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Supplementary Information 

Appendix A. Persistence estimate using daily observations. 
In this Appendix, we extend our main analysis of the persistence parameter estimates using daily 
observations. To this end, we use geographically gridded daily mean air temperature provided by 
CHELSA (Climatologies at high resolution for the earth’s land surface areas; see Karger et al., 2017, 
for more details). The data set has much higher resolutions (1800 arc sec) than the HadCRUT data 
set used in our main analysis and covers all land but no ocean area. More importantly, the data 
has a limited time span from January 1, 1979 to December 31, 2016. To make comparisons with 
our main analysis easier, we created a monthly data set by taking averages of the original daily 
observations each month from January 1979 to December 2016. We also produced anomalies 
out of the daily and monthly data, respectively, by subtracting the average of the same day (or 
month) over 1979 to 2016. We estimated 𝛼𝛼 in (3) by using ordinary least squares.  
Figure A1 shows persistence parameter estimates using monthly anomaly data on the left and 
those using daily anomaly data on the right. We use linearly detrended data by the ordinary least 
squares method. To be consistent with our main analysis, we consider a possible structural 
change in the linear trend in January 1992. This is a simpler method than our state-space model 
employed in the main analysis. However, it is inevitable due to high computational burden of 
using daily data and can be justified as the variance estimate of the trend component in the main 
analyses (𝜎𝜎𝜔𝜔2 ) is close to zero in most areas. The noise component is not removed so that the 
downward bias due to the noise may still exist.  
We particularly emphasize two features in Figure A1, for the sake of our study. First, the 
persistence parameter estimate using monthly data, though using a different data set from the 
main analysis, is roughly consistent with the results presented in Figure 6 for land area. More 
importantly, the persistence parameter estimate using daily observations is much higher than 
those using monthly data. The former actually is close to one in the majority of geographical grids. 
Therefore, as discussed in Section 1, it is harder to detect potential structural changes in the 
persistence parameter if daily data are used. Second, the trend component does not seem to 
affect the persistence estimate, because the sample period is short. Also, the noise is larger in the 
CHELSA data due to their higher resolutions. For these reasons, we stick to HadCRUT data in this 
study. 
 
  



 
Appendix B. A proof that the OLS estimate 𝜶𝜶� in Equation (3) is biased when a trend is present. 
In this Appendix, we show that the persistence parameter estimate in (3) using OLS has a bias 
when linear trend exists but is not accounted for in the estimation. In fact, it is inconsistent and 
converges to 1 as 𝑇𝑇  increases. Consider model (1) with a linear trend ( 𝜏𝜏𝑡𝑡 = 𝑏𝑏𝑏𝑏 ) with no 
measurement error. 

𝑦𝑦𝑡𝑡 = 𝑏𝑏𝑏𝑏 + 𝑥𝑥𝑡𝑡, 
for 𝑏𝑏 = 1, … ,𝑇𝑇, where 𝑥𝑥𝑡𝑡 follows (2). We consider the sample autocovariance of 𝑦𝑦𝑡𝑡 of order ℎ, by 
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From this, it is straightforward to show that lim
𝑇𝑇→∞

𝜌𝜌(ℎ) = 1 for any fixed ℎ. Our specific case 
corresponds to ℎ = 1 and the same result follows. 
 
 
Appendix C. The Warm Spell Duration Index (WSDI) and the Cold Spell Duration Index (CSDI) from 
1901 to 2018. 
The WSDI and CSDI indices shown in Figures 1 and 3 are continuously presented from 1901 to 2018 at the 
following link. 
https://doi.org/10.6084/m9.figshare.24718107.v1  
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Appendix D. AR(1) coefficient estimate when the data includes measurement errors. 
This Appendix shows that 𝑦𝑦𝑡𝑡 follows an ARMA(1,1) process if it is generated by (1) and (2) with 𝜏𝜏𝑡𝑡 = 0. 
Also, as the variance of the noise increases, the roots cancel and 𝑦𝑦𝑡𝑡 is uncorrelated.     

