefficients associated with the lagged
dependent variables from regression (19). We assume no lagged dependent variables as
regressors so that the parameters p; (j = 1,...,kr) are well-identified. Of course, one can
iterate starting with any consistent estimate. However, as our simulations will show the
estimates have very good properties so that iterations are not warranted. The FGLS estimate
can then be computed in two steps: 1) For any given k7, estimate (19) by OLS and use BIC
to select the lag length k4. The search is made for kr € [0, kF**] and the method suggested
by Ng and Perron (2005) is used to ensure a proper comparison across models with different
values of kp, i.e., using the same effective number of observations. k}** increases with
T, but in practice the method is robust to reasonable values. We use k7®* = 12 when
T = 200,500. 2) From step 1, use the estimates ﬁf (j = 1,..., k%) to construct the quasi-
differenced variables (y; — Z;Zl ﬁf y—j) and (z; — 2521 ,bjD zy—;). The FGLS estimate of
is then obtained applying OLS to the regression (20) with kr = k.

The FGLS estimate will have the same asymptotic properties as the infeasible GLS
estimate. The arguments are as follows. If the process is an AR(p), BIC will select a value k.
that converges in probability to p. The estimates ,bjD are consistent for p; (j =1,...,k}). For
general linear short-memory processes k5 = O,(In(7")), which increases to infinity. Hence,
I ﬁf —p;l| = O,(T~"/2), where |- || is the Euclidean norm of the vector. This holds following
Berk (1974) under the same conditions, basically that kr — oo and k2./T — 0. Since
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these rates allow a log rate of increase for kr, the same result holds when selecting kp
using BIC, which implies a log rate of increase as shown in Hannan and Deistler (2012).
Given the consistency and rate of convergence of f)jp , it is then relatively easy to show the
equivalence between FGLS and the infeasible GLS. Since the technical arguments involve
only modifications of already established results, we omit the details. Given this consistency
result, the asymptotic distribution of the FGLS is the same as that of the infeasible GLS.
The estimation of the parameters ﬁf has no first-order effect.

The main idea is to have some transformations to make the regression residuals as close
as possible to the contemporaneous true errors and then have this regression involve only
past regressors so that only pre-determined regressors are required. Asymptotically, it works.
It is a standard approach in the time series literature. Of course, in finite samples, some
leftover correlation might be present. Then, it is an issue about whether the asymptotic
approximation and the choice of the tuning parameters kr provide good approximations in
finite sample. In Section 6, we provide extensive simulations to show that a) the mean,
variance and MSE are close to that which could be obtained using the infeasible GLS pro-
cedure; b) the coverage rates of the confidence intervals are near the nominal level, i.e., the
asymptotic distribution is a good approximation; c) the length of the confidence intervals

are shorter (higher precision) compared to other methods.

Remark 9. In order to improve upon OLS, Baillie et al. (2022) proposed using the regression
(19). They claim correctly that the estimate of 3 is consistent whether the regressors are
exogenous or not. However, this leads to a less efficient estimates compared to FGLS, which
can be substantial even though it remains more efficient than OLS. Interestingly, Durbin
(1960) showed that if the restrictions are imposed one ends up with the GLS estimate. Baillie
et al. (2022) presumably adopt the regression (19) since they incorrectly continue to argue
that, with non-exogenous regressors, GLS is inconsistent while OLS is consistent. Additional
simulation experiments showed our FGLS procedure to be more efficient. Hence, we shall
not further consider methods to estimate B based on (19). As discussed below, it offers no
additional advantage in extended contexts such as regressors with lagged dependent variables

and non-predetermined regressors.

5.1 The case with lagged dependent variables as regressors

As stated in Corollary 1, infeasible GLS is consistent even when the regressors include lagged
dependent variables. However, the implementation of a feasible GLS procedure is not as

straightforward. Some alternative method to get consistent estimate of the parameters p;
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(j =1,...,k%) is needed. Consider the model
Yo = Y0y e+ Yoy B + U,

where u; = C(L)e; is again a linear stationary short-memory process described by (2), xj
(j = 1,..., k) are pre-determined regressors. When constructing the Durbin regression, one
pre-multiply both sides by (1 — Zfil iji) for some kr selected via the BIC information
criterion. Assuming kp = p, for simplicity, this leads to the regression

Yt = ?y=1 a;yt—j + Z?zl(ﬂjxﬁ - Zfil 0jiTji—i) + €kt (21)

where o = «a; + p; and d;; = 8;,p;. Accordingly, the parameters p,; cannot be identified
using the coefficient on the lagged dependent variable o since a; is unknown. However,
as suggested by Wallis (1967), one can obtain consistent estimates using the fact that pj =
dji/B;;- Hence, one simply estimate the regression model (21) by OLS, get estimates 3, and
b ;i and construct the estimates p;? . One can then proceed to construct the FGLS estimates
as described in Step 2 above. The only drawback is that if the number of regressors z;; is
greater than one, there are multiple choices for each value of i. In principle, choosing anyone
will lead to a consistent estimate in well specified models. Simulations reported in Gonzalez-
Coya et al. (2023) show that the results are not sensitive to the choice of the variable used.
This can be partly explained by the fact that GLS is quite robust to small variations in the
quasi-differencing parameters p; as documented in Section 3. What is of importance is to

make the residuals eg; in the GLS regression (20) close to white noise.

Remark 10. In the case of predictive regressions assuming rational expectations, only lagged
dependent variables may be included as regressors, in which case the procedure described above
s not applicable. These take the form y,, = By + Z;nzl BYi—j + Uik, where m < k. For
instance, in Hansen and Hodrick (1980), k = 13 and m = 2 with Y x = Sior — fi, where
Serk 18 the (log) spot exchange rate at time t + k and f; the (log) k-period forward exchange
rate at time t. Under rational expectations, all coefficients should be 0. As discussed in
Remarks 3 and 5 as well as Corollary 1, both OLS and GLS are consistent since past forecast
errors are uncorrelated with w; y, even if the latter have an MA(12) structure given the
assumption of rational expectations. The issue is how to construct FGLS estimates. If k
is large enough, the main procedure discussed in Section & proceeds as stated since in most
cases BIC will select few lags in the Durbin regression (19) and there will be no overlap

between the lagged dependent variables used to correct for serial correlation and those used
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as predictors. However, if k is small, there will likely be overlap and the estimates of ﬁf
will be contaminated for some j. To alleviate this problem, one can construct estimates of p;
using the OLS residuals, say u;, given that OLS is consistent. Let the fitted value obtained for
an OLS regression of u; on kp lags be u; = thzl [)joﬂt,j + €. Then, one can obtain FGLS
estimates using ,b;) instead of [)f in (20). If rational expectations does not hold so that the
errors are, say, an AR(p) process (e.g., adaptive expectations), then our FGLS procedure will
still be valid provided k is large. Otherwise, both OLS and FGLS are inconsistent, though
infeasible GLS remains consistent. One then needs to resort to an instrumental variable

procedure, which can perform better than OLS; see Gonzdlez-Coya et al. (2023).

