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Abstract

We establish theoretical results about the low frequency contamination (i.e., long memory
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fixed-b HAR tests suffer more from low frequency contamination relative to HAR tests based
on HAC estimators, whereas recently introduced double kernel HAC estimators do not suffer
from this problem. We present second-order Edgeworth expansions under nonstationarity
about the distribution of HAC and DK-HAC estimators and about the corresponding t-test
in the regression model. The results show that the distortions in the rejection rates can be
induced by time variation in the second moments even when there is no break in the mean.
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low frequency contamination in har inference

1 Introduction

Economic and financial time series are highly nonstationary [see, e.g., Perron (1989), Stock and

Watson (1996), Ng and Wright (2013), and Giacomini and Rossi (2015)]. We develop theoretical

results about the behavior of the sample autocovariance (Γ̂ (k) , k ∈ Z) and the periodogram

(IT (ω) , ω ∈ [−π, π]) for a short memory nonstationary process. This means processes that

have non-constant moments and whose sum of absolute autocovariances is finite. The latter rules

out processes with unbounded second moments (e.g., unit root). We show that time-variation

in the mean induces low frequency contamination, meaning that the sample autocovariance and

the periodogram share features that are similar to those of a long memory series. We present

explicit expressions for the asymptotic bias of these estimates, showing that it is always positive

and increases with the degree of heterogeneity in the data.

The low frequency contamination can be explained as follows. For a short memory series, the

autocorrelation function (ACF) displays exponential decay and vanishes as the lag length k → ∞,

and the periodogram is finite at the origin. Under general forms of nonstationarity involving

changes in the mean, we show theoretically that Γ̂ (k) = limT →∞ ΓT (k) + d∗, where ΓT (k) =
T−1∑T

t=k+1 E (VtVt−k), k ≥ 0 and d∗ > 0 is independent of k. Assuming positive dependence for

simplicity (i.e., limT →∞ ΓT (k) > 0), that means that each sample autocovariance overestimates

the true dependence in the data. The bias factor d∗ > 0 depends on the type of nonstationarity

and in general does not vanish as T → ∞. In addition, since short memory implies ΓT (k) → 0 as

k → ∞, it follows that d∗ generates long memory effects since Γ̂ (k) ≈ d∗ > 0 as k → ∞. As for

the periodogram, IT (ω), we show that under nonstationarity E (IT (ω)) → ∞ as ω → 0, a feature

also shared by long memory processes.

Most of the HAR inference in applied work (besides the t- and F -test in regression models) are

characterized by nonstationary alternative hypotheses for which d∗ > 0 even asymptotically. This

class of tests is very large. Tests for forecast evaluation [e.g., Casini (2018), Diebold and Mariano

(1995), Giacomini and Rossi (2009, 2010), Giacomini and White (2006), Perron and Yamamoto

(2021) and West (1996)], tests and inference for structural changes [e.g., Andrews (1993), Bai and

Perron (1998), Casini and Perron (2022b, 2021, 2022a), Elliott and Müller (2007), and Qu and

Perron (2007)], tests and inference in time-varying parameters models [e.g., Cai (2007) and Chen

and Hong (2012)], tests and inference for regime switching models [e.g., Hamilton (1989) and Qu

and Zhuo (2020)] and others are part of this class.

Recently, Casini (2023b) proposed a new HAC estimator that applies nonparametric smooth-

ing over time in order to account flexibly for nonstationarity. We show theoretically that nonpara-

1



alessandro casini, taosong deng and pierre perron

metric smoothing over time is robust to low frequency contamination and prove that the resulting

sample local autocovariance and the local periodogram do not exhibit long memory features. Non-

parametric smoothing avoids mixing highly heterogeneous data coming from distinct nonstationary

regimes as opposed to what the sample autocovariance and the periodogram do.

Our work is different from the literature on spurious persistence caused by the presence of

level shifts or other deterministic trends. Perron (1990) showed that the presence of breaks in

mean often induces spurious non-rejection of the unit root hypothesis, and that the presence of

a level shift asymptotically biases the estimate of the AR coefficient towards one. Bhattacharya,

Gupta and Waymire (1983) demonstrated that certain deterministic trends can induce the spuri-

ous presence of long memory. In other contexts, similar issues were discussed by Christensen and

Varneskov (2017), Diebold and Inoue (2001), Demetrescu and Salish (2020), Lamoureux and Las-

trapes (1990), Hillebrand (2005), Granger and Hyung (2004), McCloskey and Hill (2017), Mikosch

and Stărica (2004), Müller and Watson (2008) and Perron and Qu (2010). Our results are different

from theirs in that we consider a more general problem and we allow for more general forms of non-

stationarity using the segmented locally stationary framework of Casini (2023b). Importantly, we

provide a general solution to these problems and show theoretically its robustness to low frequency

contamination. Moreover, we discuss in detail the implications of our theory for HAR inference.

HAR inference relies on estimation of the long-run variance (LRV). The latter, from a time

domain perspective, is equivalent to the sum of all autocovariances while from a frequency domain

perspective, is equal to 2π times an integrated time-varying spectral density at the zero frequency.

From a time domain perspective, estimation involves a weighted sum of the sample autocovari-

ances, while from a frequency domain perspective estimation is based on a weighted sum of the

periodogram ordinates near the zero frequency. Therefore, our results on low frequency contami-

nation for the sample autocovariances and the periodogram can have important implications.

There are two main approaches in HAR inference, one based on traditional asymptotics and

the other based on fixed-smoothing asymptotics. The classical approach relies on a LRV estimator

using a small bandwidth [cf. the HAC estimators of Newey and West (1987, 1994) and Andrews

(1991)]. Inference is standard because HAR test statistics follow asymptotically standard distri-

butions. It was shown early that HAC standard errors can result in oversized tests when there is

substantial temporal dependence. This stimulated a second approach based on a LRV estimator

that keeps the bandwidth at a fixed fraction of the sample size and that converges weakly to a

random variable [cf. Kiefer, Vogelsang and Bunzel (2000)]. Inference is then based on a non-

standard reference distribution and it is shown that fixed-b achieves high-order refinements [e.g.,
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Sun, Phillips and Jin (2008)] and reduces the oversize problem of HAR tests.1 However, unlike

the classical approach, current fixed-b HAR inference is only valid under stationarity [cf. Casini

(2023a)] as the fixed-b limiting distribution of the t/F statistic is non-pivotal under nonstationary.

More recently, a variant of the fixed-b approach [see, e.g., Sun (2014b) and Lazarus et al. (2018)]

considered the use of small-b asymptotics in conjunction with fixed-b or t/F critical values. These

bandwidths are typically larger than the MSE-optimal bandwidths used for the HAC estimators.

Recently, Casini (2023b) questioned the performance of HAR inference under nonstationarity

from a theoretical standpoint. Simulation evidence of serious (e.g., non-monotonic) power or related

issues in specific HAR inference contexts were documented by Altissimo and Corradi (2003), Casini

(2018), Casini and Perron (2019, 2022b, 2021), Chan (2022a, 2022b), Crainiceanu and Vogelsang

(2007), Deng and Perron (2006), Juhl and Xiao (2009), Kim and Perron (2009), Martins and

Perron (2016), Otto and Breitung (2021), Perron (1991), Perron and Yamamoto (2021), Shao and

Zhang (2010), Vogelsang (1999) and Zhang and Lavitas (2018) among others]. Our theoretical

results show that these issues occur because the unaccounted nonstationarity alters the spectrum

at low frequencies. Each sample autocovariance is upward biased (d∗ > 0) and the resulting LRV

estimators tend to be inflated. When these estimators are used to normalize test statistics, the

latter lose power. Interestingly, d∗ is independent of k so that the more lags are included the more

severe is the problem. Further, by virtue of weak dependence, we have that ΓT (k) → 0 as k → ∞
but d∗ > 0 across k. We show formally that long bandwidths/fixed-b LRV estimators are expected

to suffer most from power losses because they use many/all lagged autocovariances.

To precisely analyze the theoretical properties of the HAR tests under the null hypothesis,

we present second-order Edgeworth expansions under nonstationarity for the distribution of the

HAC and DK-HAC estimator and for the distribution of the corresponding t-test in the linear

regression model. Under stationarity the results concerning the HAC estimator were provided by

Velasco and Robinson (2001). We show that the order of the approximation error of the expansion

is the same as under stationarity from which it follows that the error in rejection probability

(ERP) is also the same. The ERP of the t-test based on the DK-HAC estimator is slightly larger

than that of the t-test based on the HAC estimator due to the double smoothing. High-order

asymptotic expansions for spectral and other estimates were studied by Bhattacharya and Ghosh

(1978), Bentkus and Rudzkis (1982), Janas (1994), Phillips (1977, 1980) and Taniguchi and Puri

1See Dou (2019), Hwang and Sun (2017), Ibragimov, Kattuman and Skrobotov (2021), Ibragimov and Müller
(2010), Jansson (2004), Kiefer and Vogelsang (2002, 2005), Lazarus, Lewis and Stock (2020), Lazarus et al. (2018)
Müller (2007, 2014), Phillips (2005), Politis (2011), Pötscher and Preinerstorfer (2016, 2018, 2019), Robinson (1998),
Sun (2013, 2014a, 2014b) and Zhang and Shao (2013).
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(1996). The asymptotic expansions of the fixed-b HAR tests under stationarity were developed

by Jansson (2004) and Sun et al. (2008). Casini (2023a) showed that under nonstationarity the

ERP of the fixed-b HAR tests can be larger than that of HAR tests based on HAC and DK-HAC

estimators thereby controverting the conclusion in the literature that the original fixed-b HAR

tests have superior null rejection rates relative to HAR tests based on traditional LRV estimators.

Casini (2023a) also developed fixed-b methods that are valid under nonstationarity and in fact

provide better null rejection rates in finite-sample.

The Monte Carlo results suggest that under the null hypothesis nonstationarity can generate

larger size distortions than what one finds under stationarity. In particular, fixed-smoothing meth-

ods can exhibit under-rejections whereas HAC and DK-HAC methods can exhibit over-rejections

when there is strong persistence. For the latter problem, our second-order Edgeworth expansions

could be used to construct corrections to the standard normal critical value. We relegate this

opportunity to future research.

The paper is organized as follows. Section 2 presents the statistical setting and Section 3 es-

tablishes the theoretical results on low frequency contamination. Section 4 presents the Edgeworth

expansions of HAR tests based on the HAC and DK-HAC estimators. The implications of our

results for HAR inference are analyzed analytically and computationally through simulations in

Section 5. Section 6 concludes. The supplemental materials [cf. Casini, Deng and Perron (2024)]

contain some additional examples and all mathematical proofs.

2 Statistical Framework for Nonstationarity

Suppose {Vt,T }T
t=1 is defined on a probability space (Ω, F , P), where Ω is the sample space, F

is the σ-algebra and P is a probability measure. In order to analyze time series models that have

a time-varying spectrum it is useful to introduce an infill asymptotic setting whereby we rescale

the original discrete time horizon [1, T ] by dividing each t by T. Letting u = t/T we define a

new time scale u ∈ [0, 1] on which as T → ∞ we observe more and more realizations of Vt,T

close to time t. As a notion of nonstationarity, we use the concept of segmented local stationarity

(SLS) introduced in Casini (2023b). This extends the locally stationary processes [cf. Dahlhaus

(1997)] to allow for structural change and regime switching-type models. SLS processes allow for

a finite number of discontinuities in the spectrum over time. We collect the break dates in the

set T ≜ {T 0
1 , . . . , T

0
m}. Let i ≜

√
−1. A function G (·, ·) : [0, 1] × R → C is said to be left-

differentiable at u0 if ∂G (u0, ω) /∂−u ≜ limu→u−
0

(G (u0, ω) −G (u, ω)) / (u0 − u) exists for any
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ω ∈ R. Let m0 ≥ 0 be a finite integer.

Definition 2.1. A sequence of stochastic processes {Vt,T }T
t=1 is called segmented locally stationary

(SLS) with m0 + 1 regimes, transfer function A0 and trend µ if there exists a representation

Vt,T = µj (t/T ) +
� π

−π

exp (iωt)A0
j,t,T (ω) dξ (ω) ,

(
t = T 0

j−1 + 1, . . . , T 0
j

)
, (2.1)

for j = 1, . . . , m0 + 1, where by convention T 0
0 = 0 and T 0

m0+1 = T . The following technical

conditions are also assumed to hold: (i) ξ (λ) is a process on [−π, π] with ξ (ω) = ξ (−ω) and

cum {dξ (ω1) , . . . , dξ (ωr)} = ζ

 r∑
j=1

ωj

 gr (ω1, . . . , ωr−1) dω1 . . . dωr,

where cum {· · · } denotes the cumulant spectra of r-th order, g1 = 0, g2 (ω) = 1, |gr (ω1, . . . , ωr−1)| ≤
Mr for all r with Mr < ∞ that may depend on r, and ζ (ω) = ∑∞

j=−∞ δ (ω + 2πj) is the period 2π
extension of the Dirac delta function δ (·); (ii) There exists a C < ∞ and a piecewise continuous

function A : [0, 1] × R → C such that, for each j = 1, . . . , m0 + 1, there exists a 2π-periodic
function Aj : (λ0

j−1, λ
0
j ] × R → C with Aj (u, −ω) = Aj (u, ω), λ0

j ≜ T 0
j /T and for all T,

A (u, ω) = Aj (u, ω) for λ0
j−1 < u ≤ λ0

j , (2.2)

sup
1≤j≤m0+1

sup
T 0

j−1<t≤T 0
j , ω

∣∣∣A0
j,t,T (ω) − Aj (t/T, ω)

∣∣∣ ≤ CT−1; (2.3)

(iii) µ· (·) is piecewise Lipschitz continuous.

Definition 2.1 states that Vt,T has a time-varying spectral representation where both the mean

µ· (·) and transfer function A0
·,·,T (ω) are piecewise continuous. Since the transfer function depends

on the parameters that enter the second moments of Vt,T , the smoothness properties of µ· (·) and A
guarantee that Vt,T has a piecewise locally stationary behavior. We require additional smoothness

properties for A and an example is presented at the end of this section.

Assumption 2.1. (i) {Vt,T } is a SLS process with m0 +1 regimes; (ii) A (u, ω) is twice continuously
differentiable in u at all u ̸= λ0

j , j = 1, . . . , m0 + 1, with bounded derivatives (∂/∂u)A (u, ·) and

(∂2/∂u2)A (u, ·); (iii) (∂2/∂u2)A (u, ·) is Lipschitz continuous at all u ̸= λ0
j (j = 1, . . . , m0 + 1);

(iv) A (u, ω) is twice left-differentiable in u at u = λ0
j (j = 1, . . . , m0 + 1) with bounded deriva-

tives (∂/∂−u)A (u, ·) and (∂2/∂−u
2)A (u, ·) and has piecewise Lipschitz continuous derivative

(∂2/∂−u
2)A (u, ·); (v) A (u, ω) is Lipschitz continuous in ω.
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We define the time-varying spectral density as fj (u, ω) ≜ (2π)−1|Aj (u, ω) |2 for T 0
j−1/T < u =

t/T ≤ T 0
j /T . Then we can define the local covariance of Vt,T at the rescaled time u with Tu /∈ T and

lag k ∈ Z as c (u, k) ≜
� π

−π
eiωkf (u, ω) dω. The same definition is also used when Tu ∈ T and k ≥

0. For Tu ∈ T and k < 0 it is defined as c (u, k) ≜ limT →∞
� π

−π
eiωkA (u, ω)A (u− k/T, −ω) dω.

Next, we impose conditions on the temporal dependence (we omit the second subscript T

when it is clear from the context). Let

κ
(a1,a2,a3,a4)
V,t (u, v, w)

≜ κ(a1,a2,a3,a4) (t, t+ u, t+ v, t+ w) − κ
(a1,a2,a3,a4)
N (t, t+ u, t+ v, t+ w)

≜ E
(
V

(a1)
t − EV (a1)

t

) (
V

(a2)
t+u − EV (a2)

t+u

) (
V

(a3)
t+v − EV (a3)

t+v

) (
V

(a4)
t+w − EV (a4)

t+w

)
− E

(
V

(a1)
N ,t − EV (a1)

N ,t

) (
V

(a2)
N ,t+u − EV (a2)

N ,t+u

) (
V

(a3)
N ,t+v − EV (a3)

N ,t+v

) (
V

(a4)
N ,t+w − EV (a4)

N ,t+w

)
,

where {VN ,t} is a Gaussian sequence with the same mean and covariance structure as {Vt},
κ

(a1,a2,a3,a4)
V,t (u, v, w) is the time-t fourth-order cumulant of (V (a1)

t , V
(a2)

t+u , V
(a3)

t+v , V
(a4)

t+w ) while κ(a1,a2,a3,a4)
N

(t, t+ u, t+ v, t+ w) is the time-t centered fourth moment of Vt if Vt were Gaussian.

Assumption 2.2. (i)
∑∞

k=−∞ supu∈[0, 1] ∥c (u, k)∥ < ∞ and
∑∞

k=−∞
∑∞

j=−∞
∑∞

l=−∞ supu∈[0, 1] |κ(a1,a2,a3,a4)
V,⌊T u⌋

(k, j, l) | < ∞ for all a1, a2, a3, a4 ≤ p. (ii) For all a1, a2, a3, a4 ≤ p there exists a function

κ̃a1,a2,a3,a4 : [0, 1] × Z × Z × Z → R such that sup1≤j≤m0+1 supλ0
j−1<u≤λ0

j
|κ(a1,a2,a3,a4)

V,⌊T u⌋ (k, s, l) −
κ̃a1,a2,a3,a4 (u, k, s, l) | ≤ LT−1 for some constant L; the function κ̃a1,a2,a3,a4 (u, k, s, l) is twice

differentiable in u at all u ̸= λ0
j (j = 1, . . . , m0 + 1) with bounded derivatives (∂/∂u) κ̃a1,a2,a3,a4

(u, ·, ·, ·) and (∂2/∂u2) κ̃a1,a2,a3,a4 (u, ·, ·, ·), and twice left-differentiable in u with bounded derivatives

(∂/∂−u) κ̃a1,a2,a3,a4 (u, ·, ·, ·) and (∂2/∂−u
2) κ̃a1,a2,a3,a4 (u, ·, ·, ·), and piecewise Lipschitz continuous

derivative (∂2/∂−u
2) κ̃a1,a2,a3,a4 (u, ·, ·, ·).

If {Vt} is stationary then the cumulant condition of Assumption 2.2-(i) reduces to the stan-

dard one used in the time series literature [see Andrews (1991)]. Note that α-mixing and some

moment conditions imply that the cumulant condition of Assumption 2.2 holds. Part (ii) extends

the smoothness conditions on A (u, ω) in Assumption 2.1 to the fourth-order cumulant. These

smoothness conditions are not particularly restrictive.

Consider the following time-varying AR(1) process with one break at mid-sample λ0
1 = 0.5,

Vt,T = ρ (t/T )Vt−1,T + σ (t/T )ut, (2.4)
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ρ (u) =

ρ1 (u) , u ≤ 0.5

ρ2 (u) , u > 0.5
,

where ρ1 (·) and ρ2 (·) are Lipschitz continuous, σ (·) is piecewise Lipschitz continuous and {ut}
are i.i.d. random variables with mean zero and unit variance. Then, Vt,T is a SLS process with

A (u, ω) = σ (u) (1 + ρ (u) exp (iω)). If ρ (u) and σ (u) satisfy the same smoothness conditions in

u required for A (u, ω) in Assumption 2.1, supu∈[0, 1] |ρ (u)| < 1 and supu∈[0, 1] σ (u) < ∞, then Vt,T

fulfills Assumption 2.1-2.2.

3 Theoretical Results on Low Frequency Contamination

In this section we establish theoretical results about the low frequency contamination induced

by nonstationarity, misspecification and outliers. We first consider the asymptotic proprieties of

two key quantities for inference in time series contexts, i.e., the sample autocovariance and the

periodogram. These are defined, respectively, by

Γ̂ (k) = T−1
T∑

t=|k|+1

(
Vt − V

) (
Vt−|k| − V

)
, (3.1)

where V is the sample mean and

IT (ω) =
∣∣∣∣∣ 1√
T

T∑
t=1

exp (−iωt)Vt

∣∣∣∣∣
2

, ω ∈ [0, π] ,

which is evaluated at the Fourier frequencies ωj = (2πj) /T ∈ [0, π]. In the context of autocor-

related data, hypotheses testing and construction of confidence intervals require estimation of the

so-called long-run variance. Traditional HAC estimators are weighted sums of sample autocovari-

ances while frequency domain estimators are weighted sums of the periodograms. Casini (2023b)

considered an alternative estimate for the sample autocovariance to be used in the DK-HAC esti-

mators, defined in Section 5.1, namely,

Γ̂DK (k) ≜ nT

T

⌊T/nT ⌋∑
r=1

ĉT (rnT/T, k) ,

7
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where k ∈ Z, nT → ∞ satisfying the conditions given below, and

ĉT (rnT/T, k) = n−1
2,T

n2,T −1∑
s=0

(
VrnT +⌊|k/2|⌋−n2,T /2+s+1 − V rnT ,T

) (
VrnT −⌊|k/2|⌋−n2,T /2+s+1 − V rnT ,T

)
,

(3.2)

with V rnT ,T = n−1
2,T

∑n2,T −1
s=0 VrnT −n2,T /2+s+1 and n2,T → ∞ such that n2,T/T → 0. For notational

simplicity we assume that nT and n2,T are even. ĉT (rnT/T, k) is an estimate of the autocovariance

at time rnT and lag k, i.e., cov(VrnT
, VrnT −k). One could use a smoothed or tapered version; the

estimate Γ̂DK (k) is an integrated local sample autocovariance. It extends Γ̂ (k) to better account

for nonstationarity. Similarly, the DK-HAC estimator does not relate to the periodogram but to

the local periodogram defined by

IL,T (u, ω) ≜
∣∣∣∣∣ 1
√
nT

nT −1∑
s=0

V⌊T u⌋−nT /2+s+1,T exp (−iωs)
∣∣∣∣∣
2

,

where IL,T (u, ω) is the (untapered) periodogram over a segment of length nT with midpoint ⌊Tu⌋.
We also consider the statistical properties of both Γ̂DK (k) and IL,T (u, ω) under nonstationarity.

Define rj = (λ0
j − λ0

j−1) for j = 1, . . . , m0 + 1 with λ0
0 = 0 and λ0

m0+1 = 1. Note that λ0
j = ∑j

s=0 rs.

