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Abstract

We consider a linear regression model with serially correlated errors. It is well
known that with exogenous regressors Generalized Least-Squares is more e¢ cient than
Ordinary Least-Squares (OLS). However, there are usually three main reasons advanced
for adopting OLS instead of GLS. The �rst is that it is generally believed that OLS
is valid whether the regressors are exogenous (uncorrelated with past errors) or not,
while GLS is only consistent when dealing with pre-determined regressors (uncorrelated
with current and future errors). Second, OLS is more robust than GLS. Third, the
gains in accuracy can be minor and the inference can be misleading (e.g., bad coverage
rates of the con�dence intervals). We show that all three claims are wrong. The
�rst contribution is to dispel the fact that OLS is valid only requiring pre-determined
regressors, while GLS is valid only with exogenous regressors. We show the opposite
to be true. The second contribution is to show that GLS is indeed much more robust
that OLS. By that we mean that even a blatantly incorrect GLS correction can achieve
a lower MSE than OLS. The third contribution is to devise a feasible GLS (FGLS)
procedure valid whether or not the regressors are exogenous, which achieves a MSE
close to that of the correctly speci�ed infeasible GLS. We also brie�y address issues
related to correcting for heteroskedastic errors.
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1 Introduction

We consider a linear regression model with serially correlated errors. If the regressors are

strictly exogenous (i.e., uncorrelated with the errors at all leads and lags), Generalized

Least-Squares (GLS) is BLUE, hence more e¢ cient than Ordinary Least-Squares (OLS).

If the regressors are pre-determined (i.e., uncorrelated with current and future values of

the errors), GLS is no longer unbiased but is consistent and asymptotically e¢ cient. With

exogenous regressors OLS is consistent, though not e¢ cient. Early work concentrated on

�xed regressors or equivalently exogenous regressors. This remained the case well into the

80s; e.g., Amemiya (1986). Contributions to construct GLS estimates include Cochrane and

Orcutt (1949), Prais and Winsten (1954), Durbin (1970), Amemiya (1973), among others.

The limit distributions of both the OLS and GLS estimators were well known but it was

not well established how to consistently estimate the limit variance of the OLS estimate.

Spurred by the development of the Generalized Method of Moments (GMM) by Hansen

(1982) econometricians started to tackle this problem. Early contributions (in a more general

non-linear context) include White (1984), White and Domowitz (1984), Newey and West

(1987) and a comprehensive treatment was provided by Andrews (1991) who used results

from the theory of spectral density estimation developed much earlier. Since then all the

theoretical and empirical work has concentrated on OLS and a �ood of papers have been

devoted to deliver improved estimates of the limit variance of OLS so that the con�dence

intervals have accurate �nite sample coverage rates. This continues to this day. There is

barely any mention or work about GLS in the theoretical and empirical literature. One is

simply satis�ed using OLS with a complete disregard for ways to improve the properties of

the estimate per se; e.g., bias, variance and MSE (mean-squared errors). The goal is only to

provide good estimates of the con�dence interval of the OLS estimate.

There are generally three main reasons for adopting OLS instead of GLS. 1) It is generally

believed that OLS is valid whether the regressors are exogenous or not (i.e., uncorrelated

with past errors or not), while GLS is inconsistent with non-exogenous regressors. This view

is now taught early on in undergraduate textbooks; e.g., Stock and Watson (2019), ch. 16.

2) When applying GLS one needs to choose a speci�cation to model the nature of the serial

correlation in the errors. It is then argued that an incorrect speci�cation can lead to worse

results than using OLS; i.e., it is believed that while OLS is sub-optimal relative to GLS,

it is more robust than GLS, which can deliver worse outcomes (e.g., higher MSE) when

not choosing a proper speci�cation for the serial correlation in the errors; see, e.g., Engle
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(1974), Judge et al. (1985), p. 281, and Choudhury et al. (1999). 3) Even with a decent

speci�cation, the gains in accuracy can be minor and the inference can be misleading; e.g.,

bad coverage rates using standard estimates of the asymptotic variance to construct the

con�dence intervals. Our goal is to show that all three claims are wrong. For simplicity, our

focus is on the linear model with linear short-memory stationary processes for the errors.

The �rst contribution is to dispel the belief that OLS is valid with non-exogenous regres-

sors, while GLS is valid only with exogenous regressors. We show the opposite to be true, in

general. The proof is trivial and the misconception likely arose from a misconceived notion

of exogenous versus pre-determined regressors when the errors are correlated. Simulation

evidence substantiate the results. Non-exogenous regressors can cause severe asymptotic

bias to the OLS estimate, while the GLS estimates are consistent. Unlike OLS, GLS is also

consistent when the regressors include lagged dependent variables.

The second contribution is to show that GLS is indeed much more robust that OLS. By

that we mean that even a blatantly incorrect GLS correction can achieve a lower MSE than

OLS. To illustrate this fact, we take a simple AR(1) correction with parameter �. We show

that, in most cases, GLS will have lower MSE than OLS for a wide range of processes and

values of �, as long as � is of the same sign as the �rst-order covariance of the residuals.

A simple procedure that pre-tests for serial correlation and applies a GLS correction with

a randomly drawn value of � with the same sign as the estimated �rst-order correlation

of the estimated residuals will not do worse than OLS. This result is important because it

shows that GLS can be applied with a misspeci�ed structure and still yield improvements

over OLS. Also, it shows that issues of bias in the estimate of the parameters used to apply

GLS will only have a second-order e¤ect, they will not make GLS less e¢ cient than OLS.

However, in practice we can certainly do better by choosing a good speci�cation for the error

process in order to achieve the lowest possible MSE and good �nite-samples coverage rates

for the con�dence intervals. This calls for a good feasible GLS (FGLS) procedure.

The third contribution is to devise a FGLS procedure valid with pre-determined regres-

sors whether or not they are exogenous, which achieves a MSE close to that of the infeasible

GLS procedure that uses the true structure (and parameters) of the serial correlation in the

errors. Care must be applied. For instance, for an AR(1) process the usual procedure of

Cochrane and Orcutt (1949) will not work. It is based on estimating the autocorrelation

parameter using the OLS residuals. Since OLS is inconsistent when the regressors are not

exogenous, this approach fails. Instead, we propose a procedure based on a generalization

of the so-called Durbin (1970) regression, whose coe¢ cients are consistent with or without
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exogenous regressors. Using the resulting quasi-di¤erenced series, we apply an autoregressive

approximation of order, say kT , with kT chosen using the Bayesian Information Criterion

(BIC); see Schwarz (1978). The simulations show that the resulting FGLS estimate performs

surprisingly well in �nite samples. It delivers estimates having lower MSE than OLS, often by

a wide margin. The �nite sample coverage rates of the con�dence intervals constructed using

the standard asymptotic distribution are very close to the nominal level with lengths much

shorter than using OLS with heteroskedasticity and autocorrelation consistent standard er-

rors. We provide extensive evidence for both exogenous and non-exogenous regressors. In

most cases, the MSE of the FGLS is close to that of the infeasible GLS estimate.

A non-trivial exception for which OLS remains valid with serially correlated errors and

non-exogenous regressors pertains to k steps ahead predictive regressions as examined in,

e.g., Hansen and Hodrick (1980). Under rational expectations, the errors areMA(k�1) and
the regressors are uncorrelated with the errors. Still, we show that GLS is valid and leads to

much more e¢ cient estimates, contrary to what is asserted in Hansen and Hodrick (1980). In

the Supplement, we also consider the case with both serial correlation and heteroskedasticity

in the errors. We propose a two-step GLS procedure suggested by González-Coya and Perron

(2022) to �t the heteroskedasticity and further reduce the MSE.

The consistency of the GLS and FGLS procedure requires pre-determined regressors

(uncorrelated with current and future errors). This condition is certainly less contentious

than the exogeneity assumption that requires the regressors to be uncorrelated with past

errors. It also holds in well speci�ed models. In such cases, it makes sense to argue that

the regressors are pre-determined otherwise one could forecast future errors, which should be

unforecastable, i.e., pure random noise. Nevertheless, it is still possible to have a misspeci�ed

model or a model with some lagged endogeneity, which implies that OLS is consistent while

GLS is not because the regressors are not pre-determined. However, correlation between

past regressors and future errors implies that the errors are correlated with some observable

variables. This is a problem of an omitted variable being available or not as observations. If

the omitted variable is observed (e.g., a lagged value of some covariate), then one includes

the relevant lag as regressor. This purges all correlation between past regressors and cur-

rent errors so that we e¤ectively have a context with pre-determined regressors and GLS

is e¢ cient. When the omitted variable is unobserved, things are more complex. OLS can

be consistent while GLS is not. However, these are knife-edge cases in the sense that mi-

nor changes in the speci�cation renders OLS inconsistent; e.g., adding lagged regressors or

having the omitted unobserved variable being serially correlated.
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The rest of the paper is structured as follows. Section 2 provides the general setup and

motivation. It also provides results about the conditions under which OLS and GLS are

consistent. Section 3 discusses the robustness of GLS. Section 4 presents preliminary issues

related to the feasible GLS estimate proposed. Section 5 presents the main Feasible GLS

procedures for the general case with an invertible short-memory stationary process for the

errors. Issues related to the inclusion of lagged dependent variables and the importance of

the assumption of pre-determined regressors are also included. Section 6 presents extensive

simulations about the �nite sample properties of the OLS and FGLS estimates and how

close they are to achieving the precision of the infeasible GLS estimate, for a wide variety

of processes for the serial correlation in the errors. Both cases with exogenous and non-

exogenous regressors are covered. Section 7 provides brief concluding remarks. A Supplement

contains some technical derivations, additional material and simulation results.

2 General setup and motivation1

Consider a scalar time series of random variable yt generated by:

yt = x
0
t� + ut; t = 1; : : : ; T; (1)

where x0t = (x1t; : : : ; xkt) is a vector of regressors (or explanatory variables), �
0 = (�1; : : : ; �k)

a vector of unknown coe¢ cients, T is the sample size. In matrix notation: y = X�+u, with

y = (y1; :::; yT )
0, u = (u1; :::; uT )

0 and X = (x01; :::; x
0
T )
0. The ordinary least-squares (OLS)

estimate of � is �̂ = (X 0X)�1X 0y. We assume that the errors follows the linear process

ut = C(L)et =
P1

j=0 cjet�j; (2)

where c0 = 1. The roots of C(L) are outside the unit circle, so that ut is invertible and

has an in�nite autoregressive representation. Also,
P1

j=0 jjcjj < 1, so that ut is a short-
memory processes. For now, we assume that et � i:i:d: (0; �2e) (independent and identically
distributed errors). We consider heteroskedastic errors in the Supplement.

2.1 The case with i.i.d. errors

For the sake of exposition, suppose �rst that ut = et � i:i:d: (0; �2e). A condition for OLS to
be unbiased is that E [etjX] = 0, for all t, referred to as exogenous regressors. This is often

1The material in this section was �rst discussed in Perron (2021). This paper now supersedes it.
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seen as unrealistic for most time series empirical applications in economics. It is generally

believed that the most we can hope for is to have �pre-determined�regressors such that:

E [etjxt; xt�1; :::; x1] = 0; (3)

i.e., regressors uncorrelated with current and future errors. Throughout, we shall maintain

that this is the case. What is problematic is that in many applications, we have

E [etjxt+1; :::; xT ] 6= 0; (4)

so that the regressors are not exogenous; e.g., Stock and Watson (2019), pp. 588-597.

Asymptotically, it is also well known that the main condition for consistency (apart from

technical requirements) is that E(xtet) = 0, i.e., errors contemporaneously uncorrelated with

the regressors. Regressors that are not pre-determined nor strictly exogenous are permitted

provided the errors are i:i:d:. Things are very di¤erent if the errors are serially correlated.

We argue that for OLS to be consistent, the errors need to be exogenous. On the other

hand, Generalized Least-Squares (GLS) is consistent under the sole requirement of having

predetermined regressors; exogeneity is not needed.

Remark 1. The terminology used di¤er in the literature. What we label as pre-determined
is sometimes referred to as exogenous, and what we refer to as exogenous is labeled as strictly

exogenous; e.g., Stock and Watson (2019), p. 573. We shall continue with our terminology.

2.2 Conditions for the Consistency of OLS

Turning to the case with ut serially correlated, it is well known that the main condition

(again apart from technical issues) for the consistency of the OLS estimate is that

E(xtut) = 0: (5)

This condition is usually seen as unproblematic apart from obvious cases of omitted variables

in ut correlated with some regressor, or the presence of lagged dependent variables. The

only problem is then that the limit variance is di¤erent from that obtained assuming i:i:d:

errors and calls for the use of the so-called heteroskedasticity and autocorrelation consistent

covariance matrix estimates, HAC estimates for short.

Proposition 1. OLS is inconsistent with non exogenous regressors, i.e., when E [etjxt+j] 6=
0, for all least one j with cj 6= 0 (j = 1; :::; T � t).
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Proof : The proof is trivial upon substitution of (2) in (5), so that E(xt
Pt

j=0 cjet�j) = 0

is required. In general, this implies the requirement E(xtet�j) = 0 or E(etxt+j) = 0, which

is unlikely to be satis�ed given (4). What is required for OLS to be consistent is that the

regressors be exogenous, since we already assume pre-determined regressors.�
Of course, one can �nd knife-edge examples for which OLS is consistent even if serial

correlation is present. For example, xt is correlated with et�2 but ut = et + c1et�1 + c3et�3.

Such cases are, however, unlikely to hold in practice. See also Remark 3 below.

Another way of assessing this result is to argue that a regression with serially correlated

errors is dynamically misspeci�ed. Consider an AR(1) model of the form ut = �ut�1 + et.