5.2 Issues related to pre-determined regressors

As a result of Proposition 2, the crucial condition for GLS to be consistent is that the regres-
sors be pre-determined, i.e., uncorrelated with current and future errors. This is certainly
less contentious than the exogeneity assumption that requires the regressors to be uncorre-
lated with past errors. It also holds in well specified models since by the Wold decomposition
Theorem, the errors e; are forecast errors from best predictors given past information. Nev-
ertheless, it is still possible to concoct a model, which implies that OLS is consistent while

GLS is not because the regressors are not pre-determined. Take the following example:
vy =a+PBr;+u, t=1,...,T, (22)

with
Ty =0 Ny, U= Pyl & AN = pul—1 + ey, (23)

where e; = &} + M,_q, ny, €4 ~ 1.0.d.N(0,1) are independent of each other. We allow v; to
be serially correlated, with v, = p,v,_1 + &}, where €} ~ i.i.d.N(0,1) independent of 1, and
e, It is then the case that E(x;u;) = 0 so that OLS is consistent and when using (22) as
the regression, E(x; 1e;) # 0, so that GLS is inconsistent. This is indeed the case. Note,
however, that allowing 7, to be serially correlated renders OLS inconsistent. This case is
one with an unobserved variable in the errors correlated with only the past regressors. If we
simply change 7,_, in (23) to 1, or allow 7, to be serially correlated, OLS, GLS, Durbin and
so one are no longer consistent. One needs to resort to some instrumental variable procedure
combined with GLS. This is investigated in Olivari and Perron (2023). What is common
is the case with 7,_; being an observed variable; e.g., the lagged value of some covariate

Z¢—1. So we are not in the classical situation of an unobservable component that cannot be
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accounted for. Hence, one can simply introduce z;_; as a regressor and use the regression
Y=o+ Pry+ 0 +uy, t=1,...,T. (24)

The error term uy = p,u;_+¢} is then purged of the component 7,_; and one can apply GLS
provided the lagged values {x;_o, z;_3, ...} are not subject to any other source of correlation
with e; independent of 7,_;. In other words, all lagged vales of z;_; can be a function of ,_;
but not correlated with u; via some other independent component. If that would be the case
then, one could simply add a further lagged value x; 5 as a regressor in (24). And so on, if
needed. Hence, with errors affected by omitted unobservable variables, the problem is easy
to fix. Simply include enough lags of the covariates as regressors. This is in fact the reason
why Baillie et al. (2022) advocate using the Durbin regression as a means to have estimates
robust to non-predetermined regressors. They include all lags of both the dependent and
original regressors as covariates. Doing so, they lose considerable efficiency. Our aim is to
suggest a less mechanical approach that improves efficiency. With errors contaminated by
observable variables, our method is valid in all cases with no contemporaneous endogeneity,
i.e., with E(ze;) = 0. The pre-determined assumption is irrelevant.

One can test whether the regressors are pre-determined or not. What causes the corre-
lation between the errors and the regressors is of no consequence. It could be some omitted
lagged variable, some errors in variables correlated with lagged regressors, or whatever. The
fact is the fact that non-determinedness implies correlation between some observed variables
and some residuals means that tests can be performed for its potential presence. What is
needed are estimates of the residuals based on a consistent estimate of 5 in (22) whether
or not exogeneity or pre-determinedness hold. When the omitted variable is observed, this
can be achieved via the Durbin regression (15). The main idea is very simple and involves
using a standard variable addition test (e.g., Engle (1982)). The steps are the following:
a) Estimate the Durbin regression (19) and get the estimate BD; b) construct the residuals
aP =y, — 3 x; c) De-mean the residuals to obtain @” = a2 — T~ 3. aP; d) Perform
an LM test for variable addition using lagged values of x;. This can be done sequentially
using the first, then second, and so on lags. Upon a rejection, include the relevant lagged
variables as regressors in the main equation (22). e) Apply FLGS as outlined above to this
regression. This will lead to a consistent of estimate of § with regressors exogenous or not
and the regression constructed to have them pre-determined. One can also select the lagged
regressors to be included via information criteria, such as the BIC.

When the omitted variable is unobserved, things are more complex. In general, none
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of the procedures discussed here will be consistent except in some special cases such as the
model described in (22). If this type of one-period lag endogeneity is deemed relevant, or
some variations that imply the same qualitative results, then one can use the OLS estimate
to construct the residuals since it is consistent. Measurement errors correlated with past
regressors could be a plausible explanation. Upon a rejection using the variable addition test,
GLS or FGLS should not be applied if such lagged endogeneity issues are a concern. If the
researcher is confident that the regressors are exogenous and contemporaneously uncorrelated
with the errors, then OLS is preferred as it is consistent, while GLS is not. Baillie et al.
(2022) can also only handle non-pre-determined regressors if the errors are a function of
past observable variables given that it is a simple application of the Durbin regression. It
cannot handle errors correlated with past regressors via some unobserved variable. Cases
with OLS consistent while GLS is not can be viewed as knife-edge cases in the sense that
minor changes in the specification renders OLS inconsistent; e.g., adding lagged regressors or
having the omitted unobserved variable being serially correlated. Surely other specifications
can be found with exogenous regressors and non-pre-determined variables for which OLS is

consistent and GLS is not. Practitioners must be judicious in applying any method.

6 Simulation results

The issues addressed are the following: the bias, variance and MSE of the FGLS estimates
as well as the exact coverage rate and lengths of the confidence intervals. We also report
similar results for the infeasible GLS procedure that uses the true value of €2 to construct
the estimate Bg.g = (X'Q71X) "' X'Q 1y, with Var(Bg.g|X) = 02 (X’Q2X)"", which is
specific to the data-generating process and uses the true values of the parameters. This
is done to assess the extent to which the FGLS procedure is able to provide as precise an
estimate as possible, since the infeasible GLS is the best. For AR(1) processes, we also report
results for the Cochrane and Orcutt (1949) procedure discussed above, labelled CO.

For the FGLS procedure, we considered three methods to select the lag length of the
autoregressive approximation: AIC (Akaike (1973)), BIC (Schwarz (1978)) and the MAIC
suggested by Ng and Perron (2001). It turns out that best results were obtained using the
BIC. Hence, we shall not report those based on the AIC or MAIC.

It is often the case, with rational expectations models, that the theory predicts M A(g—1)
errors whenever forecasts at horizons ¢ are involved. In the simulations, we shall consider
errors generated from M A(1) processes. It is useful to also consider an approximate GLS

procedure for M A(1) errors for the following reasons: a) an autoregressive approximation
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selected using the BIC may yield a rather parsimonious model that fails to capture the
extent of the serial correlation in the errors; b) we may have prior knowledge that the errors
are an M A(1) process. Hence, we also consider the following approximate GLS procedure,
labelled, GMA. It is based on the OLS regression y; = x5 + e;, where y; = Z;;E(—@)j Y,
xf = Z?;g(—@)jxtﬁ- with @ the MLE of 6 for @, = e;+ @et,l, where u; = y; — :L‘tB with E
the OLS estimate from the regression (19) with ky = int[4(7/100)%/).

To construct the confidence intervals, we simply use the fact that, for some given lag
length kr, the FGLS estimate is simply OLS obtained from the regression (20), so that an
estimate of (T times) the asymptotic covariance matrix is Var(Bpgrg) = (Wi, Wip) ™
where Wy, = (w}cTﬂ,...,w’T)’, Wiptj, = (1, Tppijry) for j = 1,7 — kp, with x4, =
Ty — Zfﬁl ﬁf zi; and 6° = (T — ky)™? Zle €},» With €y, the OLS residuals from esti-
mating regression (20) by OLS. To construct the confidence interval of the OLS estimate,
we use the so-called HAC standard errors based on the weighting scheme introduced by
Andrews (1991) with automatic bandwidth selection. This leads to the following estimate
of the asymptotic covariance matrix: Var(Bog) = (I X'X) "' S(T1X'X) ", where & =
Ty w(i/m)Du(j) with Ty(j) = &d;_; for j > 0 and Ty(j) = T7130 ., Gy
for j < 0, and 0y = z¢(y: — x1Porg). We use the quadratic spectral kernel recommended
by Andrews (1991) for which w(z) = (3/2%) (sin(z)/z — cos(z)), where z = 67z/5, and
m is the bandwidth parameter constructed using the automatic bandwidth selection using
an AR(1) approximation. The confidence intervals are constructed in the usual way, via
BA,Z. + 21q)2 - Var(BA);-/Q, where A refers to the estimator (OLS, GLS, FGLS, etc...), i is
the index for the coefficients, z1_o/2 is the 1 — /2 quantile of the N(0,1) distribution, the
confidence level of the set. Here, we use o = 0.05 so that two-sided 95% confidence sets
are evaluated. We first present results with exogenous regressors which will allow a proper

comparison since both OLS and FGLS are consistent.