The low frequency bias is generated by breaks in the mean function. For the sample autoco-

variance, the bias factor is given by d∗ = 2−1∑
j1 ̸=j2 rj1rj2(µj2 − µj1)2 where

µj = r−1
j

� λ0
j

λ0
j−1

µj (u) du, for j = 1, . . . , m0 + 1,

with µj (·) defined in (2.1) and we use
∑

j1 ̸=j2 as a shorthand for
∑

{j1, j2=1,..., m0+1, j1 ̸=j2} . When the

mean is constant in each regime µj (t/T ) = µj. Then, µj = µj and d
∗ = 2−1∑

j1 ̸=j2 rj1rj2(µj2 −µj1)2.

If the mean is constant across regimes, then there is no low frequency bias and d∗ = 0.
In Section 3.1 we generalize the results in the literature on low frequency contamination for

the sample autocovariance and the periodogram. In Section 3.2 we show that the local sample

autocovariance and the local periodogram are in general robust to low frequency contamination.

3.1 The Sample Autocovariance and the Periodogram Under Nonstationarity

Mikosch and Stărica (2004) established some results on the low frequency bias for the sample

autocovariance and periodogram under the assumption that Vt is stationary in each regime and
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that the regimes are independent. In Section S.A in the supplement we extend these results by

allowing time-varying mean and autocovariace function in each regime and weak dependence across

regimes. Here we present a brief summary of these results. Theorem S.A.1 shows that for {Vt,T }
that satisfies Definition 2.1 and Assumption 2.1-2.2, we have

Γ̂ (k) ≥
� 1

0
c (u, k) du+ d∗ + oa.s. (1) , (3.3)

and as k → ∞, Γ̂ (k) ≥ d∗ P-a.s. This suggests that Γ̂ (k) is asymptotically the sum of two terms.

The first is the autocovariance of {Vt} at lag k. The second, d∗, is always positive and increases

with the difference in the mean across regimes. Thus, the time-varying mean induces a positive

bias. The result that Γ̂ (k) ≥ d∗ P-a.s. as k → ∞ implies that unaccounted nonstationarity

generates long memory effects. The intuition is straightforward. A long memory SLS process

satisfies
∑∞

k=−∞ |Γ (u, k) | → ∞ for some u ∈ (0, 1), similar to a stationary long memory process.2

The theorem shows that Γ̂ (k) exhibits a similar property and Γ̂ (k) decays more slowly than for a

short memory stationary process for small lags and approaches a constant d∗ > 0 for large lags.

Theorem S.A.2 in the supplement analyzes the properties of the periodogram IT (ωl) as ω →
0 when the mean is time-varying. The result states that as ω → 0 E (IT (ω)) generally takes

unbounded values except for some ω for which E (IT (ω)) is bounded below by 2π
� 1

0 f (u, ω) du > 0.
A SLS process with long memory has an unbounded local spectral density f (u, ω) as ω → 0 for

some u ∈ [0, 1]. Since f (·, ·) cannot be negative, it follows that
� 1

0 f (u, ω) du is also unbounded

as ω → 0. Theorem S.A.2 suggests that nonstationarity consisting of time-varying first moment

results in a periodogram sharing features of a long memory series.

This discussion suggests that certain deviations from stationarity can generate a long mem-

ory component that leads to overestimation of the true autocovariance. It follows that the LRV

is also overestimated. Since the LRV is used to normalize test statistics, this has important con-

sequences for many HAR inference tests characterized by deviations from stationarity under the

alternative hypothesis. These include tests for forecast evaluation, tests and inference for struc-

tural change models, time-varying parameters models and regime-switching models. In the linear

regression model, Vt corresponds to the regressors multiplied by the fitted residuals. Unaccounted

nonlinearities and outliers can contaminate the mean of Vt and therefore contribute to d∗.

2In Section S.A.1 in the supplement we define long memory SLS processes that are characterized by the property∑∞
k=−∞ |ρV (u, k)| = ∞ for some u ∈ [0, 1] where ρV (u, k) ≜ Corr(V⌊T u⌋, V⌊T u⌋+k) and ϑ (u) ∈ (0, 1/2) is the long

memory parameter at time u.

9
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3.2 The Sample Local Autocovariance and Local Periodogram Under Nonsta-

tionarity

We now consider the behavior of ĉT (rnT/T, k) defined in (3.2) for fixed k as well as for k → ∞.

For notational simplicity we assume that k is even. For u ∈ (0, 1) define S (u, k, n2,T ) = {⌊Tu⌋ +
k/2 − n2,T/2 + 1, . . . , ⌊Tu⌋ + k/2 + n2,T/2}, nj,L (u, k, n2,T ) = (T 0

j − (⌊Tu⌋ + k/2 − n2,T/2 + 1)),
and nj,R (u, k, n2,T ) = ((⌊Tu⌋ + k/2 +n2,T/2 + 1) −T 0

j ). S (u, k, n2,T ) denotes a window of length

n2,T around ⌊Tu⌋, nj,L (u, k, n2,T ) (resp. nj,R (u, k, n2,T )) denotes the distance between the left

(resp. right) end point of S (u, k, n2,T ) and T 0
j .

Theorem 3.1. Assume that {Vt,T } satisfies Definition 2.1, nT , n2,T → ∞ with nT/T → 0, n2,T/T →
0 and nT/n2,T → 0. Under Assumption 2.1-2.2,

(i) for u ∈ (0, 1) such that T 0
j /∈ S (u, k, n2,T ) for all j = 1, . . . , m0, ĉT (u, k) = c (u, k) +

oP (1);
(ii) for u ∈ (0, 1) such that T 0

j ∈ S (u, k, n2,T ) for some j = 1, . . . , m0, we have two sub-cases:

(a) if nj,L (u, k, n2,T ) /n2,T → γ or nj,R (u, k, n2,T ) /n2,T → γ with γ ∈ (0, 1), then

ĉT (u, k) ≥ γc
(
λ0

j , k
)

+ (1 − γ) c (u, k) + γ (1 − γ)
(
µj

(
λ0

j

)
− µj+1 (u)

)2
+ oP (1) .

(b) if nj,L (u, k, n2,T ) /n2,T → 0 or nj,R (u, k, n2,T ) /n2,T → 0, then ĉT (u, k) = c (u, k) + oP (1).
Further, if there exists an r = 1, . . . , ⌊T/nT ⌋ such that there exists a j = 1, . . . , m0 with

T 0
j ∈ S (rnT , k, n2,T ) satisfying (ii-a), then, as k → ∞, Γ̂DK (k) ≥ d∗

T P-a.s., where d∗
T =

(n2,T/T ) γ (1 − γ) (µj(λ0
j) − µj+1 (u))2 > 0 and d∗

T → 0 as T → ∞.

The theorem shows that the behavior of ĉT (u, k) depends on whether a change in mean is

present, and if so whether it is close enough to ⌊Tu⌋. For a given u ∈ (0, 1) and k ∈ Z, if the
condition of part (i) of the theorem holds, then ĉT (u, k) is consistent for cov(V⌊T u⌋V⌊T u⌋−k) =
c (u, k) + O (T−1) [see Casini (2023b)]. If a change-point falls close to either boundary of the

window S (u, k, n2,T ), as specified in case (ii-b), then ĉT (u, k) remains consistent. The only case

in which a non-negligible bias arises is when the change-point falls in a neighborhood around ⌊Tu⌋
sufficiently far from either boundary. This represents case (ii-a), for which a biased estimate results.

However, the bias vanishes asymptotically. Since Γ̂DK (k) is an average of ĉT (rnT , k) over blocks

r = 1, . . . , ⌊T/nT ⌋, if case (ii-a) holds then Γ̂DK (k) ≥ d∗
T as k → ∞ but d∗

T → 0 as T → ∞. Thus,

comparing this result with the discussion above on Γ̂ (k) (see also Theorem S.A.1), in practice the

long memory effects are unlikely to occur when using Γ̂DK (k). Furthermore, one can reduce this

10
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problem by appropriately choosing the blocks r = 1, . . . , ⌊T/nT ⌋. A procedure was proposed in

Casini (2023b) using the methods developed in Casini and Perron (2023).

We now study the asymptotic properties of IL,T (u, ω) as ω → 0 for u ∈ [0, 1]. We consider

the Fourier frequencies ωl = 2πl/nT ∈ (−π, π) for an integer l ̸= 0 (mod nT ). We need the

following high-level conditions. Part (i) corresponds to Assumption S.A.1 while part (ii) requires

additional smoothness.

Assumption 3.1. (i) For each ωl and u ∈ [0, 1] with T 0
j ∈ S (u, 0, nT ) there exist Bj ∈ R, j =

1, . . . , m0 with Bj1 ̸= Bj2 for j1 ̸= j2 such that

∣∣∣∣∣
nT −1∑
s=0

µ ((⌊Tu⌋ − nT/2 + s+ 1) /T ) exp (−iωls)
∣∣∣∣∣
2

≥
∣∣∣∣∣∣∣Bj

T 0
j −(⌊T u⌋−nT /2+1)∑

s=0
exp (−iωls) +Bj+1

nT −1∑
s=T 0

j −(⌊T u⌋−nT /2)
exp (−iωls)

∣∣∣∣∣∣∣
2

.

(ii) supu∈[0, 1], u ̸=λj
0, j=1,..., m0

(∂2/∂u2) f (u, ω) is continuous in ω.

Theorem 3.2. Assume that {Vt,T } satisfies Definition 2.1 and that nT → ∞ with nT/T → 0. Under
Assumption 2.1-2.2, S.A.1-(ii) and 3.1,

(i) for any u ∈ (0, 1) such that T 0
j /∈ S (u, 0, nT ) for all j = 1, . . . , m0, E (IL,T (u, ωl)) ≥

f (u, ωl) as ωl → 0;
(ii) for any u ∈ (0, 1) such that T 0

j ∈ S (u, 0, nT ) for some j = 1, . . . , m0 we have two sub-

cases: (a) if nj,L (u, 0, nT ) /nT → γ or nj,R (u, 0, nT ) /nT → γ with γ ∈ (0, 1) , and nTω
2
l → 0

as T → ∞, then E (IL,T (u, ω)) → ∞ for many values in the sequence {ωl} as ωl → 0; (b) if

nj,L (u, 0, nT ) /nT → 0 or nj,R (u, 0, nT ) /nT → 0, then E (IL,T (u, ωl)) ≥ f (u, ωl) as ωl → 0.

It is useful to compare Theorem 3.2 with the discussion above about the periodogram (see

also Theorem S.A.2). Unlike the periodogram, the asymptotic behavior of the local periodogram

as ωl → 0 depends on the vicinity of u to λ0
j (j = 1, . . . , m0). Since IL,T (u, ωl) uses observations

in the window S (u, 0, nT ), if no discontinuity in the mean occurs in this window then IL,T (u, ωl)
is asymptotically unbiased for the spectral density f (u, ωl). More complex is its behavior if some

T 0
j falls in S (u, 0, nT ). The theorem shows that if T 0

j is close to the boundary, as indicated in

case (ii-b), then IL,T (u, ωl) is bounded below by f (u, ωl), similarly to case (i). If instead T 0
j falls

sufficiently close to the mid-point ⌊Tu⌋ , as indicated in case (ii-a), then E (IL,T (u, ω)) → ∞ for

many values in the sequence {ωl} as ωl → 0 provided it satisfies nTω
2
l → 0 as T → ∞. Hence,

11
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unless Tλ0
j is close to ⌊Tu⌋ , the local periodogram IL,T (u, ωl) behaves very differently from the

periodogram IT (ωl). Accordingly, nonstationarity is unlikely to generate long memory effects if

one uses the local periodogram. As for ĉT (u, k), if one uses preliminary inference procedures [cf.

Casini and Perron (2023)] for the detection and estimation of the discontinuities in the spectrum

and for the estimation of their locations, then one can construct the window efficiently and avoid

T 0
j being too close to ⌊Tu⌋ .

4 Edgeworth Expansions for HAR Tests Under Nonstationarity

We now consider Edgeworth expansions for the distribution of the t-statistic in the location model

based on the HAC and DK-HAC estimator where {Vt} is assumed to have zero-mean and time-

varying second moments. This is useful for analyzing the theoretical properties of the null rejection

probabilities of the HAR tests under nonstationarity. As in the literature, we make use of the

Gaussianity assumption for mathematical convenience.3 We relax the stationarity assumption

used in the literature [cf. Jansson (2004), Sun et al. (2008) and Velasco and Robinson (2001)]

which has important consequences for the nature of the results. The results concerning the t-

test based on the HAC estimator are presented in Section 4.1 while those based on the DK-HAC

estimator are presented in Section 4.2.

Let {Vt} be a zero-mean Gaussian SLS process satisfying Assumption 2.1-(i-iv). Let

h1 ≜

√
T V√
JT

∼ N (0, 1) , (4.1)

which is valid for all T such that JT > 0 where JT = T−1∑T
s=1

∑T
t=1 E(VsVt).

4.1 HAC-based HAR Tests

The classical HAC estimator is defined as

ĴHAC,T ≜
T −1∑

k=−T +1
K1 (b1,Tk) Γ̂ (k) , Γ̂ (k) = T−1

T∑
t=|k|+1

VtVt−|k|,

3This can be relaxed by considering distributions with Gram-Charlier representations at the expenses of more
complex derivations.
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where K1 (·) is a kernel and b1,T a bandwidth parameter. Under appropriate conditions on b1,T ,

we have ĴHAC,T − JT
P→ 0 from which it follows that

ZT ≜

√
T V√
ĴHAC,T

d→ N (0, 1) .

Let V = (V1, . . . , VT )′. Note that ĴHAC,T = V′Wb1V/T where Wb1 has (r, s)th element

W
(r,s)
b1 = w (b1,T (r − s)) =

�
Π
K̃b1 (ω) ei(r−s)ωdω, (4.2)

such that K̃b1 (ω) is a kernel with smoothing number b−1
1,T and Π = (−π, π]. For an even function

K that integrates to one, we define

K̃b1 (ω) = b−1
1,T

∞∑
j=−∞

K
(
b−1

1,T (ω + 2πj)
)
.

Note that K̃b1 (ω) is periodic of period 2π, even and satisfies ∫π
−π K̃b1 (ω) dω = 1. It follows that

w (r) =
� ∞

−∞ eirxK (x) dx and ĴHAC,T = 2π
�

Π K̃b1 (ω) IT (ω) dω. K̃b1 (ω) is the so-called spectral

window generator. We refer to Brillinger (1975) for a review of these introductory concepts.

We now analyze the joint distribution of V and ĴHAC,T . Let BT = E(ĴHAC,T )/JT − 1 and

V2
T = Var(

√
Tb1,T ĴHAC,T/JT ) denote the relative bias and variance, respectively, of ĴHAC,T . It is

convenient to work with standardized statistics with zero mean and unit variance. Write

ZT = ZT (h) = h1
(
1 + BT + VTh2 (Tb1,T )−1/2

)−1/2
, h2 =

√
Tb1,T

 ĴHAC,T − E
(
ĴHAC,T

)
JT VT

 ,
where h = (h1, h2)′. Note that h2 = V′QT V−E (V′QT V) is a centered quadratic form in a

Gaussian vector where QT = Wb1(
√
T/b1,T VTJT )−1. The joint characteristic function of h is

ψT (t) = ψT (t1, t2) = |I − 2it2ΣVQT |−1/2 exp
(
−2−1t21ξ

′
T (I − 2it2ΣVQT )−1 ΣV ξT − it2ΥT

)
,

where ΥT = E (V′QT V) = Tr (ΣVQT ) , ΣV = E (VV′), and ξT = 1/
√
TJT with 1 being the T × 1

vector (1, 1, . . . , 1)′. The cumulant generating function of h is

KT (t1, t2) = logψT (t1, t2) =
∞∑

r=0

∞∑
s=0

κT (r, s) (it1)r

r!
(it2)r

s! ,
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where κT (r, s) is the cumulant of h. Phillips (1980) considered the distribution of linear and

quadratic forms under Gaussianity. From his derivations, the nonzero bivariate cumulants are

κT (0, s) = 2s−1 (s− 1)!Tr ((ΣVQT )s) , s > 1,

κT (2, s) = 2ss!ξ′
T (ΣVQT )s ΣV ξT , s > 0.

We introduce the following assumptions about {Vt} and f (u, 0).

Assumption 4.1. For all u ∈ [0, 1], 0 < f (u, 0) < ∞ and f (u, ω) has df continuous derivatives

(df ≥ 2) f(df) (u, ω) in a neighborhood of ω = 0 and the df th derivative satisfies a Lipschitz

condition of order ϱ with ϱ ∈ (0, 1].

Assumption 4.2. For all u, f (u, ω) ∈ Lp for some p > 1, i.e., ∥f (u, ·)∥p
p =

�
Π f

p (u, ω) dω < ∞.

Assumption 4.3. |K (x) | < ∞, K (x) = K (−x), K (x) = 0 for x /∈ Π and
�

Π K (x) dx = 1.

Assumption 4.4. K (x) satisfies a uniform Lipschitz condition of order 1 in [−π, π].

Assumption 4.5. For j = 0, 1, . . . , df , df ≥ 2 and r = 1, 2, . . .

µj (Kr) ≜
�

Π
xj (K (x))r dx =

= 0, j < df , r = 1;

̸= 0, j = df , r = 1.

Assumption 4.6. b1,T + (Tb1,T )−1 → 0 as T → ∞.

Assumption 4.7. b1,T = CT−q where 0 < q < 1 and 0 < C < ∞.

Assumption 4.3-4.7 about the kernel and bandwidth are the same as in Velasco and Robinson

(2001) in which a discussion can be found. They are satisfied by most kernels used in practice.

The bandwidth condition in Assumption 4.6 is sufficient for the consistency of ĴHAC,T and is

strengthened in Assumption 4.7, for some parts of the proofs, which is satisfied by popular MSE-

optimal bandwidths [cf. Andrews (1991), Casini (2022), Belotti et al. (2023) and Whilelm (2015)].

Assumption 4.1-4.2 impose conditions on the smoothness and boundedness of the spectral

density. Assumption 4.1 is implied by
∑∞

k=−∞ |k|df +ϱ supt |EVtVt−k| < ∞ but it is stronger than

necessary because it extends the smoothness restriction to all frequencies. Assumption 4.2 does

impose some restrictions on f (u, ·) beyond the origin, though it is not particularly restrictive since

any p > 1 arbitrarily close to 1 will suffice.
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We now analyze the asymptotic distribution of ĴHAC,T . Under stationarity this was discussed

by Bentkus and Rudzkis (1982) and Velasco and Robinson (2001). From Lemma S.B.11-S.B.12 in

the supplement we obtain

BT = c1b
df

1,T +O
(
b

df +ϱ
1,T + T−1 log T

)
, where c1 =

µdf
(K)

� 1
0 f

(df) (u, 0) du
df !

� 1
0 f (u, 0) du

.

The order of the asymptotic bias b
df

1,T depends on the smoothness of the spectral density at ω = 0
[cf. Assumption 4.1]. The constant c1 depends on the moment of order df of the kernel K and on

the smoothness of f (u, ω) at ω = 0. For example, for the time-varying AR(1) in (2.4),

f (2) (u, 0) = − σ2 (u) ρ (u)
π
(
1 + ρ (u)2 − 2ρ (u)

)2 . (4.3)

If there is positive dependence at time u, then ρ (u) > 0 and f (2) (u, 0) < 0. Suppose K (x) ≥ 0 for

all x so that µ2 (K) > 0. Then the sign of the bias is determined by the sign of
� 1

0 f
(2) (u, 0) du.

A positive local AR(1) coefficient contributes negative bias which corresponds to the well-known

downward bias of the LRV estimator when there is positive dependence. Conversely, with anti-

persistence ρ (u) < 0 and f (2) (u, 0) > 0. Since ρ (·) is time-varying, whether the bias is positive

or negative depends on the path of ρ (·). The smoother is the spectral density at frequency zero,

the smoother the kernel and the slower b1,T can be. The factor
� 1

0 f (u, 0) du in the denominator

follows by definition because BT is the relative bias.

We present a second-order Edgeworth expansion to approximate the distribution of h, with
error o((Tb1,T )−1/2) and including terms up to order (Tb1,T )−1/2 to correct the asymptotic normal

distribution. This will imply the validity of that expansion for the distribution of ĴHAC,T . For

B ∈ B2, where B2 is any class of Borel sets in R2, let Q(2)
T (B) =

�
B φ2 (h) q(2)

T (h) dh, where
φ2 (h) = (2π)−1 exp{− (1/2) ∥h∥2} is the density of the bivariate standard normal distribution,

q
(2)
T (h) = 1 + (1/3!) (Tb1,T )−1/2 (Ξ0(0, 3)H3 (h2) + Ξ0(2, 1)H2 (h1) H1 (h2)) ,

where Hj (·) are the univariate Hermite polynomials of order j, and Ξ0 (0, 3) = (4π)1/2 2!
�

Π K
3 (ω)

dω ∥K∥−3
2 and Ξ0(2, 1) = (4π)1/2 K (0) ∥K∥−1

2 (see Lemma S.B.13-S.B.14). Let (∂B)ϕdenote a

neighborhood of radius ϕ of the boundary of a set B. Let PT denote the probability measure of h.

Theorem 4.1. Let Assumption 4.1, 4.2 (p > 1), 4.3-4.4 and 4.7 (0 < q < 1) hold. For ϕT =
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(Tb1,T )−ϖ with 1/2 < ϖ < 1, we have

sup
B∈B2

∣∣∣PT (B) − Q(2)
T (B)

∣∣∣ = o
(
(Tb1,T )−1/2

)
+ (4/3) sup

B∈B2
Q(2)

T

(
(∂B)2ϕT

)
. (4.4)

Theorem 4.1 shows that Q(2)
T is a valid second-order Edgeworth expansion for the measure PT .

The method of proof is the same as in Velasco and Robinson (2001). We first approximate the true

characteristic function and then apply a smoothing lemma [cf. Lemma S.B.2 in the supplement

which is from Bhattacharya and Rao (1975)]. The leading term of the approximation error is of

order o((Tb1,T )−1/2) as the second term on the right hand side of (4.4) is negligible if B is convex

because ϕT decreases as a power of T . This is the same order obtained for the corresponding

leading term under stationarity. Since the higher-order correction terms in q
(2)
T depend only on

K (·) but not on f (·, ·), they are equal to the one obtained under stationarity.