Then, E [utjxt] = 0 implies that xt is strictly exogenous with respect to et since E [utjxt] =
�E(ut�1jxt) + E(etjxt) = 0 if E(ut�1jxt) = 0 or equivalently E(et�jjxt) = 0, in general. In
other words, E(ytjxt) = x0t� only if xt is exogenous.

Remark 2. It can be argued that the conditions for exogeneity and pre-determinedness
should be analyzed via the relationship between the regressors xt and the errors ut. Then,

a traditional statement is the following: a) xt is exogenous if E(utjx1; :::; xT ) = 0, and pre-
determined when E(utjx1; :::; xt) = 0. b) OLS is consistent if

E(utxt) = 0: (6)

See Stock and Watson (2019), p. 575. Note that if ut is serially correlated, it must

depend on at least some past values of ut. Let the autoregressive representation of ut
be ut =

P1
j=1 �jut�j + et, then the condition E(utxt) = 0 for consistency requires that

E[xt(
P1

j=1 �jut�j + et)] = 0, which holds with exogenous regressors, i.e., when

E(utjxt+1; :::; xT ) = 0; (7)

Hence, arguing that E(utxt) = 0 holds requires exogenous regressors when speci�ed by (7).

Remark 3. There is one non-trivial exception for which OLS remains valid when the errors
are serially correlated and the regressors are not exogenous. This pertains to multi-steps

ahead predictive regressions as examined, for instance, in the in�uential work of Hansen and

Hodrick (1980). In their framework, it is supposed that E(yt+kj�t) = x0t�, where �t is the
information set available at time t. Then,

yt+k = x
0
t� + ut+k (8)

with ut+k = yt+k�E(yt+kj�t) so that the errors terms are forecast errors from using the best
predictor based on xt. It can be shown that ut+k is an MA(k � 1) process. Since xt � �t,
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E(xtut+k) = 0 and OLS is consistent. When using all observations from t = 1; :::; T � k,
estimating (8) by OLS involves overlapping observations. Following our notation, we can

write (8) as yt = x0t�k� + ut, where ut =
Pk�1

j=0 cjet�j. OLS is then consistent only requiring

pre-determined regressors so that E[xt�k
Pk�1

j=0 cjet�j] = 0. Hence, such cases involve no

issue related to exogenous regressors and the fact that the regressors are pre-determined is a

result of the rational expectations hypothesis. This is a knife-edge case where the structure

of the model imposes some strict conditions. Still, as discussed in Remark 5 below, GLS

remains consistent with non-exogenous regressors.

To summarize, the purpose of this section is to clarify the conditions under which OLS

is consistent. Nothing new is o¤ered. The main condition still remains E(xtut) = 0. One

often read that GLS should not be applied because it requires exogenous regressors (more on

that in the next section). Since OLS is routinely applied, some researchers may think that

issues of exogeneity are irrelevant for the consistency of OLS and only argue that it is enough

to ensure that the regressors and the shocks (the et) are contemporaneously uncorrelated.

Stating the condition as E(xt
Pt

j=0 cjet�j) = 0 (for the linear processes considered) makes it

clear that exogeneity of the regressors with respect to all past errors is needed. Stating that

E(xtut) = 0 and E(utjxt+1; :::; xT ) 6= 0 are in general incompatible unless one deals with

predictive regressions discussed in Remark 3, for which issues of exogeneity are irrelevant.

2.3 Conditions for the Consistency of GLS

Since ut is assumed stationary, let V (u) = 
, a symmetric, non-singular, and positive de�nite

matrix. Then, there exists a non-singular matrix D such that D0D = 
�1. Note that D can

be selected to be lower triangular. For instance, the Cholesky decomposition gives 
 = LL0

with L lower triangular. We can set D = L�1, which will be lower triangular. Then, the

GLS estimate is given by �̂GLS = (X
0
�1X)

�1
X 0
�1y and, using (1),

�̂GLS � � =
�
X 0
�1X

��1
X 0
�1u = (X 0D0DX)

�1
X 0D0Du:

The main condition for consistency is that

p limT!1 T
�1X 0
�1u = p limT!1 T

�1X 0D0Du = 0: (9)

It is also assumed throughout this section that the correct structure of the errors is used,

i.e., the true covariance matrix 
 is used. Hence, when referring to GLS, we only consider

infeasible GLS correctly speci�ed for now. In later sections, we discuss how to construct

feasible GLS estimate that have the same limit distribution as the infeasible one.
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Proposition 2. With pre-determined regressors, exogenous or not, GLS is consistent.

Proof : Note that Du has mean zero and varianceD
D0 = I sinceD0D
D0 = 
�1
D0 = D0

and using the fact that D is non-singular. Hence, we can write Du = e, a vector of primitive

i:i:d: errors with unit variance, given the scaling. Since D is lower triangular, the elements

of DX are of the form
Pt

j=1 dtjx
0
j, which for row t involves only current and past x�s. Hence,

E[X 0D0Du] = E[
PT

t=1(
Pt

j=1 dtjx
0
j)
0et]; (10)

which is zero requiring only pre-determined regressors. Therefore, GLS is consistent without

the need for exogenous regressors. Note that this result does not rely on errors having a

linear structure, though it requires a stationarity assumption. �
Consider AR(1) errors, ut = �ut�1 + et. Ignoring the �rst observation for simplicity,

D =

26666664
1 0 0

�� 1
. . .

0 �� 1

37777775 (11)

and

p limT!1 T
�1X 0D0Du = p limT!1 T

�1PT
t=2(xt � �xt�1)(ut � �ut�1):

For this quantity to converge to zero, the conditions often advanced for (9) to hold are

E(xtut) = E(xtut�1) = E(xt�1ut) = 0. It is then generally believed that the condition

E(xtut�1) = 0 is problematic following (4); see Stock and Watson (2019), pp. 584-585, who

use this reasoning to argue that GLS and FGLS require exogenous regressors and, hence,

have limited appeal in practice. But this overlooks the fact that ut is a composite of the

fundamental sources of variations, namely et, and ignores the structure of the model. Also,

assessing exogeneity conditions based on the relation between xt and ut is not appropriate.

Since the GLS regression is y� = X�� + e, where y� = Dy and X� = DX, issues related to

the exogeneity of the regressors need to be analyzed via the relation of X� to e and not of

X to u. There are no more u�s in the model. Indeed, we can write (9) as

T�1 (DX)0 (Du) = T�1
PT

t=2 (xt � �xt�1) et: (12)

Thus, for consistency, we need E (xt � �xt�1) et = 0, or E(xtet) = E(xt�1et) = 0, for all

t, which is satis�ed as long as the regressors are predetermined. There is no need to as-

sume exogenous regressors. Then under the condition of predetermined regressors, one can
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consistently estimate � using the quasi-di¤erence regression

(yt � �yt�1) = (xt � �xt�1)0� + et; (t = 2; :::; T ): (13)

Remark 4. It is useful to expand on the condition (12). Suppose we apply GLS with some
arbitrary value j��j < 1. Then, with D� as de�ned by (11) with �� instead of �,

T�1 (D�X)0 (D�u) = T�1
PT

t=2 (xt � ��xt�1) (ut � ��ut�1)
= T�1

PT
t=2 (xt � ��xt�1) (et � (�� ��)ut�1)

= T�1
PT

t=2 (xt � ��xt�1) (et � (�� ��)(et�1 + �ut�2)):

Therefore, assuming pre-determined regressors, i.e., E(xtet) = E(xt�1et) = 0, for all t, what

is needed for consistency is either a) exogenous regressors so that E(xtet�1) = E(xtet�2) =

E(xt�1et�2) = 0, irrespective of the value of � and ��; or b) non-exogenous regressors and

� = ��. Accordingly, if the regressors are exogenous, GLS is consistent using any value of

��, including 0, so that OLS is consistent, a well-known result, see above. On the other

hand, with non-exogenous regressors, we need � = �� for consistency, i.e., the correct value

of the parameter of the serial correlation in ut. Of importance is the fact that when � 6= 0,
the value �� = 0 is not permitted, showing that OLS is indeed inconsistent as claimed above

using other arguments. This result can be extended to more general cases.

An important corollary of the proof of Proposition 2 is the following.

Corollary 1. Unlike OLS, GLS is consistent with lagged dependent variables as regressors.

The result follows given that (10) remains 0 when xt includes lagged dependent variables

given E[yt�jet] = 0 (j � 1). Since in the original model estimated by OLS, a lagged

dependent variable is not pre-determined with respect to ut OLS is inconsistent. The GLS

transformation can be viewed as a way to obtain a regression with pre-determined regressors

with respect to the relevant errors, namely et.

Remark 5. Contrary to the claim made by Hansen and Hodrick (1980), GLS is consistent

with predictive regressions of the type discussed in Remark 3. This follows trivially since (10)

is satis�ed if the regressors only include lagged values at delay k, i.e., the GLS regression

still only involves predetermined regressors with respect to the errors et. We show in the

Supplement, Section S.2, that even for this case GLS performs much better.
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3 The Robustness of GLS

It is often argued that GLS may be less robust than OLS because a wrong choice of the

speci�cation of the process generating the dynamics may lead GLS to have worse properties

than OLS, e.g., higher MSE. We show that this is incorrect. In fact GLS is much more robust

than generally believed. To have meaningful comparisons, we assume exogenous regressors

so that both OLS and GLS are consistent. Note �rst that GLS is consistent even when using

a misspeci�ed model when the errors are exogenous. Suppose you assume that V (u) = 
�
while the correct speci�cation is V (u) = 
. Let 
�1� = D0

�D� and 
�1 = D0D. Then,

T�1X 0
�1� u = T
�1X 0
�1� D

�1e = T�1(HX)0e
p! 0;

since HX with H = X 0
�1� D
�1 is simply a linear combination of all the regressors, which

are uncorrelated with the errors at all leads and lags (and current value). We shall show

that when adopting a simple AR(1) speci�cation, it is possible to obtain GLS estimates that

performs no worse than OLS, and most often much better, irrespective of the true data-

generating process for the errors, as long as it is stationary. For reasons that will become

clear, we apply an AR(1) GLS with some known value �, i.e., OLS applied to the regression

(13). We ignore the initial condition for simplicity. We investigate the relative MSE of OLS

and GLS. We have the following result proved in the Supplement.

Theorem 1. Let ut be a stationary process with �nite mean and variance. Let �̂GLS be the
estimate constructed applying OLS to the regression (13) for a given value �. Also let xt be

a scalar such that p limT!1 T
�1PT�j

t=1 xtxt+j = Rx(j), corx(j) = Rx(j)=Rx(1), with similar

de�nitions for coru(j). Also, hxu(0) is the spectral density function at frequency zero of xtut,eRxu(1) = R �
�� cos(�)hx(�)hu(�)d�, and

eRxu(2) = R �
�� cos(2�)hx(�)hu(�)d� with hx(�) and

hu(�), the spectral density function of xt and ut, respectively. Then,

limT!1(MSE(�̂GLS)=MSE(�̂OLS)) < 1

if

�2 � 2�(1 + �2) eRxu(1)=hxu(0) + �2 eRxu(2)=hxu(0) < 2�2 corx(1)2 � 2�(1 + �2) corx(1):
The result in the previous Theorem is useful but opaque as far as obtaining useful insights

given the level of generality. The following corollary considers the case with i:i:d: regressors.

While still restrictive, the results allow important insights.
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Corollary 2. Under the same conditions, as in Theorem 1, except that xt � i:i:d:(0; �2x).

limT!1(MSE(�̂GLS)=MSE(�̂OLS)) < 1 if

�=(2(1 + �2))(1 + coru(2)) < coru(1) when � > 0;

�=(2(1 + �2))(1 + coru(2)) > coru(1) when � < 0:

A necessary condition for such inequalities to hold is that � coru(1) > 0. To explore the

intuitive content, suppose that ut is an AR(1) process with parameter �u and � > 0. Then,

limT!1(MSE(�̂GLS)=MSE(�̂OLS)) < 1 () �(1 + �2u)� 2�u(1 + �2) < 0:

If � = �u, the condition is trivially satis�ed, as expected. Moreover, it is satis�ed unless

�u < 0:27, in which case we need 0 < � < 2�u. As will transpire from the simulations

results, � coru(1) > 0 is nearly also a su¢ cient condition unless coru(1) is small. This is

quite a strong result. It says that applying GLS with an AR(1) speci�cation will lead to an

estimate with lower MSE than OLS for a wide range of data-generating processes for ut by

simply quasi-di¤erencing the data with a parameter � that has the same sign as coru(1), the

�rst-order correlation coe¢ cient of ut. If coru(1) = 0, OLS performs better. This can occur

with serial correlation implying coru(1) = 0 and coru(j) 6= 0 for some j > 1. An example
is an MA(2) process of the form ut = et + �2et�2. We view such cases as knife-edge ones.

When coru(1) is small, the same results holds for a range given by 0 < � < 2�u.

A simple GLS with an AR(1) speci�cation will beat OLS for a wide range of quasi-

di¤erence parameters whatever the true DGP for ut. So not only can we misspecify the

nature of the serial correlation but also allow a wide range of values for the quasi-di¤erence

parameter, and still have GLS perform better than OLS. Of course, we are not saying that

adopting a simple AR(1) with a value of � having the same sign as coru(1) is the best. For

that, we need a FGLS procedure that yields an estimate asymptotically equivalent to GLS

with the correct speci�cation for ut. We will cover in Section 5, a method to achieve this

goal. We could extend the results to have alternative GLS procedures, e.g., some AR(k). The

results would be much more complex, though qualitatively similar. Hence, such extensions

would add little to the main message, namely the robustness of GLS.