6.1 Simulations with exogenous regressors

The DGPs considered are the same as those in Section 3 with the various AR(1), AR(2),
MA(1) and ARMA(1,1) models, except that now z; = p,x;—1 + vy + ye;—1 with v, ~
i.1.d.N(0,1) independent of e, When v = 0, the regressors are exogenous, a condition
maintained in this section. We consider in the main text results for p, = 0.8. The Supplement
reports corresponding results for p, = 0. Throughout, we use 10,000 replications and the
sample size is T" = 200, 500. The results are presented in the first horizontal panel of Tables

3-6. We focus our discussion on the MSE and the confidence intervals.
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The following features are noteworthy: 1) The MSE of the FGLS estimate is never higher
than when using OLS. It can be dramatically lower; e.g., the empirically relevant case of
the AR(2) with parameters 1.34 and -0.42 for which the reduction is 96% when 7' = 200.
Overall, the reductions can be very substantial. 2) In most cases, the MSE of FGLS are
near those obtained using the infeasible GLS, so the suggested procedure nearly achieves
the best possible outcome. This is even the case for processes having an MA component,
which are notoriously difficult to approximate using low order autoregressions. 3) When the
error process is strongly correlated the reduction in MSE come from both a reduction in bias
and variance. When the extent of the correlation is small, most of the reduction is due to
a decrease in variance. 4) As discussed in Section 3, an AR(2) with parameters (0.0,0.3)
causes problems when applying a first-order correction. This is no longer the case selecting
kr using the BIC. 5) For the AR(1) case, using the Cochrane and Orcutt (1949) procedure
(valid here because of exogenous regressors) yields results that are nearly identical to using
the more general method advocated. This shows that FGLS adapts well to the generating
process in that a method tailored to work for an AR(1) does not perform better. 6) For the
MA(1) case, the GMA performs as well as FGLS and the infeasible GLS. In all cases, the
gains are mostly due to a decrease in variance.

The results for the coverage rates of the confidence intervals with nominal level 95% are
presented in the last two column-panels of Tables 3-6. The following features are noteworthy.
1) In most cases, the exact coverage rates for the FGLS method are within 1% of the
nominal level, hence not statistically different. This holds even with strong correlation in
the errors unlike the method based on OLS, which is subject to high size distortions as
well documented previously in the literature. The main reason for why the coverage rates
of the FGLS estimates are near the nominal 95% level is because it involves residuals that
are nearly i.i.d., in which case the Central Limit Theorem (CLT) is a good approximation
even for small samples. The OLS method involves the product x;u; which can be strongly
correlated, in which case a much large sample is needed for the CLT to provide a good
approximation. 2) The length of the confidence set using FGLS is always shorter than that
obtained with OLS. The differences are larger as the process is more strongly correlated.
For instance, in the case of the AR(2) with parameters 1.34 and -0.42, the length of the
confidence interval with FGLS is 77% smaller. The results with i.7.d. regressors (p, = 0) are
presented in the Supplement. The same qualitative results hold. The only difference is that
the coverage rates of the confidence intervals for OLS are close to the nominal level 95% in

all cases (similar to FGLS) given that x;u, is less correlated.
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Overall, the simulations show that the suggested FGLS procedure with BIC to select the
lag length can do no worse than OLS even with near zero correlation. It yields estimates
with much higher precision (lower MSE). The extent of the decrease in MSE gets larger as
the strength of the serial correlation increases. This is achieved with no cost to the coverage

rates of the confidence intervals and a substantial reduction in their lengths.

Remark 11. As discussed in Remarks 3 and 5, in the case of predictive regressions assuming
rational expectations and estimated using overlapping observations, both OLS and GLS are
consistent. Results of a small simulation experiment reported in the Supplement show that,
with exogenous or non-exogenous regressors, FGLS is by far superior to OLS in terms of MSE

and length of the coverage rates, with results similar to the case with exogenous regressors.

6.2 Simulations with non-exogenous regressors

The specifications are the same as in the previous section, except that now ~ # 0. Ac-
cordingly, z; is not an exogenous regressor, it is simply pre-determined. We consider two
values of the parameter that induces non-exogeneity (correlation between future regressors
and current errors), namely 7 = 0.25 (weak correlation) and v = 0.50 (strong correlation).
The results are presented in the second and third horizontal panels of Tables 3-6. Note that
the condition F(z;u;—1) = 0 usually used to justify the consistency of GLS is not satisfied.
Still, the results will show its irrelevance as GLS will perform very well while OLS very
poorly. This accords with the theoretical discussion of Section 2.3.

The following features are noteworthy. 1) For the MSE (and bias and variance) of FGLS,
much of the same results hold as with exogenous regressors. Again, it performs almost as
well as the infeasible GLS. 2) For M A(1) processes the approximate GLS, labelled GMA,
performs slightly better than FGLS, when T" = 200; the differences are substantially reduced
when 7" = 500, in which case both performs nearly as well as the infeasible GLS. 3) Across all
cases, the main difference is the very large bias and MSE of OLS. For instance, for an AR(1)
with parameter p, = 0.8, the MSE is about 23 times larger than FGLS when 7" = 200 and
v = 0.5 (and 55 times larger when 7" = 500). There are even more pronounced examples like
the AR(2) with parameters (1.34, —0.42) for which the differences are 149 times larger when
T = 200 and 363 times when 7" = 500. Both the bias and variance of OLS are much larger
than those with FGLS. For OLS, the bias and MSE are basically the same for T" = 200, 500,
in accordance with the fact that OLS is inconsistent as discussed is Section 2.3.

The results for the coverage rates of the confidence intervals are presented in the last two

column segments of Tables 3-6. The following features are noteworthy. 1) The results for
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OLS are meaningless. The coverage rates are all over the map and can be near 0 with strong
correlation in the errors. Also, they get noticeably worse as T" increases. 2) For FGLS, the
coverage rates are near 95% for AR(1) errors. For AR(2) errors, we see some less accurate
coverage rates for v = 0.5. 3) For M A(1) errors, the coverage rates of GMA and FGLS are
good when v = 0.25, but more precise with GMA when v = 0.5. 4) For ARM A(1,1) errors,
the coverage rates of FGLS are good for v = 0.25 but less so for v = 0.5.

The results for the case with i.i.d. regressors (p, = 0) are presented in the Supplement.
The same qualitative results hold. Overall, the simulations show that the suggested FGLS
procedure with BIC to select the lag length is by far superior compared to OLS.

Remark 12. If heteroskedasticity in the errors is a concern, two avenues are possible. The
first is to correct the standard errors of the estimate using a heteroskedasticity-robust co-
variance matrix as suggested by, e.g., White (1980) or variations suggested afterwards. Our
recommendation is to apply a further FGLS correction as suggested by Gonzdlez-Coya and
Perron (2022). It is based on an Adaptive Lasso procedure to fit the skedastic function. The
method and some simulation results are presented in the Supplement. Qverall, further re-
duction in the MSFE of the estimates are possible even using incorrect covariates to estimate
the skedastic function as long as there is some correlation between the covariates used in
the Lasso specification and those in the true skedastic function. The coverage rate of the
confidence intervals have an exact size close to the nominal level and the lengths are smaller
than obtained when applying OLS or correcting only for serial correlation. With homoskedas-
tic errors, the results are equivalent to those obtained correcting only for serial correlation.
Hence, correcting for heteroskedasticity when it is not present has no detrimental effect on
the precision of the estimate, a result emphasized by Gonzdlez-Coya and Perron (2022). The

results are discussed in Section S.3 of the Supplement.

7 Conclusions

We showed that, contrary to the widely held view, a) OLS is, in general, inconsistent with
non-exogenous regressors, while GLS is consistent; 2) GLS is very robust in that an incorrect
specification still allows a lower MSE than OLS; 3) a simple FGLS procedure based on
estimating an approximating AR(k7) process with k7 chosen using the BIC works very well
and delivers estimates that a) are by far superior to OLS (lower MSE); b) robust to a wide
variety of data-generating process; c¢) have confidence intervals with exact coverage rates

close to the nominal level and much shorter than with OLS. If one suspects heteroskedastic
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errors, a simple method is suggested to further improve the precision of the estimate.