Next, we focus on ZT , i.e., a t-statistic for the mean. Proceeding as in Velasco and Robinson

(2001), we first derive a linear stochastic approximation to ZT (h) and show that its distribution is

the same as that of ZT up to order o((Tb1,T )−1/2). Then, we show that the asymptotic approxima-

tion for the distribution of the linear stochastic approximation is valid also for ZT with the same

error o((Tb1,T )−1/2). Using Lemma S.B.13-S.B.14 in the supplement we can substitute out BT and

VT in ZT and, by only focusing on the leading terms, we define the following linear stochastic

approximation,

Z̃T ≜ h1
(
1 − 2−1c1b

df

1,T − 2−1√4π ∥K2∥h2 (Tb1,T )−1/2
)
.

The next theorem presents a valid Edgeworth expansion for the distribution of Z̃T from that of h.

Theorem 4.2. Let Assumption 4.1, 4.2 (p > 1), 4.3-4.5 and 4.7 (q = 1/ (1 + 2df )) hold. For a

convex Borel set C, we have, for r2 (x) = −c1 (x2 − 1) /2,

sup
C

∣∣∣∣∣P (ZT ∈ C) −
�

C
φ (x)

(
1 + r2 (x) bdf

1,T

)
dx

∣∣∣∣∣ = o
(
(Tb1,T )−1/2

)
. (4.5)

Theorem 4.2 shows the form of the correction term to the standard normal distribution, i.e.,

b
df

1,T

�
C φ (x) r2 (x) dx. The error of the approximation is of order o((Tb1,T )−1/2) which is the same

as the one obtained under stationarity by Velasco and Robinson (2001).

Let Φ (·) denote the distribution function of the standard normal. Setting C = (−∞, z],
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integrating and Taylor expanding Φ (·), we obtain, uniformly in z,

P (ZT ≤ z) = Φ (z) + 1
2c1zφ (z) bdf

1,T + o
(
(Tb1,T )−1/2

)
(4.6)

= Φ
(
z
(

1 + 1
2c1b

df

1,T

))
+ o

(
(Tb1,T )−1/2

)
= Φ (z) +O

(
(Tb1,T )−1/2

)
.

This shows that under the conditions of Theorem 4.2, the standard normal approximation is correct

up to order O((Tb1,T )−1/2). Eq. (4.6) has an immediate interpretation. Consider the time-varying

AR(1) example in (2.4) and suppose K (x) ≥ 0 for all x so that µ2 (K) ≥ 0. Given (4.3) we know

that with local positive persistence (i.e., ρ (u) > 0) f (u, ω) has a peak at ω = 0. If the pattern of

ρ (u) is such that
� 1

0 f
(2) (u, 0) du < 0 so that the positive persistence dominates, then c1 < 0 and

as is well-known the HAC estimator underestimates the true LRV and the corresponding HAC-

based test over-rejects. The approximation in (4.6) tends to correct this problem as it follows

that one uses Φ (z (1 + γT )) where γT ≤ 0, so for a given significance level the critical value z is

larger in absolute value than the corresponding standard normal critical value. Conversely, if there

is anti-persistence, then c1 > 0 and the implied critical value is smaller than the corresponding

standard normal critical value. For df > 2 the reasoning is the same but one has to take into

account the sign of µdf
(K).

Consider the location model yt = β + Vt (t = 1, . . . , T ) . For the null hypothesis H0 : β = β0,

consider the following t-test,

tHAC =
√
T
(
β̂ − β0

)
√
ĴHAC,T

,

where β̂ is the least-squares estimator of β. Theorem 4.2 and (4.6) imply that

P (tHAC ≤ z) = Φ (z) + p (z) (Tb1,T )−1/2 + o
(
(Tb1,T )−1/2

)
, (4.7)

for any z ∈ R, where p (z) is an odd function. When q = 1/ (1 + 2df ) we have p (z) = 2−1c1zφ (z)Cdf +1/2

where C is defined in Assumption 4.7. Thus, the error in rejection probability (ERP) of tHAC is of

order O((Tb1,T )−1/2). If {Vt} is second-order stationary, the results in Velasco and Robinson (2001)

imply that the ERP of tHAC is also of order O((Tb1,T )−1/2). Below we establish the corresponding

ERP when the t-statistic is instead normalized by ĴDK,T and also discuss the ERP of the t-test

under fixed-b asymptotics.
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4.2 DK-HAC-based HAR Tests

We now consider the Edgeworth expansion for tests based on the DK-HAC estimator. In order

to simplify some parts of the proof here we consider an asymptotically equivalent version of the

DK-HAC estimator discussed in Section 5. Let

Ĵ∗
DK,T =

T −1∑
k=−T +1

K1 (b1,Tk) Γ̂∗
DK (k) , Γ̂∗

DK (k) ≜
� 1

0
ĉDK,T (r, k) dr,

where b1,T is a bandwidth sequence and

ĉDK,T (r, k) = (Tb2,T )−1
T∑

s=|k|+1
K2

(
(Tr − (s− |k|/2)) /T

b2,T

)
VsV s−|k|,

with K2 a kernel and b2,T a bandwidth. Note that Γ̂DK (k) and Γ̂∗
DK (k) are asymptotically equiv-

alent and ĉT is a special case of ĉDK,T with K2 being a rectangular kernel and n2,T = Tb2,T .

Assumption 4.8. K2 (·) : R → [0, ∞], K2 (x) = K2 (1 − x),
� 1

0 K2 (x) dx = 1, K2 (x) = 0 for

x /∈ [0, 1] and K2 (·) is continuous. The bandwidth sequence {b2,T } satisfies b2,T → 0, b2
2,T/b

q2
1,T →

b ∈ [0, ∞) and 1/Tb1,T b2,T → 0 where q2 is the index of smoothness of K1 (·) at 0.

Under Assumption 4.3-4.4, 4.6 and 4.8 it holds that Ĵ∗
DK,T − JT

P→ 0 [cf. Casini (2023b)] and

UT ≜

√
T V√
Ĵ∗

DK,T

d→ N (0, 1) . (4.8)

Note that Ĵ∗
DK,T =

� 1
0 Ṽ (r)′ Wb1Ṽ (r) dr/(Tb2,T ) where Ṽ (r) = (Ṽ1 (r) , Ṽ2 (r) , . . . , ṼT (r))′ with

Ṽj (r) =
√
K2 ((r − j) /Tb2,T )Vj and Wb1 defined in (4.2). Let

ĨT (r, ω) = 1
2πTb2,T

∣∣∣∣∣
T∑

t=1
exp (−iωt) Ṽt (r)

∣∣∣∣∣
2

.

ĨT (r, ω) is the local periodogram of {Ṽ (r)}. Then, Ĵ∗
DK,T = 2π

� 1
0

�
Π K̃b1 (ω) ĨT (r, ω) dωdr.

We begin by analyzing the joint distribution of V and Ĵ∗
DK,T . Let B2,T = E(Ĵ∗

DK,T )/JT − 1
and V2

2,T = Var(
√
Tb1,T b2,T Ĵ

∗
DK,T/JT ) denote the relative bias and variance of Ĵ∗

DK,T , respectively.
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It is convenient to work with standardized statistics with zero mean and unit variance. Write

UT = UT (v) = v1
(
1 + B2,T + V2,Tv2 (Tb1,T b2,T )−1/2

)−1/2
, v2 =

√
Tb1,T b2,T

 Ĵ∗
DK,T − E

(
Ĵ∗

DK,T

)
JT V2,T

 ,
where v = (v1, v2)′ with v1 = h1. Note that v2 =

� 1
0 (Ṽ (r)′ Q2,T Ṽ (r) −E(Ṽ (r)′ Q2,T Ṽ (r)))dr is a

centered quadratic form in a Gaussian vector where Q2,T = Wb1(
√
Tb2,T/b1,T V2,TJT )−1. The joint

characteristic function of v is

ψ2,T (t1, t2) =
∣∣∣I − 2it2ΣṼ

Q2,T

∣∣∣−1/2
exp

{
−2−1t21ξ

′
2,T

(
I − 2it2ΣṼ

Q2,T

)−1
Σ

Ṽ
ξ2,T − it2Υ2,T

}
,

where Υ2,T = E(
� 1

0 (Ṽ (r)′ Q2,T Ṽ (r))dr) = Tr(Σ
Ṽ
Q2,T ), Σ

Ṽ
= E(

� 1
0 (Ṽ (r) Ṽ (r)′)dr) and ξ2,T =

1/
√
Tb2,TJT . The cumulant generating function of v is

K2,T (t1, t2) = logψ2,T (t1, t2) =
∞∑

r=0

∞∑
s=0

κ2,T (r, s) (it1)r

r!
(it2)r

s! ,

where κ2,T (r, s) is the cumulant of v. To obtain more precise bounds in some parts of the proofs

we use the following assumption on the cross-partial derivatives of f (u, ω). Let C̃ denote the set

of continuity points of f (u, ω) in u, i.e., C̃ = {[0, 1] /{λ0
j , j = 1, . . . , m0}}. Define

∆f (ω) =
m0∑
j=1

� 1

0

(
∂

∂u−
f
(
λ0

j , ω
) � 1−s

0
xK2 (x) dx+ ∂

∂u+
f
(
λ0

j , ω
) � 1

1−s

xK2 (x) dx
)
ds,

where

∂

∂u−
f
(
λ0

j , ω
)

= lim
h↑0

f
(
λ0

j + h, ω
)

− f
(
λ0

j , ω
)

h
,

∂

∂u+
f
(
λ0

j , ω
)

= lim
h↓0

f
(
λ0

j + h, ω
)

− f
(
λ0

j , ω
)

h
.

Assumption 4.9. For u ∈ C̃, (∂2/∂u2) f (u, ω) has df continuous derivatives in ω in a neighbor-

hood of ω = 0, the df derivative satisfying a Lipschitz condition of order ϱ2 ∈ (0, 1].
For u /∈ C̃, (∂/∂u−) f (u, ω) and (∂/∂u+) f (u, ω) have df continuous derivatives in ω in a neigh-

borhood of ω = 0, the df derivative satisfying a Lipschitz condition of order ϱ2 ∈ (0, 1].

From Lemma S.B.11 and S.B.17, the relative bias of Ĵ∗
DK,T is

B2,T = c1b
df

1,T + c2b
2
2,T +O

(
b

df +ϱ
1,T + T−1 log T + (Tb2,T )−1

)
+ o

(
b2

2,T

)
,
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where

c1 =
µdf

(K)
� 1

0 f
(df) (u, 0) du

df !
� 1

0 f (u, 0) du
, c2 =

2−1 � 1
0 x

2K2 (x) dx
�

C̃
∂2

∂u2f (u, 0) du+ ∆f (0)� 1
0 f (u, 0) du

.

The factor c1 in the relative bias B2,T also enters BT and we already discussed it. The second

factor, c2, includes two elements. The first depends on the second moment of the kernel K2 and

on the smoothness over time of the spectral density f (u, 0). The second element in c2 is ∆f (0)
which depends on the right and left first partial derivatives of f (u, 0) with respect to u at the

discontinuity points. The more nonstationary is the data the more complex is c2, and in fact the

larger in magnitude are ∂2f (u, 0) /∂u2 and ∆f (0). For the special case of stationary data, c2 = 0.
The more nonstationarity is the data, the smaller b2,T should be chosen so as to weight more the

data locally. The smoothing over sample autocovariances is needed to achieve consistency while

the time-smoothing is introduced to more flexibly account for the time-varying properties of the

data. The disadvantage of the time-smoothing is that it reduces the effective sample size thereby

accounting for strong dependence more difficult.

We now present a second-order Edgeworth expansion to approximate the distribution of v
with error o((Tb1,T b2,T )−1/2). The expansion includes terms up to order (Tb1,T b2,T )−1/2 to correct

the asymptotic normal distribution. This implies the validity of that expansion for the distribution

of Ĵ∗
DK,T . For B ∈ B2, let Q(2)

2,T (B) =
�

B φ2 (v) q(2)
2,T (v) dv, where

q
(2)
2,T (v) = 1 + (1/3!) (Tb1,T b2,T )−1/2 {Ξ2,0(0, 3)H2,3 (v2) + Ξ2,0(2, 1)H2,2 (v1) H2,1 (v1)} ,

H2,j (·) are the univariate Hermite polynomials of order j and Ξ2,0(0, 3) and Ξ2,0(2, 1) are bounded
and depend on K, K2 and on f (u, 0) (see Lemma S.B.5-S.B.6).

Theorem 4.3. Let Assumption 4.1, 4.2 (p > 1), 4.3-4.4, 4.7 (0 < q < 1), 4.8-4.9 hold. For ϕT =
(Tb1,T b2,T )−ϖ with 1/2 < ϖ < 1, and every class B2 of Borel sets in R2, we have

sup
B∈B2

∣∣∣PT (B) − Q(2)
2,T (B)

∣∣∣ = o
(
(Tb1,T b2,T )−1/2

)
+ (4/3) sup

B∈B2
Q(2)

2,T

(
(∂B)2ϕT

)
. (4.9)

Theorem 4.3 shows that Q(2)
2,T is a valid second-order Edgeworth expansion for the probability

measure PT of v. The correction q
(2)
2,T (v) differs from q

(2)
T (h) in Theorem 4.1. This difference

depends on the smoothing over time, i.e., on b2,T and K2 (·). The theorem also suggests that the

leading term of the error of the approximation is order of o((Tb1,T b2,T )−1/2).

20



low frequency contamination in har inference

Next, we focus on UT defined in (4.8), i.e., a t-statistic based on Ĵ∗
DK,T , and present the

Edgeworth expansion. We need the following assumption, replacing Assumption 4.6-4.7, that

controls the rate of smoothing over lagged autocovariances and time implied by the bandwidths

b1,T and b2,T , respectively. It requires that the bias due to smoothing over frequency and over time

is of the same order as the correction term obtained in Q(2)
2,T (B) or as the standard deviation of

Ĵ∗
DK,T . The assumption is satisfied by, for example, the MSE-optimal DK-HAC estimators proposed

by Belotti et al. (2023) and Casini (2023b).

Assumption 4.10. The bandwidths b1,T → 0 and b2,T → 0 satisfy 0 < b
df

1,T (Tb1,T b2,T )−1/2 < ∞ and

0 < b2
2,T (Tb1,T b2,T )−1/2 < ∞.

Theorem 4.4. Let Assumption 4.1, 4.2 (p > 1), 4.3-4.5, and 4.8-4.10 hold. For convex Borel sets

C, we have, for r2 (x) = −c1 (x2 − 1) /2 and r3 (x) = −c2 (x2 − 1) /2,

sup
C

∣∣∣∣∣P (UT ∈ C) −
�

C
φ (x)

(
1 + r2 (x) bdf

1,T + r3 (x) b2
2,T

)
dx

∣∣∣∣∣ = o
(
(Tb1,T b2,T )−1/2

)
. (4.10)

Theorem 4.4 shows that the correction term to the standard normal distribution, i.e.,
�

C φ (x)
(r2 (x) bdf

1,T + r3 (x) b2
2,T )dx, depends on both smoothing directions. The error of the approximation

is of order o((Tb1,T b2,T )−1/2) which can be larger than that obtained in Theorem 4.2 for the HAC

estimators. Similar to (4.6), we obtain uniformly in z,

P (UT ≤ z) = Φ
(
z
(

1 + 1
2c1b

df

1,T + 1
2c2b

2
2,T

))
+O

(
(Tb1,T b2,T )−1/2

)
, (4.11)

where C = (−∞, z], which suggests that the standard normal approximation is correct up to order

O((Tb1,T b2,T )−1/2). Eq. (4.11) has a similar interpretation to (4.6). Consider the time-varying

AR(1) example in (2.4) and suppose ρ (u) > 0 for all u. Then, c1 < 0. However, the sign of c2 is

not easily determined even for this simple model. For the special case ρ (u) = sin(uπ/10), no break

and σ2 (u) = σ2 we have c2 < 0. Then, the implied critical value from the approximation is larger

than the standard normal critical value. In general, however, the correction to strong persistence

might be either attenuated or strengthened by the correction to nonstationarity depending on the

true data-generating process.

Returning to the location model, consider the t-statistic based on Ĵ∗
DK,T ,

tDK =
√
T
(
β̂ − β0

)
√
Ĵ∗

DK,T

.
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Theorem 4.4 and (4.11) imply that

P (tDK ≤ z) = Φ (z) + p2 (z) (Tb1,T b2,T )−1/2 + o
(
(Tb1,T b2,T )−1/2

)
, (4.12)

for any z ∈ R, where p2 (z) is an odd function. Under the conditions of Theorem 4.4 p2 (z) =
2−1((Cdf +1/2c1 + C2c2)zφ (z)) where C is defined in Assumption 4.7, C2 = (bCdf +1/2)1/2 and b is

defined in Assumption 4.8. Thus, the ERP of tDK can be larger than that of tHAC, though the

margin is small. This follows from the fact that Ĵ∗
DK,T applies smoothing over two directions. The

smoothing over time is useful to flexibly account for nonstationarity. Its benefits appear explicitly

under the alternative hypothesis as we show in Section 5 whereas the ERP refers to the null

hypothesis. One can show that the ERP of tDK and tHAC remain unchanged if prewhitening is

applied, though the proofs are omitted since they are similar.

We can further compare the ERP of tHAC and tDK to that of the corresponding t-test under

the fixed-b asymptotics. Casini (2023a) showed that the limiting distribution of the original fixed-b

HAR test statistics under nonstationarity is not pivotal as it depends on the true data-generating

process of the errors and regressors. This contrasts to the stationarity case for which the fixed-b

limiting distribution is pivotal and the ERP is of order O(T−1) [see Jansson (2004) and Sun et al.

(2008)]. Based on an ERP of smaller magnitude relative to that of HAR tests based on HAC

estimators [cf. O(T−1) < O((Tb1,T )−1/2)], the literature has long suggested that the original fixed-

b HAR tests are superior to HAR tests based on HAC estimators. However, this break downs

under nonstationarity as shown by Casini (2023a) who established that (i) the ERP of the original

fixed-b HAR tests does not converge to zero because under nonstationarity the fixed-b limiting

distribution is different; (ii) for fixed-b HAR tests that use the critical values from the non-pivotal

fixed-b limiting distribution the ERP increases by an order of magnitude relative to the stationary

case [i.e., from O(T−1) to O(T−η) with η ∈ (0, 1/2)]. Therefore, fixed-b HAR tests can have an

ERP larger than that of tHAC and tDK. Overall, the results based on Edgeworth expansions show

that the distortions on the null rejection rates of the HAR tests can arise from time variation in the

second moments even when the mean is constant. Thus, these results complement the asymptotic

bias results induced by breaks in the mean function.

5 Consequences for HAR Inference

In this section, we discuss the implications of the theoretical results from Section 3-4. In Section

5.1, we first present a review of HAR inference methods and their connection to the estimates
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considered in Section 3. In Section 5.2 we present evidence that the HAR inference tests can suffer

from larger size distortions under nonstationarity than under stationarity. In Section 5.3 we show

the consequences of low frequency contamination for the power of the HAR tests and we provide

the corresponding theoretical results in Section 5.4.

5.1 HAR Inference Methods

There are two main approaches for HAR inference. Classical HAC standard errors [cf. Newey and

West (1987, 1994) and Andrews (1991)] require estimation of the LRV defined as J ≜ limT →∞JT

where JT is defined after (4.1). The form of {Vt} depends on the specific problem under study. For

example, for a t-test on a regression coefficient in the linear model yt = xtβ0 + et (t = 1, . . . , T )
we have Vt = xtet. Classical HAC estimators take the following form,

ĴHAC,T =
T −1∑

k=−T +1
K1 (b1,Tk) Γ̂ (k),

where Γ̂ (k) is given in (3.1) with V̂t = xtêt where {êt} are the least-squares residuals, K1 (·) is

a kernel and b1,T is bandwidth. One can use the the Bartlett kernel, advocated by Newey and

West (1987), the quadratic spectral kernel as suggested by Andrews (1991), or any other kernel

suggested in the literature, see e.g. de Jong and Davidson (2000) and Ng and Perron (1996). Under

b1,T → 0 at an appropriate rate, we have ĴHAC,T
P→ J. Hence, equipped with ĴHAC,T , HAR inference

is standard and simple because HAR test statistics follow asymptotically standard distributions.

HAC standard errors can result in oversized tests when there is substantial temporal depen-

dence [e.g., Andrews (1991)]. This stimulated a second approach based on LRV estimators that

keep the bandwidth at some fixed fraction of T [cf. Kiefer et al. (2000)], e.g., using all autocovari-

ances, so that ĴKVB,T ≜ T−1∑T
t=1

∑T
s=1 (1 − |t− s| /T ) V̂tV̂s which is equivalent to the Newey-West

estimator with b1,T = T−1. Under fixed-b asymptotics the reference distribution of HAR test statis-

tics is nonstandard. The validity of fixed-b inference rests on stationarity [cf. Casini (2023a)]. Many

authors have considered various versions of ĴKVB,T . However, the one that leads to HAR inference

tests that are least oversized is the original ĴKVB,T [see Casini and Perron (2023b) for simulation

results]. For comparison we also report the equally-weighted cosine (EWC) estimator of Lazarus

et al. (2020). It is an orthogonal series estimators that use long bandwidths,

ĴEWC,T ≜ B−1
B∑

j=1
Λ2

j , where Λj =
√

2
T

T∑
t=1

V̂t cos
(
πj

(
t− 1/2
T

))

23



alessandro casini, taosong deng and pierre perron

with B some fixed integer. Assuming B satisfies some conditions, under fixed-b asymptotics a

t-statistic normalized by ĴEWC,T follows a tB distribution where B is the degree of freedom.

Recently, a new HAC estimator was proposed in Casini (2023b). Motivated by the power

impact of low frequency contamination of existing LRV estimators, he proposed a double kernel

HAC (DK-HAC) estimator, defined by

ĴDK,T ≜
T −1∑

k=−T +1
K1 (b1,Tk) Γ̂DK (k),

where b1,T is a bandwidth sequence and Γ̂DK (k) defined in Section 3 with ĉT (·, k) replaced by

ĉDK,T (rnT/T, k) = (Tb2,T )−1
T∑

s=|k|+1
K2

(
(rnT − (s− |k|/2)) /T

b2,T

)
V̂sV̂ s−|k|,

with K2 a kernel and b2,T a bandwidth. Note that ĉDK,T and ĉT are asymptotically equivalent and

the results of Section 3 continue to hold for ĉDK,T . More precisely, ĉT is a special case of ĉDK,T

with K2 being a rectangular kernel and n2,T = Tb2,T . This approach falls in the first category

of standard inference ĴDK,T
P→ J and HAR test statistics normalized by ĴDK,T follows standard

distribution asymptotically. The DK-HAC estimator involves two kernels: K1 smooths the lagged

sample autocovariances, akin to the classical HAC estimators, while K2 applies smoothing over

time. The latter feature is useful to avoid the low frequency contamination. Additionally, Casini

and Perron (2023b) proposed prewhitened DK-HAC (Ĵpw,DK,T ) estimator that improves the size

control of HAR tests and enjoys the same asymptotic properties of ĴDK,T . Casini (2023b) and

Casini and Perron (2023b) demonstrated via simulations that tests based on ĴDK,T and Ĵpw,DK,T

have superior power properties relative to tests based on the other estimators. In terms of size,

the simulation results showed that tests based on Ĵpw,DK,T performs better than those based on

ĴHAC,T and ĴDK,T , and is competitive with ĴKVB,T when the latter works well. We include ĴDK,T

and Ĵpw,DK,T in our simulations below. We report the results only for the DK-HAC estimators that

do not use the pre-test for discontinuities in the spectrum [cf. Casini and Perron (2023a)] because

we do not want the results to be affected by such pre-test.