We illustrate these issues using simulations. We consider the following DGP:

yt = �+ �xt + ut;

where xt � i:i:d: (0; 1). We set (�; �) = (0; 1), without loss of generality. The sample

size is T = 200. For the errors ut, we consider the following speci�cations: 1) AR(1):
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ut = �uut�1 + et; �u = f�0:5; 0:0; 0:2; 0:5; 0:8g; 2) AR(2): ut = �u1ut�1 + �u2ut�2 + et;

(�u1; �u2) = f(1:34;�0:42); (0:5;�0:3); (�0:5; 0:3); (0:0; 0:3); (0:5; 0:3)g; 3) MA(1): ut =
et + �et�1; � = f�0:7;�0:4; 0:5g; 4) ARMA(1; 1): ut = �uut�1 + et + �et�1; (�u; �) =

f(�0:5;�0:4); (0:2;�0:4); (0:2; 0:5); (0:5;�0:4); (0:5; 0:5); (0:8;�0:4); (0:8; 0:5)g. Through-

out, et � i:i:d: N(0; �2e) independent of xj for all t and j so that the regressors are exogenous,
otherwise OLS would be inconsistent and the comparisons meaningless. We set �2x = �

2
e = 1.

For all cases, we consider a range of values for the parameters. These are chosen mostly arbi-

trarily, except for the �rst pair of the AR(2) case, which are typical estimates for detrended

U.S. real GDP; e.g., Blanchard (1981). In all cases, we adopt an AR(1) speci�cation with

di¤erent values of the quasi-di¤erencing parameter �. The results are presented in Table

1. The �rst column reports the value of coru(1) and the main entries are the MSE of GLS

relative to the MSE of OLS for various value of � in the range (�0:9; 0:9). We shall discuss
the purpose of the values reported in the last column later.

It is most instructive to start with the AR(1) case. When �u = 0, as expected OLS is best

and GLS has higher MSE. When �u = �0:5, GLS has lower MSE for all negative values of
� and, vice versa, when �u = 0:5; 0:8, GLS has lower MSE for all positive values of �. When

�u = 0:2, a small value, things are more complex. Here, GLS is best when � 2 (0:1; 0:4)
but marginally worse than OLS when � 2 (0:5; 0:9) (and, of course also worse when � is
negative). These results are what one would expect from Theorem 1, in particular the fact

that when �u < 0:5 GLS is better when 0 < � < 2�u. The results for the other cases are

qualitatively similar and in accordance with the theory. When coru(1) is �large�, GLS has

smaller MSE than OLS when the sign of the quasi-di¤erence parameter is the same as the

sign of coru(1). If coru(1) is �small�GLS is better when � is in the vicinity of coru(1). Of

special interest is the AR(2) case with (�u1; �u2) = (1:34;�0:42), which is roughly typical of
many macroeconomic time series given the strong serial correlation. In this case, the gains in

MSE reduction over OLS are of the order of 95% when � 2 (0:6; 0:9). These are substantial
gains, which can be obtained by merely using an incorrect AR(1) process with a wide range

of values of �. This illustrates strong robustness to using GLS.

The theoretical and simulation results suggest a very simple procedure to obtain a GLS

estimate that is (almost) never worse than OLS, subject to very minor random deviations.

First use a test for serial correlation at delay one; we use the LM test of Godfrey (1978). If

the test does not reject the null hypothesis of no serial correlation, then use OLS. This will

occur when coru(1) is �small�. If the test rejects, estimate coru(1) via the sample �rst-order

serial correlation of the OLS residuals. If it is positive (negative), use any positive (negative)
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value of the quasi-di¤erencing parameter �. To make clear that any value of � will do, in

the simulations we simply draw � from a Uniform distribution with support (0:1; 0:9) when

positive value are required and with support (�0:1;�0:9) when negative values are in order.
The results for the relative MSE of GLS over that of OLS are reported in the last column

of Table 1 under the heading �hybrid�. They show that this hybrid-GLS procedure yields

more precise estimates for all cases, except for few minor cases due to random variations

when coru(1) is �small�. An exception is when coru(1) = 0 and there is correlation at higher

lags; see the AR(2) case with (�u1; �u2) = (0:0; 0:3). We view this as a knife-edge case.

The Supplement reports corresponding results when xt is an AR(1) process given by

xt = �xxt�1+ vt with vt � i:i:d: N(0; 1), with �x = 0:8. The results are qualitatively similar.

Remark 6. In the hybrid procedure discussed above, we use the OLS residuals to construct
an estimate of coru(1). From the results in Section 2.3, the OLS estimates of the parameters

are inconsistent when the regressors are not exogenous. Here, however, the regressors are

exogenous. When constructing a FGLS estimate, we shall not need this hybrid procedure.

Remark 7. After the �rst draft of this paper was completed, we became aware of the work
by Koreisha and Fang (2001). They present exact bounds for the relative variance of OLS,

GLS and Feasible GLS allowing for misspeci�cation of the process generating the errors when

constructing the FGLS estimate. The results depend on the covariance matrix of the errors,

the exact nature of the GLS structure used and the method to construct the FGLS estimate,

the regressors and the sample size. The bounds are, however, not informative and quite

complex. Accordingly they resort to simulation experiments using approximate autoregressive

processes of order 1, 7 and 14 when T = 200 to construct the FGLS estimate. In the paper,

they report results for few selected cases, which do not allow addressing several of the issues

discussed above, e.g., the e¤ect of the sign of the quasi-di¤erence parameter, the strength of

the correlation in the errors. They wrongly conclude that GLS (constructed using an AR

misspeci�cation) is always better than OLS. As shown above this is not the case.

We discussed the robustness of GLS, i.e., in most cases, GLS has smaller MSE than OLS

even if we misspecify the dynamics of the errors or, when correctly speci�ed, we use the

wrong quasi-di¤erencing parameter. Of course, this does not lead to the best outcome as

GLS is optimal only when the correct speci�cation is used. Hence, in order to have estimates

as good as possible (lowest MSE), we need to obtain a parameterization of the DGP for the

errors that is a good approximation to the true one without any prior knowledge about

the true structure. This leads to consider Feasible GLS (FGLS), which we tackle in the
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next section. Still, the results of this section are important in that they suggest that some

departures from the true speci�cation due to misspeci�cation or biased parameter estimates

will not make FGLS being less precise than OLS.

4 Issues Related to Constructing a Feasible GLS Estimate

We consider �rst the case with AR(1) residuals to present the main issues of interest. The

model with non-exogenous regressors is

yt = �xt + ut; ut = �ut�1 + et; (14)

with xt = (1; wt)
0 with wt = vt + et�1, vt; et � i:i:d:N(0; 1) independent of each other.

In practice, one needs a feasible version of the GLS estimate. Here, the Cochrane and

Orcutt (1949) procedure will not work since it estimates � using the OLS residuals, i.e.,

�̂CO =
PT

t=2 ût�1ût=
PT

t=2 û
2
t�1, where ût = yt � x0t�̂OLS. Without exogenous regressors,

�̂OLS is inconsistent and so will �̂
CO. A method valid without exogenous regressors is to �rst

estimate � using Durbin�s regression (Durbin (1970)), which simply re-writes (13) as

yt = �yt�1 + x
0
t� � �x0t�1� + et: (15)

Then, a consistent estimate of �, say �̂D, can be obtained estimating (15) by OLS and using

the estimate on the lagged dependent variable. One can then construct a feasible version of

the quasi-di¤erence regression (13) using

(yt � �̂Dyt�1) = (xt � �̂Dxt�1)0� + et; (t = 2; :::; T ); (16)

to estimate �. The estimates of � and � will be consistent with regressors exogenous or not as

long as they are pre-determined. Alternatively, one can simply estimate � using OLS applied

directly to the Durbin regression (15), though this is less e¢ cient since relevant constraints

are not imposed. Of course, one can iterate starting with any consistent estimate, though

we do not pursue this avenue.

It is useful to illustrate the issues via simple simulation experiments. The speci�cations

are the same as (14) for the AR(1) case and is yt = x0t� + ut, where xt = (1; wt)
0 with

wt = vt + et�1, and ut = �ut�1 + et is an AR(1) process; vt; et � i:i:d:N(0; 1) independent

of each other. We set u0 = 0, without loss of generality, � = (1; 1)0, � = 0:8 and T = 500.

The simulations are based on 10,000 replications. Note that E (etxt+1) 6= 0, so that the

regressors are not exogenous. Accordingly, E(xtut) 6= 0 and OLS is inconsistent. Note that
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E (etxt) = 0 so that no �classical� endogeneity problem is present and GLS is consistent.

We consider the following regressions, where � = ��:

yt = x
0
t� + ut (OLS)

yt = x
0
t� + �yt�1 + x

0
t�1� + eut (Durbin)

yt � �yt�1 = (xt � �xt�1)0 � + et (GLS)

yt � �̂yt�1 = (xt � �̂xt�1)0 � + et (FGLS)

The �rst is simply OLS; the second is the Durbin regression from which consistent estimates

of � and � can be obtained. The third is the infeasible GLS based on the known value of �

(to be used as a benchmark). The fourth is a feasible GLS regression for which we shall use

two estimates of �: a) that used in the Cochrane and Orcutt procedure based on

�̂ =
PT

t=2 ût�1ût=
PT

t=2 û
2
t ; (17)

where ût = yt � x0t�̂OLS. As argued above, this should lead to an inconsistent estimate
of �. This method is labelled CO-FGLS. b) The estimate of � obtained from the Durbin

regression, with the method labelled as FGLS. The results are presented in Table 2.

Obviously, the bias and MSE of OLS is very large, in accordance with the fact that it is

inconsistent. The Durbin and FGLS methods lead to very small biases, in accordance with

the fact that they yield consistent estimates. The FGLS has better �nite sample properties

and performs nearly as well as the infeasible GLS method. The CO-FGLS method has

surprisingly small bias (and MSE) despite being inconsistent. This can be explained as

follows. The estimate of � given by (17) has a substantial bias so that the mean of the

estimate of � is 0.63 instead of 0.8. As argued in Section 3, it is better to do any kind of GLS

method instead of OLS. Here, the quasi-di¤erencing operation is biased but still e¤ective in

substantially reducing the bias in the estimate of �, though not as well as when using a less

biased and consistent estimate as provided by that obtained from the Durbin regression and

used in the FGLS method. Using simulations with T = 10; 000, we veri�ed that the bias

and MSE of OLS and CO-FGLS remains the same, while those for Durbin, GLS and FGLS

are nearly zero. The FGLS estimate of � is, however, more e¢ cient than that obtained from

the Durbin regression with a MSE 31% smaller in the simulations. FGLS also remains more

e¢ cient in large samples since the Durbin regression does not impose relevant restrictions;

see Remark 9 for more details. Hence, we shall only consider the FGLS method. Results

for cases involving a moving-average component are presented in Section 6 once a method

to select the truncation parameter kT is discussed, as we do next.
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Consider now the case with MA(1) errors with ut = et + �et�1. Again, the regressors

are not exogenous and E(xtut) = E(xt(et + �et�1)) 6= 0, so that OLS is inconsistent. While
the T � T covariance matrix of u = (u1; :::; uT ) is a simple tri-diagonal matrix, the exact

closed form expression for either 
�1 or D is very complex. However, if � is known, it can

still be computed numerically so that one can construct the infeasible GLS estimate. An

approximate GLS procedure (or approximate MLE) that yields basically equivalent results

is to use a matrix D� such that the rows of D�u are given by
Pt�1

j=0(��)jut�j, for t = 1; :::; T .
This is equivalent to using the fact that ut = C(L)et with C(L) = (1 + �L) and assuming

that j�j < 1 so that that the moving average polynomial is invertible, and we have et =P1
j=0(��)jut�j. Applying this transformation to (14),P1

j=0(��)jyt�j = (
P1

j=0(��)jxt�j)0� + et.

Hence, the model now only involves the error term et which is uncorrelated with past and

current regressors, assuming pre-determined regressors. The next step is to realize that for

any reasonable value of �, (��)j decreases to zero very rapidly as j increases. For instance
if � = 0:5 and j = 10, it is less than 0.001. Hence, one can use a regression involving some

kT lags, for kT su¢ ciently large, such thatPkT
j=0(��)jyt�j = (

PkT
j=0(��)jxt�j)0� + ekt, (18)

and treat ekt as nearly white noise. Equation (18) is then the relevant GLS regression. The

next step is to obtain a consistent estimate of �. Again, one cannot use the OLS estimate of

the residuals ut given the inconsistency. An extended Durbin regression estimated by OLS

yt =
PkT

j=1 �jyt�j +
PkT

j=0 x
0
t�j�j + ekt;

yields estimates �̂Dj (nearly) consistent for (��)j. One then uses the feasible GLS regressionPkT
j=0 �̂

D
j yt�j = (

PkT
j=0 �̂

D
j xt�j)

0� + ekt.

Since the current and lagged regressors are (approximately) uncorrelated with ekt, the GLS

estimate of � will be (nearly) consistent. Everything involving the quali�cation �nearly�can

be eliminated by letting kT increase to in�nity. Then, the Feasible GLS estimate is asymptot-

ically equivalent to the infeasible GLS. Hence, GLS and its feasible counterpart transforms

an OLS problem requiring exogenous regressors to one only requiring pre-determined regres-

sors. The same arguments apply to any invertible short-memory linear process for the errors

ut. What is required is simply a method to select kT that increases to in�nity for general

linear process involving moving average components. This is discussed in Section 5.
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Remark 8. Amemiya (1973) analyzed feasible GLS when the errors ut are an ARMA(p; q)
process approximated by an AR(kT ) with kT increasing with T . He uses the OLS residuals

and assumes �non-stochastic�regressors. Our results show that his proposed method is valid

only under the assumption of exogenous regressors. Still, our approach is closely related.