We used the simple linear model as it is the leading case of interest. Our results should
extend to more complex non-linear models estimated by non-linear least-squares or the gen-
eralized method of moments approach. A similar treatment for models with endogenous
regressors contemporarily correlated with the errors and estimated via some instrumental
variable procedure would also be beneficial. This is on the agenda for further work. Our re-
sults provides a strong case for abandoning the often-used OLS+HAC approach so common
nowadays. In most cases, it is outright inconsistent in the case of non-exogenous regressors,
while GLS is consistent. Even if the regressors are exogenous, GLS yields estimates with
substantially lower MSE and confidence intervals with adequate coverage rates and shorter
lengths. This holds whether the regressors are exogenous or not, provided past regressors

are not correlated with some unobserved component in the contemporaneous errors.
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Table 2: Root mean squared errors, bias and variance of estimators of § and p; AR(1)

model.
B p
OLS | Durbin | GLS | FGLS | CO-FGLS || FGLS | CO-FGLS
RMSE 0.400 | 0.036 | 0.025 | 0.025 0.041 0.034 0.175
Bias 0.400 | 0.029 | 0.012 | 0.020 0.035 0.027 0.171
Variance | 0.0031 | 0.0013 | 0.0006 | 0.0006 | 0.0008 0.0010 | 0.0013
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Table 4: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,
AR(2) case with p, = 0.8. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

AR(2) OLS GLS FGLS | OLS GLS FGLS | OLS GLS FGLS | OLS FGLS | OLS FGLS

0.5,-0.3 0.32 0.28 0.29 4.54 4.23 4.28 0.34 0.29 0.28 0.95 0.95 0.23 0.21

-0.5,0.3 0.17  0.13 0.13 3.22 283 2.86 0.16 0.13 0.13 0.94 0.95 0.16 0.14

v=0 1.34,-0.42 | 11.45 0.42 0.42 26.96 5.15 5.19 8.09 0.40 0.39 0.87 0.94 1.08 0.25
0,0.3 0.31 0.26 0.28 439 4.09 4.20 0.22 0.27 0.26 0.90 0.93 0.18 0.20

0.5,0.3 1.86 047 048 | 10.79 5.50 5.60 1.27 047 045 0.86 094 0.43 0.27

0.5,-0.3 0.36 0.26 0.28 4.83 4.04 4.18 0.31 0.27 0.26 0.92 0.94 0.22 0.20

= -0.5,0.3 0.21 0.12 0.13 3.61 2.74 2.84 0.16 0.12 0.12 0.91 0.94 0.15 0.13
Cﬂ] v=0.25 1.34,-0.42 | 27.51 0.39 0.41 44.90 5.00 5.16 7.29 0.37 0.37 0.58 0.94 1.02 0.24
& 0,0.3 0.32 0.25 0.28 458 394 4.20 0.20 0.26 0.24 | 0.86 0.92 0.18 0.19
0.5,0.3 3.79 0.44 0.49 16.41  5.32 5.61 1.14 0.44 0.43 0.64 0.93 0.41 0.26

0.5,-0.3 0.41 0.22 0.25 5.35 3.72 4.00 0.25 0.23 0.22 0.85 0.94 0.19 0.18

-0.5,0.3 0.30 0.10 0.12 4.41 2.54 2.79 0.14 0.10 0.10 0.84 0.92 0.15 0.12

v=10.5 1.34,-0.42 | 58.25 0.33 0.39 | 7148 4.61 5.00 5.38 0.32 0.32 0.16  0.92 0.88 0.22
0,0.3 0.36 0.21 0.29 4.91 3.65 4.25 0.17 0.22 0.20 0.79 0.89 0.16 0.18

0.5,0.3 7.50  0.38 0.49 | 25.20 4.90 5.60 0.83 0.37 0.36 0.25 0.91 0.35 0.24

0.5,-0.3 0.13 0.11 0.11 2.86 2.66 2.66 0.13 0.11 0.11 0.94 0.94 0.14 0.13

-0.5,0.3 0.06  0.05 0.05 2.02 1.81 1.81 0.06 0.05 0.05 0.94 094 0.10 0.09

v=0 1.34,-0.42 | 4.61 0.16 0.16 17.11  3.23 3.23 3.95 0.16 0.16 0.91 0.94 0.77 0.15
0,0.3 0.12 0.11 0.11 2.79 2.62 2.62 0.08 0.10 0.10 0.89 0.94 0.11 0.13

0.5,0.3 0.75 0.19 0.19 6.91 3.51 3.51 0.60 0.18 0.18 0.91 0.94 0.30 0.17

0.5,-0.3 0.18 0.11 0.11 3.40 2.57 2.61 0.12  0.10 0.10 0.88 0.94 0.13 0.12

S -0.5,0.3 0.11  0.05 0.05 2.67 1.76 1.78 0.06 0.05 0.05 0.86  0.94 0.09 0.08
Lﬁ v=0.25 1.34,-042 | 21.68 0.15 0.16 41.99 3.12 3.19 3.51  0.15 0.15 0.40 0.94 0.72 0.15
&~ 0,0.3 0.16 0.10 0.11 3.21 2.54 2.61 0.08 0.10 0.10 0.82 0.94 0.11 0.12
0.5,0.3 2.84 0.18 0.19 | 14.90 3.40 3.50 0.53 0.17 0.17 | 048 094 0.28 0.16

0.5,-0.3 0.28 0.09 0.10 4.59 2.39 2.51 0.09 0.09 0.09 0.69 0.93 0.12 0.12

-0.5,0.3 0.18 0.04 0.05 3.67 1.63 1.72 0.05 0.04 0.04 | 0.68 0.93 0.09 0.08

v=20.5 1.34,-0.42 | 54.49 0.13 0.15 71.60 2.85 3.08 2.57 0.12 0.12 0.01 0.92 0.62 0.14
0,0.3 0.24 0.09 0.11 4.15 2.35 2.59 0.07  0.08 0.08 0.64 0.92 0.10 0.11

0.5,0.3 6.90 0.15 0.19 | 25.24 3.10 3.45 0.39 0.15 0.15 0.04 0.92 0.24 0.15
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Table 6: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

ARMA(1,1) case with p, = 0.8. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

ARMA(1,1) | OLS GLS FGLS | OLS GLS FGLS | OLS GLS FGLS | OLS FGLS | OLS FGLS

-0.5,-0.4 0.09 004 0.04 238  1.60 1.61 0.11 0.04 005 | 097 096 | 0.13  0.09

0.2,-0.4 0.13 0.13 0.13 2.90 2.82 2.84 0.16 0.13 0.15 0.96 0.96 0.16 0.15

0.2,0.5 0.59 039 041 6.07 493 510 | 051 039 038 | 092 094 | 028 0.24

v=0 0.5,-0.4 025 024 0.25 3.96 3.91 395 | 022 025 022 | 093 093 | 018 0.18
0.5,0.5 1.30 0.43 0.46 9.00 5.19 5.40 1.05 0.43 0.43 0.90 0.94 0.40 0.26

0.8,-0.4 0.88 043  0.46 741  5.21 5.41 059 043 041 | 0.86 093 | 030 0.25

0.8,0.5 512 039 041 | 17.83 493 5.09 | 3.65 038 040 | 0.87 094 | 0.73  0.25

-0.5,-0.4 0.48 0.04 0.04 6.08 1.52 1.63 | 0.12 0.04 005 | 060 096 | 0.13  0.08

0.2,-0.4 0.19 0.12 0.14 3.48 2.69 2.96 0.15 0.12 0.14 0.93 0.95 0.15 0.14

S 0.2,0.5 1.00 035 040 830 473 504 | 047 037 036 | 079 094 | 027 0.24
? v=0.25 0.5,-0.4 0.23 0.22 0.23 3.84 3.73 3.82 0.21  0.23 0.21 0.92 0.93 0.18 0.18
& 0.5,0.5 315 039 046 | 1528 496 544 | 096 041 041 | 064 093 | 038 0.25
0.8,-0.4 1.59 0.39 0.46 10.52  4.99 5.39 0.54 041 0.39 0.69 0.93 0.28 0.25