5.2 Null Rejection Rates and Power in Finite-Sample

In order to better understand the effect of nonstationarity on the null rejection rates of HAR tests

we first conduct a Monte Carlo analysis where we compare a nonstationary model with a stationary
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one that has either the same spectral density at frequency zero or the same average dependence.

Consider the following four AR(1) data-generating processes (DGPs). DGP 1 is given by

Vt = 0.26Vt−1 + et, t = 1, . . . , T,

where et ∼ N (0, 1) for all t. The LRV of DGP 1 is J = 1.826. DGP 2 is

Vt = 0.7817Vt−1 + et, t = 1, . . . , T,

where et ∼ N (0, 1) for all t. Its LRV is J = 20.988. We now introduce two nonstationary DGPs.

DGP 3 takes the following form

Vt =

0.9Vt−1 + et, 1 ≤ t ≤ 0.2T

0.1Vt−1 + et, 0.2T < t ≤ T,

where et ∼ N (0, 1). Note that the spectral density at frequency zero of Vt is given by the weighted

average of the spectral densities of Vt in the two regimes:

f (0) =
� 1

0
f (u, 0) du = 0.2 1

2π (1 − 2 · 0.9 + 0.92) + 0.8 1
2π (1 − 2 · 0.1 + 0.12) = 3.342.

Thus, the LRV of Vt is J = 2π
� 1

0 f (u, 0) du = 20.988 which takes the same value as the LRV of

DGP 2. Further, DGP 3 has the same average dependence as DGP 1, meaning that the AR(1)

coefficient in DGP 1 is equal to the weighted average of the AR(1) coefficients of DGP 3 in the

two regimes, i.e., ρ = 0.2 · 0.9 + 0.8 · 0.1 = 0.26. We also want to verify whether the location of the

break in persistence in DGP 3 is important for the bias. Thus, we consider DGP 4:

Vt =


0.1Vt−1 + et, 1 ≤ t ≤ 0.5T

0.9Vt−1 + et, 0.5T < t ≤ 0.5T + 0.2T

0.1Vt−1 + et, 0.5T + 0.2T < t ≤ T,

where et ∼ N (0, 1) for all t. While in DGP 3 the regime with strong persistence occurs in the

first 20% of the sample, in DGP 4 this occurs between the 50% and 70% of the sample. The LRV

of DGP 4 is the same as that of DGP 3.

For each DGP we consider three different initial conditions: (a) V0 = 0; (b) V0 ∼ N (0, 1);
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(c) V0 ∼ N (0, 4). This is useful in order to verify whether the initial condition has any effect on

the bias generated by changes in the second-order properties. DGP 3(a) should exhibit a smaller

bias due to nonstationarity than DGP 3(b,c) and 4. To see this, note that in DGP 3(a) the initial

condition is V0 = 0. Thus, the process starts from zero. Since there is strong persistence in the

first 20% of the sample, the process is more likely to stay close to zero in the first regime thereby

making d̂∗ smaller than when the initial condition is V0 ∼ N (0, 1) or V0 ∼ N (0, 4). In DGP

4 the different specifications of the initial condition should not lead to any differences in the bias

due to nonstationarity because the regime with strong dependence occurs about mid-sample.

To summarize, we have four DGPs. DGP 1 and 2 are stationary while DGP 3 and 4 are

nonstationary. Since DGP 2 has a LRV that takes the same value as that of DGP 3 and 4, this

allows us to better separate the effect of persistence from that of nonstationarity in the second

moments on the following quantities: ĴHAC, d̂
∗, and Γ̂ (k) for k = 0, 1, 2, 5, 10. In the simulations

below ĴHAC is the Newey-West estimator based on a predetermined number of lagged sample

autocovariances following the rule 4 (T/100)2/9 [cf. Lazarus et al. (2018)]. d̂∗ is computed as

follows. In DGP 1 and 2 d̂∗ = V
2
. In DGP 3 and 4 d̂∗ = 0.2 · 0.8(V 1 − V 2)2 where in DGP 3 V 1

(resp. V 2 ) is the sample average of Vt in the first (resp. second) regime, and in DGP 4 V 1 is

the sample average in the regimes where the AR coefficient is 0.1 and V 2 is the sample average

in the regime where the AR coefficient is 0.9.4 We compare Γ̂ (k) to the theoretical value ΓT (k)
corresponding to each DGP which can be computed by hand given the simple form of the DGPs.

In fact, for the nonstationary DGPs ΓT (k) is a weighed average of the theoretical autocovariances

corresponding to each regime.

We consider the sample size T = 100, 200 and 1000. 50,000 repetitions were used for each

DGP. The results are reported in Table 1. Let us first discuss the finite-sample properties of

ĴHAC. The results clearly suggest that ĴHAC deviates substantially more from J when the data

are nonstationary. ĴHAC underestimates J for all DGPs but it does much more so when the DGP

is nonstationary. The difference between the values of ĴHAC in DGP 2 and those in DGP 3-4 is

about one half, e.g., ĴHAC = 6.775 in DGP 2(a) and ĴHAC = 3.142 in DGP 3(a). As the sample size

increases the downward bias becomes smaller, though ĴHAC still underestimates J for T = 1000.
The downward bias continues to remain larger in DGP 3-4 than in DGP 2 even when T = 1000.
Thus, this evidence based on ĴHAC already points out that nonstationarity generates bias in the

LRV estimator. This bias adds to the well-known bias generated by strong persistence in stationary

data documented in the literature.

4For DGP 1-2 we also constructed d̂∗ as in DGP 3. The results were qualitatively the same.
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The presence of some bias due to changes in persistence can be seen from inspection of d̂∗. Note

that this also shows a relation to the low frequency bias generated by changes in the unconditional

mean. For the stationary DGP 1-2 d̂∗ never goes beyond 0.205 when T = 100. In contrast, for the

nonstationary DGP 3-4 d̂∗ ranges from 0.304 to 0.425. Thus, d̂∗ is about 50-100% larger in DGP

3-4 relative to DGP 2, and about 20 times larger than in DGP 1. Given that d̂∗ captures the extent

of bias due to nonstationarity, such differences suggest that some bias is present in finite-sample

under nonstationarity.

It is useful to look at the effect of the initial condition on d̂∗. For the stationary DGP

1-2 the different specifications of the initial condition do not result in differences in d̂∗ while

it has a substantial effect on the nonstationary DGP 3. For example, in DGP 2 with T =
100 d̂∗ = 0.197, 0.198, 0.205 for case (a), (b) and (c), respectively, whereas for DGP 3 d̂∗ =
0.304, 0.333, 0.425 for case (a), (b) and (c), respectively. This is quite intuitive. Under stationar-

ity the initial condition plays no role for generating bias. Under nonstationarity in DGP 3 when

V0 = 0 the process remains close to zero in the first 20% of the sample because of the strong

dependence, thus d̂∗ is relatively smaller than when V0 ∼ N (0, 1) or V0 ∼ N (0, 1). In fact, in

the latter two cases there is some probability that Vt starts far from zero and given the strong

dependence in the first 20% of the sample Vt does not have enough time to revert to zero. This

explains the large increase in d̂∗ in DGP 3 for the initial conditions (b)-(c) relative to (a). In

DGP 4 different specifications for the initial condition V0 do not yield differences in d̂∗ because

the regime with strong dependence is toward mid-sample. This clarifies that it is not the initial

condition that generates bias. The initial condition can influence the bias when the regime with

strong dependence occurs at the beginning of the sample. The results also show that d̂∗ is larger

for DGP 4(a,b,c) than DGP 3(a). This is intuitive. In DGP 4 the regime with strong dependence

has initial condition V0.5T −1 where the latter is a random variable with zero mean and variance

1/(1 − 0.12) = 1.01. Thus, there is some probability that V0.5T −1 takes a value far from zero. This

contributes to generate bias and in fact d̂∗ is larger than that in DGP 3(a). These different fea-

tures across DGPs continue to hold when we raise the sample size to T = 1000. As T increases d̂∗

approaches zero for all DGPs.

We now move to discuss the finite-sample properties of Γ̂ (k). When the data are stationary

Γ̂ (k) is close to ΓT (k) even when T = 100 and it approaches ΓT (k) when T = 1000. For

nonstationary data Γ̂ (k) is much farther from ΓT (k). For example, in DGP 2(a) Γ̂ (k) = 2.507
and ΓT (0) = 2.571 whereas in DGP 3(a) Γ̂ (k) = 1.589 and ΓT (0) = 1.861. Thus, Γ̂ (k) has larger

bias (in general downward bias) when the data are nonstationary. This result is very visible even
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when T = 200. As T increases Γ̂ (k) approaches ΓT (k) for all DGPs, though the downward bias

remains larger in DGP 3-4 than in DGP 1-2.

We repeated this exercise for other DGPs, the conclusions were the same. The results sug-

gest that under nonstationarity the bias in the LRV estimator is affected by multiple factors. In

addition to the downward bias arising from strong persistence which is also present under sta-

tionarity there is bias generated by the time-varying properties of the process. Under the null

hypothesis this time variation occurs in the autocovariance structure of the process. For exam-

ple, in DGP 3 above one has 0.2T observations to estimate 2π
� 0.2

0 f (u, 0) du = 0.4πf (0) where

f (0) = 1/(2π (1 − 2ρ+ ρ2)) with ρ = 0.9, and 0.8T observations to estimate 2π
� 1

0.2 f (u, 0) du =
1.6πf (0) where f (0) = 1/(2π (1 − 2ρ+ ρ2)) with ρ = 0.1. This is more difficult than estimating

2πf (0) = 1/(2π (1 − 2ρ+ ρ2)) with ρ = 0.7817 using T observations, which corresponds to DGP

2. Even if the total sample size is T in both DGP 2 and 3, nonstationarity reduces the effective

sample size making the estimation of the LRV in DGP 3 effectively based on a smaller number

of observations. For example, Γ̂ (k) involves an average on {V̂tV̂t−k} for t = k + 1, . . . , T . Some

of these pairs {V̂tV̂t−k} are such that V̂t and V̂t−k belong to two different regimes, and so these

pairs contribute bias to the estimation of ΓT (k). Under stationarity all the pairs {V̂tV̂t−k} are such

that V̂t and V̂t−k belong to the same regime leading to more precise Γ̂ (k) and LRV estimates. In

addition, changes in persistence over short regimes share features similar to shifts in the mean, at

least graphically. While the former is consistent with the null hypothesis, the latter is not. This is

likely to generate some bias where changes in persistence are confounded with shifts in the mean

even when the unconditional mean of the series has not changed. The downward bias due to strong

persistence and the bias due to time-varying second-order properties are likely to influence each

other making the estimation problem even harder.

We now investigate the consequence of nonstationarity for HAR inference. We obtain the em-

pirical size and power for a two-tailed t-test on the intercept normalized by several LRV estimators

for the model yt = δ + Vt with δ = 0 under the null and δ > 0 under the alternative hypothesis.

Model M1 involves an SLS process: Vt = 0.9Vt−1 + ut, V0 ∼ N (0, 1), ut ∼ i.i.d.N (0, 1) for

t = 1, . . . , T 0
1 with T 0

1 = Tλ0
1, and Vt = ρ (t/T )Vt−1 + ut, ρ (t/T ) = 0.3 (cos (1.5 − cos (t/T ))),

ut ∼ i.i.d.N (0, 0.5) for t = T 0
1 + 1, . . . , T . Note that ρ (·) varies between 0.172 and 0.263. We

set λ0
1 = 0.1. In addition to M1, we consider other models: M2 involves a time-varying AR(1)

with a break in volatility Vt = ρ (t/T )Vt−1 + ut, ρ (t/T ) = 0.7(cos (1.5t/T )), ut ∼ N (0, σ2
t ),

σ2
t = 5 for t ≤ 4 and σ2

t = 0.25 for t > 4, V0 ∼ N (0, 5); M3 involves Vt = ρ (t/T )Vt−1 + ut,

ρ (t/T ) = 0.8(cos (1.5t/T )), ut ∼ N (0, 0.25), V0 = 0 with outliers Vt ∼ Uniform (c, 5c) for
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t = T/2, 3T/4 where c = −1/(
√

2erfc−1 (3/2))med (|V − med (V )|) with erfc−1 the inverse com-

plementary error function, med (·) is the median and V = (Vt)T
t=1;

5 M4 involves a time varying

AR(1) with periods of strong persistence where Vt = ρ (t/T )Vt−1 +ut, ρ (t/T ) = 0.95(cos (1.5t/T )),
ut ∼ i.i.d.N (0, 0.4) and V0 ∼ N (0, 4). ρ (·) varies between 0.7 and 0.05 in M2, between 0.05

and 0.8 in M3 and between 0.95 and 0.07 in M4.

We consider the DK-HAC estimators with and without prewhitening (ĴDK,T , ĴDK,pw,SLS,T ,

ĴDK,pw,SLS,µ,T ) of Casini (2023b) and Casini and Perron (2023b), respectively; Andrews’ (1991)

HAC estimator with and without the prewhitening procedure of Andrews and Monahan (1992);

Newey and West’s (1987) HAC estimator with the popular rule to select the number of lags

(i.e., b1,T = (4(T/100)2/9)−1; Newey-West with the fixed-b method of Kiefer et al. (2000) with

b = 1 (labeled KVB); and the Equally-Weighted Cosine (EWC) of Lazarus et al. (2018) with the

bandwidth choice reccomended by the authors. For the DK-HAC estimators we use the data-

dependent methods for the bandwidths, kernels and choice of nT as proposed in Casini (2023b)

and Casini and Perron (2023b), which are optimal under mean-squared error (MSE). Let V̂t denote

the least-squares residual based on δ̂ where the latter is the least-squares estimate of δ. We set

b̂1,T = 0.6828(ϕ̂ (2)T b̂2,T )−1/5 where

ϕ̂ (2) =

18

nT

T

⌊T/n3,T ⌋−1∑
j=0

(σ̂ ((jnT + 1) /T ) â1 ((jnT + 1) /T ))2

(1 − â1 ((jnT + 1) /T ))4


2 /

nT

T

⌊T/n3,T ⌋−1∑
j=0

(σ̂ ((jnT + 1) /T ))2

(1 − â1 ((jnT + 1) /T ))2


2

,

with

â1 (u) =
∑t

j=t−nT +1 V̂jV̂j−1∑t
j=t−nT +1(V̂j−1)2

, and σ̂ (u) = (
t∑

j=t−nT +1
(V̂j − â1 (u) V̂j−1)2)1/2,

and b̂2,T = (nT/T )∑⌊T/nT ⌋−1
r=1 b̂2,T (rnT/T ), b̂2,T (u) = 1.6786(D̂1 (u))−1/5(D̂2 (u))1/5T−1/5 where

D̂2 (u) ≜ 2∑⌊T 4/25⌋
l=−⌊T 4/25⌋ ĉDK,T (u, l)2 and

D̂1 (u) ≜ ([Sω]−1 ∑
s∈Sω

[3π−1(1 + 0.8(cos 1.5 + cos 4πu) exp(−iωs))−4(0.8(−4π sin(4πu))) exp(−iωs)

5We follow the literature on outlier detection for continuous functions and use the median absolute deviation to
generate the outlier. This notion used in this literature does not deem a value smaller than c as an outlier.
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− π−1 |1 + 0.8(cos 1.5 + cos 4πu) exp(−iωs)|−3 (0.8(−16π2 cos(4πu))) exp(−iωs)])2,

with [Sω] being the cardinality of Sω and ωs+1 > ωs, ω1 = −π, ω[Sω ] = π. We set nT = T 0.6, Sω =
{−π, −3, −2, −1, 0, 1, 2, 3, π}. K1 (·) is the QS kernel and K2 (x) = 6x (1 − x) for x ∈ [0, 1] .

Table 2-5 report the results. 5,000 replications were used. The t-test based on Newey and

West’s (1987) and Andrews’ (1991) prewhitened HAC estimators are excessively oversized. An-

drews’ (1991) HAC-based test is slightly undersized while KVB’s fixed-b and EWC-based tests are

severely undersized. The fact that KVB’s fixed-b and EWC-based tests have larger size distortions

than other tests is consistent with the results in Section 4 which suggest that they have a larger

ERP. For the t-test on the intercept, ĴDK,T can lead to tests that are oversized when there is

strong dependence (cf. Table 2). However, the prewhitened DK-HAC estimators ĴDK,pw,SLS,T and

ĴDK,pw,SLS,µ,T lead to tests that show more accurate rejection rates. Nonstationarity affects the

power of the tests based on LRV estimators that rely on Γ̂ (k) or equivalently on IT (ω) (e.g., the

EWC). The KVB’s fixed-b and EWC-based estimators suffer from relatively large power losses.

The power of tests normalized by Newey and West’s (1987) and Andrews’ (1991) prewhitened

HAC are not comparable because they are significantly oversized. The DK-HAC-based tests have

the best power, the second best being Andrews’ (1991) HAC-based test.

Turning to M2, Table 3 shows some size distortions and power losses for KVB’s fixed-b and

EWC-based tests. The prewhitened DK-HAC-based tests display accurate size control and good

power. Newey and West’s (1987) and Andrews’ (1991) prewhitened HAC-based tests are again

excessively oversized. Andrews’ (1991) HAC-based test and the DK-HAC-based test show a similar

performance. For model M3-M4, Table 4-5 show that all methods lead to oversized tests except

prewhitened DK-HAC and KVB’s fixed-b. However, KVB’s fixed-b-based tests show substantial

unde-rejection that has consequences for power whereas the prewhitened DK-HAC-based-tests

show accurate null rejection rates and good power. Finally, the simulations show that the null

rejection rates of HAC- and DK-HAC-based tests are not very far from each other, thereby con-

firming that the their respective ERP are close as shown in Section 4.

5.3 General Low Frequency Contamination

We now discuss HAR inference tests for which the low frequency contamination results of Section

3 hold asymptotically. This means that d∗ > 0 for all T and as T → ∞. This comprises the class of

HAR tests that admit a nonstationary alternative hypotheses. This class is very large and include

most HAR tests as discussed in the Introduction. Here we consider the Diebold-Mariano test for
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the sake of illustration and remark that similar issues apply to other HAR tests.

The Diebold-Mariano test statistic is defined as tDM ≜ T 1/2
n dL/

√
ĴdL,T , where dL is the average

of the loss differentials between two competing forecast models, ĴdL,T is an estimate of the LRV

of the the loss differential series and Tn is the number of observations in the out-of-sample. We

use the quadratic loss. We consider an out-of-sample forecasting exercise with a fixed forecasting

scheme where, given a sample of T observations, 0.5T observations are used for the in-sample and

the remaining half is used for prediction [see Perron and Yamamoto (2021) for recommendations

on using a fixed scheme in the presence of breaks]. The DGP under the null hypothesis is given

by yt = 1 + β0x
(0)
t−1 + et where x

(0)
t−1 ∼ i.i.d.N (1, 1), et = 0.3et−1 + ut with ut ∼ i.i.d.N (0, 1),

and we set β0 = 1 and T = 400. The two competing models both involve an intercept but differ

with respect to the predictor used in place of x
(0)
t . The first forecast model uses x

(1)
t while the

second uses x
(2)
t where x

(1)
t and x

(2)
t are independent i.i.d.N (1, 1) sequences, both independent

from x
(0)
t . Each forecast model generates a sequence of τ (= 1)-step ahead out-of-sample losses

L
(j)
t (j = 1, 2) for t = T/2 + 1, . . . , T − τ. Then dt ≜ L

(2)
t − L

(1)
t denotes the loss differential at

time t. The Diebold-Mariano test rejects the null hypothesis of equal predictive ability when dL is

sufficiently far from zero. Under the alternative hypothesis, the two competing forecast models are

as follows: the first uses x
(1)
t = x

(0)
t +uX1,t where uX1,t ∼ i.i.d.N (0, 1) while the second uses x

(2)
t =

x
(0)
t + 0.2zt + 2uX2,t for t ∈ [1, . . . , 3T/4 − 1, 3T/4 + 21, . . . T ] and x(2)

t = δ (t/T ) + 0.2zt + 2uX2,t

for t = 3T/4, . . . , 3T/4+20 with uX2,t ∼ i.i.d.N (0, 1), where zt has the same distribution as x
(0)
t .

We consider four specifications for δ (·) . In the first x
(2)
t is subject to an abrupt break in the

mean δ (t/T ) = δ > 0; in the second x
(2)
t is locally stationary with time-varying mean δ (t/T ) =

δ (sin (t/T − 3/4)); in the third specification x
(2)
t = x

(0)
t +0.2zt+2uX2,t for t ∈ [1, . . . , T/2−30, T/2

+21, . . . T ] and x
(2)
t = δ (t/T ) + 0.2zt + 2uX2,t for t = T/2 − 30, . . . , T/2 + 20 with δ (t/T ) =

δ(sin(t/T−1/2 −30/T )); in the fourth x
(2)
t is the same as in the second with in addition two outliers

x
(2)
t ∼ Uniform (|c| , 5 |c|) for t = 6T/10, 8T/10 where c = −1/(

√
2erfc−1 (3/2))med(|x(2) − med

(x(2))|) where x(2) = (x(2)
t )T

t=1. That is, in the second model x
(2)
t is locally stationary only in the

out-of-sample, in the third it is locally stationary in both the in-sample and out-of sample and in

the fourth model x
(2)
t has two outliers in the out-of-sample. The location of the outliers is irrelevant

for the results; they can also occur in the in-sample.

Table 6 reports the null rejection rate and the power of the various tests for all models. We

begin with the case δ (t/T ) = δ > 0 (top panel). The null rejection rate of the test using the

DK-HAC estimators is accurate while the test using other LRV estimators are oversized with the

exception of the KVB’s fixed-b method for which the rejection rate is equal to zero. The HAR

31



alessandro casini, taosong deng and pierre perron

tests using existing LRV estimators have lower power relative to that obtained with the DK-HAC

estimators for small values of δ. When δ increases the tests standardized by the HAC estimators of

Andrews (1991) and Newey and West (1987), and by the KVB’s fixed-b and EWC LRV estimators

display non-monotonic power gradually converging to zero as the alternative gets further away

from the null value. In contrast, when using the DK-HAC estimators the test has monotonic

power that reaches and maintains unit power. The results for the other models are even stronger.