5 FGLS for the general case

We now turn to the main feasible method recommended for all cases, except when lagged

dependent variables are included as regressors, which we discuss later. To deal with general

linear processes of the form (2), one can approximate it by some autoregression whose order

increases with T , i.e., approximate ut by ut =
PkT

j=1 �jut�j + ekt, with kT ! 1 at some

appropriate rate so that ekt is nearly white noise. Then (15) and (16) are replaced by

yt =
PkT

j=1 �jyt�j + x
0
t� �

PkT
j=1 x

0
t�j�j + ekt; (19)

(yt �
PkT

j=1 �̂
D
j yt�j) = (xt �

PkT
j=1 �̂

D
j xt�j)

0� + ekt; (t = 2; :::; T ); (20)

where �̂Dj (j = 1; :::; kT ) are the OLS estimates of the coe¢ cients associated with the lagged

dependent variables from regression (19). We assume no lagged dependent variables as

regressors so that the parameters �j (j = 1; :::; kT ) are well-identi�ed. Of course, one can

iterate starting with any consistent estimate. However, as our simulations will show the

estimates have very good properties so that iterations are not warranted. The FGLS estimate

can then be computed in two steps: 1) For any given kT , estimate (19) by OLS and use BIC

to select the lag length k�T . The search is made for kT 2 [0; kmaxT ] and the method suggested

by Ng and Perron (2005) is used to ensure a proper comparison across models with di¤erent

values of kT , i.e., using the same e¤ective number of observations. kmaxT increases with

T , but in practice the method is robust to reasonable values. We use kmaxT = 12 when

T = 200; 500. 2) From step 1, use the estimates �̂Dj (j = 1; :::; k�T ) to construct the quasi-

di¤erenced variables (yt �
PkT

j=1 �̂
D
j yt�j) and (xt �

PkT
j=1 �̂

D
j xt�j). The FGLS estimate of �

is then obtained applying OLS to the regression (20) with kT = k�T .

The FGLS estimate will have the same asymptotic properties as the infeasible GLS

estimate. The arguments are as follows. If the process is an AR(p), BIC will select a value k�T
that converges in probability to p. The estimates �̂Dj are consistent for �j (j = 1; :::; k

�
T ). For

general linear short-memory processes k�T = Op(ln(T )), which increases to in�nity. Hence,

jj�̂Dj ��jjj = Op(T�1=2), where jj � jj is the Euclidean norm of the vector. This holds following
Berk (1974) under the same conditions, basically that kT ! 1 and k3T=T ! 0. Since
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these rates allow a log rate of increase for kT , the same result holds when selecting kT
using BIC, which implies a log rate of increase as shown in Hannan and Deistler (2012).

Given the consistency and rate of convergence of �̂Dj , it is then relatively easy to show the

equivalence between FGLS and the infeasible GLS. Since the technical arguments involve

only modi�cations of already established results, we omit the details. Given this consistency

result, the asymptotic distribution of the FGLS is the same as that of the infeasible GLS.

The estimation of the parameters �̂Dj has no �rst-order e¤ect.

The main idea is to have some transformations to make the regression residuals as close

as possible to the contemporaneous true errors and then have this regression involve only

past regressors so that only pre-determined regressors are required. Asymptotically, it works.

It is a standard approach in the time series literature. Of course, in �nite samples, some

leftover correlation might be present. Then, it is an issue about whether the asymptotic

approximation and the choice of the tuning parameters kT provide good approximations in

�nite sample. In Section 6, we provide extensive simulations to show that a) the mean,

variance and MSE are close to that which could be obtained using the infeasible GLS pro-

cedure; b) the coverage rates of the con�dence intervals are near the nominal level, i.e., the

asymptotic distribution is a good approximation; c) the length of the con�dence intervals

are shorter (higher precision) compared to other methods.

Remark 9. In order to improve upon OLS, Baillie et al. (2022) proposed using the regression
(19). They claim correctly that the estimate of � is consistent whether the regressors are

exogenous or not. However, this leads to a less e¢ cient estimates compared to FGLS, which

can be substantial even though it remains more e¢ cient than OLS. Interestingly, Durbin

(1960) showed that if the restrictions are imposed one ends up with the GLS estimate. Baillie

et al. (2022) presumably adopt the regression (19) since they incorrectly continue to argue

that, with non-exogenous regressors, GLS is inconsistent while OLS is consistent. Additional

simulation experiments showed our FGLS procedure to be more e¢ cient. Hence, we shall

not further consider methods to estimate � based on (19). As discussed below, it o¤ers no

additional advantage in extended contexts such as regressors with lagged dependent variables

and non-predetermined regressors.

5.1 The case with lagged dependent variables as regressors

As stated in Corollary 1, infeasible GLS is consistent even when the regressors include lagged

dependent variables. However, the implementation of a feasible GLS procedure is not as

straightforward. Some alternative method to get consistent estimate of the parameters �j
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(j = 1; :::; k�T ) is needed. Consider the model

yt =
Ppy

j=1 �jyt�j +
Pk

j=1 �jxtj + ut;

where ut = C(L)et is again a linear stationary short-memory process described by (2), xjt
(j = 1; :::; k) are pre-determined regressors. When constructing the Durbin regression, one

pre-multiply both sides by (1 �
PkT

i=1 �jL
i) for some kT selected via the BIC information

criterion. Assuming kT = py for simplicity, this leads to the regression

yt =
Ppy

j=1 �
�
jyt�j +

Pk
j=1(�jxjt �

PkT
i=1 �jixjt�i) + ekt; (21)

where ��j = �j + �j and �ji = �ji�j. Accordingly, the parameters �j cannot be identi�ed

using the coe¢ cient on the lagged dependent variable ��j since �j is unknown. However,

as suggested by Wallis (1967), one can obtain consistent estimates using the fact that �j =

�ji=�ji. Hence, one simply estimate the regression model (21) by OLS, get estimates �̂j and

�̂ji and construct the estimates �̂
D
j . One can then proceed to construct the FGLS estimates

as described in Step 2 above. The only drawback is that if the number of regressors xjt is

greater than one, there are multiple choices for each value of i. In principle, choosing anyone

will lead to a consistent estimate in well speci�ed models. Simulations reported in González-

Coya et al. (2023) show that the results are not sensitive to the choice of the variable used.

This can be partly explained by the fact that GLS is quite robust to small variations in the

quasi-di¤erencing parameters �j as documented in Section 3. What is of importance is to

make the residuals ekt in the GLS regression (20) close to white noise.

Remark 10. In the case of predictive regressions assuming rational expectations, only lagged
dependent variables may be included as regressors, in which case the procedure described above

is not applicable. These take the form yt+k = �0 +
Pm

j=1 �jyt�j + ut+k, where m < k. For

instance, in Hansen and Hodrick (1980), k = 13 and m = 2 with yt+k = st+k � ft, where
st+k is the (log) spot exchange rate at time t+ k and ft the (log) k-period forward exchange

rate at time t. Under rational expectations, all coe¢ cients should be 0. As discussed in

Remarks 3 and 5 as well as Corollary 1, both OLS and GLS are consistent since past forecast

errors are uncorrelated with ut+k, even if the latter have an MA(12) structure given the

assumption of rational expectations. The issue is how to construct FGLS estimates. If k

is large enough, the main procedure discussed in Section 5 proceeds as stated since in most

cases BIC will select few lags in the Durbin regression (19) and there will be no overlap

between the lagged dependent variables used to correct for serial correlation and those used
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as predictors. However, if k is small, there will likely be overlap and the estimates of �̂Dj
will be contaminated for some j. To alleviate this problem, one can construct estimates of �j
using the OLS residuals, say eut, given that OLS is consistent. Let the �tted value obtained for
an OLS regression of eut on kT lags be eut =Pkt

j=1 �̂
O
j eut�j + eetk. Then, one can obtain FGLS

estimates using �̂Oj instead of �̂
D
j in (20). If rational expectations does not hold so that the

errors are, say, an AR(p) process (e.g., adaptive expectations), then our FGLS procedure will

still be valid provided k is large. Otherwise, both OLS and FGLS are inconsistent, though

infeasible GLS remains consistent. One then needs to resort to an instrumental variable

procedure, which can perform better than OLS; see González-Coya et al. (2023).

5.2 Issues related to pre-determined regressors

As a result of Proposition 2, the crucial condition for GLS to be consistent is that the regres-

sors be pre-determined, i.e., uncorrelated with current and future errors. This is certainly

less contentious than the exogeneity assumption that requires the regressors to be uncorre-

lated with past errors. It also holds in well speci�ed models since by the Wold decomposition

Theorem, the errors et are forecast errors from best predictors given past information. Nev-

ertheless, it is still possible to concoct a model, which implies that OLS is consistent while

GLS is not because the regressors are not pre-determined. Take the following example:

yt = �+ �xt + ut; t = 1; : : : ; T; (22)

with

xt = vt + �t; ut = �uut�1 + "
u
t + ��t�1 = �uut�1 + et; (23)

where et = "ut + ��t�1, �t; "
u
t � i:i:d:N(0; 1) are independent of each other. We allow vt to

be serially correlated, with vt = �vvt�1 + "
v
t , where "

v
t � i:i:d:N(0; 1) independent of �t and

"ut . It is then the case that E(xtut) = 0 so that OLS is consistent and when using (22) as

the regression, E(xt�1et) 6= 0, so that GLS is inconsistent. This is indeed the case. Note,

however, that allowing �t to be serially correlated renders OLS inconsistent. This case is

one with an unobserved variable in the errors correlated with only the past regressors. If we

simply change �t�1 in (23) to �t or allow �t to be serially correlated, OLS, GLS, Durbin and

so one are no longer consistent. One needs to resort to some instrumental variable procedure

combined with GLS. This is investigated in Olivari and Perron (2023). What is common

is the case with �t�1 being an observed variable; e.g., the lagged value of some covariate

xt�1. So we are not in the classical situation of an unobservable component that cannot be

20



accounted for. Hence, one can simply introduce xt�1 as a regressor and use the regression

yt = �+ �xt + �xt�1 + u
�
t ; t = 1; : : : ; T: (24)

The error term u�t = �uu
�
t�1+"

u
t is then purged of the component �t�1 and one can apply GLS

provided the lagged values fxt�2; xt�3; :::g are not subject to any other source of correlation
with et independent of �t�1. In other words, all lagged vales of xt�1 can be a function of �t�1
but not correlated with ut via some other independent component. If that would be the case

then, one could simply add a further lagged value xt�2 as a regressor in (24). And so on, if

needed. Hence, with errors a¤ected by omitted unobservable variables, the problem is easy

to �x. Simply include enough lags of the covariates as regressors. This is in fact the reason

why Baillie et al. (2022) advocate using the Durbin regression as a means to have estimates

robust to non-predetermined regressors. They include all lags of both the dependent and

original regressors as covariates. Doing so, they lose considerable e¢ ciency. Our aim is to

suggest a less mechanical approach that improves e¢ ciency. With errors contaminated by

observable variables, our method is valid in all cases with no contemporaneous endogeneity,

i.e., with E(xtet) = 0. The pre-determined assumption is irrelevant.

One can test whether the regressors are pre-determined or not. What causes the corre-

lation between the errors and the regressors is of no consequence. It could be some omitted

lagged variable, some errors in variables correlated with lagged regressors, or whatever. The

fact is the fact that non-determinedness implies correlation between some observed variables

and some residuals means that tests can be performed for its potential presence. What is

needed are estimates of the residuals based on a consistent estimate of � in (22) whether

or not exogeneity or pre-determinedness hold. When the omitted variable is observed, this

can be achieved via the Durbin regression (15). The main idea is very simple and involves

using a standard variable addition test (e.g., Engle (1982)). The steps are the following:

a) Estimate the Durbin regression (19) and get the estimate �̂
D
; b) construct the residuals

ûDt = yt � �̂
D
xt; c) De-mean the residuals to obtain euDt = ûDt � T�1

PT
t=1 û

D
t ; d) Perform

an LM test for variable addition using lagged values of xt. This can be done sequentially

using the �rst, then second, and so on lags. Upon a rejection, include the relevant lagged

variables as regressors in the main equation (22). e) Apply FLGS as outlined above to this

regression. This will lead to a consistent of estimate of � with regressors exogenous or not

and the regression constructed to have them pre-determined. One can also select the lagged

regressors to be included via information criteria, such as the BIC.

When the omitted variable is unobserved, things are more complex. In general, none
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of the procedures discussed here will be consistent except in some special cases such as the

model described in (22). If this type of one-period lag endogeneity is deemed relevant, or

some variations that imply the same qualitative results, then one can use the OLS estimate

to construct the residuals since it is consistent. Measurement errors correlated with past

regressors could be a plausible explanation. Upon a rejection using the variable addition test,

GLS or FGLS should not be applied if such lagged endogeneity issues are a concern. If the

researcher is con�dent that the regressors are exogenous and contemporaneously uncorrelated

with the errors, then OLS is preferred as it is consistent, while GLS is not. Baillie et al.

(2022) can also only handle non-pre-determined regressors if the errors are a function of

past observable variables given that it is a simple application of the Durbin regression. It

cannot handle errors correlated with past regressors via some unobserved variable. Cases

with OLS consistent while GLS is not can be viewed as knife-edge cases in the sense that

minor changes in the speci�cation renders OLS inconsistent; e.g., adding lagged regressors or

having the omitted unobserved variable being serially correlated. Surely other speci�cations

can be found with exogenous regressors and non-pre-determined variables for which OLS is

consistent and GLS is not. Practitioners must be judicious in applying any method.