First, plugging (2) in (1) gives 
                                                          𝑦𝑦𝑡𝑡 = 𝛼𝛼(𝑥𝑥𝑡𝑡−1 + 𝑒𝑒𝑡𝑡) +𝜔𝜔𝑡𝑡 

                  = 𝛼𝛼(𝑥𝑥𝑡𝑡−1 + 𝜔𝜔𝑡𝑡−1) + 𝑒𝑒𝑡𝑡 + 𝜔𝜔𝑡𝑡 − 𝛼𝛼𝜔𝜔𝑡𝑡−1 
= 𝛼𝛼𝑦𝑦𝑡𝑡−1 + 𝑒𝑒𝑡𝑡 + 𝜔𝜔𝑡𝑡 − 𝛼𝛼𝜔𝜔𝑡𝑡−1 

                                                                = 𝛼𝛼𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡        
where 𝑢𝑢𝑡𝑡 = 𝑒𝑒𝑡𝑡 + 𝜔𝜔𝑡𝑡 − 𝛼𝛼𝜔𝜔𝑡𝑡−1. Since 

 𝐸𝐸(𝑢𝑢𝑡𝑡2) = 𝜎𝜎𝑒𝑒2 + (1 + 𝛼𝛼2)𝜎𝜎𝜔𝜔2 ,  
𝐸𝐸(𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡−1) = −𝛼𝛼𝜎𝜎𝜔𝜔2 ,   
𝐸𝐸(𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡−𝜏𝜏) = 0,   for |𝜏𝜏| > 1,  

𝑢𝑢𝑡𝑡  has an MA(1) representation. Then, we let 𝑢𝑢𝑡𝑡 = 𝑣𝑣𝑡𝑡 + 𝜃𝜃𝑣𝑣𝑡𝑡−1  where 𝑣𝑣𝑡𝑡~𝑖𝑖. 𝑖𝑖.𝑑𝑑. (0,𝜎𝜎𝑣𝑣2)  and obtain the 
following two equations  

𝐸𝐸(𝑢𝑢𝑡𝑡2) = 𝜎𝜎𝑒𝑒2 + (1 + 𝛼𝛼2)𝜎𝜎𝜔𝜔2 = (1 + 𝜃𝜃2)𝜎𝜎𝑣𝑣2,         (A.1) 
𝐸𝐸(𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡−1) = −𝛼𝛼𝜎𝜎𝜔𝜔2 = 𝜃𝜃𝜎𝜎𝑣𝑣2.                                        (A.2) 

By plugging 𝜎𝜎𝑣𝑣2 = −𝛼𝛼𝜎𝜎𝜔𝜔2 𝜃𝜃⁄  from (A.2) into (A.1), we have the following equation for 𝜃𝜃 
                                          𝛼𝛼𝜎𝜎𝜔𝜔2𝜃𝜃2 + [𝜎𝜎𝑒𝑒2 + (1 + 𝛼𝛼2)𝜎𝜎𝜔𝜔2]𝜃𝜃 + 𝛼𝛼𝜎𝜎𝜔𝜔2 = 0. 
The condition for the roots to be real is 

Δ = [𝜎𝜎𝑒𝑒2 + (1 + 𝛼𝛼2)𝜎𝜎𝜔𝜔2]2 − 4(𝛼𝛼𝜎𝜎𝜔𝜔2)2    
                                       = [𝜎𝜎𝑒𝑒2 + (1 + 𝛼𝛼2)𝜎𝜎𝜔𝜔2 + 2𝛼𝛼𝜎𝜎𝜔𝜔2][𝜎𝜎𝑒𝑒2 + (1 − 𝛼𝛼)2𝜎𝜎𝜔𝜔2] > 0. 
Assuming that the process 𝑢𝑢𝑡𝑡 is invertible, we also need to choose the root |𝜃𝜃| < 1. Thus, 

                                                           𝜃𝜃 = −�𝜎𝜎𝑒𝑒2+�1+𝛼𝛼2�𝜎𝜎𝜔𝜔2 �+√Δ
2𝛼𝛼𝜎𝜎𝜔𝜔2

. 

In conclusion, 𝑦𝑦𝑡𝑡 is an ARMA(1,1) process of the form 
                                                           𝑦𝑦𝑡𝑡 − 𝛼𝛼𝑦𝑦𝑡𝑡−1 = 𝑣𝑣𝑡𝑡 + 𝜃𝜃𝑣𝑣𝑡𝑡−1 . 
It is easy to show as 𝜎𝜎𝜔𝜔2  gets large, 𝜃𝜃 approaches –𝛼𝛼; hence, the roots cancel and 𝑦𝑦𝑡𝑡 becomes 
uncorrelated. Hence, an increase in 𝜎𝜎𝜔𝜔2  imparts a downward bias on the first-order correlation coefficient 
and the measure of persistence.  
 
 
  



 
 

 
 
Figure A1. Persistence parameter estimate using monthly (a) and daily (b) land surface temperature data 
obtained from CHELSA (Karger et al., 2017). The ordinary least squares method is used to estimate 𝜶𝜶 in 
(3), where 𝒚𝒚𝒕𝒕  is monthly or daily surface temperature linearly detrended with a possible structural 
change in January 1992.  
 