In general, except when using the DK-HAC estimators, all tests display serious power problems.

Thus, either form of nonstationarity or outliers leads to similar implications, consistent with our

theoretical results.

In order to further assess the theoretical results from Section 3, Figure 1 reports the plots of

dt, its sample autocovariances and its periodogram, for δ = 1. Figure S.1-S.2 in the supplement

report the corresponding plots for δ = 2, 5, respectively. We only consider the case δt = δ > 0.
The other cases lead to the same conclusions. For δ = 1, Figure 1 (mid panel) shows that Γ̂ (k)
decays slowly. As δ increases, from Figure S.1 and S.2 (mid panels), Γ̂ (k) decays even more slowly

at a rate far from the typical exponential decay of short memory processes. This suggests evidence

of long memory. However, the data are short memory with small temporal dependence. What is

generating the spurious long memory effect is the nonstationarity present under the alternative

hypothesis. This is visible in the top panels which present plots of dt for the first specification.

The shift in the mean of dt for t = 3T/4, . . . , 3T/4 + 20 is responsible for the long memory effect.

This corresponds to the second term of (S.A.7) in Theorem S.A.1. The overall behavior of the

sample autocovariance is as predicted by Theorem S.A.1. For small lags, Γ̂ (k) shows a power-like

decay and it is positive. As k increases to medium lags, the autocovariances turn negative because

the sum of all sample autocovariances has to be equal to zero [cf. Percival (1992)]. Next, we

move to the bottom panels which plot the periodogram of {dt}. It is unbounded at frequencies

close to ω = 0 as predicted by Theorem S.A.2 and as would occur if long memory was present. It

also explains why the Diebold-Mariano test normalized by Newey-West’s, Andrews’, KVB’s fixed-b

and EWC’s LRV estimators have serious power problems. These LRV estimators are inflated and

consequently the tests lose power. The figures show that as we raise δ the more severe these issues

and the power losses so that the power eventually reaches zero. This is consistent with our theory

since d∗ is increasing in δ (cf. d∗ ≈ 0.1 · 0.9δ2).

We now verify the results about the local sample autocovariance ĉT (u, k) and the local pe-

riodogram from Theorem 3.1-3.2. We set n2,T = T 0.6 = 36 following the MSE criterion of Casini

(2023b). We consider (i) u = 236/T , (ii-a) u = T 0
1 /T = 3/4 and (ii-b) u = 264/T . Note that cases
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(i)-(ii-b) correspond to parts (i)-(ii-b) in Theorem 3.1-3.2. We consider δ = 1, 2 and 5. According
to Thereon 3.1-3.2, we should expect long memory features only for case (ii-a). Figure 2-3 and S.3-

S.6 in the supplement confirm this. The results pertaining to case (ii-a) are plotted in the middle

panels. Figures 2, S.3 and S.5 show that the local autocovariance displays slow decay similar to the

pattern discussed above for Γ̂ (k) and that this problem becomes more severe as δ increases. Such

long memory features also appear for IL (3/4, ω). The middle panels in Figure 3, S.4 and S.6 show

that the local periodogram at u = 3/4 and at a frequency close to ω = 0 are extremely large. The

latter result is consistent with Theorem 3.2-(ii-a) which suggests that IL,T (3/4, ω) → ∞ as ω → 0.
For case (i) and (ii-b) both figures show that the local autocovariance and the local periodogram

do not display long memory features. Indeed, they have forms similar to those of a short memory

process, a result consistent with Theorem 3.1-3.2 also for cases (i) and (ii-b).

It is noteworthy to explain why HAR inference based on the DK-HAC estimators does not

suffer from the low frequency contamination even for case (ii-a). The DK-HAC estimator com-

putes an average of the local spectral density over time blocks. If one of these blocks contains a

discontinuity in the spectrum, then as in case (ii-a) some bias would arise for the local spectral

density estimate corresponding to that block. However, by virtue of the time-averaging over blocks

that bias becomes negligible. Hence, nonparametric smoothing over time asymptotically cancels

the bias, so that inference based on the DK-HAC estimators is robust to nonstationarity.

5.4 Theoretical Results about the Power

We present theoretical results about the power of tDM for the case of general low frequency con-

tamination discussed in Section 5.3. In particular, we focus on specification (1) (i.e., δ > 0). The
same intuition and qualitative theoretical results apply to the other specifications of δ (·).

Let tDM,i = T 1/2
n dL/

√
ĴdL,i,T denote the DM test statistic where i = DK, pwDK, KVB, EWC,

A91, pwA91, NW87 and pwNW87 with ĴA91,T and ĴNW87,T being ĴHAC,T using the quadratic

spectral and Bartlett kernel, respectively. Define the power of tDM,i as Pδ(|tDM,i| > z1−α/2) where

z1−α/2 is the 1−α/2 quantile of the standard normal for a two-sided test with significance level α ∈
(0, 1). To avoid repetitions we present the results only for i = DK, KVB and NW87. The results

concerning the prewhitening DK-HAC estimator are the same as those corresponding to the DK-

HAC estimator while the results concerning the EWC estimator are similar to those corresponding

to the KVB’s fixed-b estimator, though for the latter the non-monotonic power is more pronounced.

The results pertaining to Andrews’ (1991) HAC estimator (with and without prewhitening) are

the same as those corresponding to Newey and West’s (1987) estimator. Let nδ = T − Tb − 2
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denote the length of the regime in which x
(2)
t exhibits a shift δ in the mean. The deviation from

the null hypothesis depends on the shift magnitude δ and on nδ.

Theorem 5.1. Let {dt − E(dt)}Tn

t=1 be a SLS process satisfying Assumption 2.1-(i-iv) and 2.2. Let

Assumption 4.3-4.4 hold and nδ = O(T 1/2+ζ
n ) where ζ ∈ (0, 1/2) such that T ζ

nb
1/2
1,T → 0 and

T ζ
n(b̂1,T )1/2 → 0. Then, we have:

(i) Under Assumption 4.6, Pδ(|tDM,NW87| > zα) → 0. If Assumption 4.6 is replaced by As-

sumption 4.7 with q = 1/3, then |tDM,NW87| = OP(T ζ−1/6
n ) and Pδ(|tDM,NW87| > zα)→ 0.

(ii) If b1,T = T−1, then |tDM,KVB| = OP(T ζ−1/2
n ) and Pδ(|tDM,KVB| > zα)→ 0.

(iii) Under Assumption 4.8, |tDM,DK| = δ2OP(T ζ
n) and Pδ(|tDM,DK| > zα)→ 1.

Note that Assumption 4.7 with q = 1/3 refers to the MSE-optimal bandwidth for the Newey

and West’s (1987) estimator. The conditions T ζ
nb

1/2
1,T → 0 and T ζ

n(b̂1,T )1/2 → 0 mean that the length

of the regime in which x
(2)
t exhibits a shift δ in the mean increases to infinity at a slower rate than T .

Theorem 5.1 shows that when the HAC estimators or the fixed-b LRV estimators are used, the DM

test is not consistent and its power approaches zero. The theorem also implies that the power func-

tions corresponding to tests based on HAC estimators lie above the power functions corresponding

to those based on fixed-b/EWC LRV estimators. This follows from |tDM,KVB| ≪ |tDM,NW87|. An-
other interesting feature is that |tDM,NW87| and |tDM,KVB| do not increase in magnitude with δ

because δ appears in both the numerator and denominator (δ enters the denominator through the

low frequency contamination term d∗ that accounts for the bias in the HAC and fixed-b estimators

(cf. Theorem S.A.1)). Part (iii) of the theorem suggests that these issues do not occur when

DK-HAC estimator is used since the test is consistent and its power increases with δ and with the

sample size as it should be. These results match the empirical results in Table 6 discussed above,

thereby confirming the relevance of Theorem 5.1.

6 Conclusions

Economic time series are highly nonstationary and models might be misspecified. If nonstationary

is not accounted for properly, parameter estimates and, in particular, asymptotic LRV estimates

can be largely biased. We establish results on the low frequency contamination induced by nonsta-

tionarity and misspecification for the sample autocovariance and the periodogram under general

conditions. These estimates can exhibit features akin to long memory when the data are non-

stationary short memory. We show, using theoretical arguments, that nonparametric smoothing

is robust. Since the autocovariances and the periodogram are basic elements for HAR inference,
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our results allow a better understanding of LRV estimation. Under the null hypothesis there are

larger size distortions than when the data are stationary. Under the alternative hypothesis, exist-

ing LRV estimators tend to be inflated and HAR tests can exhibit dramatic power losses. Long

bandwidths/fixed-b HAR tests suffer more from low frequency contamination relative to HAR tests

based on HAC estimators, whereas the DK-HAC estimators do not suffer from this problem.

Supplemental Materials

The supplement for online publication [cf. Casini et al. (2024)] introduces the notion of long mem-

ory segmented locally stationary processes, presents the theoretical results referenced in Section 3,

contains the proofs of the results in the paper and additional figures.
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A Appendix
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Figure 1: a) top panel: plot of {dt}; b) mid-panel: plot of the sample autocovariances Γ̂ (k) of {dt}; c) bottom panel: plot the

periodogram I (ω) of {dt}. In all panels δ = 1.
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Figure 2: The figure plots ĉT (u, k) for u = 236/400, λ0
1, 264/400 in the top, mid and bottom panel, respectively. In all panels

δ = 1.
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Figure 3: The figure plots IL (u, ω) for u = 236/400, λ0
1, 264/400 in the top, mid and bottom panel, respectively. In all panels

δ = 1.
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Table 1: Average estimates of ĴHAC, d̂
∗ and Γ̂ (k), k = 0, 1, 2, 5, 10

T = 100
DGP J ĴHAC d̂∗ ΓT (0) Γ̂ (0) ΓT (1) Γ̂ (1) ΓT (2) Γ̂ (2) ΓT (5) Γ̂ (5) ΓT (10) Γ̂ (10)

1(a) 1.826 1.483 0.019 1.072 1.062 0.279 0.273 0.073 0.070 0.001 0.002 0.000 0.000

1(b) 1.826 1.499 0.018 1.072 1.072 0.279 0.276 0.073 0.071 0.001 0.001 0.000 0.000

1(c) 1.826 1.549 0.019 1.072 1.105 0.279 0.285 0.073 0.074 0.001 0.001 0.000 0.000

2(a) 20.988 6.755 0.197 2.571 2.507 2.009 1.940 1.571 1.501 0.751 0.696 0.219 0.195

2(b) 20.988 6.830 0.198 2.571 2.533 2.009 1.961 1.571 1.517 0.751 0.702 0.219 0.195

2(c) 20.988 7.038 0.205 2.571 2.609 2.009 2.019 1.571 1.563 0.751 0.725 0.219 0.206

3(a) 20.988 3.142 0.304 1.861 1.589 1.028 0.736 0.861 0.557 0.622 0.312 0.367 0.100

3(b) 20.988 3.301 0.333 1.861 1.635 1.028 0.781 0.861 0.599 0.622 0.338 0.367 0.113

3(c) 20.988 3.761 0.425 1.861 1.790 1.028 0.920 0.861 0.723 0.622 0.427 0.367 0.161

4(a) 20.988 3.437 0.360 1.861 1.670 1.028 0.829 0.861 0.644 0.622 0.373 0.367 0.133

4(b) 20.988 3.448 0.361 1.861 1.680 1.028 0.830 0.861 0.645 0.622 0.373 0.367 0.134

4(c) 20.988 3.472 0.361 1.861 1.711 1.028 0.834 0.861 0.645 0.622 0.373 0.367 0.134

T = 200
DGP J ĴHAC d̂∗ ΓT (0) Γ̂ (0) ΓT (1) Γ̂ (1) ΓT (2) Γ̂ (2) ΓT (5) Γ̂ (5) ΓT (10) Γ̂ (10)

1(a) 1.826 1.569 0.009 1.072 1.067 0.279 0.276 0.073 0.071 0.001 0.001 0.000 0.000

1(b) 1.826 1.577 0.009 1.072 1.071 0.279 0.277 0.073 0.071 0.001 0.001 0.000 0.000

1(c) 1.826 1.602 0.009 1.072 1.089 0.279 0.281 0.073 0.073 0.001 0.001 0.000 0.000

2(a) 20.988 8.388 0.102 2.571 2.539 2.009 1.975 1.571 1.536 0.751 0.722 0.219 0.207

2(b) 20.988 8.449 0.101 2.571 2.553 2.009 1.988 1.571 1.545 0.751 0.728 0.219 0.207

2(c) 20.988 8.555 0.104 2.571 2.588 2.009 2.013 1.571 1.566 0.751 0.737 0.219 0.211

3(a) 20.988 4.354 0.258 1.861 1.723 1.028 0.883 0.861 0.708 0.622 0.465 0.367 0.229

3(b) 20.988 4.459 0.264 1.861 1.749 1.028 0.903 0.861 0.730 0.622 0.479 0.367 0.237

3(c) 20.988 4.771 0.294 1.861 1.823 1.028 0.978 0.861 0.795 0.622 0.526 0.367 0.265

4(a) 20.988 4.548 0.275 1.861 1.766 1.028 0.929 0.861 0.755 0.622 0.496 0.367 0.247

4(b) 20.988 4.552 0.275 1.861 1.770 1.028 0.931 0.861 0.752 0.622 0.496 0.367 0.248

4(c) 20.988 4.569 0.276 1.861 1.786 1.028 0.932 0.861 0.752 0.622 0.499 0.367 0.248

T = 1000
DGP J ĴHAC d̂∗ ΓT (0) Γ̂ (0) ΓT (1) Γ̂ (1) ΓT (2) Γ̂ (2) ΓT (5) Γ̂ (5) ΓT (10) Γ̂ (10)

1(a) 1.826 1.667 0.001 1.072 1.071 0.279 0.278 0.073 0.072 0.001 0.001 0.000 0.000

1(b) 1.826 1.669 0.002 1.072 1.073 0.279 0.279 0.073 0.073 0.001 0.000 0.000 0.000

1(c) 1.826 1.673 0.002 1.072 1.076 0.279 0.279 0.073 0.072 0.001 0.002 0.000 0.000

2(a) 20.988 10.904 0.020 2.571 2.565 2.009 2.003 1.571 1.565 0.751 0.743 0.219 0.216

2(b) 20.988 10.934 0.021 2.571 2.571 2.009 2.008 1.571 1.570 0.751 0.749 0.219 0.219

2(c) 20.988 10.935 0.021 2.571 2.574 2.009 2.009 1.571 1.569 0.751 0.746 0.219 0.217

3(a) 20.988 6.510 0.073 1.861 1.834 1.028 1.001 0.861 0.832 0.622 0.592 0.367 0.339

3(b) 20.988 6.541 0.075 1.861 1.841 1.028 1.001 0.861 0.837 0.622 0.595 0.367 0.343

3(c) 20.988 6.629 0.078 1.861 1.857 1.028 1.021 0.861 0.853 0.622 0.605 0.367 0.349

4(a) 20.988 6.543 0.075 1.861 1.840 1.028 0.838 0.861 0.595 0.622 0.595 0.367 0.344

4(b) 20.988 6.555 0.077 1.861 1.843 1.028 1.009 0.861 0.840 0.622 0.598 0.367 0.347

4(c) 20.988 6.559 0.077 1.861 1.846 1.028 1.011 0.861 0.840 0.622 0.598 0.367 0.347
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Table 2: Empirical small-sample null rejection rates and power of t-test for model M1

α = 0.05, T = 200 δ = 0 (null rejection) δ = 0.05 δ = 0.1 δ = 0.15 δ = 0.25 δ = 1 δ = 1.5

ĴDK,T 0.068 0.189 0.286 0.460 0.661 0.992 1.000

ĴDK,pw,SLS,T 0.045 0.085 0.199 0.332 0.612 0.976 1.000

ĴDK,pw,SLS,µ,T 0.046 0.090 0.202 0.333 0.613 0.977 1.000

Andrews (1991) 0.039 0.095 0.185 0.383 0.623 0.968 0.999

Andrews (1991), prewhite 0.115 0.168 0.304 0.447 0.650 0.988 0.999

Newey-West (1987) 0.209 0.272 0.398 0.516 0.689 0.997 1.000

KVB fixed-b 0.004 0.018 0.063 0.139 0.301 0.870 0.969

EWC 0.011 0.038 0.137 0.273 0.539 0.978 0.999

Table 3: Empirical small-sample null rejection rates and power of the of t-test for model M2

α = 0.05, T = 200 δ = 0 (null rejection) δ = 0.05 δ = 0.1 δ = 0.15 δ = 0.3 δ = 1

ĴDK,T 0.080 0.132 0.257 0.423 0.842 1.000

ĴDK,pw,SLS,T 0.059 0.098 0.190 0.310 0.736 1.000

ĴDK,pw,SLS,µ,T 0.055 0.088 0.187 0.306 0.735 1.000

Andrews (1991) 0.081 0.133 0.266 0.433 0.838 1.000

Andrews (1991), prewhite 0.094 0.141 0.268 0.438 0.842 1.000

Newey-West (1987) 0.137 0.190 0.336 0.510 0.881 1.000

KVB fixed-b 0.014 0.036 0.078 0.203 0.561 0.990

EWC 0.032 0.064 0.157 0.299 0.712 1.000
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Table 4: Empirical small-sample null rejection rates and power of the of t-test for model M3

α = 0.05, T = 200 δ = 0 (null rejection) δ = 0.1 δ = 0.15 δ = 0.3 δ = 1

ĴDK,T 0.117 0.363 0.537 0.928 1.000

ĴDK,pw,SLS,T 0.049 0.227 0.384 0.865 1.000

ĴDK,pw,SLS,µ,T 0.052 0.223 0.374 0.855 1.000

Andrews (1991) 0.106 0.334 0.515 0.917 1.000

Andrews (1991), prewhite 0.122 0.351 0.524 0.928 1.000

Newey-West (1987) 0.169 0.412 0.596 0.948 1.000

KVB fixed-b 0.024 0.165 0.309 0.712 0.999

EWC 0.058 0.245 0.400 0.858 1.000

Table 5: Empirical small-sample null rejection rates and power of the of t-test for model M4

α = 0.05, T = 200 δ = 0 (null rejection) δ = 0.1 δ = 0.3 δ = 0.5 δ = 1 δ = 3

ĴDK,T 0.154 0.146 0.496 0.706 0.953 1.000

ĴDK,pw,SLS,T 0.037 0.050 0.168 0.459 0.771 1.000

ĴDK,pw,SLS,µ,T 0.041 0.079 0.198 0.477 0.795 1.000

Andrews (1991) 0.127 0.162 0.398 0.623 0.905 0.999

Andrews (1991), prewhite 0.197 0.226 0.439 0.653 0.922 1.000

Newey-West (1987) 0.397 0.423 0.584 0.758 0.969 1.000

KVB fixed-b 0.005 0.012 0.135 0.339 0.709 0.964

EWC 0.115 0.147 0.367 0.681 0.906 0.999
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Table 6: Empirical small-sample null rejection rates and power of the DM (1995) test
(1) δ > 0

α = 0.05, T = 200 (null rejection) δ = 0.2 δ = 0.5 δ = 2 δ = 5 δ = 10

ĴDK,T 0.033 0.312 0.551 0.997 1.000 1.000

ĴDK,pw,SLS,T 0.042 0.322 0.563 0.999 1.000 1.000

ĴDK,pw,SLS,µ,T 0.046 0.348 0.573 0.998 1.000 1.000

Andrews (1991) 0.085 0.254 0.305 0.114 0.000 0.000

Andrews (1991), prewhite 0.085 0.246 0.293 0.401 0.045 0.000

Newey-West (1987) 0.083 0.246 0.299 0.612 0.817 0.782

KVB fixed-b 0.002 0.212 0.185 0.000 0.000 0.000

EWC 0.083 0.252 0.268 0.045 0.000 0.000

(2) δ (t/T ) locally stationary

α = 0.05, T = 200 δ = 0.2 δ = 0.5 δ = 2 δ = 5 δ = 10

ĴDK,T 0.278 0.297 0.592 0.889 1.000

ĴDK,pw,SLS,T 0.301 0.363 0.634 0969 1.000

ĴDK,pw,SLS,µ,T 0.327 0.368 0.642 0.969 1.000

Andrews (1991) 0.255 0.259 0.255 0.110 0.005

Andrews (1991), prewhite 0.249 0.243 0.268 0.188 0.031

Newey-West (1987) 0.281 0.282 0.313 0.268 0.078

KVB fixed-b 0.203 0.202 0.178 0.025 0.000

EWC 0.244 0.252 0.219 0.045 0.000

(3) δ (t/T ) segmented locally stationary

α = 0.05, T = 200 δ = 0.2 δ = 1 δ = 2 δ = 5 δ = 10

ĴDK,T 0.540 0.862 0.992 1.000 1.000

ĴDK,pw,SLS,T 0.396 0.664 0.988 1.000 1.000

ĴDK,pw,SLS,µ,T 0.412 0.724 0.987 1.000 1.000

Andrews (1991) 0.328 0.234 0.235 0.241 0.777

Andrews (1991), prewhite 0.342 0.315 0.512 0.296 0.882

Newey-West (1987) 0.381 0.384 0.720 0.972 0.999

KVB fixed-b 0.100 0.032 0.000 0.002 0.040

EWC 0.312 0.152 0.142 0.296 0.852

(4) case (2) with outliers

α = 0.05, T = 400 δ = 0.5 δ = 1 δ = 2 δ = 5 δ = 10

ĴDK,T 0.694 0.733 0.822 0.981 1.000

ĴDK,pw,SLS,T 0.724 0.777 0.846 0.982 1.000

ĴDK,pw,SLS,µ,T 0.727 0.771 0.847 0.981 1.000

Andrews (1991) 0.192 0.242 0.245 0.203 0.022

Andrews (1991), prewhite 0.182 0.233 0.243 0.288 0.114

Newey-West (1987) 0.222 0.271 0.245 0.345 0.225

KVB fixed-b 0.203 0.222 0.212 0.075 0.000

EWC 0.186 0.221 0.174 0.062 0.000
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S.A Results on Low Frequency Bias for the Sample Autocovari-

ance and the Periodogram

In Section S.A.1 we define the long memory SLS processes. In Section S.A.2 and S.A.3 we present results
on the low frequency bias for the sample autocovariance and the periodogram, respectively.