6 Simulation results

The issues addressed are the following: the bias, variance and MSE of the FGLS estimates

as well as the exact coverage rate and lengths of the con�dence intervals. We also report

similar results for the infeasible GLS procedure that uses the true value of 
 to construct

the estimate �̂GLS = (X
0
�1X)

�1
X 0
�1y, with V ar(�̂GLSjX) = �2 (X 0
�1X)

�1, which is

speci�c to the data-generating process and uses the true values of the parameters. This

is done to assess the extent to which the FGLS procedure is able to provide as precise an

estimate as possible, since the infeasible GLS is the best. For AR(1) processes, we also report

results for the Cochrane and Orcutt (1949) procedure discussed above, labelled CO.

For the FGLS procedure, we considered three methods to select the lag length of the

autoregressive approximation: AIC (Akaike (1973)), BIC (Schwarz (1978)) and the MAIC

suggested by Ng and Perron (2001). It turns out that best results were obtained using the

BIC. Hence, we shall not report those based on the AIC or MAIC.

It is often the case, with rational expectations models, that the theory predictsMA(q�1)
errors whenever forecasts at horizons q are involved. In the simulations, we shall consider

errors generated from MA(1) processes. It is useful to also consider an approximate GLS

procedure for MA(1) errors for the following reasons: a) an autoregressive approximation
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selected using the BIC may yield a rather parsimonious model that fails to capture the

extent of the serial correlation in the errors; b) we may have prior knowledge that the errors

are an MA(1) process. Hence, we also consider the following approximate GLS procedure,

labelled, GMA. It is based on the OLS regression y�t = x
�
t�+ et, where y

�
t =

Pt�1
j=0(��̂)jyt�j,

x�t =
Pt�1

j=0(��̂)jxt�j with �̂ the MLE of � for eut = et+ �̂et�1, where eut = yt � xte� with e�
the OLS estimate from the regression (19) with kT = int[4(T=100)2=9].

To construct the con�dence intervals, we simply use the fact that, for some given lag

length kT , the FGLS estimate is simply OLS obtained from the regression (20), so that an

estimate of (T times) the asymptotic covariance matrix is V ar(�̂FGLS) = �̂2(W 0
kT
WkT )

�1,

where WkT = (w0kT+1 ; :::; w
0
T )
0, wkT+j; = (1; xkT+j;kT ) for j = 1; :::; T � kT , with xtkT =

xt �
PkT

j=1 �̂
D
j xt�j and �̂

2 = (T � kT )�1
PT

t=1 ê
2
tkT
, with êtkT the OLS residuals from esti-

mating regression (20) by OLS. To construct the con�dence interval of the OLS estimate,

we use the so-called HAC standard errors based on the weighting scheme introduced by

Andrews (1991) with automatic bandwidth selection. This leads to the following estimate

of the asymptotic covariance matrix: V ar(�̂OLS) = (T
�1X 0X)

�1
�̂ (T�1X 0X)

�1, where �̂ =

T�1
PT�1

j=�T+1w(j=m)�̂v(j) with �̂v(j) = v̂tv̂
0
t�j for j � 0 and �̂v(j) = T�1

PT
t=�j+1 v̂t+j v̂

0
t

for j < 0, and v̂t = xt(yt � xt�̂OLS). We use the quadratic spectral kernel recommended
by Andrews (1991) for which w(z) = (3=z2) (sin(z)=z � cos(z)), where z = 6�z=5, and

m is the bandwidth parameter constructed using the automatic bandwidth selection using

an AR(1) approximation. The con�dence intervals are constructed in the usual way, via

�̂A;i � z1��=2 � V ar(�̂A)
1=2
ii , where A refers to the estimator (OLS, GLS, FGLS, etc...), i is

the index for the coe¢ cients, z1��=2 is the 1 � �=2 quantile of the N(0; 1) distribution, the
con�dence level of the set. Here, we use � = 0:05 so that two-sided 95% con�dence sets

are evaluated. We �rst present results with exogenous regressors which will allow a proper

comparison since both OLS and FGLS are consistent.

6.1 Simulations with exogenous regressors

The DGPs considered are the same as those in Section 3 with the various AR(1), AR(2),

MA(1) and ARMA(1; 1) models, except that now xt = �xxt�1 + vt + 
et�1 with vt �
i:i:d:N(0; 1) independent of et. When 
 = 0, the regressors are exogenous, a condition

maintained in this section. We consider in the main text results for �x = 0:8. The Supplement

reports corresponding results for �x = 0. Throughout, we use 10,000 replications and the

sample size is T = 200; 500. The results are presented in the �rst horizontal panel of Tables

3-6. We focus our discussion on the MSE and the con�dence intervals.
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The following features are noteworthy: 1) The MSE of the FGLS estimate is never higher

than when using OLS. It can be dramatically lower; e.g., the empirically relevant case of

the AR(2) with parameters 1.34 and -0.42 for which the reduction is 96% when T = 200.

Overall, the reductions can be very substantial. 2) In most cases, the MSE of FGLS are

near those obtained using the infeasible GLS, so the suggested procedure nearly achieves

the best possible outcome. This is even the case for processes having an MA component,

which are notoriously di¢ cult to approximate using low order autoregressions. 3) When the

error process is strongly correlated the reduction in MSE come from both a reduction in bias

and variance. When the extent of the correlation is small, most of the reduction is due to

a decrease in variance. 4) As discussed in Section 3, an AR(2) with parameters (0.0,0.3)

causes problems when applying a �rst-order correction. This is no longer the case selecting

kT using the BIC. 5) For the AR(1) case, using the Cochrane and Orcutt (1949) procedure

(valid here because of exogenous regressors) yields results that are nearly identical to using

the more general method advocated. This shows that FGLS adapts well to the generating

process in that a method tailored to work for an AR(1) does not perform better. 6) For the

MA(1) case, the GMA performs as well as FGLS and the infeasible GLS. In all cases, the

gains are mostly due to a decrease in variance.

The results for the coverage rates of the con�dence intervals with nominal level 95% are

presented in the last two column-panels of Tables 3-6. The following features are noteworthy.

1) In most cases, the exact coverage rates for the FGLS method are within 1% of the

nominal level, hence not statistically di¤erent. This holds even with strong correlation in

the errors unlike the method based on OLS, which is subject to high size distortions as

well documented previously in the literature. The main reason for why the coverage rates

of the FGLS estimates are near the nominal 95% level is because it involves residuals that

are nearly i:i:d:, in which case the Central Limit Theorem (CLT) is a good approximation

even for small samples. The OLS method involves the product xtut which can be strongly

correlated, in which case a much large sample is needed for the CLT to provide a good

approximation. 2) The length of the con�dence set using FGLS is always shorter than that

obtained with OLS. The di¤erences are larger as the process is more strongly correlated.

For instance, in the case of the AR(2) with parameters 1.34 and -0.42, the length of the

con�dence interval with FGLS is 77% smaller. The results with i:i:d: regressors (�x = 0) are

presented in the Supplement. The same qualitative results hold. The only di¤erence is that

the coverage rates of the con�dence intervals for OLS are close to the nominal level 95% in

all cases (similar to FGLS) given that xtut is less correlated.
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Overall, the simulations show that the suggested FGLS procedure with BIC to select the

lag length can do no worse than OLS even with near zero correlation. It yields estimates

with much higher precision (lower MSE). The extent of the decrease in MSE gets larger as

the strength of the serial correlation increases. This is achieved with no cost to the coverage

rates of the con�dence intervals and a substantial reduction in their lengths.

Remark 11. As discussed in Remarks 3 and 5, in the case of predictive regressions assuming
rational expectations and estimated using overlapping observations, both OLS and GLS are

consistent. Results of a small simulation experiment reported in the Supplement show that,

with exogenous or non-exogenous regressors, FGLS is by far superior to OLS in terms of MSE

and length of the coverage rates, with results similar to the case with exogenous regressors.

6.2 Simulations with non-exogenous regressors

The speci�cations are the same as in the previous section, except that now 
 6= 0. Ac-

cordingly, xt is not an exogenous regressor, it is simply pre-determined. We consider two

values of the parameter that induces non-exogeneity (correlation between future regressors

and current errors), namely 
 = 0:25 (weak correlation) and 
 = 0:50 (strong correlation).

The results are presented in the second and third horizontal panels of Tables 3-6. Note that

the condition E(xtut�1) = 0 usually used to justify the consistency of GLS is not satis�ed.

Still, the results will show its irrelevance as GLS will perform very well while OLS very

poorly. This accords with the theoretical discussion of Section 2.3.

The following features are noteworthy. 1) For the MSE (and bias and variance) of FGLS,

much of the same results hold as with exogenous regressors. Again, it performs almost as

well as the infeasible GLS. 2) For MA(1) processes the approximate GLS, labelled GMA,

performs slightly better than FGLS, when T = 200; the di¤erences are substantially reduced

when T = 500, in which case both performs nearly as well as the infeasible GLS. 3) Across all

cases, the main di¤erence is the very large bias and MSE of OLS. For instance, for an AR(1)

with parameter �u = 0:8, the MSE is about 23 times larger than FGLS when T = 200 and


 = 0:5 (and 55 times larger when T = 500). There are even more pronounced examples like

the AR(2) with parameters (1:34;�0:42) for which the di¤erences are 149 times larger when
T = 200 and 363 times when T = 500. Both the bias and variance of OLS are much larger

than those with FGLS. For OLS, the bias and MSE are basically the same for T = 200; 500,

in accordance with the fact that OLS is inconsistent as discussed is Section 2.3.

The results for the coverage rates of the con�dence intervals are presented in the last two

column segments of Tables 3-6. The following features are noteworthy. 1) The results for
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OLS are meaningless. The coverage rates are all over the map and can be near 0 with strong

correlation in the errors. Also, they get noticeably worse as T increases. 2) For FGLS, the

coverage rates are near 95% for AR(1) errors. For AR(2) errors, we see some less accurate

coverage rates for 
 = 0:5. 3) For MA(1) errors, the coverage rates of GMA and FGLS are

good when 
 = 0:25, but more precise with GMA when 
 = 0:5. 4) For ARMA(1; 1) errors,

the coverage rates of FGLS are good for 
 = 0:25 but less so for 
 = 0:5.

The results for the case with i:i:d: regressors (�x = 0) are presented in the Supplement.

The same qualitative results hold. Overall, the simulations show that the suggested FGLS

procedure with BIC to select the lag length is by far superior compared to OLS.

Remark 12. If heteroskedasticity in the errors is a concern, two avenues are possible. The
�rst is to correct the standard errors of the estimate using a heteroskedasticity-robust co-

variance matrix as suggested by, e.g., White (1980) or variations suggested afterwards. Our

recommendation is to apply a further FGLS correction as suggested by González-Coya and

Perron (2022). It is based on an Adaptive Lasso procedure to �t the skedastic function. The

method and some simulation results are presented in the Supplement. Overall, further re-

duction in the MSE of the estimates are possible even using incorrect covariates to estimate

the skedastic function as long as there is some correlation between the covariates used in

the Lasso speci�cation and those in the true skedastic function. The coverage rate of the

con�dence intervals have an exact size close to the nominal level and the lengths are smaller

than obtained when applying OLS or correcting only for serial correlation. With homoskedas-

tic errors, the results are equivalent to those obtained correcting only for serial correlation.

Hence, correcting for heteroskedasticity when it is not present has no detrimental e¤ect on

the precision of the estimate, a result emphasized by González-Coya and Perron (2022). The

results are discussed in Section S.3 of the Supplement.

7 Conclusions

We showed that, contrary to the widely held view, a) OLS is, in general, inconsistent with

non-exogenous regressors, while GLS is consistent; 2) GLS is very robust in that an incorrect

speci�cation still allows a lower MSE than OLS; 3) a simple FGLS procedure based on

estimating an approximating AR(kT ) process with kT chosen using the BIC works very well

and delivers estimates that a) are by far superior to OLS (lower MSE); b) robust to a wide

variety of data-generating process; c) have con�dence intervals with exact coverage rates

close to the nominal level and much shorter than with OLS. If one suspects heteroskedastic
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errors, a simple method is suggested to further improve the precision of the estimate.

We used the simple linear model as it is the leading case of interest. Our results should

extend to more complex non-linear models estimated by non-linear least-squares or the gen-

eralized method of moments approach. A similar treatment for models with endogenous

regressors contemporarily correlated with the errors and estimated via some instrumental

variable procedure would also be bene�cial. This is on the agenda for further work. Our re-

sults provides a strong case for abandoning the often-used OLS+HAC approach so common

nowadays. In most cases, it is outright inconsistent in the case of non-exogenous regressors,

while GLS is consistent. Even if the regressors are exogenous, GLS yields estimates with

substantially lower MSE and con�dence intervals with adequate coverage rates and shorter

lengths. This holds whether the regressors are exogenous or not, provided past regressors

are not correlated with some unobserved component in the contemporaneous errors.
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Table 2: Root mean squared errors, bias and variance of estimators of � and �; AR(1)
model.