0.8,0.5 13.75 035 043 | 3212 4.67 521 330 036 038 | 056 093 | 0.70 0.24

-0.5,-0.4 123  0.04 005 | 10.38 1.48 1.82 | 0.12 0.03 0.04 | 0.08 093 | 0.13  0.08

0.2,-0.4 0.32 0.11 0.19 4.64 2.61 3.36 0.13 0.10 0.12 0.81 0.90 0.14 0.13

0.2,0.5 177  0.31 0.42 11.94 4.42 5.19 0.36 0.32 0.30 0.49 0.89 0.23 0.22

v=0.5 0.5,-0.4 0.22 0.21 0.24 3.81 3.62 3.94 0.17  0.20 0.18 0.90 0.90 0.16 0.16
0.5,0.5 6.58 0.34 0.53 23.97 4.60 5.73 0.71  0.35 0.35 0.21 0.88 0.32 0.23

0.8,-0.4 290 036 052 | 1533 477 573 | 040 035 033 | 035 088 | 024 0.23

0.8,0.5 2947 030 053 | 51.13 436 573 | 239 031 032 | 014 088 | 0.59 0.22

-0.5,-0.4 0.03 0.02 0.02 145 098 098 | 0.04 002 0.02 | 096 096 | 0.08 0.05

0.2,-0.4 0.05 0.05 0.05 1.83 1.76 1.77 | 0.06 0.05 005 | 095 096 | 0.09 0.09

0.2,0.5 0.23 0.16 0.17 38 326 330 | 021 015 015 | 094 093 | 018 0.15

v=0 0.5,-0.4 0.10 0.10 0.10 2.51 2.50 2.50 0.09 0.09 0.09 0.93 0.93 0.11 0.12
0.5,0.5 0.51 0.18 0.19 570 3.45  3.51 045 0.17 017 | 092 093 | 026 0.16

0.8,-0.4 0.35 0.18 0.19 469 340 346 | 027 0.17 0.17 | 090 094 | 020 0.16

0.8,0.5 2.05 0.16 0.17 11.31  3.22 3.27 1.73 0.15 0.16 0.91 0.94 0.51 0.15

-0.5,-0.4 0.38 0.01 0.02 583 097 1.05 | 0.04 0.01 002 | 0.15 095 | 0.08 0.05

0.2,-0.4 0.11 0.05 0.05 2,68 1.72 1.85 | 0.06 0.05 005 | 0.85 095 | 0.09 0.09

= 0.2,0.5 0.68 0.15 0.17 7.15 3.06 3.25 0.19 0.14 0.14 0.64 0.93 0.17 0.15
U|T v=025 0.5-04 0.11 0.09 0.10 2.57 2.40 2.52 0.08 0.09 0.08 0.91 0.92 0.11 0.11
&~ 0.5,0.5 2.41 0.16 0.19 14.06  3.20 3.46 0.40 0.16 0.16 0.41 0.93 0.25 0.16
0.8,-0.4 1.14 0.17 0.19 9.28 3.27 3.49 0.24 0.16 0.16 0.55 0.94 0.19 0.16

0.8,0.5 10.88 0.14 0.17 30.18  2.98 3.26 1.54 0.14 0.15 0.34 0.94 0.48 0.15

-0.5,-0.4 1.00 0.01 0.02 9.71 0.89 1.11 0.04 0.01 0.01 0.00 0.92 0.08 0.05

0.2,-0.4 0.19 0.04 0.06 3.84 1.60 1.99 | 0.05 0.04 004 | 062 0091 0.09 0.08

0.2,0.5 1.56 0.13 0.17 11.87 2.89 3.28 0.14 0.12 0.12 0.13 0.90 0.15 0.14

v=0.5 0.5,-0.4 0.12 0.08 0.11 2.81 2.26 2.64 0.07  0.08 0.07 0.84 0.88 0.10 0.10
0.5,0.5 6.04 015 022 | 2386 3.07 3.71 0.30 0.14 0.14 | 0.02 0.89 | 0.21 0.15

0.8,-0.4 266 015 0.19 | 1554 3.06 347 | 018 0.14 0.13 | 0.08 090 | 0.16 0.14

0.8,0.5 27.70  0.13 0.21 51.30 2.89 3.58 1.11  0.12 0.12 0.01 0.88 0.41 0.14




“Feasible GLS for Time Series Regression”
by Pierre Perron and Emilio Gonzélez-Coya
Supplementary material for online publication

In the supplement, we present the proofs of Theorem 1 and Corollary 2. We also report
additional material and Tables of simulation results discussed in the main text.

S-1 Proof of some results

Proof of Theorem 1. The GLS estimator is the OLS estimator of the quasi-differenced
equation

(ye — pyi—1) = (@ — pre1) B+ e, (t=2,...,T).
Let w; = u; — puy—1 and note that wy is a filter: w; = ¥(L)u, with ¢(L) = (1 — pL). Let
A = E[ww'] so that

L —p
—p 1+p* —p 0
At —p 1+p° —p
0 —p 1+p> —p
—p 1

Hence, the GLS estimator can be written as
Bars = (XA X) XAy, fars — 6= (X'ATX) XA,
The variance of the GLS estimator is
Var(Bars) = (XA X)) XATT QAT X (XATEX) 7L
The OLS estimator can be written as
Bows = (X'X) ' X'y, Bors — B = (X'X) ' X'u.

with Var(Bors) = (X'X) "' X’QX(X’X)"L. Since both estimators are consistent the limit of
their MSE is equivalent to the limit of their variance. We have,

limy_o T Var(Bors) = plimr_eo(T ' X' X) ' TIX'QX (T X'X)
= R.(0)"227h.,(0).

A-1



Note that h,,(0) is (27 times) the spectral density function of the process z; = z,uy
Convolution Theorem, we have,

o) = / " (Wl — AN,

—T

and thus

™

hea®) = [ BN = [ B

-7 -

since hy,(—A) = hy(A). The asymptotic variance of the GLS estimator is

. By the

limy—oe T Var(Bars) = plimreo(T ' XA X)X AT QA X (T XA X))

= (14 p*)Re(0) — 2pRy (1)) 227 hyey- (0)

(A.1)

where x; = xy — pry—1 and uf = u; — puy—;. The spectral density function of z} is thus given

by

hae(w) = (™) Pho(w)
(1= pe™)(1 = pe™)hy(w)
= (1+p* —2pcos(w))hg(w).

Analogously, the spectral density function of uy, is given by
hos(w) = (1 + p* — 2pcos(w)) by (w).

Hence, the spectral density function at frequency zero of the process z; = xju; is

hoene(0) = /W Bt ()R (= \)dA

—T

— /7r (14 p? — 2pcos(A))?hy(A) Ry (N)dA

—T
T

= (14 2P ha(0) — 4p(1 + ) / cos(N) (A (A) AN

—T

+4p? / ' cos(A)2he (M) hy(N)dA

—T
T

= (14 p*)?heu(0) —4p(1 + p*) / cos(A) hp (A hy (N)dA

—T

1207 / " (14 c03(20)) ha(A) hu (N

—T

= (20 + (1 + ) u(0) — 4p(1 + p*) Rpu(1) + 20* R (2).
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Now, we can write equation (A.1) as

limy oo T Var(Bers) = ((1+ Pz)Rx(g) - 2pr(1)[227T((2ﬂ2 +(1+ 0°)*)hau(0)
—4p(1+ p*) Reu(1) + 29" Rau(2))

and the ratio of interest is

I (MSE(BGLS) > o llmTHOO T var(BGLS)
IM7T 500 -

MSE(Bo1s) limy . T Var(Bops)
— Rw(O)Q <2p2 + (1 + p2)2)hxu(0) —4p(1 + :02)]%%(1) + 2p2ﬁmu(2)
(T + p?)R.(0) — 2pR,(1))? P2 (0) ’
and thus,

limy_ o <%> < 1

)
)
(2
(

20+ (L) = 4ol + )30 ﬁfzof < (14 %) = 2pcon, (1)
iff p*> — 2p(1 + p2)f "<(1)) +p? 1::58)) < 2p?cory(1)? = 2p(1 + p?) cor,(1).0