S.A.1 Long Memory Segmented Locally Stationary Processes

Define the backward difference operator ∆Vt = ∆1Vt = Vt − Vt−1 and ∆lVt recursively. Long memory
features can be expressed as a “pole” in the spectral density at frequency zero. That is, for a stationary
process, long memory implies that f (ω) ∼ ω−2ϑ as ω → 0 where ϑ ∈ (0, 1/2) is the long memory
parameter. In what follows, l is some non-negative integer.

Definition S.A.1. A sequence of stochastic processes {Vt,T } is called long memory segmented locally
stationary with m0 + 1 regimes, transfer function A0 and trend µ· if there exists a representation

∆lVt = µj (t/T ) +
� π

−π
exp (iωt)A0

j,t,T (ω) dξ (ω) ,
(
t = T 0

j−1 + 1, . . . , T 0
j

)
, (S.A.1)

for j = 1, . . . , m0 + 1, where by convention T 0
0 = 0 and T 0

m0+1 = T , (i) and (iii) of Definition 2.1 hold,
and (ii) of Definition 2.1 is replaced by

(ii) There exists two constants L2 > 0 and D < 1/2 (which depend on j) and a piecewise continuous
function A : [0, 1] × R → C such that, for each j = 1, . . . , m0 + 1, there exists a 2π-periodic function
Aj : (λ0

j−1, λ
0
j ] × R → C with Aj (u, −ω) = Aj (u, ω),

A (u, ω) = Aj (u, ω) for λ0
j−1 < u ≤ λ0

j , (S.A.2)

sup
1≤j≤m0+1

sup
T 0

j−1<t≤T 0
j , ω

∣∣∣A0
j,t,T (ω) −Aj (t/T, ω)

∣∣∣ ≤ L2T
−1 |ω|−D , (S.A.3)

and

sup
0≤v≤u≤1, u ̸=λ0

j (j=1,..., m0+1,), ω

|A (u, ω) −A (v, ω)| ≤ L2 |u− v| |ω|−D . (S.A.4)

The spectral density of {Vt,T } is given by fj (u, ω) = |1−exp (−iω) |−2l|Aj (u, ω) |−2 for j = 1, . . . , m0 +1.
We say that the process {Vt,T } has local memory parameter ϑ (u) ∈ (−∞, l + 1/2) at time u ∈ [0, 1] if
it satisfies (S.A.1)-(S.A.4), and its generalized spectral density fj (u, ω) (j = 1, . . . , m0 + 1) satisfies the
following condition,

fj (u, ω) =
∣∣∣1 − e−iω

∣∣∣−2ϑj(u)
f∗

j (u, ω) , (S.A.5)

with f∗
j (u, ω) > 0 and ∣∣∣f∗

j (u, ω) − f∗
j (u, 0)

∣∣∣ ≤ L4f
∗
j (u, ω) |ω|ν , ω ∈ [−π, π] , (S.A.6)
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where L4 > 0 and ν ∈ (0, 2].

Definition S.A.1 extends Definition 2.1 and Assumption 2.1 by requiring the bound on the smoothness
of A (·, ω) to depend also on |ω|−D thereby allowing a singularity at ω = 0. Casini (2023b) showed that
fj (u, ω) = |Aj (u, ω)|2 for j = 1, . . . , m0 +1. Using similar arguments, we obtain the form fj (u, ω) given
in (S.A.5). See Roueff and von Sachs (2011) for a definition of long memory local stationarity. Definition
S.A.1 extends their definition to allow for m0 discontinuities. We have assumed that breaks in the long
memory parameter occur at the same locations as the breaks in the spectrum. This can be relaxed but
would provide no added value in this paper.

Example S.A.1. A time-varying AR fractionally integrated moving average (p, ϑ, q) process with m0
structural breaks satisfies Definition S.A.1 with ϑj : [0, 1] → (−∞, l + 1/2), σj : [0, 1] → R+, ϕj =
[ϕ1, . . . , ϕp]′ : [0, 1] → Rq and θj = [θ1, . . . , θq]′ : [0, 1] → Rp are left-Lipschitz functions for each
j = 1, . . . , m0 + 1 such that 1 −

∑p
k=1 ϕj,k (u) zk does not vanish for all u ∈ [0, 1] and z ∈ C such

that |z| ≤ 1. Using the latter condition, the local transfer function Aj (u; ·) defines for each j a causal
autoregressive fractionally integrated moving average (ARFIMA(p, ϑ (u) − l, q) process whose spectral
density satisfies the conditions (S.A.5) and (S.A.6) with ν = 2. Using Lemma 3 in Roueff and von Sachs
(2011), condition (S.A.4) holds with with D > sup1≤j≤m0+1 supλ0

j−1<u≤λ0
j , ω ϑj (u) − l.

Definition S.A.1 implies that ρV (u, k) ≜ Corr(V⌊T u⌋, V⌊T u⌋+k) ∼ Ck2ϑj(u)−1 for λ0
j−1 < u < λ0

j and
large k where C > 0. This means that the rescaled time-u autocorrelation function (ACF(u)) has a power
law decay which implies

∑∞
k=−∞ |ρV (u, k)| = ∞ if ϑj (u) ∈ (0, 1/2).

S.A.2 The Sample Autocovariance Under Nonstationarity

We now establish some asymptotic properties of the sample autocovariance under nonstationarity. We
consider the case k ≥ 0 only; the case k < 0 is similar.

Theorem S.A.1. Assume that {Vt,T } satisfies Definition 2.1. Under Assumption 2.1-2.2,

Γ̂ (k) ≥
� 1

0
c (u, k) du+ d∗ + oa.s. (1) , (S.A.7)

where d∗ = 2−1∑
j1 ̸=j2 rj1rj2(µj2 − µj1)2. Further, as k → ∞, Γ̂ (k) ≥ d∗ P-a.s. If in addition it holds

that µj (t/T ) = µj for j = 1, . . . , m0 + 1, then

Γ̂ (k) =
� 1

0
c (u, k) du+ d∗

Sta + oa.s. (1) ,

where d∗
Sta = 2−1∑

j1 ̸=j2 rj1rj2 (µj2 − µj1)2 and, as k → ∞, Γ̂ (k) = d∗
Sta + oa.s. (1).

S.A.3 The Periodogram Under Nonstationarity

Classical LRV estimators are weighted averages of periodogram ordinates around the zero frequency.
Thus, it is useful to study the behavior of the periodogram as the frequency ω approaches zero. We now
establish some properties of the asymptotic bias of the periodogram under nonstationarity. We consider
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the Fourier frequencies ωl = 2πl/T ∈ (−π, π) for an integer l ̸= 0 (mod T ) and exclude ωl = 0 for
mathematical convenience.

Assumption S.A.1. (i) For each j = 1, . . . , m0 + 1 there exists a Bj ∈ R such that∣∣∣∣∣∣∣
m0+1∑
j=1

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

µj (t/T ) exp (−iωlt)

∣∣∣∣∣∣∣
2

≥

∣∣∣∣∣∣∣
m0+1∑
j=1

Bj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

exp (−iωlt)

∣∣∣∣∣∣∣
2

, ωl ∈ (−π, π) ,

where Bj1 ̸= Bj2 for j1 ̸= j2; (ii) |Γ (u, k)| = Cu,kk
−m for all u ∈ [0, 1] and all k ≥ C3T

κ for some
C3 < ∞ , Cu,k < ∞ (which depends on u and k), 0 < κ < 1/2, and m > 2.

Part (i) is easily satisfied (e.g., the special case with µj (t/T ) = µj). Part (ii) is satisfied if {Vt} is
strong mixing with mixing parameters of size −2ν/ (ν − 1/2) for some ν > 1 such that supt≥1 E |Vt|4ν < ∞.
This is less stringent than the size condition −3ν/ (ν − 1) for some ν > 1 sufficient for Assumption 2.2-(i).

Theorem S.A.2. Assume that {Vt,T } satisfies Definition 2.1. Under Assumption 2.1-2.2 and S.A.1,

E (IT (ωl)) = 2π
� 1

0
f (u, ωl) du (S.A.8)

+ 1
Tω2

l

∣∣∣∣∣∣
B1 −Bm0+1 −

m0∑
j=1

(Bj −Bj+1) exp
(
−2πilλ0

l

)∣∣∣∣∣∣
2

+ o (1) .

Under Assumption 2.1-2.2 and S.A.1-(ii), if µj (t/T ) = µj for each j = 1, . . . , m0 + 1, then

E (IT (ωl)) = 2π
� 1

0
f (u, ωl) du

+ 1
Tω2

l

∣∣∣∣∣∣
µj − µm0+1 −

m0∑
j=1

(µj − µj+1) exp
(
−2πilλ0

j

)∣∣∣∣∣∣
2

+ o (1) .

In either case, if Tω2
l → 0 as T → ∞ then E (IT (ωl)) → ∞ for many values in {ωl} as ωl → 0.

The theorem suggests that for small frequencies ωl close to 0, the periodogram attains very large
values. This follows because the first term of (S.A.8) is bounded for all ωj . Since B1, . . . , Bm0+1 are fixed,
the order of the second term of (S.A.8) is O((Tω2

j )−1). Note that as ωl → 0 there are some values l for

which the corresponding term involving |·|2 on the right-hand side of (S.A.8) is equal to zero. In such cases,
E (IT (ωl)) ≥ 2π

� 1
0 f (u, ωl) du > 0. For other values of {l} as ωl → 0, the second term of (S.A.8) diverges

to infinity. Thus, considering the behavior of {E (IT (ωl))} as ωl → 0, it generally takes unbounded values
except for some ωl for which E (IT (ωl)) is bounded below by 2π

� 1
0 f (u, ωl) du > 0. A SLS process with

long memory has an unbounded local spectral density f (u, ω) as ω → 0 for some u ∈ [0, 1]. Since f (·, ·)
cannot be negative, it follows that

� 1
0 f (u, ω) du is also unbounded as ω → 0. Theorem S.A.2 suggests

that nonstationarity consisting of time-varying first moment results in a periodogram sharing features of
a long memory series.
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S.B Mathematical Appendix

S.B.1 Proofs of the Results in Section 3 and 3

S.B.1.1 Proof of Theorem S.A.1

Let V j = (Trj)−1∑⌊T λ0
j⌋

t=⌊T λ0
j−1⌋+1 Vt, µ2,j (u) = E(V⌊T u⌋)2 for T 0

j−1 ≤ Tu ≤ T 0
j and µ2,j = r−1

j

� λ0
j

λ0
j−1

µ2,j (u) du.
By Assumption 2.1-2.2-(i), the latter implying ergodicity, it follows for fixed k ≥ 0 that

Γ̂ (k) =
m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

VtVt−k −

m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

Vt


2

=
m0+1∑
j=1

� λ0
j

λ0
j−1

c (u, k) du+
m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

E (Vt)E (Vt−k)

−

m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

Vt


2

+O
(
T−1

)
+ oa.s. (1)

=
� 1

0
c (u, k) du+

m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

E (Vt)E (Vt−k)

−

m0+1∑
j=1

rjV j

2

+O
(
T−1

)
+ oa.s. (1)

=
� 1

0
c (u, k) du+

m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

µ2 (t/T ) −

m0+1∑
j=1

rjV j

2

+O
(
T−1

)
+ oa.s. (1) ,

where we have used E (Vt−k) − E (Vt) = O (k/T ) by local stationarity in the third equality. Note that by
ergodicity and an approximation to Riemann sums, we have

m0+1∑
j=1

rjV j −
m0+1∑
j=1

rjµj =
m0+1∑
j=1

rjV j −
m0+1∑
j=1

rjE
(
V j

)
+

m0+1∑
j=1

rjE
(
V j

)
−

m0+1∑
j=1

rjµj

= oa.s. (1) +O
(
T−1

)
. (S.B.1)

Basic manipulations show that∑
j2 ̸=j1

rj1rj2

(
µj2 − µj1

)2

=
∑

j2 ̸=j1

rj1rj2

(
µ2

j2 + µ2
j1 − 2µj2µj1

)
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=
∑

1≤j2≤m0+1
rj2µ

2
j2 (1 − rj2) +

∑
1≤j1≤m0+1

rj1µ
2
j1 (1 − rj1) − 2

∑
j1 ̸=j2

rj1rj2µj2µj1

= 2
∑

1≤j≤m0+1
rjµ

2
j − 2

∑
1≤j≤m0+1

r2
jµ

2
j − 2

∑
j1 ̸=j2

rj1rj2µj2µj1 . (S.B.2)

Note that

(Trj − k)
⌊T λ0

j⌋∑
t=⌊T λ0

j−1⌋+1+k

µ2 (t/T ) ≥

 ⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

µ (t/T )


2

. (S.B.3)

Thus,

m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

µ2 (t/T ) =
m0+1∑
j=1

rj
1

Trj (Trj − k) (Trj − k)
⌊T λ0

j⌋∑
t=⌊T λ0

j−1⌋+1+k

µ2 (t/T )

≥
m0+1∑
j=1

rj
1

Trj (Trj − k)

 ⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

µ (t/T )


2

=
∑

1≤j≤m0+1
rjµ

2
j + o (1) . (S.B.4)

Using (S.B.1)-(S.B.4) we have,

Γ̂ (k) =
� 1

0
c (u, k) du+

m0+1∑
j=1

rj
1
Trj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1+k

µ2 (t/T ) −

m0+1∑
j=1

rjV j

2

+ oa.s. (1)

≥
� 1

0
c (u, k) du+

m0+1∑
j=1

rjµ2,j −

m0+1∑
j=1

rjV j

2

+O
(
T−1

)
+ oa.s. (1)

=
� 1

0
c (u, k) du+ 2−1 ∑

j1 ̸=j2

rj1rj2

(
µj2 − µj1

)2
+O

(
T−1

)
+ oa.s. (1) . (S.B.5)

The claim that Γ̂ (k) ≥ d P-a.s. as k → ∞ follows from Assumption 2.2-(i) since this implies that
c (u, k) → 0 as k → ∞ and from the fact that the second term on the right-hand side of (S.B.5) does
not depend on k. If in addition it holds that µj (t/T ) = µj for j = 1, . . . , m0 + 1, then (S.B.3) holds with
equality and the result follows as a special case of (S.B.5). □
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S.B.1.2 Proof of Theorem S.A.2

Lemma S.B.1. Assume that {Vt,T } satisfies Definition 2.1. Under Assumption 2.1-2.2 and S.A.1-(ii),

∑
j1 ̸=j2

1
T

⌊
T λ0

j1

⌋∑
t=
⌊

T λ0
j1−1

⌋
+1

⌊
T λ0

j2

⌋∑
s=
⌊

T λ0
j2−1

⌋
+1

E ((Vt − µ (t/T )) (Vs − µ (s/T ))) exp (−iωl (t− s)) = o (1) .

Proof. Let rj1,j2 = max {rj1 , rj2} and rj1,j2 = min {rj1 , rj2} . We consider the case of adjacent regimes
(i.e., j2 = j1 + 1) which also provides an upper bound for non-adjacent regimes due to the short memory
property. For any k = s− t = 1, . . . ,

⌊
Trj1,j2

⌋
there are k pairs in the above sum. The double sum above

(over t and s) can be split into

T−1
⌊CT κ⌋∑

k=1

∣∣∣Γ{1:⌊CT κ⌋} (·, k)
∣∣∣+ T−1

⌊hT ⌋∑
k=⌊CT κ⌋+1

∣∣∣Γ{⌊CT κ⌋+1:⌊hT ⌋} (·, k)
∣∣∣ (S.B.6)

+ T−1

⌊
T rj1,j2

⌋
−1∑

k=⌊hT ⌋+1

∣∣∣∣Γ{⌊hT ⌋+1:
⌊

T rj1,j2

⌋
−1
} (·, k)

∣∣∣∣+ T−1
⌊T rj1,j2⌋∑

k=
⌊

T rj1,j2

⌋
∣∣∣∣Γ{rj1,j2

:rj1,j2

} (·, k)
∣∣∣∣

where C > 0, 0 < h < 1 with ⌊hT ⌋ <
⌊
Trj1,j2

⌋
−1, and ΓS (·, k) is the sum of the autocovariances at lag k

computed at the time points corresponding to k ∈ S. Note that the term |exp (−iωl (±k))| can be bounded
by some constant. The sums run over only k > 0 because by symmetry Γu (k) = Γu−k/T (−k). Consider
the first sum in (S.B.6). This is of order O

(
T−1T 2κ

)
which goes to zero given κ < 1/2. The second sum

is also negligible using the following arguments. By Assumption S.A.1-(ii), |Γ (u, k)| = Cu,kk
−m with

m > 2 and choosing C large enough yields that the second sum of (S.B.6) converges to zero. In the third
sum, the number of summands grows at rate O (T ) and for each lag k there are O (T ) autocovariances.
However, by Assumption S.A.1-(ii) each autocovariance is O (T−m) . Thus, the bound is O

(
T−1T 2−m

)
which goes to zero as T → ∞. The difference between the arguments used for the third sum and fourth
sums is that now we do not have O (T ) autocovariances for each lag k. Thus, the bound for the fourth
sum cannot be greater than the bound for the third sum. Thus, the fourth sum also converges to zero. □

Proof of Theorem S.A.2. We have,

IT (ωl) =

∣∣∣∣∣∣∣
1√
T

m0+1∑
j=1

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

exp (−iωlt)Vt

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
1√
T

m0+1∑
j=1

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

(Xt − µ (t/T )) exp (−iωlt) + 1√
T

m0+1∑
j=1

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

µ (t/T ) exp (−iωlt)

∣∣∣∣∣∣∣
2

.
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From Assumption S.A.1,

∣∣∣∣∣
m0+1∑
j=1

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

µ (t/T ) exp (−iωlt)
∣∣∣∣∣
2

≥

∣∣∣∣∣∣∣
m0+1∑
j=1

Bj

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

exp (−iωlt)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
m0+1∑
j=1

Bj exp
(
−iωl

(⌊
Tλ0

j−1

⌋
+ 1

)) ⌊T λ0
j⌋−⌊T λ0

j−1⌋−1∑
t=0

exp (−iωlt)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ exp (−iωl)
1 − exp (−iωl)

m0+1∑
j=1

Bj exp
(
−iωl

(⌊
Tλ0

j−1

⌋)) (
1 − exp

(
−iωl

(⌊
Tλ0

j

⌋
−
⌊
Tλ0

j−1

⌋)))∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ exp (−iωl)
1 − exp (−iωl)

m0+1∑
j=1

Bj

(
exp

(
−iωl

(⌊
Tλ0

j−1

⌋))
− exp

(
−iωl

⌊
Tλ0

j

⌋))∣∣∣∣∣∣
2

,

using the formula for the first n-th terms of a geometric series
∑n−1

k=0 ar
k = a

∑n−1
k=0 r

k = a (1 − rn) / (1 − r) .
Then, using summation by parts,

exp (−iωj)
1 − exp (−iωj)

m0+1∑
j=1

Bj

(
exp

(
−iωl

(⌊
Tλ0

j−1

⌋))
− exp

(
−iωl

⌊
Tλ0

j

⌋))

= exp (−iωj)
1 − exp (−iωj)

B1 −Bm0+1 −
m0∑
j=1

(Bj −Bj+1) exp
(
−iωl

⌊
Tλ0

j

⌋) .
By Lemma S.B.1, it is sufficient to consider the cross-products within each regime j,

E (IT (ωl)) ≥
m0+1∑
j=1

rj
1
Trj

E
⌊T λ0

j⌋∑
t=⌊T λ0

j−1⌋+1

⌊T λ0
j⌋∑

s=⌊T λ0
j−1⌋+1

(Vt − µ (t/T )) (Vs − µ (s/T )) exp (−iωl (t− s))

+
∑∑
j1 ̸=j2

1
T
E

⌊
T λ0

j1

⌋∑
t=
⌊

T λ0
j1−1

⌋
+1

⌊
T λ0

j2

⌋∑
s=
⌊

T λ0
j2−1

⌋
+1

(Vt − µ (t/T )) (Vs − µ (s/T )) exp (−iωl (t− s))

+

∣∣∣∣∣∣ 1√
T

exp (−iωl)
1 − exp (−iωl)

m0+1∑
j=1

Bj

(
exp

(
−iωl

(⌊
Tλ0

j−1

⌋))
− exp

(
−iωl

⌊
Tλ0

j

⌋))∣∣∣∣∣∣
2

+ o (1)

=
m0+1∑
j=1

E 1
T

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+1

(Vt − µ (t/T ))2 + 2
Trj

⌊T rj⌋−1∑
k=1

⌊T λ0
j⌋∑

t=⌊T λ0
j−1⌋+k+1

Γt/T (k) exp (−iωlk)


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+

∣∣∣∣∣∣ 1√
T

exp (−iωl)
1 − exp (−iωl)

m0+1∑
j=1

Bj

(
exp

(
−iωl

(⌊
Tλ0

j−1

⌋))
− exp

(
−iωl

⌊
Tλ0

j

⌋))∣∣∣∣∣∣
2

+ o (1) .

Next, using the definition of f (u, ωl) , e−2iωl = 1 by Euler’s formula and letting ωl → 0 we have,

E (IT (ωl)) ≥
m0+1∑
j=1

(� λ0
j

λ0
j−1

c (u, 0) du+ 2
∞∑

k=1

� λ0
j

λ0
j−1

c (u, k) exp (−iωlk) du
)

+ 1
T

1
|1 − exp (−iωl)|2

∣∣∣∣∣∣
B1 −Bm0+1 − (1 + o (1))

m0∑
j=1

(Bj −Bj+1) exp
(
−2πilλ0

j

)∣∣∣∣∣∣
2

+ o (1)

= 2π
m0+1∑
j=1

� λ0
j

λ0
j−1

f (u, ωl) du

+ 1
T

1
|1 − exp (−iωl)|2

∣∣∣∣∣∣
B1 −Bm0+1 − (1 + o (1))

m0∑
j=1

(Bj −Bj+1) exp
(
−2πilλ0

j

)∣∣∣∣∣∣
2

+ o (1)

= 2π
� 1

0
f (u, ωl) du+ 1

Tω2
l

∣∣∣∣∣∣
B1 −Bm0+1 −

m0∑
j=1

(Bj −Bj+1) exp
(
−2πilλ0

j

)∣∣∣∣∣∣
2

+ o (1) .

(S.B.7)

By Assumption 2.1-(ii), the first term of (S.B.7) is bounded for all frequencies ωj . Since B1, . . . , Bm0+1 are
fixed, if Tω2

l → 0 then the order of the second term of (S.B.7) is O((Tω2
l )−1). Note that as ωl → 0 there are

some values of l for which the corresponding term involving |·|2 on the right-hand side of (S.B.7) is equal to
zero [see the argument in Mikosch and Stărica (2004)]. In such a case, E (IT (ωl)) ≥ 2π

� 1
0 f (u, ωl) du > 0.