� �

OLS Durbin GLS FGLS CO-FGLS FGLS CO-FGLS

RMSE 0.400 0.036 0.025 0.025 0.041 0.034 0.175

Bias 0.400 0.029 0.012 0.020 0.035 0.027 0.171

Variance 0.0031 0.0013 0.0006 0.0006 0.0008 0.0010 0.0013
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Table 4: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

AR(2) case with ρx = 0.8. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

AR(2) OLS GLS FGLS OLS GLS FGLS OLS GLS FGLS OLS FGLS OLS FGLS

T
=

2
0
0

γ = 0

0.5,-0.3 0.32 0.28 0.29 4.54 4.23 4.28 0.34 0.29 0.28 0.95 0.95 0.23 0.21

-0.5,0.3 0.17 0.13 0.13 3.22 2.83 2.86 0.16 0.13 0.13 0.94 0.95 0.16 0.14

1.34,-0.42 11.45 0.42 0.42 26.96 5.15 5.19 8.09 0.40 0.39 0.87 0.94 1.08 0.25

0,0.3 0.31 0.26 0.28 4.39 4.09 4.20 0.22 0.27 0.26 0.90 0.93 0.18 0.20

0.5,0.3 1.86 0.47 0.48 10.79 5.50 5.60 1.27 0.47 0.45 0.86 0.94 0.43 0.27

γ = 0.25

0.5,-0.3 0.36 0.26 0.28 4.83 4.04 4.18 0.31 0.27 0.26 0.92 0.94 0.22 0.20

-0.5,0.3 0.21 0.12 0.13 3.61 2.74 2.84 0.16 0.12 0.12 0.91 0.94 0.15 0.13

1.34,-0.42 27.51 0.39 0.41 44.90 5.00 5.16 7.29 0.37 0.37 0.58 0.94 1.02 0.24

0,0.3 0.32 0.25 0.28 4.58 3.94 4.20 0.20 0.26 0.24 0.86 0.92 0.18 0.19

0.5,0.3 3.79 0.44 0.49 16.41 5.32 5.61 1.14 0.44 0.43 0.64 0.93 0.41 0.26

γ = 0.5

0.5,-0.3 0.41 0.22 0.25 5.35 3.72 4.00 0.25 0.23 0.22 0.85 0.94 0.19 0.18

-0.5,0.3 0.30 0.10 0.12 4.41 2.54 2.79 0.14 0.10 0.10 0.84 0.92 0.15 0.12

1.34,-0.42 58.25 0.33 0.39 71.48 4.61 5.00 5.38 0.32 0.32 0.16 0.92 0.88 0.22

0,0.3 0.36 0.21 0.29 4.91 3.65 4.25 0.17 0.22 0.20 0.79 0.89 0.16 0.18

0.5,0.3 7.50 0.38 0.49 25.20 4.90 5.60 0.83 0.37 0.36 0.25 0.91 0.35 0.24

T
=

5
0
0

γ = 0

0.5,-0.3 0.13 0.11 0.11 2.86 2.66 2.66 0.13 0.11 0.11 0.94 0.94 0.14 0.13

-0.5,0.3 0.06 0.05 0.05 2.02 1.81 1.81 0.06 0.05 0.05 0.94 0.94 0.10 0.09

1.34,-0.42 4.61 0.16 0.16 17.11 3.23 3.23 3.95 0.16 0.16 0.91 0.94 0.77 0.15

0,0.3 0.12 0.11 0.11 2.79 2.62 2.62 0.08 0.10 0.10 0.89 0.94 0.11 0.13

0.5,0.3 0.75 0.19 0.19 6.91 3.51 3.51 0.60 0.18 0.18 0.91 0.94 0.30 0.17

γ = 0.25

0.5,-0.3 0.18 0.11 0.11 3.40 2.57 2.61 0.12 0.10 0.10 0.88 0.94 0.13 0.12

-0.5,0.3 0.11 0.05 0.05 2.67 1.76 1.78 0.06 0.05 0.05 0.86 0.94 0.09 0.08

1.34,-0.42 21.68 0.15 0.16 41.99 3.12 3.19 3.51 0.15 0.15 0.40 0.94 0.72 0.15

0,0.3 0.16 0.10 0.11 3.21 2.54 2.61 0.08 0.10 0.10 0.82 0.94 0.11 0.12

0.5,0.3 2.84 0.18 0.19 14.90 3.40 3.50 0.53 0.17 0.17 0.48 0.94 0.28 0.16

γ = 0.5

0.5,-0.3 0.28 0.09 0.10 4.59 2.39 2.51 0.09 0.09 0.09 0.69 0.93 0.12 0.12

-0.5,0.3 0.18 0.04 0.05 3.67 1.63 1.72 0.05 0.04 0.04 0.68 0.93 0.09 0.08

1.34,-0.42 54.49 0.13 0.15 71.60 2.85 3.08 2.57 0.12 0.12 0.01 0.92 0.62 0.14

0,0.3 0.24 0.09 0.11 4.15 2.35 2.59 0.07 0.08 0.08 0.64 0.92 0.10 0.11

0.5,0.3 6.90 0.15 0.19 25.24 3.10 3.45 0.39 0.15 0.15 0.04 0.92 0.24 0.15
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Table 6: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

ARMA(1,1) case with ρx = 0.8. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

ARMA(1,1) OLS GLS FGLS OLS GLS FGLS OLS GLS FGLS OLS FGLS OLS FGLS

T
=

2
0
0

γ = 0

-0.5,-0.4 0.09 0.04 0.04 2.38 1.60 1.61 0.11 0.04 0.05 0.97 0.96 0.13 0.09

0.2,-0.4 0.13 0.13 0.13 2.90 2.82 2.84 0.16 0.13 0.15 0.96 0.96 0.16 0.15

0.2,0.5 0.59 0.39 0.41 6.07 4.93 5.10 0.51 0.39 0.38 0.92 0.94 0.28 0.24

0.5,-0.4 0.25 0.24 0.25 3.96 3.91 3.95 0.22 0.25 0.22 0.93 0.93 0.18 0.18

0.5,0.5 1.30 0.43 0.46 9.00 5.19 5.40 1.05 0.43 0.43 0.90 0.94 0.40 0.26

0.8,-0.4 0.88 0.43 0.46 7.41 5.21 5.41 0.59 0.43 0.41 0.86 0.93 0.30 0.25

0.8,0.5 5.12 0.39 0.41 17.83 4.93 5.09 3.65 0.38 0.40 0.87 0.94 0.73 0.25

γ = 0.25

-0.5,-0.4 0.48 0.04 0.04 6.08 1.52 1.63 0.12 0.04 0.05 0.60 0.96 0.13 0.08

0.2,-0.4 0.19 0.12 0.14 3.48 2.69 2.96 0.15 0.12 0.14 0.93 0.95 0.15 0.14

0.2,0.5 1.00 0.35 0.40 8.30 4.73 5.04 0.47 0.37 0.36 0.79 0.94 0.27 0.24

0.5,-0.4 0.23 0.22 0.23 3.84 3.73 3.82 0.21 0.23 0.21 0.92 0.93 0.18 0.18

0.5,0.5 3.15 0.39 0.46 15.28 4.96 5.44 0.96 0.41 0.41 0.64 0.93 0.38 0.25

0.8,-0.4 1.59 0.39 0.46 10.52 4.99 5.39 0.54 0.41 0.39 0.69 0.93 0.28 0.25

0.8,0.5 13.75 0.35 0.43 32.12 4.67 5.21 3.30 0.36 0.38 0.56 0.93 0.70 0.24

γ = 0.5

-0.5,-0.4 1.23 0.04 0.05 10.38 1.48 1.82 0.12 0.03 0.04 0.08 0.93 0.13 0.08

0.2,-0.4 0.32 0.11 0.19 4.64 2.61 3.36 0.13 0.10 0.12 0.81 0.90 0.14 0.13

0.2,0.5 1.77 0.31 0.42 11.94 4.42 5.19 0.36 0.32 0.30 0.49 0.89 0.23 0.22

0.5,-0.4 0.22 0.21 0.24 3.81 3.62 3.94 0.17 0.20 0.18 0.90 0.90 0.16 0.16

0.5,0.5 6.58 0.34 0.53 23.97 4.60 5.73 0.71 0.35 0.35 0.21 0.88 0.32 0.23

0.8,-0.4 2.90 0.36 0.52 15.33 4.77 5.73 0.40 0.35 0.33 0.35 0.88 0.24 0.23

0.8,0.5 29.47 0.30 0.53 51.13 4.36 5.73 2.39 0.31 0.32 0.14 0.88 0.59 0.22

T
=

5
0
0

γ = 0

-0.5,-0.4 0.03 0.02 0.02 1.45 0.98 0.98 0.04 0.02 0.02 0.96 0.96 0.08 0.05

0.2,-0.4 0.05 0.05 0.05 1.83 1.76 1.77 0.06 0.05 0.05 0.95 0.96 0.09 0.09

0.2,0.5 0.23 0.16 0.17 3.85 3.26 3.30 0.21 0.15 0.15 0.94 0.93 0.18 0.15

0.5,-0.4 0.10 0.10 0.10 2.51 2.50 2.50 0.09 0.09 0.09 0.93 0.93 0.11 0.12

0.5,0.5 0.51 0.18 0.19 5.70 3.45 3.51 0.45 0.17 0.17 0.92 0.93 0.26 0.16

0.8,-0.4 0.35 0.18 0.19 4.69 3.40 3.46 0.27 0.17 0.17 0.90 0.94 0.20 0.16

0.8,0.5 2.05 0.16 0.17 11.31 3.22 3.27 1.73 0.15 0.16 0.91 0.94 0.51 0.15

γ = 0.25

-0.5,-0.4 0.38 0.01 0.02 5.83 0.97 1.05 0.04 0.01 0.02 0.15 0.95 0.08 0.05

0.2,-0.4 0.11 0.05 0.05 2.68 1.72 1.85 0.06 0.05 0.05 0.85 0.95 0.09 0.09

0.2,0.5 0.68 0.15 0.17 7.15 3.06 3.25 0.19 0.14 0.14 0.64 0.93 0.17 0.15

0.5,-0.4 0.11 0.09 0.10 2.57 2.40 2.52 0.08 0.09 0.08 0.91 0.92 0.11 0.11

0.5,0.5 2.41 0.16 0.19 14.06 3.20 3.46 0.40 0.16 0.16 0.41 0.93 0.25 0.16

0.8,-0.4 1.14 0.17 0.19 9.28 3.27 3.49 0.24 0.16 0.16 0.55 0.94 0.19 0.16

0.8,0.5 10.88 0.14 0.17 30.18 2.98 3.26 1.54 0.14 0.15 0.34 0.94 0.48 0.15

γ = 0.5

-0.5,-0.4 1.00 0.01 0.02 9.71 0.89 1.11 0.04 0.01 0.01 0.00 0.92 0.08 0.05

0.2,-0.4 0.19 0.04 0.06 3.84 1.60 1.99 0.05 0.04 0.04 0.62 0.91 0.09 0.08

0.2,0.5 1.56 0.13 0.17 11.87 2.89 3.28 0.14 0.12 0.12 0.13 0.90 0.15 0.14

0.5,-0.4 0.12 0.08 0.11 2.81 2.26 2.64 0.07 0.08 0.07 0.84 0.88 0.10 0.10

0.5,0.5 6.04 0.15 0.22 23.86 3.07 3.71 0.30 0.14 0.14 0.02 0.89 0.21 0.15

0.8,-0.4 2.66 0.15 0.19 15.54 3.06 3.47 0.18 0.14 0.13 0.08 0.90 0.16 0.14

0.8,0.5 27.70 0.13 0.21 51.30 2.89 3.58 1.11 0.12 0.12 0.01 0.88 0.41 0.14
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In the supplement, we present the proofs of Theorem 1 and Corollary 2. We also report
additional material and Tables of simulation results discussed in the main text.

S-1 Proof of some results

Proof of Theorem 1. The GLS estimator is the OLS estimator of the quasi-di¤erenced
equation

(yt � �yt�1) = (xt � �xt�1)
0� + et; (t = 2; :::; T ):

Let wt = ut � �ut�1 and note that wt is a �lter: wt =  (L)ut with  (L) = (1 � �L). Let
� = E[ww0] so that

��1 =

26666666666664

1 ��

�� 1 + �2 �� 0

�� 1 + �2 ��
. . .

0 �� 1 + �2 ��

�� 1

37777777777775
:

Hence, the GLS estimator can be written as

�̂GLS = (X
0��1X)�1X 0��1y; �̂GLS � � = (X 0��1X)�1X 0��1u:

The variance of the GLS estimator is

Var(�̂GLS) = (X
0��1X)�1X 0��1
��1X(X 0��1X)�1:

The OLS estimator can be written as

�̂OLS = (X
0X)�1X 0y; �̂OLS � � = (X 0X)�1X 0u:

with Var(�̂OLS) = (X
0X)�1X 0
X(X 0X)�1. Since both estimators are consistent the limit of

their MSE is equivalent to the limit of their variance. We have,

limT!1 T Var(�̂OLS) = p limT!1(T
�1X 0X)�1T�1X 0
X(T�1X 0X)�1

= Rx(0)
�22�hxu(0):
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Note that hxu(0) is (2� times) the spectral density function of the process zt = xtut. By the
Convolution Theorem, we have,

hxu(!) =

Z �

��
hx(�)hu(! � �)d�;

and thus

hxu(0) =

Z �

��
hx(�)hu(��)d� =

Z �

��
hx(�)hu(�)d�;

since hu(��) = hu(�). The asymptotic variance of the GLS estimator is

limT!1 T Var(�̂GLS) = p limT!1(T
�1X 0��1X)�1T�1X 0��1
��1X(T�1X 0��1X)�1

= ((1 + �2)Rx(0)� 2�Rx(1))
�22�hx�u�(0) (A.1)

where x�t = xt� �xt�1 and u�t = ut� �ut�1. The spectral density function of x�t is thus given
by

hx�(!) = j (e�i!)j2hx(!)
= (1� �e�i!)(1� �ei!)hx(!)