Proof of Corollary 2: Note that if z; is i.i.d., its spectral density function is h,(w)
(27) 'R, (0) for all w. Thus, using the results in Theorem 1:

heu) = [ heh NN = 0) [ b

s —Tr

= L RA(O)R(0)
and
Rou(l) = /_ cos(A) e (A (N)dA = B (0) /_ cos(V RN = 5 Ru(0) Ru(1),
Ron(2) = / " cos(2A)ha (M hu(\)dA — £ (0) / " cos(2A)hu( N\ — %Rm(O)Ru(Q)
Hence,

liInT—>oo (MSE(BGLS)/MSE(@OLS)> <1
iff p? — 2p(1 + p*) cor, (1) + p® cory(2) < 0

. p
iff m(l + cor,(2)) < cor,(1) when p > 0,
iff ﬁ(l + cor,(2)) > cor, (1) when p < 0.00



S-2 Simulations with predictive regressions

As discussed in Remarks 3 and 5, in the case of predictive regressions assuming rational ex-
pectations and estimated using overlapping observations, both OLS and GLS are consistent.
We present the results of a small simulation experiment to show that, with exogenous or
non-exogenous regressors, FGLS is by far superior to OLS in terms of MSE and length of
the coverage rates. The setup adopted corresponds to regression

!
Yirk = T8+ Upys,

with k& = 2 so that the errors are M A(1). The data-generating process is similar to that
used above except that the regressors are lagged two periods so that y;, = a + Bx;_o + uy,
uy = e;+0e,_1 and x; = p,x4 1 +v;+ve,_1 with v, and e, independent 7.7.d. N (0, 1) variables.
We set (o, 8) = (0,1), p, = 0 and again v = 0 (exogenous regressors), v = 0.25 (weak
correlation) and v = 0.50 (strong correlation). We also consider § = —0.7, —0.4 and 0.5.
The results are presented in Table S.7. With v = 0, the results are similar to those in
Table 5. FGLS and GMA have much lower MSE than OLS and are nearly as efficient as
the infeasible GLS, especially when T" = 500. The coverage rates for all methods are near
the nominal 95% level, except when the MA parameter is strongly negative. Again, the
length of the confidence intervals are shorter with FGLS and GMA compared to OLS. With
non-exogenous regressors, the results are broadly similar. The only exception is that the
coverage rates for GMA are substantially lower than the nominal level. Those for FGLS are
adequate except when 6 = —0.7. This is in line with our theoretical results and confirms
that Hansen and Hodrick (1980) assertion concerning the inconsistency of GLS is incorrect.

S-3 Correcting for heteroskedasticity

In this section, we now consider a FGLS procedure for heteroskedasticity in the errors e;. We
describe the method suggested by Gonzdlez-Coya and Perron (2022) based on an Adaptive
Lasso procedure to fit the skedastic function. Lasso is a non-parametric estimation method
first proposed by Tibshirani (1996). It selects regressors amongst a potentially large set wy;
(j =1,...,d), where d can be very large, by imposing a ¢; penalty on their size. Lasso forces
the coefficients to be equally penalized. We can, however, assign different weights to different
coefficients. If the weights are data-dependent and properly chosen, this can enhance the
properties of Lasso, in particular when the irrelevant covariates are highly correlated with
the relevant ones. To that effect, Zou (2006) considered the adaptive Lasso given by
A . T 2 d 2 d %

¢ = arg m1n¢{(1/2) thl(log(vt) — ¢y — Zj:l wtj¢j) + A Zj:l U; ’¢]|}7 (A.2)
where @j = |(Abj|_w, 1 > 0 and gAbj is a root-T-consistent estimator of ¢;. Here, v; is some
process exhibiting heteroskedasticity, though no serial correlation, to be specified below. The

A4



implementation of Adaptive Lasso to obtain a fit to the skedastic function is as follows. 1)
Compute the first-step estimate of ¢ as the solution to the Ridge regression problem:

~ridge . T d r d
= argming{(1/2) 32, (log(v;) — ¢ — D25y wyyd;)* + A" 325 67}
where A" is selected via cross-validation. 2) Compute the weights as {S‘j = |(Ab;idge|_¢. The

Adaptive Lasso estimates are then

6" = argming{(1/2) 1L (l0g(v?) — 6y — Sy wiih,) + X Xy 10717 |},
where the two tuning parameters, M and ¢ are selected via the following K -cross-validation
method: a) Fix L possible values for v¢; we use L = 6 and ¢ = (0,0.25,0.5,0.75,1,2). b)
Fix a partition for the K-fold cross-validation, i.e., split the data into K roughly equal-
sized parts. We use K = 10. Let x : {1,..., T} — {1,..., K} be an indexing function
that indicates the partition to which observation ¢ is allocated to by the randomization. c)
For every 1], compute the optimal cross-validated )\;-4 and the mean cross-validated error.
For the kth part, we fit the model to the other K — 1 parts of the data, and calculate the
prediction error of the fitted model when predicting the kth part of the data. We do this for
k=1,..., K and combine the K estimates of the prediction error. Denote by f;k(w) the
fitted function, computed with the kth part of the data removed and using ;. Then the
cross-validation estimate of the prediction error is

OV(fy) =T S0 L (log(od), /™ ().

where L(-) is a loss function; we use the MSE. Let A be the value that minimizes CV(f;). d)
The cross-validated pair (A**,1°*) used is the one that minimizes CV (X, ¢¢) fori = 1,..., L.
Note that we do not have in mind any oracle model. The aim is to be agnostic about such
knowledge and to try to devise a method as robust as possible that allows a reduction in the
MSE. Since the skedastic function is, in general, not consistently estimated, there is a need
to further correct the variance estimate of the FGLS estimator using a Heteroskedasticity
Robust version. We denote the resulting fitted value of the skedastic function by 2.
Here, v; = é;, the residuals from applying the GLS regression

(ye — 2?21 :bfyt—j) = (2 — 2221 ﬁjpxt—j)lﬁ + ek, (t=2,..,T), (A.3)

Let /3 r_c denote the GLS estimate that corrects only for serial correlation and B r_c, the
one that corrects for both serial correlation and heteroskedasticity. To be more precise,
we apply the following steps: a) Estimate by OLS the quasi-differenced regression (A.3)
using kr = ki to obtain the residuals é,; b) Estimate the model log(max{é,6°}) = ¢, —
Z?Zl 21j¢;, via Adaptive Lasso, where ¢ = 0.1 is some small positive number to avoid dealing
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with residuals that are nearly zero. Note that z; may include some or all elements of z; or
transformations of them. Denote the predicted values from this model by v; = €%; ¢) Br_cn
is the weighted least squares (WLS) estimator of the quasi-differenced regression (A.3), with
weights given by ¢,%.

In order to construct confidence intervals for the parameter 3 of interest, introducing some
finite sample refinements can be beneficial. Here, we describe the particular form adopted,
following Miller and Startz (2019) and Rothenberg (1988). We focus on the estimate of the
asymptotic variance of the FGLS estimator:

Var(Bp_op) = (T X'WX) \QT ' X'W ' X) ™, (A.4)

where IV is a diagonal matrix with entries Wy = v;(w)? = €%, the predicted values obtained
from the procedure to fit the skedastic function v;(w), X is the matrix of regressors in (77),
O =T1X'YSF-CHX with XF~CH a diagonal matrix with ¢ entry given by:

. 52 1 he o n
$F-CH _ Cik—F-CH 44 LE-C 7 A5
tt (,é‘tzk>2 (1 . ht7F_CH)2 k f ( )

where ér_cny = [é1,r—cH, -, ér.p—cH] are the estimated residuals from the FGLS regression
correcting for serial correlation and heteroskedasticity, i.e., é&ip_cp =y — Bp_cprs, with

vio= (=5 )/ (), (A.6)
vp o= (w0 P y)/ (@) (A7)

dAf is an estimate of the degrees of freedom used in the estimation of the weights. For Lasso,
the number of nonzero coefficients is an unbiased estimate for the degrees of freedom (Zou
et al. (2007)). The confidence intervals for the kth coefficient is then obtained using 8r_cp
+ 21_0/2SE(Br_cp,),Where z1_q/; is the 1 — a/2 quantile of the normal distribution and
SE(BFGLS’k) = (Var(BF_CH)),lcf, with Var(8p_copy) defined in (A.4).