For the other values of {l} as ωl → 0, the second term of (S.B.7) diverges to infinity. The outcome is that
there are frequencies close to ωl = 0 for which E (IT (ωl)) → ∞. □

S.B.1.3 Proof of Theorem 3.1

We consider the case k ≥ 0. The case k < 0 follows similarly. Consider any u ∈ (0, 1) such that
T 0

j /∈ S (u, k, n2,T ) for all j = 1, . . . , m0. Theorem S.B.3 in Casini (2023b) showed that

E [ĉT (u, k)] = c (u0, k) + 1
2 (n2,T /T )2

[
∂2

∂2u
c (u, k)

]
+ o

(
(n2,T /T )2

)
+O (1/n2,T ) . (S.B.8)

Since n2,T → ∞ and n2,T /T → 0, E [ĉT (u, k)] = c (u0, k) + o (1) . The same aforementioned theorem
shows that n2,T Var [ĉT (u, k)] = OP (1). This combined with (S.B.8) yields part (i) of the theorem.

Next, we consider case (ii-a) with nj,L (u, k, n2,T ) /n2,T → γ ∈ (0, 1). We have,

ĉT (u, k) = n−1
2,T

n2,T∑
s=0

V⌊T u⌋+k/2−n2,T /2+s+1V⌊T u⌋+k/2−n2,T /2+s+1−k −
(
n−1

2,T

n2,T∑
s=0

V⌊T u⌋−n2,T /2+s+1

)2

S-8



low frequency contamination in har inference

= n−1
2,T

T 0
j −(⌊T u⌋+k/2−n2,T /2+1)∑

s=0
V⌊T u⌋+k/2−n2,T /2+s+1V⌊T u⌋+k/2−n2,T /2+s+1−k

+ n−1
2,T

n2,T∑
s=T 0

j −(⌊T u⌋+k/2−n2,T /2)
V⌊T u⌋+k/2−n2,T /2+s+1V⌊T u⌋+k/2−n2,T /2+s+1−k

−
(
n−1

2,T

T 0
j −(⌊T u⌋+k/2−n2,T /2+1)∑

s=0
V⌊T u⌋+k/2−n2,T /2+s+1

+ n−1
2,T

n2,T∑
s=T 0

j −(⌊T u⌋+k/2−n2,T /2)
V⌊T u⌋−n2,T /2+s+1

)2

= n−1
2,T

T 0
j −(⌊T u⌋+k/2−n2,T /2+1)∑

s=0

(
V⌊T u⌋+k/2−n2,T /2+s+1V⌊T u⌋+k/2−n2,T /2+s+1−k

− E
(
V⌊T u⌋+k/2−n2,T /2+s+1

)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1−k

))

+ n−1
2,T

n2,T∑
s=T 0

j −(⌊T u⌋+k/2−n2,T /2)

(
V⌊T u⌋+k/2−n2,T /2+s+1V⌊T u⌋+k/2−n2,T /2+s+1−k

− E
(
V⌊T u⌋+k/2−n2,T /2+s+1

)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1−k

))

+ n−1
2,T

T 0
j −(⌊T u⌋+k/2−n2,T /2+1)∑

s=0
E
(
V⌊T u⌋+k/2−n2,T /2+s+1

)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1−k

)

+ n−1
2,T

n2,T∑
s=T 0

j −(⌊T u⌋+k/2−n2,T /2)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1

)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1−k

)

−
(
n−1

2,T

T 0
j −(⌊T u⌋+k/2−n2,T /2+1)∑

s=0
V⌊T u⌋−n2,T /2+s+1 (S.B.9)

+ n−1
2,T

n2,T∑
s=T 0

j −(⌊T u⌋+k/2−n2,T /2)
V⌊T u⌋−n2,T /2+s+1

)2
+ oP (1)

≥ γc
(
λ0

j , k
)

+ (1 − γ) c (u, k) + γµj

(
λ0

j

)2
+ (1 − γ)µj+1 (u)2

−
(
γµj

(
λ0

j

)
+ (1 − γ)µj+1 (u)

)2
+ oP (1)

= γc
(
λ0

j , k
)

+ (1 − γ) c (u, k) + γ (1 − γ)
(
µj

(
λ0

j

)
− µj+1 (u)

)2
+ oP (1) . (S.B.10)

Consider the case (ii-b) with nj,L (u, k, n2,T ) /n2,T → 0. The other sub-case follows by symmetry. Eq.
(S.B.9) continues to hold. The first term, third term and the first summation of the last term on the
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right-hand side of (S.B.9) are negligible. Thus, using ergodicity, implied by Assumption 2.1-2.2-(i),

ĉT (u, k) = c (u, k) + n−1
2,T

n2,T∑
s=T 0

j −(⌊T u⌋+k/2−n2,T /2)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1

)
E
(
V⌊T u⌋+k/2−n2,T /2+s+1

)
− µj+1 (u)2 + oP (1)

= c (u, k) + µj+1 (u)2 − µj+1 (u)2 + oP (1) = c (u, k) + oP (1) ,

where we have used the smoothness of E(Vt) implied by local stationarity. The second claim of the lemma
follows from Assumption 2.2-(i) since this implies that supu∈[0, 1] c (u, k) → 0 as k → ∞ and the fact that

the third term on the right-hand side of (S.B.10) does not depend on k. Thus, Γ̂DK (k) ≥ d∗
T +oP (1) where

d∗
T = (n2,T /T ) γ (1 − γ) (µj

(
λ0

j

)
−µj+1 (u))2 > 0 and d∗

T → 0 since n2,T /T → 0. The factor n2,T /T in d∗
T

follows because the neighborhood (λ0
j − n2,T /T, λ

0
j + n2,T /T ) includes O(n2,T /nT ) blocks which are then

averaged out. □

S.B.1.4 Proof of Theorem 3.2

Consider first any u ∈ (0, 1) such that T 0
j /∈ S (u, 0, nT ) for all j = 1, . . . , m0. Theorem 3.3 in Casini and

Perron (2023) shows that

E (IL,T (u, ωl)) =
∣∣∣∣∣ 1
√
nT

nT −1∑
s=0

V⌊T u⌋−nT /2+s+1,T exp (−iωls)
∣∣∣∣∣
2

= f (u, ωl) + 1
6

(
nT

T

)2 ∂2

∂u2 f (u, ωl) + o

((
nT

T

)2
)

+O

( log (nT )
nT

)
. (S.B.11)

By Assumption 2.1 the absolute value of the first term on the right-hand side is bounded for all frequen-
cies ωl. By Assumption 3.1-(iii)

∣∣(∂2/∂u2) f (u, ωl)
∣∣ is bounded and, since nT /T → 0, the second term

converges to zero. Similarly, the third and fourth terms are negligible. Thus, E (IL,T (u, ωl)) is bounded
below by f (u, ωl) > 0 as ωl → 0 which establishes part (i). Now we consider to part (ii). We begin with
case (a). We only focus on the sub-case nj,L (u, 0, nT ) /nT → γ with γ ∈ (0, 1). We have

IL,T (ωl) =∣∣∣∣∣ 1
√
nT

T 0
j −(⌊T u⌋−nT /2+1)∑

s=0
V⌊T u⌋−nT /2+s+1,T exp (−iωls) +

nT −1∑
s=T 0

j −(⌊T u⌋−nT /2)
V⌊T u⌋−nT /2+s+1,T exp (−iωls)

∣∣∣∣∣
2

= 1
nT

∣∣∣∣
T 0

j −(⌊T u⌋−nT /2+1)∑
s=0

(
V⌊T u⌋−nT /2+s+1,T − µ ((⌊Tu⌋ − nT /2 + s+ 1) /T )

)
exp (−iωls)

+
nT −1∑

s=T 0
j −(⌊T u⌋−nT /2)

(
V⌊T u⌋−nT /2+s+1,T − µ ((⌊Tu⌋ − nT /2 + s+ 1) /T )

)
exp (−iωls)

+
nT −1∑
s=0

µ ((⌊Tu⌋ − nT /2 + s+ 1) /T ) exp (−iωls)
∣∣∣∣2. (S.B.12)
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Using Assumption 3.1, we have∣∣∣∣∣
nT −1∑
s=0

µ ((⌊Tu⌋ − nT /2 + s+ 1) /T ) exp (−iωls)
∣∣∣∣∣
2

≥

∣∣∣∣∣∣∣Bj

T 0
j −(⌊T u⌋−nT /2+1)∑

s=0
exp (−iωls) +Bj+1

nT −1∑
s=T 0

j −(⌊T u⌋−nT /2)
exp (−iωls)

∣∣∣∣∣∣∣
2

. (S.B.13)

Note that

Bj

T 0
j −(⌊T u⌋−nT /2+1)∑

s=0
exp (−iωls) +Bj+1

nT −1∑
s=T 0

j −(⌊T u⌋−nT /2)
exp (−iωls)

= Bj

T 0
j −(⌊T u⌋−nT /2+1)∑

s=0
exp (−iωls) (S.B.14)

+Bj+1 exp
(
−iωl

(
T 0

j − (⌊Tu⌋ − nT /2)
)) nT −1−(T 0

j −(⌊T u⌋−nT /2))∑
s=0

exp (−iωls) .

Focusing on the second term on the right-hand side above,

n−1
T

∣∣∣∣∣∣∣Bj+1

nT −1∑
s=T 0

j −(⌊T u⌋−nT /2)
exp (−iωls)

∣∣∣∣∣∣∣
2

= n−1
T

∣∣∣∣∣∣∣Bj+1 exp
(
−iωl

(
T 0

j − (⌊Tu⌋ − nT /2)
)) nT −1−(T 0

j −(⌊T u⌋−nT /2))∑
s=0

exp (−iωls)

∣∣∣∣∣∣∣
2

= n−1
T

∣∣∣∣∣∣Bj+1 exp
(
−iωl

(
T 0

j − (⌊Tu⌋ − nT /2)
)) 1 − exp

(
−iωl

(
nT −

(
T 0

j − (⌊Tu⌋ − nT /2)
)))

1 − exp (−iωl)

∣∣∣∣∣∣
2

= n−1
T

∣∣∣∣∣∣Bj+1
exp

(
−iωl

(
T 0

j − (⌊Tu⌋ − nT /2)
))

− exp (−iωlnT )
1 − exp (−iωl)

∣∣∣∣∣∣
2

. (S.B.15)

We show that the above equation diverges to infinity as ωl → 0 with nTω
2
l → 0. If nTωl → a ∈ (0, ∞)

then Re (exp (−iωlnT )) ̸= 1 and the order is determined by the denominator. As in the proof of Theorem
S.A.2, |1 − exp(−iωl)|2 = ω2

l . Since nTω
2
l → 0, the right-hand side above diverges. If nTωl → 0, we apply

L’Hôpital’s rule to obtain

n−1
T

∣∣∣∣∣∣Bj+1
−i
(
T 0

j − (⌊Tu⌋ − nT /2)
)

+ inT

i

∣∣∣∣∣∣
2
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= n−1
T B2

j+1

(
−
(
T 0

j − (⌊Tu⌋ − nT /2)
)2

+ n2
T −

(
T 0

j − (⌊Tu⌋ − nT /2)
)
nT

)
= O

(
n2

T /nT

)
= O (nT ) ,

which shows that the right-hand side of (S.B.15) diverges. A similar argument can be applied to the first
term on the right-hand side of (S.B.14) and to the product of the latter term and the complex conjugate
of the second term on the right-hand side of (S.B.14).

It remains to consider case (b) and the sub-case nj,L (u, 0, nT ) /nT → 0. The other sub-case follows
by symmetry. We have (S.B.12) and (S.B.13). Note that,∣∣∣∣∣ 1

√
nT

Bj+1

nT −1∑
s=T 0

j −(⌊T u⌋−nT /2)
exp (−iωls)

∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
1

√
nT

Bj+1

nT −1∑
s=0

exp (−iωls) − 1
√
nT

Bj+1

T 0
j −(⌊T u⌋−nT /2)−1∑

s=0
exp (−iωls)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣−
1

√
nT

Bj+1

T 0
j −(⌊T u⌋−nT /2)−1∑

s=0
exp (−iωls)

∣∣∣∣∣∣∣
2

→ 0.

Thus, we have

E (ILT (ωl)) = 1
nT

∣∣∣∣∣
T 0

j −(⌊T u⌋−nT /2+1)∑
s=0

(
V⌊T u⌋−nT /2+s+1,T − µ ((⌊Tu⌋ − nT /2 + s+ 1) /T )

)
exp (−iωls)


+

nT −1∑
s=T 0

j −(⌊T u⌋−nT /2)

(
V⌊T u⌋−nT /2+s+1,T − µ ((⌊Tu⌋ − nT /2 + s+ 1) /T )

)
exp (−iωls)

∣∣∣∣∣
2

+ o (1) .

Note that the first sum above involves at most C < ∞ summands. So the first term is negligible. The
expectation of the product of the first term and the conjugate of the second term is negligible by using
arguments similar to the proof in Lemma S.B.1 with nT in place of T . Thus, the limit of E (IT (ωl)) is
equal to the right-hand side of (S.B.11) plus additional o (1) terms. □

S.B.2 Proofs of the Results in Section 4

We first introduce the multiple Fejér kernel as in Velasco and Robinson (2001),

Ψ(n)
T (x1, . . . , xn) = 1

(2π)n−1 T

T∑
t1···tn=1

exp

i
n∑

j=1
tjxj

 ,

S-12



low frequency contamination in har inference

with xn = −
∑n−1

j=1 xj . Velasco and Robinson (2001) discussed the following properties. Ψ(n)
T (x1, . . . , xn)

is integrable in Πn−1 and integrates to one for all T . For δ > 0 and T ≥ 1, we have

�
Dc

∣∣∣Ψ(n)
T (x1, . . . , xn)

∣∣∣ dx1 . . . dxn−1 = O

(
logn−1 T

T sin δ/2

)
, (S.B.16)

where Dc is the complement in Πn−1 of the set D = {x ∈ Πn−1 : |xj | ≤ δ, j = 1, . . . , n − 1}. For
j = 1, . . . , n− 1,

�
Π

· · ·
�

Π
|xj ||Ψ(n)

T (x1, . . . , xn) |dx1 · · · dxn = O
(
T−1 logn−1 T

)
. (S.B.17)

Recall that the Dirichlet kernel is defined as DT (x) =
∑T

t=1 exp (itx). It satisfies the following two
relations,

|DT (x)| ≤ min
{
T, 2 |x|−1

}
;

�
Π

|DT (x)| dx = O (log T ) . (S.B.18)

Eq. (S.B.16)-(S.B.17) follow from∣∣∣Ψ(n)
T (x1, . . . , xn)

∣∣∣ ≤ 1
(2π)n−1 T

|DT (x1)| |DT (x2)| · · · |DT (xn)|dx1 · · · dxn. (S.B.19)

S.B.2.1 Preliminary Lemmas

Lemma S.B.2. (Bhattacharya and Rao, 1975, pp. 97-98, 113). Let Q1 and Q2 be probability measures on
R2 and B2 the class of all Borel subsets of R2. Let ϕ be a positive number. Then there exists a kernel
probability measure Gϕ such that

sup
B∈B2

|Q1 (B) − Q2 (B)| ≤ 2
3 ∥(Q1 − Q2) • Gϕ∥ + 4

3 sup
B∈B2

Q2
(
(∂B)2ϕ

)
,

where Gϕ satisfies

Gϕ (B (0, r)c) = O

((
ϕ

r

)3)
, (S.B.20)

and its Fourier transform Ĝϕ satisfies

Ĝϕ (t) = 0 for ∥t∥ ≥ 8 × 24/3/π1/3ϕ. (S.B.21)

Here (∂B)2ϕ is a neighborhood of radius 2ϕ of the boundary of B, ∥·∥ is the variation norm, and • means
convolution.

Lemma S.B.3. Let Assumption 4.1, 4.3-4.4 hold. For s ≥ 2 with ϵT (2s) → 0, we have

Tr ((ΣV Wb1)s) = T (2π)2s−1
df∑

j=0
Lj (s) b1+j−s

1,T +O
(
Tb1−s

1,T ϵT (2s)
)
,

S-13
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where ϵT (2s) = (Tb1,T )−1 log2s−1 T , Lj (s) = (1/j)!µj (Ks)
(
dj/dωj

)
(f (u, 0) du)s with |Lj (s) | < ∞ and

Lj (s) differs from zero only for j even (j = 0, . . . , df ).

Proof of Lemma S.B.3. Let r2s+1 = r1 and note that

Tr ((ΣV Wb1)s)

=
∑

1≤r1,...,r2s≤T

s∏
j=1

E
(
Vr2j−1Vr2j

)
w (b1,T (r2j − r2j+1))

=
∑

1≤r1,...,r2s≤T

s∏
j=1

�
Π
f (r2j−1/T, ω2j−1) ei(r2j−1−r2j)ω2j−1

�
Π
K̃b1 (ω2j) ei(r2j−r2j+1)ω2jdω

=
T −1∑

k2, k4,..., k2s=−T +1

T∑
r1=|k2|+1

T∑
r3=|k4|+1

· · ·
T∑

r2s−1=|k2s|+1

s∏
j=1

�
Π
f (r2j−1/T, ω2j−1) eik2j(ω2j−1−ω2j)

×
�

Π
K̃b1 (ω2j) ei((−k2j−k2j+2)ω2j)dω

=
T −1∑

k2, k4,..., k2s=−T +1

s∏
j=1

(T − |k2j |)
�

Π

� 1

0
f (u2j−1, ω2j−1) eik2j(ω2j−1−ω2j)

×
�

Π
K̃b1 (ω2j) ei((−k2j−k2j+2)ω2j)dudω +O

(
T−1

)
=

∑
1≤r1,...,r2s≤T

s∏
j=1

(T − |k2j |)
�

Π

� 1

0
f (u2j−1, ω2j−1)

�
Π
K̃b1 (ω2j) exp

i
2s∑

j=1
ωj (rj − rj+1)

 dudω +O
(
T−1

)
= T (2π)2s−1

�
Π2s

Hb1 (ω, µ) K̃b1 (ω) Ψ(2s)
T (µ) dωdµ+O

(
T−1

)
, (S.B.22)

where Ψ(2s)
T (µ) = Ψ(2s)

T (µ1, . . . , µ2s) ,

Hb1 (ω, µ) =
� 1

0
· · ·

� 1

0
f (u1, ω − µ2 − . . .− µ2s) K̃b1 (ω − µ3 − . . .− µ2s)

× f (u3, ω − . . .− µ2s) K̃b1 (ω − µ4 − . . .− µ2s) . . . f (u2s−1, ω − µ2s) du,

dµ = dµ2, . . . , dµ2s, dω = dω1, . . . , ω2s, du = du1, du3, . . . , du2s−1, and we have made the change in
variables 

µ1 = ω1 − ω2

µ2 = ω2 − ω1

· · ·
µ2s = ω2s − ω2s−1


ω2s−1 = ω − µ2s

ω2s−2 = ω − µ2s − µ2s−1

· · ·
ω1 = ω − µ2s − . . .− µs = ω − µ1

with
∑2s

j=1 µj = 0, setting ω = ω2s, and expressing all the ωj in terms of ω and µj , j = 2, . . . , 2s.
Let

B =
∣∣∣∣∣Tr ((ΣV Wb1)s) − T (2π)2s−1

�
Π

(� 1

0
f (u, ω) du

)s

K̃s−1
b1

(ω) dω
∣∣∣∣∣ .
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Using (S.B.22) we have

B ≤ T (2π)2s−1
�

Π2s

∣∣∣∣∣Hb1 (ω, µ) −
(� 1

0
f (u, ω) du

)s

K̃s−1
b1

(ω)
∣∣∣∣∣ ∣∣∣K̃b1 (ω) Ψ(2s)

T (µ)
∣∣∣ dωdµ+O

(
T−1

)
.

(S.B.23)

We split the integral in (S.B.23) into two sets, for small and for large µj . Define the set M = {µ ∈ Π2s−1 :
supj |µj | ≤ b1,T / (2s)}. Since K (ω) takes small values for |ω| > πb1,T , for all u all functions f (u, ω) are
boundedly differentiable in ω in the set M. We use the following inequality,

|A1 · · ·Ar −B1 · · ·Br| ≤
r−1∑
q=0

|B1 · · ·Bq| |Bq+1 −Aq+1| |Aq+2 · · ·Ar| , (S.B.24)

and supω |K̃b1 (ω) | = O(b−1
1,T ) to bound the integral in (S.B.23) over M by

O
(
Tb−s+1

1,T

) s−1∑
q=0

�
Π

�
M

� 1

0
|f (u2q+1, ω − µ2+2q − . . .− µ2s) − f (u2q+1, ω)|

∣∣∣K̃b1 (ω) Ψ(2s)
T (µ)

∣∣∣ du2q+1dµdω

(S.B.25)

+O
(
Tb−s+1

1,T

) s−2∑
q=0

�
Π

�
M

∣∣∣K̃b1 (ω − µ3+2q − . . .− µ2s) − K̃b1 (ω)
∣∣∣ ∣∣∣Ψ(2s)

T (µ)
∣∣∣ dµdω. (S.B.26)

We apply the mean value theorem in (S.B.25) to yield,

O
(
Tb1−s

1,T

)�
Π

∣∣∣K̃b1 (ω)
∣∣∣ dω 2s∑

q=0

�
M

|µq||Ψ(2s)
T (µ) |dµ

≤ O
(
Tb1−s

1,T

)�
Π

∣∣∣K̃b1 (ω)
∣∣∣ dω 2s∑

q=0

�
Π2s−1

|µq||Ψ(2s)
T (µ) |dµ

= O
(
b1−s

1,T log2s−1 T
)
,

where the equality follows from (S.B.17). Using the Lipschitz property of K (cf. Assumption 4.4), the
expression in (S.B.26) is of order O(b−s

1,T log2s−1 T ).
Let Mc denote the complement of M in Π2s−1. We now study the contribution to B corresponding

to the set Mc. This is bounded by

T (2π)2s−1
�

Π

�
Mc

∣∣∣Hb1 (ω, µ) K̃b1 (ω)
∣∣∣ ∣∣∣Ψ(2s)

T (µ)
∣∣∣ dωdµ (S.B.27)

+ T (2π)2s−1
�

Π

∣∣∣∣∣
(� 1

0
f (u, ω) du

)s

K̃s
b1 (ω)

∣∣∣∣∣ dω
�

Mc

∣∣∣Ψ(2s)
T (µ)

∣∣∣ dµ. (S.B.28)
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The expression in (S.B.28) is O(b−s
1,T log2s−1 T ) using (S.B.16) and

�
Π

∣∣∣∣∣
(� 1

0
f(u, ω)du

)
sK̃s

b1 (ω)
∣∣∣∣∣ dω = O

(
b−s

1,T

)
.