= (1 + �2 � 2� cos(!))hx(!):

Analogously, the spectral density function of u�t , is given by

hu�(!) = (1 + �
2 � 2� cos(!))hu(!):

Hence, the spectral density function at frequency zero of the process z�t = x�tu
�
t is

hx�u�(0) =

Z �

��
h�x(�)h

�
u(��)d�

=

Z �

��
(1 + �2 � 2� cos(�))2hx(�)hu(�)d�

= (1 + �2)2hxu(0)� 4�(1 + �2)
Z �

��
cos(�)hx(�)hu(�)d�

+4�2
Z �

��
cos(�)2hx(�)hu(�)d�

= (1 + �2)2hxu(0)� 4�(1 + �2)
Z �

��
cos(�)hx(�)hu(�)d�

+2�2
Z �

��
(1 + cos(2�))hx(�)hu(�)d�

= (2�2 + (1 + �2)2)hxu(0)� 4�(1 + �2) eRxu(1) + 2�
2 eRxu(2):
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Now, we can write equation (A.1) as

limT!1 T Var(�̂GLS) = ((1 + �2)Rx(0)� 2�Rx(1))
�22�((2�2 + (1 + �2)2)hxu(0)

�4�(1 + �2) eRxu(1) + 2�
2 eRxu(2))

and the ratio of interest is

limT!1

 
MSE(�̂GLS)

MSE(�̂OLS)

!
=
limT!1 T Var(�̂GLS)

limT!1 T Var(�̂OLS)

=
Rx(0)

2

((1 + �2)Rx(0)� 2�Rx(1))2
(2�2 + (1 + �2)2)hxu(0)� 4�(1 + �2) eRxu(1) + 2�

2 eRxu(2)

hxu(0)
;

and thus,

limT!1

 
MSE(�̂GLS)

MSE(�̂OLS)

!
< 1

i¤ (2�2 + (1 + �2)2)� 4�(1 + �2)
eRxu(1)

hxu(0)
+ 2�2

eRxu(2)

hxu(0)
< ((1 + �2)� 2� corx(1)))2

i¤ �2 � 2�(1 + �2)
eRxu(1)

hxu(0)
+ �2

eRxu(2)

hxu(0)
< 2�2 corx(1)

2 � 2�(1 + �2) corx(1):�

Proof of Corollary 2: Note that if xt is i:i:d:, its spectral density function is hx(!) =
(2�)�1Rx(0) for all !. Thus, using the results in Theorem 1:

hxu(!) =

Z �

��
hx(�)hu(�)d� = hx(0)

Z �

��
hu(�)d�

=
1

2�
Rx(0)Ru(0)

and eRxu(1) =

Z �

��
cos(�)hx(�)hu(�)d� = hx(0)

Z �

��
cos(�)hu(�)d� =

1

2�
Rx(0)Ru(1);

eRxu(2) =

Z �

��
cos(2�)hx(�)hu(�)d� = hx(0)

Z �

��
cos(2�)hu(�)d� =

1

2�
Rx(0)Ru(2):

Hence,

limT!1

�
MSE(�̂GLS)=MSE(�̂OLS)

�
< 1

i¤ �2 � 2�(1 + �2) coru(1) + �2 coru(2) < 0

i¤
�

2(1 + �2)
(1 + coru(2)) < coru(1) when � > 0;

i¤
�

2(1 + �2)
(1 + coru(2)) > coru(1) when � < 0:�
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S-2 Simulations with predictive regressions

As discussed in Remarks 3 and 5, in the case of predictive regressions assuming rational ex-
pectations and estimated using overlapping observations, both OLS and GLS are consistent.
We present the results of a small simulation experiment to show that, with exogenous or
non-exogenous regressors, FGLS is by far superior to OLS in terms of MSE and length of
the coverage rates. The setup adopted corresponds to regression

yt+k = x0t� + ut+k

with k = 2 so that the errors are MA(1). The data-generating process is similar to that
used above except that the regressors are lagged two periods so that yt = � + �xt�2 + ut,
ut = et+�et�1 and xt = �xxt�1+vt+
et�1 with vt and et independent i:i:d:N(0; 1) variables.
We set (�; �) = (0; 1), �x = 0 and again 
 = 0 (exogenous regressors), 
 = 0:25 (weak
correlation) and 
 = 0:50 (strong correlation). We also consider � = �0:7, �0:4 and 0:5.
The results are presented in Table S.7. With 
 = 0, the results are similar to those in

Table 5. FGLS and GMA have much lower MSE than OLS and are nearly as e¢ cient as
the infeasible GLS, especially when T = 500. The coverage rates for all methods are near
the nominal 95% level, except when the MA parameter is strongly negative. Again, the
length of the con�dence intervals are shorter with FGLS and GMA compared to OLS. With
non-exogenous regressors, the results are broadly similar. The only exception is that the
coverage rates for GMA are substantially lower than the nominal level. Those for FGLS are
adequate except when � = �0:7. This is in line with our theoretical results and con�rms
that Hansen and Hodrick (1980) assertion concerning the inconsistency of GLS is incorrect.

S-3 Correcting for heteroskedasticity

In this section, we now consider a FGLS procedure for heteroskedasticity in the errors et. We
describe the method suggested by González-Coya and Perron (2022) based on an Adaptive
Lasso procedure to �t the skedastic function. Lasso is a non-parametric estimation method
�rst proposed by Tibshirani (1996). It selects regressors amongst a potentially large set wtj
(j = 1; :::; d), where d can be very large, by imposing a `1 penalty on their size. Lasso forces
the coe¢ cients to be equally penalized. We can, however, assign di¤erent weights to di¤erent
coe¢ cients. If the weights are data-dependent and properly chosen, this can enhance the
properties of Lasso, in particular when the irrelevant covariates are highly correlated with
the relevant ones. To that e¤ect, Zou (2006) considered the adaptive Lasso given by

�̂
A
= argmin�f(1=2)

PT
t=1(log(v

2
t )� �0 �

Pd
j=1wtj�j)

2 + �
Pd

j=1 #̂j
���j��g; (A.2)

where #̂j = j�̂jj� ,  > 0 and �̂j is a root-T -consistent estimator of �j. Here, vt is some
process exhibiting heteroskedasticity, though no serial correlation, to be speci�ed below. The

A-4



implementation of Adaptive Lasso to obtain a �t to the skedastic function is as follows. 1)
Compute the �rst-step estimate of � as the solution to the Ridge regression problem:

�̂
ridge

= argmin�f(1=2)
PT

t=1(log(v
2
t )� �0 �

Pd
j=1wtj�j)

2 + �r
Pd

j=1 �
2
jg;

where �r is selected via cross-validation. 2) Compute the weights as #̂j = j�̂ridgej j� . The
Adaptive Lasso estimates are then

�̂
A
= argmin�f(1=2)

PT
t=1(log(v

2
t )� �0 �

Pd
j=1wtj�j)

2 + �A
Pd

j=1 j�̂
ridge

j j� 
���j��g;

where the two tuning parameters, �A and  are selected via the following K-cross-validation
method: a) Fix L possible values for  ; we use L = 6 and  c = (0; 0:25; 0:5; 0:75; 1; 2). b)
Fix a partition for the K-fold cross-validation, i.e., split the data into K roughly equal-
sized parts. We use K = 10. Let � : f1; : : : ; Tg 7! f1; : : : ; Kg be an indexing function
that indicates the partition to which observation t is allocated to by the randomization. c)
For every  ci , compute the optimal cross-validated �

A
i and the mean cross-validated error.

For the kth part, we �t the model to the other K � 1 parts of the data, and calculate the
prediction error of the �tted model when predicting the kth part of the data. We do this for
k = 1; : : : ; K and combine the K estimates of the prediction error. Denote by f̂�ki (w) the
�tted function, computed with the kth part of the data removed and using  ci . Then the
cross-validation estimate of the prediction error is

CV(f̂i) = T�1
PT

t=1 L
�
log(v2t ); f̂

��(t)
i (w)

�
;

where L(�) is a loss function; we use the MSE. Let �Ai be the value that minimizes CV(f̂i). d)
The cross-validated pair (�A�;  c�) used is the one that minimizesCV(�Ai ;  

c
i) for i = 1; : : : ; L.

Note that we do not have in mind any oracle model. The aim is to be agnostic about such
knowledge and to try to devise a method as robust as possible that allows a reduction in the
MSE. Since the skedastic function is, in general, not consistently estimated, there is a need
to further correct the variance estimate of the FGLS estimator using a Heteroskedasticity
Robust version. We denote the resulting �tted value of the skedastic function by ev2t .
Here, vt � êtk, the residuals from applying the GLS regression

(yt �
PkT

j=1 �̂
D
j yt�j) = (xt �

PkT
j=1 �̂

D
j xt�j)

0� + ekt; (t = 2; :::; T ); (A.3)

Let �̂F�C denote the GLS estimate that corrects only for serial correlation and �̂F�CH , the
one that corrects for both serial correlation and heteroskedasticity. To be more precise,
we apply the following steps: a) Estimate by OLS the quasi-di¤erenced regression (A.3)
using kT = k�T to obtain the residuals êtk; b) Estimate the model log(maxfê2tk; �2g) = �0 �Pd

j=1 ztj�j, via Adaptive Lasso, where � = 0:1 is some small positive number to avoid dealing
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with residuals that are nearly zero. Note that zt may include some or all elements of xt or
transformations of them. Denote the predicted values from this model by evt � ee2tk; c) �̂F�CH
is the weighted least squares (WLS) estimator of the quasi-di¤erenced regression (A.3), with
weights given by ee�2tk .
In order to construct con�dence intervals for the parameter � of interest, introducing some

�nite sample re�nements can be bene�cial. Here, we describe the particular form adopted,
following Miller and Startz (2019) and Rothenberg (1988). We focus on the estimate of the
asymptotic variance of the FGLS estimator:

V ar(�̂F�CH) = (T
�1X 0fW�1X)�1
̂(T�1X 0fW�1X)�1; (A.4)

where fW is a diagonal matrix with entries ewtt = evt(w)2 � ee2tk, the predicted values obtained
from the procedure to �t the skedastic function vt(w), X is the matrix of regressors in (??),

̂ = T�1X 0�̂F�CHX with �̂F�CH a diagonal matrix with tth entry given by:

�̂F�CHtt =
ê2tk�F�CH

(ee2tk)2
 

1

(1� ht;F�CH)
2 + 4

ht;F�C
k

d̂f

!
; (A.5)

where êF�CH = [ê1;F�CH ; :::; êT;F�CH ]0 are the estimated residuals from the FGLS regression
correcting for serial correlation and heteroskedasticity, i.e., êtF�CH = y�t � �̂F�CHx

�
t , with

y�t = (yt �
PkT

j=1 �̂
D
j yt�j)=(ee2tk)1=2; (A.6)

x�t = (xt �
PkT

j=1 �̂
D
j xt�j)=(ee2tk)1=2: (A.7)

d̂f is an estimate of the degrees of freedom used in the estimation of the weights. For Lasso,
the number of nonzero coe¢ cients is an unbiased estimate for the degrees of freedom (Zou
et al. (2007)). The con�dence intervals for the kth coe¢ cient is then obtained using �̂F�CH;k
� z1��=2SE(�̂F�CHk);where z1��=2 is the 1 � �=2 quantile of the normal distribution and

SE(�̂FGLS;k) := (V ar(�̂F�CH))
1=2
kk , with V ar(�̂F�CH) de�ned in (A.4).

S-3.1 Simulation results with heteroskedasticity

We consider the linear model (1) with serially correlated and heteroskedastic errors. The
speci�cations are the same as in the text except that et � N(0; vt (z)) or, equivalently,
et =

p
vt (z)"t, where "t � i:i:d: N(0; 1). We apply a FGLS accounting for heteroskedasticity

in the FGLS regression used to correct for serial correlation,

yt �
PkT

j=1 �̂
D
j yt�j = (xt �

PkT
j=1 �̂

D
j xt�j)

0� + etk; (t = 2; :::; T );

This is then equivalent to applying OLS to the regression y�t = x�t� + etk�F�CH , where y�t
and x�t are de�ned by (A.6) and (A.7) and the estimate of ee2tk is constructed as outlined
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in the previous section. We only consider a subset of the cases used earlier with T = 200.
These are: 1) AR(1): ut = 0:5ut�1 + vt(z)

1=2"t; 2) AR(2): ut = 1:34ut�1 � 0:42ut�2 +
vt(z)

1=2"t; 3) MA(1): ut = vt(z)
1=2"t + 0:5vt�1(z)

1=2"t�1; 4) ARMA(1; 1): ut = 0:8ut�1 +

vt(z)
1=2"t � 0:4vt�1(z)1=2"t�1, where "t � i:i:d: N(0; 1). We consider three speci�cations

for the skedastic function �t(�) as in Romano and Wolf (2017). These are, from weak to
strong heteroskedasticity: a) Power function: �t(x)1 = x2t ; b) Squared log function: �t(x)2 =
[log(xt)]