S-3.1 Simulation results with heteroskedasticity

We consider the linear model (1) with serially correlated and heteroskedastic errors. The
specifications are the same as in the text except that e; ~ N(0,v;(z)) or, equivalently,
e = /v (2)ey, where g, ~ i.i.d. N(0,1). We apply a FGLS accounting for heteroskedasticity
in the FGLS regression used to correct for serial correlation,

Y= 250 Y = (o = 200 pPe ) B+ ew, (t=2,..,T),

This is then equivalent to applying OLS to the regression y; = ;53 + e_r_cu, where y;
and z} are defined by (A.6) and (A.7) and the estimate of ¢2, is constructed as outlined
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in the previous section. We only consider a subset of the cases used earlier with T = 200.
These are: 1) AR(1): u; = 0.5u;_1 + vi(2)Y%e; 2) AR(2): w; = 1.34u,_y — 0.42u; o +
v(2)Y2e4; 3) MA): wy = v,(2)Y2e, + 0.50,1(2)Y%e,_1; 4) ARMA(1,1): uy = 0.8u;_1 +
v (2)Y%e, — 0.4v,_1(2)"?e,_1, where ¢, ~ i.i.d. N(0,1). We consider three specifications
for the skedastic function v4(-) as in Romano and Wolf (2017). These are, from weak to
strong heteroskedasticity: a) Power function: v(z); = x%; b) Squared log function: v;(x), =
log(z;)]%; ¢) Exponential of a second-degree polynomial: v;(z)s = exp (0.22; + 0.222). The
input matrix is W = (1, w, w?, cos(w), cos(2w), cos(3w)). We consider two cases: a) w; = x;,
which assumes that we select the correct variable influencing the skedastic function; b)
wy = ¢y + (1 — ¢)q with ¢, ~ U(1,4) and ¢ ~Bernouli(p) with p = 0.75. In this case, the
covariate used to model the skedastic function is not the same as the true one but is correlated
with it, the correlation being p. Note that in practice, one can include a vast set of potential
covariates. Hence, with the parsimonious set considered, the improvements obtained in terms
of MSE and length of the confidence intervals should be viewed as conservative.

The results are reported in Table S.8; the first panel for w; = z; and the second for
wy = ¢y + (1 — ¢)g,. We present the MSE, bias and variance of the FGLS estimate as
well as the coverage rates and lengths of the confidence intervals obtained using the method
discussed in the previous section. We also present results for the OLS estimate, the FGLS
estimate that accounts only for serial correlation (F-C) and the FGLS estimate that accounts
for both serial correlation and heteroskedasticity (F-CH). This is done to gauge the extent
of the improvement provided by the correction for heteroskedasticity. Note that when using
F-C, we construct the confidence intervals that correct for serial correlation the same way as
we do for F-CH, i.e., applying the same correction for potential remaining heteroskedasticity.

When the covariate used is the correct one, we see important reduction in the MSE of
the F-CH estimate relative to F-C, more so as the heteroskedasticity is stronger. Both the
variance and the bias contribute to the reductions in the MSE. Since correcting for serial
correlation via a FGLS procedure provides substantially more precise estimates relative to
OLS, needless to say that the same applies when further correcting for heteroskedasticity.
The coverage rates of the confidence intervals have an exact size close to the nominal level.
The OLS estimates also have good coverage rates in most cases but can be sensitive to the
strength of the serial correlation; e.g., the AR(2) case. However, the lengths are substantially
smaller using F-CH compared to OLS and to a lesser extent compared to F-C.

The results in the bottom panel pertains to the case with an incorrect covariate, though
correlated with the correct one. The results are similar with the exception that the incremen-
tal reductions in MSE, bias and variance provided by the correction for heteroskedasticity
are smaller, as expected. Nevertheless, they are still important enough in magnitude. Hence,
using incorrect covariates to estimate the skedastic function can still lead to more precise
estimates, as long as there is some correlation between the two sets of covariates. The cov-
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erage rate of the confidence intervals have an exact size close to the nominal level and the
lengths are much smaller than those with OLS and, to some extent, than with F-C.

We also performed simulation experiments with homoskedastic errors. The results were
then essentially equivalent to those obtained with F-C. This means that correcting for het-
eroskedasticity when it is not present has no detrimental effect on the precision of the esti-
mate, a result emphasized by Gonzdlez-Coya and Perron (2022). Overall, the results show
that a further correction for heteroskedasticity can lead to more precise estimates and smaller
lengths of the confidence intervals compared to only correcting for serial correlation.
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Table S.4: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,
AR(2) case with p, = 0. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

AR(2) OLS GLS FGLS | OLS GLS FGLS | OLS GLS FGLS | OLS FGLS | OLS FGLS

0.5,-0.3 0.63  0.38 0.39 6.26  4.96 5.03 0.64 0.38 0.38 0.95 0.94 0.31 0.24

-0.5,0.3 1.11  0.38 0.38 8.36  4.93  4.97 1.11  0.38 0.38 0.95 0.95 0.41 0.24

v=0 1.34,-0.42 | 5.24 0.17 0.17 18.02 3.32 3.33 5.10 0.17 0.17 0.94 0.95 0.88 0.16
0,0.3 0.54  0.45 0.46 589  5.39 5.44 0.55 0.47  0.46 0.95 0.95 0.29 0.27

0.5,0.3 1.08 0.37  0.38 8.29 486  4.92 1.06 0.38 0.38 0.94 095 0.40 0.24

0.5,-0.3 1.88 0.36 0.38 | 11.86 4.82 4.97 | 0.60 0.36 0.35 0.68  0.94 0.30 0.23

= -0.5,0.3 251 0.35 0.38 | 13.08 4.73  4.92 1.07  0.36 0.35 0.79 094 0.40 0.23
Cﬁ] v=0.25 1.34,-042 | 13.88 0.17 0.17 31.60 3.28 3.31 4.75  0.16 0.16 0.73 0.95 0.85 0.16
&~ 0,0.3 0.52 0.42 0.45 5.80 5.21 5.26 0.53 0.44 0.44 0.94 0.94 0.28 0.26
0.5,0.3 2.25 0.35 0.38 | 1242 4.73  4.95 1.00 0.36 0.35 0.82 0.94 0.39 0.23

0.5,-0.3 4.46 0.31 0.38 19.89 4.37 4.90 0.49 0.31 0.30 0.18 0.92 0.27 0.22

-0.5,0.3 5.06 0.31 0.40 | 20.39 4.40 5.02 0.94 0.31 0.30 | 0.43  0.90 0.38 0.22

v=20.5 1.34,-0.42 | 30.83 0.14 0.15 51.46 2.96 3.12 4.06 0.14 0.14 0.26 0.94 0.78 0.15
0,0.3 0.50 0.38 0.47 5.61 4.89 5.47 0.47 0.37 0.37 0.94 0.92 0.27 0.24

0.5,0.3 4.62 0.31 0.42 | 19.25 4.39 5.16 0.88 0.30 0.30 | 0.46  0.89 0.36 0.22

0.5,-0.3 0.27  0.15 0.15 4.14 3.07 3.08 0.26 0.15 0.15 0.95 0.95 0.20 0.15

-0.5,0.3 0.45 0.16 0.16 534 3.17  3.17 | 045 0.15 0.15 0.95 0.95 0.26 0.15

v=0 1.34,-0.42 | 2.17 0.07 0.07 11.62  2.04 2.04 2.17  0.07 0.07 0.95 0.96 0.57 0.10
0,0.3 0.23  0.19 0.19 3.80 348 3.48 0.22 0.18 0.18 0.95 0.95 0.18 0.17

0.5,0.3 0.45 0.15 0.15 5.33 3.09 3.09 0.44 0.15 0.15 0.95 0.95 0.26 0.15

0.5,-0.3 1.62 0.13 0.14 11.79 291 3.02 0.24 0.14 0.14 0.33 0.95 0.19 0.15

S -0.5,0.3 1.77 0.14 0.15 11.81  3.00 3.08 043 0.14 0.14 0.58 0.94 0.26 0.15
Lﬁ v=0.25 1.34,-042 | 11.79 0.06 0.06 31.31 1.98 2.00 2.03 0.06 0.06 0.40 0.93 0.56 0.10
& 0,0.3 0.21 0.17 0.18 3.62  3.26 337 | 021 017 0.17 | 0.95 0.95 0.18 0.16
0.5,0.3 1.79 0.14 0.15 11.86 2.94 3.06 0.42 0.14 0.14 0.56 0.94 0.25 0.15

0.5,-0.3 4.17 0.12 0.14 19.94 2.74 2.99 0.19 0.12 0.12 0.01 0.92 0.17 0.13

-0.5,0.3 4.34 0.12 0.15 19.91 2.82 3.14 0.37 0.12 0.12 0.08 0.91 0.24 0.13

=05 1.34,-0.42 | 29.61 0.05 0.06 | 52.75 1.86 1.91 1.72  0.05 0.05 0.01 0.95 0.51 0.09
0,0.3 0.20 0.15 0.19 3.56 3.10 3.45 0.19 0.15 0.15 0.94 0.91 0.17 0.15

0.5,0.3 4.26 0.12 0.15 19.68  2.77 3.10 0.37 0.12 0.12 0.09 0.92 0.24 0.13
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Table S.6: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,
ARMA(1,1) case with p, = 0. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

ARMA(1,1) | OLS GLS FGLS | OLS GLS FGLS | OLS GLS FGLS | OLS FGLS | OLS FGLS

-0.5,-0.4 1.13 027  0.29 8.52 456  4.28 1.06 038 028 | 096 095 | 040 0.21

0.2,-0.4 0.55 0.51 0.52 5.91 5.67 5.74 0.52  0.49 0.49 0.94 0.95 0.28 0.27

0.2,0.5 0.79 0.31 0.34 704 449 467 | 074 031 033 | 094 095 | 034 0.23

v=0 0.5,-0.4 0.54 0.52 0.53 585 577 580 | 0.50 0.50 050 | 094 094 | 028 0.28
0.5,0.5 1.22 0.22 0.24 8.77 3.78 3.94 1.14  0.22 0.24 0.94 0.95 0.42 0.19

0.8,-0.4 0.75 043 045 6.95 529 542 | 069 043 042 | 094 095 | 033 0.25

0.8,0.5 283 016 0.17 | 1347 320 3.30 | 268 0.16 017 | 095 095 | 0.64 0.16

-0.5,-0.4 555 0.26 0.31 | 2144 4.10 4.51 099 025 026 | 043 093 | 039 0.20

0.2,-0.4 0.70 044 0.52 6.68 534 575 | 049 046 046 | 090 094 | 027 0.26

S 0.2,0.5 334 027 033 | 1659 419 462 | 069 0.29 031 | 047 096 | 0.33 0.21
? v=0.25 0.5,-04 0.50 044 048 565 528 555 | 048 047 047 | 094 094 | 027 0.26
& 0.5,0.5 6.56 0.20 0.25 | 23.67 3.58  3.98 1.07 021 022 | 036 095 | 040 0.18
0.8,-0.4 1.52 0.37 0.41 10.23  4.87 5.15 0.67  0.40 0.39 0.80 0.94 0.32 0.24

0.8,0.5 1195 0.14 0.18 | 3092 3.06 342 | 254 0.15 016 | 053 094 | 062 0.15

-0.5,-0.4 13.91 0.21 0.36 | 36.08 361 465 | 082 021 022 | 001 0.89 | 035 0.18

0.2,-0.4 1.07 0.39 0.71 8.71 4.95 6.78 0.41  0.39 0.39 0.75 0.86 0.25 0.24

0.2,0.5 829 0.25 048 | 27.75 4.01 545 | 0.57 025 027 | 0.04 087 | 030 0.19

v=05 0.5,-04 0.56 040  0.57 6.0l 504 6.09 | 040 040 040 | 091 090 | 025 0.24
0.5,0.5 16.59 0.18 0.36 39.56  3.40 4.73 0.89 0.18 0.19 0.01 0.87 0.37 0.16

0.8,-0.4 301 034 050 | 15.63 4.61 566 | 058 034 033 | 047 0.89 | 0.82 0.23

0.8,0.5 27.92 0.13 027 | 50.66 2.89 4.18 | 2.16 0.13 0.14 | 0.06 0.84 | 0.57 0.14

-0.5,-0.4 0.43 0.10 0.11 5.22 2.59 2.63 0.42 0.10 0.11 0.95 0.95 0.25 0.13

0.2,-0.4 0.21 0.19 0.20 3.66 3.49 3.54 0.21  0.19 0.19 0.95 0.94 0.18 0.17

0.2,0.5 0.29 0.12 0.12 4.34 2.69 2.74 0.30 0.12 0.13 0.96 0.96 0.21 0.14

v=0 0.5,-0.4 0.20 0.20 0.20 3.56 3.56 3.56 0.20 0.20 0.20 0.95 0.95 0.18 0.17
0.5,0.5 043 0.08 0.09 532 225 230 | 046 0.09 009 | 097 095 | 027 0.12

0.8,-0.4 0.27 0.17  0.17 416 3.28 332 | 028 0.17 0.17 | 096 0.95 | 0.21 0.16

0.8,0.5 1.03 0.06 0.06 8.17 1.91 1.94 1.11  0.06 0.07 0.96 0.95 0.41 0.10

-0.5,-0.4 4.85 0.10 0.11 21.12  2.48 2.61 0.39 0.10 0.10 0.07 0.93 0.24 0.12

0.2,-0.4 0.43 0.19 0.21 539 347 363 | 019 0.18 018 | 0.79 093 | 0.17  0.16

= 0.2,0.5 2.97 0.12 0.14 16.39 2.79 3.02 0.28 0.12 0.11 0.13 0.93 0.21 0.13
U|T v=10.25 0.5-0.4 026 020 0.23 411 355 38 | 019 019 018 | 090 093 | 017 0.17
& 0.5,0.5 590 009 0.11 | 2335 233 256 | 043 0.08 0.09 | 0.06 092 | 0.26 0.11
0.8,-0.4 1.16 0.17  0.18 9.46  3.26  3.41 027 0.16 016 | 0.57 093 | 020 0.15

0.8,0.5 1022 0.06 0.07 | 3021 197 215 1.05 0.06 0.06 | 015 093 | 040 0.10

-0.5,-0.4 13.54  0.09 0.15 36.35  2.34 3.05 0.33 0.08 0.09 0.00 0.88 0.23 0.12

0.2,-0.4 0.84 0.16 0.24 828 320 39 | 016 0.15 015 | 047 0.89 | 016 0.15

0.2,0.5 8.00 0.10 0.17 | 2785 249 331 0.23 0.10 0.10 | 0.00 0.87 | 0.19 0.12

v=0.5 0.5,-0.4 0.32 0.17 0.28 4.62 3.26 4.31 0.16 0.16 0.16 0.84 0.86 0.16 0.15
0.5,0.5 16.23 0.07 0.13 |39.83 210 292 | 036 0.07 007 | 0.00 087 | 023 0.10

0.8,-0.4 2.74 0.14 0.19 15.78  3.00 3.45 0.24 0.13 0.14 0.09 0.90 0.19 0.14

0.8,0.5 27.60  0.05 0.09 51.74 1.78 2.43 0.89 0.05 0.05 0.00 0.87 0.37 0.09
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