2; c) Exponential of a second-degree polynomial: �t(x)3 = exp (0:2xt + 0:2x2t ). The
input matrix isW = (1; w; w2; cos(w); cos(2w); cos(3w)). We consider two cases: a) wt = xt,
which assumes that we select the correct variable in�uencing the skedastic function; b)
wt = �xt + (1� �)qt with qt � U(1; 4) and � �Bernouli(�) with � = 0:75. In this case, the
covariate used to model the skedastic function is not the same as the true one but is correlated
with it, the correlation being �. Note that in practice, one can include a vast set of potential
covariates. Hence, with the parsimonious set considered, the improvements obtained in terms
of MSE and length of the con�dence intervals should be viewed as conservative.
The results are reported in Table S.8; the �rst panel for wt = xt and the second for

wt = �xt + (1 � �)qt. We present the MSE, bias and variance of the FGLS estimate as
well as the coverage rates and lengths of the con�dence intervals obtained using the method
discussed in the previous section. We also present results for the OLS estimate, the FGLS
estimate that accounts only for serial correlation (F-C) and the FGLS estimate that accounts
for both serial correlation and heteroskedasticity (F-CH). This is done to gauge the extent
of the improvement provided by the correction for heteroskedasticity. Note that when using
F-C, we construct the con�dence intervals that correct for serial correlation the same way as
we do for F-CH, i.e., applying the same correction for potential remaining heteroskedasticity.
When the covariate used is the correct one, we see important reduction in the MSE of

the F-CH estimate relative to F-C, more so as the heteroskedasticity is stronger. Both the
variance and the bias contribute to the reductions in the MSE. Since correcting for serial
correlation via a FGLS procedure provides substantially more precise estimates relative to
OLS, needless to say that the same applies when further correcting for heteroskedasticity.
The coverage rates of the con�dence intervals have an exact size close to the nominal level.
The OLS estimates also have good coverage rates in most cases but can be sensitive to the
strength of the serial correlation; e.g., the AR(2) case. However, the lengths are substantially
smaller using F-CH compared to OLS and to a lesser extent compared to F-C.
The results in the bottom panel pertains to the case with an incorrect covariate, though

correlated with the correct one. The results are similar with the exception that the incremen-
tal reductions in MSE, bias and variance provided by the correction for heteroskedasticity
are smaller, as expected. Nevertheless, they are still important enough in magnitude. Hence,
using incorrect covariates to estimate the skedastic function can still lead to more precise
estimates, as long as there is some correlation between the two sets of covariates. The cov-
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erage rate of the con�dence intervals have an exact size close to the nominal level and the
lengths are much smaller than those with OLS and, to some extent, than with F-C.
We also performed simulation experiments with homoskedastic errors. The results were

then essentially equivalent to those obtained with F-C. This means that correcting for het-
eroskedasticity when it is not present has no detrimental e¤ect on the precision of the esti-
mate, a result emphasized by González-Coya and Perron (2022). Overall, the results show
that a further correction for heteroskedasticity can lead to more precise estimates and smaller
lengths of the con�dence intervals compared to only correcting for serial correlation.
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Table S.4: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

AR(2) case with ρx = 0. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

AR(2) OLS GLS FGLS OLS GLS FGLS OLS GLS FGLS OLS FGLS OLS FGLS

T
=

2
0
0

γ = 0

0.5,-0.3 0.63 0.38 0.39 6.26 4.96 5.03 0.64 0.38 0.38 0.95 0.94 0.31 0.24

-0.5,0.3 1.11 0.38 0.38 8.36 4.93 4.97 1.11 0.38 0.38 0.95 0.95 0.41 0.24

1.34,-0.42 5.24 0.17 0.17 18.02 3.32 3.33 5.10 0.17 0.17 0.94 0.95 0.88 0.16

0,0.3 0.54 0.45 0.46 5.89 5.39 5.44 0.55 0.47 0.46 0.95 0.95 0.29 0.27

0.5,0.3 1.08 0.37 0.38 8.29 4.86 4.92 1.06 0.38 0.38 0.94 0.95 0.40 0.24

γ = 0.25

0.5,-0.3 1.88 0.36 0.38 11.86 4.82 4.97 0.60 0.36 0.35 0.68 0.94 0.30 0.23

-0.5,0.3 2.51 0.35 0.38 13.08 4.73 4.92 1.07 0.36 0.35 0.79 0.94 0.40 0.23

1.34,-0.42 13.88 0.17 0.17 31.60 3.28 3.31 4.75 0.16 0.16 0.73 0.95 0.85 0.16

0,0.3 0.52 0.42 0.45 5.80 5.21 5.26 0.53 0.44 0.44 0.94 0.94 0.28 0.26

0.5,0.3 2.25 0.35 0.38 12.42 4.73 4.95 1.00 0.36 0.35 0.82 0.94 0.39 0.23

γ = 0.5

0.5,-0.3 4.46 0.31 0.38 19.89 4.37 4.90 0.49 0.31 0.30 0.18 0.92 0.27 0.22

-0.5,0.3 5.06 0.31 0.40 20.39 4.40 5.02 0.94 0.31 0.30 0.43 0.90 0.38 0.22

1.34,-0.42 30.83 0.14 0.15 51.46 2.96 3.12 4.06 0.14 0.14 0.26 0.94 0.78 0.15

0,0.3 0.50 0.38 0.47 5.61 4.89 5.47 0.47 0.37 0.37 0.94 0.92 0.27 0.24

0.5,0.3 4.62 0.31 0.42 19.25 4.39 5.16 0.88 0.30 0.30 0.46 0.89 0.36 0.22

T
=

5
0
0

γ = 0

0.5,-0.3 0.27 0.15 0.15 4.14 3.07 3.08 0.26 0.15 0.15 0.95 0.95 0.20 0.15

-0.5,0.3 0.45 0.16 0.16 5.34 3.17 3.17 0.45 0.15 0.15 0.95 0.95 0.26 0.15

1.34,-0.42 2.17 0.07 0.07 11.62 2.04 2.04 2.17 0.07 0.07 0.95 0.96 0.57 0.10

0,0.3 0.23 0.19 0.19 3.80 3.48 3.48 0.22 0.18 0.18 0.95 0.95 0.18 0.17

0.5,0.3 0.45 0.15 0.15 5.33 3.09 3.09 0.44 0.15 0.15 0.95 0.95 0.26 0.15

γ = 0.25

0.5,-0.3 1.62 0.13 0.14 11.79 2.91 3.02 0.24 0.14 0.14 0.33 0.95 0.19 0.15

-0.5,0.3 1.77 0.14 0.15 11.81 3.00 3.08 0.43 0.14 0.14 0.58 0.94 0.26 0.15

1.34,-0.42 11.79 0.06 0.06 31.31 1.98 2.00 2.03 0.06 0.06 0.40 0.93 0.56 0.10

0,0.3 0.21 0.17 0.18 3.62 3.26 3.37 0.21 0.17 0.17 0.95 0.95 0.18 0.16

0.5,0.3 1.79 0.14 0.15 11.86 2.94 3.06 0.42 0.14 0.14 0.56 0.94 0.25 0.15

γ = 0.5

0.5,-0.3 4.17 0.12 0.14 19.94 2.74 2.99 0.19 0.12 0.12 0.01 0.92 0.17 0.13

-0.5,0.3 4.34 0.12 0.15 19.91 2.82 3.14 0.37 0.12 0.12 0.08 0.91 0.24 0.13

1.34,-0.42 29.61 0.05 0.06 52.75 1.86 1.91 1.72 0.05 0.05 0.01 0.95 0.51 0.09

0,0.3 0.20 0.15 0.19 3.56 3.10 3.45 0.19 0.15 0.15 0.94 0.91 0.17 0.15

0.5,0.3 4.26 0.12 0.15 19.68 2.77 3.10 0.37 0.12 0.12 0.09 0.92 0.24 0.13
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Table S.6: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

ARMA(1,1) case with ρx = 0. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

ARMA(1,1) OLS GLS FGLS OLS GLS FGLS OLS GLS FGLS OLS FGLS OLS FGLS

T
=

2
0
0

γ = 0

-0.5,-0.4 1.13 0.27 0.29 8.52 4.56 4.28 1.06 0.38 0.28 0.96 0.95 0.40 0.21

0.2,-0.4 0.55 0.51 0.52 5.91 5.67 5.74 0.52 0.49 0.49 0.94 0.95 0.28 0.27

0.2,0.5 0.79 0.31 0.34 7.04 4.49 4.67 0.74 0.31 0.33 0.94 0.95 0.34 0.23

0.5,-0.4 0.54 0.52 0.53 5.85 5.77 5.80 0.50 0.50 0.50 0.94 0.94 0.28 0.28

0.5,0.5 1.22 0.22 0.24 8.77 3.78 3.94 1.14 0.22 0.24 0.94 0.95 0.42 0.19

0.8,-0.4 0.75 0.43 0.45 6.95 5.29 5.42 0.69 0.43 0.42 0.94 0.95 0.33 0.25

0.8,0.5 2.83 0.16 0.17 13.47 3.20 3.30 2.68 0.16 0.17 0.95 0.95 0.64 0.16

γ = 0.25

-0.5,-0.4 5.55 0.26 0.31 21.44 4.10 4.51 0.99 0.25 0.26 0.43 0.93 0.39 0.20

0.2,-0.4 0.70 0.44 0.52 6.68 5.34 5.75 0.49 0.46 0.46 0.90 0.94 0.27 0.26

0.2,0.5 3.34 0.27 0.33 16.59 4.19 4.62 0.69 0.29 0.31 0.47 0.96 0.33 0.21

0.5,-0.4 0.50 0.44 0.48 5.65 5.28 5.55 0.48 0.47 0.47 0.94 0.94 0.27 0.26

0.5,0.5 6.56 0.20 0.25 23.67 3.58 3.98 1.07 0.21 0.22 0.36 0.95 0.40 0.18

0.8,-0.4 1.52 0.37 0.41 10.23 4.87 5.15 0.67 0.40 0.39 0.80 0.94 0.32 0.24

0.8,0.5 11.95 0.14 0.18 30.92 3.06 3.42 2.54 0.15 0.16 0.53 0.94 0.62 0.15

γ = 0.5

-0.5,-0.4 13.91 0.21 0.36 36.08 3.61 4.65 0.82 0.21 0.22 0.01 0.89 0.35 0.18

0.2,-0.4 1.07 0.39 0.71 8.71 4.95 6.78 0.41 0.39 0.39 0.75 0.86 0.25 0.24

0.2,0.5 8.29 0.25 0.48 27.75 4.01 5.45 0.57 0.25 0.27 0.04 0.87 0.30 0.19

0.5,-0.4 0.56 0.40 0.57 6.01 5.04 6.09 0.40 0.40 0.40 0.91 0.90 0.25 0.24

0.5,0.5 16.59 0.18 0.36 39.56 3.40 4.73 0.89 0.18 0.19 0.01 0.87 0.37 0.16

0.8,-0.4 3.01 0.34 0.50 15.63 4.61 5.66 0.58 0.34 0.33 0.47 0.89 0.82 0.23

0.8,0.5 27.92 0.13 0.27 50.66 2.89 4.18 2.16 0.13 0.14 0.06 0.84 0.57 0.14

T
=

5
0
0

γ = 0

-0.5,-0.4 0.43 0.10 0.11 5.22 2.59 2.63 0.42 0.10 0.11 0.95 0.95 0.25 0.13

0.2,-0.4 0.21 0.19 0.20 3.66 3.49 3.54 0.21 0.19 0.19 0.95 0.94 0.18 0.17

0.2,0.5 0.29 0.12 0.12 4.34 2.69 2.74 0.30 0.12 0.13 0.96 0.96 0.21 0.14

0.5,-0.4 0.20 0.20 0.20 3.56 3.56 3.56 0.20 0.20 0.20 0.95 0.95 0.18 0.17

0.5,0.5 0.43 0.08 0.09 5.32 2.25 2.30 0.46 0.09 0.09 0.97 0.95 0.27 0.12

0.8,-0.4 0.27 0.17 0.17 4.16 3.28 3.32 0.28 0.17 0.17 0.96 0.95 0.21 0.16

0.8,0.5 1.03 0.06 0.06 8.17 1.91 1.94 1.11 0.06 0.07 0.96 0.95 0.41 0.10

γ = 0.25

-0.5,-0.4 4.85 0.10 0.11 21.12 2.48 2.61 0.39 0.10 0.10 0.07 0.93 0.24 0.12

0.2,-0.4 0.43 0.19 0.21 5.39 3.47 3.63 0.19 0.18 0.18 0.79 0.93 0.17 0.16

0.2,0.5 2.97 0.12 0.14 16.39 2.79 3.02 0.28 0.12 0.11 0.13 0.93 0.21 0.13

0.5,-0.4 0.26 0.20 0.23 4.11 3.55 3.85 0.19 0.19 0.18 0.90 0.93 0.17 0.17

0.5,0.5 5.90 0.09 0.11 23.35 2.33 2.56 0.43 0.08 0.09 0.06 0.92 0.26 0.11

0.8,-0.4 1.16 0.17 0.18 9.46 3.26 3.41 0.27 0.16 0.16 0.57 0.93 0.20 0.15

0.8,0.5 10.22 0.06 0.07 30.21 1.97 2.15 1.05 0.06 0.06 0.15 0.93 0.40 0.10

γ = 0.5

-0.5,-0.4 13.54 0.09 0.15 36.35 2.34 3.05 0.33 0.08 0.09 0.00 0.88 0.23 0.12

0.2,-0.4 0.84 0.16 0.24 8.28 3.20 3.90 0.16 0.15 0.15 0.47 0.89 0.16 0.15

0.2,0.5 8.00 0.10 0.17 27.85 2.49 3.31 0.23 0.10 0.10 0.00 0.87 0.19 0.12

0.5,-0.4 0.32 0.17 0.28 4.62 3.26 4.31 0.16 0.16 0.16 0.84 0.86 0.16 0.15

0.5,0.5 16.23 0.07 0.13 39.83 2.10 2.92 0.36 0.07 0.07 0.00 0.87 0.23 0.10

0.8,-0.4 2.74 0.14 0.19 15.78 3.00 3.45 0.24 0.13 0.14 0.09 0.90 0.19 0.14

0.8,0.5 27.60 0.05 0.09 51.74 1.78 2.43 0.89 0.05 0.05 0.00 0.87 0.37 0.09
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