Applying (S.B.19) the expression in (S.B.27) is bounded by

�
M′

s∏
j=1

� 1

0

∣∣∣f (u2j−1, ω2j−1) K̃b1 (ω2j)DT (ω2j − ω2j−1)DT (ω2j+1 − ω2j)
∣∣∣ du2j−1dω2jdω2j−1, (S.B.29)

where M′ = {|ω2 − ω1| > νT }∪{|ω3 − ω2| > νT }∪. . .∪{|ω2s − ω2s−1| > νT } with νT = b1,T / (2s) and 2s+1
is to be interpreted as 1. Note that the integral in (S.B.29) differs from zero only if |ω2| , |ω4| , . . . , |ω2s| ≤
b1,Tπ. Without loss of generality, we consider only the case where just one of the events in M′ is satisfied,
|ω2j − ω2j−1| > νT , say, the other cases can be handled similarly.

From (S.B.18) it follows that |DT (ω2j −ω2j−1)| = O(b−1
1,T ) since |ω2j −ω2j−1| > νT = b1,T / (2s), and�

Π |DT (ω2j − ω2j−1)K̃b1(ω2j)|dω2j = O(b−1
1,T log T ). For ϵ > 0, consider the following decomposition

�
Π

� 1

0
|f (u2j−1, ω2j−1)DT (ω2j−1 − ω2j−2)| du2j−1dω2j−1 (S.B.30)

=
�

|ω2j−1|≤ϵ

� 1

0
|f (u2j−1, ω2j−1)DT (ω2j−1 − ω2j−2)| du2j−1dω2j−1

+
�

|ω2j−1|>ϵ

� 1

0
|f (u2j−1, ω2j−1)DT (ω2j−1 − ω2j−2)| du2j−1dω2j−1.

By Assumption 4.1 f(u2j−1, ω2j−1) is bounded if |ω2j−1| ≤ ϵ. Then, the integral over |ω2j−1| ≤ ϵ above is
of order O (log T ). On the other hand, if |ω2j−1| > ϵ (and recall that |ω2j−1| ≤ b1,Tπ), we yield as T → ∞
|ω2j−1 − ω2j−2| > ϵ/2, say. Then, |DT (ω2j−1 − ω2j−2)| = O (1) by (S.B.18) and the second summand of
(S.B.30) is finite in view of the integrability of f (u, ω) by Assumption 4.2. It follows that (S.B.30) is
O (log T ). There are other s−1 integrals of this type that can be handled in the same way. The remaining
integral is of the form

�
Π

�
Π

� 1

0

∣∣∣K̃b1 (ω2s) f (u2s−1, ω1)DT (ω1 − ω2s)
∣∣∣ du2s−1dω1dω2s = O (log T ) ,

where ω1 = ω2s+1 and we have used the same argument as in (S.B.30) to show that the integral in
ω1 is O (log T ) for all ω2s and that

�
Π |K̃b1(ω2s)|dω2s = O (1). Thus, (S.B.29) is O(b−s

1,T log2s−1 T ) and

B = O(b1−s
1,T log2s−1 T + b−s

1,T log2s−1 T + T−1) = O(Tb1−s
1,T ϵT (2s)).

Define Rb1 (s) =
∑df

j=0 Lj (s) b1+j−s
1,T . Using the Lipschitz property of f(df ) (u, ω) for all u,

∣∣∣∣�
Π
K̃s

b1 (ω)
(� 1

0
f (u, ω) du

)s

dω −Rb1 (s)
∣∣∣∣

≤
�

Π

∣∣∣K̃b1 (ω)
∣∣∣s−1

∣∣∣∣∣∣
(� 1

0
f (u, ω) du

)s

−
df∑

j=0

1
j!

(
d

dω

)j
(� 1

0
f (u, 0) du

)s

ωj

∣∣∣∣∣∣
∣∣∣K̃b1 (ω)

∣∣∣ dω
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= O

(
sup
ω∈Π

∣∣∣K̃b1 (ω)
∣∣∣s−1

∣∣∣∣�
Π

|ω|df +ϱ
∣∣∣∣ ∣∣∣K̃b1 (ω)

∣∣∣ dω) = O
(
b

df +ϱ−s+1
1,T

)
,

where we have used supω∈Π |K̃b1 (ω) | = O(b−1
1,T ).

Note that Lj (s) differs from zero for j even because Lj (s) depends on µj(Ks). □

Lemma S.B.4. Let Assumption 4.1 and 4.3-4.4 hold. For s ≥ 1 with ϵT (2s+ 2) → 0, we have

1′ (ΣV Wb1)s ΣV 1 = T (2π)2s+1
(� 1

0
f (u, 0) du

)s+1 (
K̃b1 (0)

)s
+O

(
b−1−s

1,T log2s+1 T + T−1
)
.

Proof of Lemma S.B.4. We first write 1′(ΣV Wb1)sΣV 1 using an argument similar to the one used to
derive (S.B.22), the only difference being that we also have the summation over two additional indexes.
We write ∑

0≤r1,..., r2s+2≤T

E
(
Vr2s+1Vr2s+2

)
Πs

j=1

{
E
(
Vr2j−1Vr2j

)
w (b1,T (r2j − r2j+1))

}
=
∑

r

�
Π
f (r2s+1/T, ω2s+1) ei(r2s+1−r2s+2)ω2s+1Πs

j=1

×
{
f (r2j−1/T, ω2j−1) ei(r2j−1−r2j)ω2j−1

�
Π
K̃b1 (λ2j) ei(r2j−r2j+1)λ2j

}
dλdω

= T (2π)2s+1
�

Π2s+1
Sb1 (µ) Ψ(2s+2)

T (µ) dµ+O
(
T−1

)
, (S.B.31)

using a change of variable, where Ψ(2s+2)
T (µ) = Ψ(2s+2)

T (µ1, . . . , µ2s+1, −
∑2s+1

j=1 µj),

Sb1 (µ) =
� 1

0
· · ·

� 1

0
f (u1, µ1) K̃b1 (µ1 + µ2) . . . K̃b1 (µ1 + . . .+ µ2s) f (u2s+1 , µ1 + . . .+ µ2s+1) du,

and dµ = dµ1 . . . dµ2s+1, du = du1 . . . du2s+1 and dω = dω1 . . . dω2s+1. Proceeding as in the proof of
Lemma S.B.3, we divide the range of integration in (S.B.31), Π2s+1, into two sets, M and its complement
Mc, where M = {|µj | ≤ πb1,T / (2s+ 2) , j = 1, . . . , 2s+ 1}. We have

∣∣∣∣�
M
Sb1 (µ) Ψ(2s+2)

T (µ) dµ−
�

M

(� 1

0
f (u, 0) du

)s+1

K̃s
b1 (0) Ψ(2s+2)

T (µ) dµ
∣∣∣∣

= O
(
b−s−1

1,T

)�
Π2s+1

2s∑
j=2

|µj |
∣∣∣Ψ(2s+2)

T (µ)
∣∣∣ dµ

= O
(
b−s−1

1,T T−1 log2s+1 T
)
, (S.B.32)

using (S.B.17), (S.B.24), Assumption 4.1 and 4.4. On the other hand, the contribution from Mc is less
than or equal to

�
Mc

|Sb1 (µ)|
∣∣∣Ψ(2s+2)

T (µ)
∣∣∣ dµ+O

(
b−s−1

1,T T−1 log2s+1 T
)
, (S.B.33)
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where we have used (S.B.16). Using the same argument used for (S.B.29), the integral in (S.B.33) is less
than or equal to

1
T (2π)2s+1

�
M′

s∏
j=1

� 1

0

� 1

0
[f (u2j−1, ω2j−1) K̃b1 (ω2j)DT (ω2j − ω2j−1) (S.B.34)

×DT (ω2j+1 − ω2j) f (u2s+1, ω2s+1)DT (ω1)DT (−ω2s−1)] dudω,

where

M′ = {|ω1| > πb1,T / (2s+ 2)} ∪ {|ω2 − ω1| > πb1,T / (2s+ 2)} ∪ . . . ∪ {|ω2s−1 − ω2s| > πb1,T / (2s+ 2)} ,

and (S.B.34) is nonzero only if |ω2| , |ω4| , . . . , |ω2s| ≤ πb1,T .
If |ωj+1 − ωj | > πb1,T / (2s+ 2) for at least one index j ∈ {1, . . . , 2s} we can obtain a bound of

order (T−1b−s−1
1,T log2s+1 T ) for (S.B.34) as in Lemma S.B.3. The same bound is obtained for the case

|ω1| > πb1,T / (2s+ 2) with a similar argument. Combining these results with (S.B.31)-(S.B.33) concludes
the proof. □

Lemma S.B.5. Let Assumption 4.1, 4.3-4.4 and 4.8-4.9 hold. For s ≥ 2 with ϵT b2,T
(2s) → 0, we have

Tr
((

Σ
Ṽ
Wb1

)s)
= Tb2,T (2π)2s−1

 df∑
j=0

Lj (s) b1+j−s
1,T + b2

2,T

df∑
j=0

(
(L2,j (s) + L3,j (s)) b1+j−s

1,T

)
+O

(
Tb2,T b

1−s
1,T ϵT b2,T

(2s) + b−s
1,T

log2s (Tb2,T )
Tb2,T

)
,

where ϵT b2,T
(2s) = (Tb2,T )−1 log2s−1 (Tb2,T ), Lj (s) = (1/j)!µj(Ks)

� 1
0 K

s
2 (x) dx

(
dj/dωj

)
(
� 1

0 f (u, 0) du)s

with |Lj (s) | < ∞, Lj (s) differs from zero only for j even, L2,j (s) depends on ∂2

∂u2

�
C̃ f (u, ω) du, K2,

K̃b1 and s with |L2,j (s) | < ∞, and L3,j (s) depends on ∆f (·), K̃b1 and s with |L3,j (s) | < ∞.

Proof of Lemma S.B.5. Let r2s+1 = r1 and note that

Tr
((

Σ
Ṽ
Wb1

)s)
=

� 1

0
· · ·

� 1

0

∑
1≤r1,...,r2s≤T

s∏
j=1

E
(
Ṽr2j−1 (uj) Ṽr2j (uj)

)
w (b1,T (r2j − r2j+1)) du

=
� 1

0
· · ·

� 1

0

∑
1≤r1,...,r2s≤T

s∏
j=1

K2

(
(Tuj − (r2j−1 − (r2j − r2j−1) /2)) /T

b2,T

)

×
�

Π
f (r2j−1/T, ω) ei(r2j−1−r2j)ω2j−1dω

�
Π
K̃b1 (ω2j) ei(r2j−r2j+1)ω2jdωdu

=
⌊T b2,T ⌋−1∑

k2, k4,..., k2s=−⌊T b2,T ⌋+1

� 1

0
· · ·

� 1

0

�
Π2

s∏
j=1

(Tb2,T − |k2j |) f (u2j−1, ω2j−1) ei(ω2j−1−ω2j)k2j

× K̃b1 (ω2j) ei(−k2j−k2j+2)ω2jdωdu+O
(
b2

2,T

)
+O

(
log (Tb2,T )
Tb2,T

)
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= Tb2,T (2π)2s−1
�

Π2s

(
Hb1 (ω, µ)

� 1

0
Ks

2 (x) dx+H2,b1 (ω, µ) +H3,b1 (ω, µ)
)

(S.B.35)

× K̃b1 (ω) Ψ(2s)
T b2,T

(µ) dωdµ+O
(
b2

2,T b
−s
1,T log2s−1 (Tb2,T )

)
+O

(
b−s

1,T

log2s (Tb2,T )
Tb2,T

)
,

where Hb1 (ω, µ) , dω and dµ are defined as in (S.B.22), Ψ(2s)
T b2,T

(µ) = Ψ(2s)
T b2,T

(µ1, . . . , µ2s) ,

H2,b1 (ω, µ) = b2
2,T

(� 1

0
x2K2 (x) dx

)(� 1

0
Ks−1

2 (x) dx
)

×
∑
j∈J

∂2

∂u2
j

�
C̃

· · ·
�

C̃
f (u1, ω − µ2 − . . .− µ2s) K̃b1 (ω − µ3 − . . .− µ2s)

× f (u3, ω − . . .− µ2s) K̃b1 (ω − µ4 − . . .− µ2s) . . . f (u2s−1, ω − µ2s) du1 · · · du2s−1,

with J = {1, 3, . . . , 2s− 1}, and H3,b1 (ω, µ) depends on the discontinuity points, i.e.,

H3,b1 (ω, µ) = b2
2,T

(� 1

0
Ks−1

2 (x) dx
)(

1
{
u1 = λ0

j , j = 1, . . . , m0
}

∆f,j (ω − µ2 − . . .− µ2s)
)

× K̃b1 (ω − µ3 − . . .− µ2s) f (u3, ω − . . .− µ2s) K̃b1 (ω − µ4 − . . .− µ2s) . . . f (u2s−1, ω − µ2s)
...

+ b2
2,T

(� 1

0
Ks−1

2 (x) dx
)
f (u1, ω − µ2 − . . .− µ2s) K̃b1 (ω − µ3 − . . .− µ2s)

× f (u3, ω − . . .− µ2s) K̃b1 (ω − µ4 − . . .− µ2s) . . .

× 1
{
u2s−1 = λ0

j , j = 1, . . . , m0
}

∆f,j (ω − µ2s) ,

with

∆f,j (ω) =
� 1

0

(
∂

∂u−
f
(
λ0

j , ω
)� 1−s

0
xK2 (x) dx+ ∂

∂u+
f
(
λ0

j , ω
)� 1

1−s
xK2 (x) dx

)
ds. (S.B.36)

Let

B =
∣∣∣∣∣Tb2,T (2π)2s−1

� 1

0
Ks

2 (x) dx
�

Π2s

(
Hb1 (ω, µ) K̃b1 (ω) Ψ(2s)

T b2,T
(µ) −

(� 1

0
f (u, ω) du

)s

K̃s
b1 (ω)

)
dωdµ

∣∣∣∣∣ .
Using (S.B.35) we have

B ≤ Tb2,T (2π)2s−1
� 1

0
Ks

2 (x) dx
�

Π2s

∣∣∣∣∣Hb1 (ω, µ) −
(� 1

0
f (u, ω) du

)s

K̃s−1
b1

(ω)
∣∣∣∣∣ ∣∣∣K̃b1 (ω) Ψ(2s)

T b2,T
(µ)
∣∣∣ dωdµ.

(S.B.37)

We split the integral in (S.B.37) into two sets, for small and for large µj . Define the set M = {µ ∈ Π2s−1 :
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supj |µj | ≤ b1,T / (2s)}. Proceeding as in (S.B.25)-(S.B.26), we have

O
(
Tb2,T b

−s+1
1,T

) s−1∑
q=0

�
Π

�
M

� 1

0
|f (u, ω − µ2+2q − . . .− µ2s) − f (u, ω)|

∣∣∣K̃b1 (ω) Ψ(2s)
T b2,T

(µ)
∣∣∣ dudωdµ

(S.B.38)

+O
(
Tb2,T b

−s+1
1,T

) s−2∑
q=0

�
Π

�
M

∣∣∣K̃b1 (ω − µ2+2q − . . .− µ2s) − K̃b1 (ω)
∣∣∣ ∣∣∣Ψ(2s)

T b2,T
(µ)
∣∣∣ dωdµ.
(S.B.39)

We apply the mean value theorem in (S.B.38) and use (S.B.17) to yield,

O
(
Tb2,T b

−s+1
1,T

)�
Π

∣∣∣K̃b1 (ω)
∣∣∣ dω 2s∑

q=0

�
M

|µq|
∣∣∣Ψ(2s)

T b2,T
(µ)
∣∣∣ dµ

≤ O
(
Tb2,T b

−s+1
1,T

)�
Π

∣∣∣K̃b1 (ω)
∣∣∣ dω 2s∑

q=0

�
Π2s−1

|µq|
∣∣∣Ψ(2s)

T b2,T
(µ)
∣∣∣ dµ

= O
(
b−s+1

1,T log2s−1 (Tb2,T )
)
.

On the other hand, using the Lipschitz property of K (cf. Assumption 4.4), the expression in (S.B.39) is
of order O(b−s

1,T log2s−1(Tb2,T )).
Let Mc denote the complement of M in Π2s−1. The contribution to B corresponding to the set Mc

is bounded by

Tb2,T (2π)2s−1
�

Π

�
Mc

∣∣∣Hb1 (ω, µ) K̃b1 (ω)
∣∣∣ ∣∣∣Ψ(2s)

T b2,T
(µ)
∣∣∣ dωdµ (S.B.40)

+ Tb2,T (2π)2s−1
�

Π

∣∣∣∣∣
(� 1

0
f (u, ω) du

)s

K̃s
b1 (ω)

∣∣∣∣∣ dω
�

Mc

∣∣∣Ψ(2s)
T b2,T

(µ)
∣∣∣ dµ. (S.B.41)

The expression in (S.B.41) is O(b−s
1,T log2s−1(Tb2,T )) using (S.B.16) and

�
Π

∣∣∣∣∣
(� 1

0
f (u, ω)

)s

K̃s
b1 (ω)

∣∣∣∣∣ dω = O
(
b−s

1,T

)
.

The expression in (S.B.40) is bounded by

�
M′

s∏
j=1

� 1

0

∣∣∣f (u2j−1, ω2j−1) K̃b1 (ω2j)DT b2,T
(ω2j − ω2j−1)DT b2,T

(ω2j+1 − ω2j)
∣∣∣ du2j−1dω2jdω2j−1,

(S.B.42)

where M′ is defined after (S.B.29).
From (S.B.18) it follows that |DT b2,T

(ω2j − ω2j−1) | = O(b−1
1,T ) since |ω2j − ω2j−1| > νT = b1,T / (2s),

and
�

Π |DT b2,T
(ω2j − ω2j+1) K̃b1 (ω2j) |dω2j = O(b−1

1,T log(Tb2,T )). For ϵ > 0, consider the following de-

S-20



low frequency contamination in har inference

composition

�
Π

� 1

0

∣∣∣f (u2j−1, ω2j−1)DT b2,T
(ω2j−1 − ω2j−2)

∣∣∣ du2j−1dω2j−1 (S.B.43)

=
�

|ω2j−1|≤ϵ

� 1

0

∣∣∣f (u2j−1, ω2j−1)DT b2,T
(ω2j−1 − ω2j−2)

∣∣∣ du2j−1dω2j−1

+
�

|ω2j−1|>ϵ

� 1

0

∣∣∣f (u2j−1, ω2j−1)DT b2,T
(ω2j−1 − ω2j−2)

∣∣∣ du2j−1dω2j−1.

By Assumption 4.1 f(u2j−1, ω2j−1) is bounded if |ω2j−1| ≤ ϵ. Then the integral over |ω2j−1| ≤ ϵ above
is of order O(log(Tb2,T )). On the other hand, if |ω2j−1| > ϵ we have |DT b2,T

(ω2j−1 − ω2j−2)| = O (1)
by (S.B.18) and the second summand of (S.B.43) is finite in view of the integrability of f (u, ω) by
Assumption 4.2. It follows that (S.B.43) is O(log(Tb2,T )). There are other s − 1 integrals of this type
that can be handled in the same way. The remaining integral is of the form

�
Π

�
Π

� 1

0

∣∣∣K̃b1 (ω2s) f (u2s−1, ω1)DT b2,T
(ω1 − ω2s)

∣∣∣ du2s−1dω1dω2s = O (log (Tb2,T )) ,

where ω1 = ω2s+1 and we have used the same argument as in (S.B.43) to show that the integral in ω1 is
O(log(Tb2,T )) for all ω2s and that

�
Π |K̃b1 (ω2s) |dω2s = O (1). Thus, (S.B.42) is O(b−s

1,T log2s−1 Tb2,T ) and

B = O(b1−s
1,T log2s−1(Tb2,T ) + b−s

1,T log2s−1(Tb2,T )) = O(Tb2,T b
1−s
1,T ϵT b2,T

(2s)).
Next, let

B2 = Tb2,T (2π)2s−1
�

Π2s

∣∣∣H2,b1 (ω, µ) − b2
2,T Λ2

(
f ′′, C̃, s

)
K̃s−1

b1
(ω)
∣∣∣ ∣∣∣K̃b1 (ω) Ψ(2s)

T b2,T
(µ)
∣∣∣ dωdµ,

where Λ2(f ′′, C̃, s) depends on f (u, ω) , the second partial derivative of f (u, ω) in u at the continuity
points in C̃ and s. By Assumption 4.9, for j ∈ J and uj ∈ C̃ (∂2/∂u2

j )f (uj , ωj) has similar smoothness
properties in ωj to those of f (uj , ωj). Thus, the proof used above to bound B can be repeated which
then results in B2 = O(Tb3

2,T b
1−s
1,T ϵT b2,T

(2s)).
Let

B3 = Tb2,T (2π)2s−1
�

Π2s

∣∣∣H3,b1 (ω, µ) − b2
2,T Λ3

(
f ′,

{
λ0

j , j = 1, . . . , m0
}
, s
)
K̃s−1

b1
(ω)
∣∣∣

×
∣∣∣K̃b1 (ω) Ψ(2s)

T b2,T
(µ)
∣∣∣ dωdµ,

where Λ3(f ′, {λ0
j , j = 1, . . . , m0}, s) depends on f (u, ω) ,∆f (·) and s. By Assumption 4.9, (∂/∂u−) f (u, ω)

and (∂/∂u+) f (u, ω) for u a discontinuity point have similar smoothness properties in ω to those of
f (u, ω). Thus, the proof used above to bound B can be repeated which then results in B3 = O(Tb3

2,T b
1−s
1,T

ϵT b2,T
(2s)).
The rest of the proof follows from the same arguments used in the last part of the proof of Proposition

S.B.3. □
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Lemma S.B.6. Let Assumption 4.1, 4.3-4.4 and 4.8-4.9 hold. For s ≥ 1 with ϵT (2s+ 2) → 0, we have

1′
(
Σ

Ṽ
Wb1

)s
Σ

Ṽ
1 = Tb2,T (2π)2s+1

((� 1

0
f (u, 0) du

)s+1 � 1

0
Ks+1

2 (x) dx

+ b2
2,T

(
Λ̃2
(
f ′′, C̃, s

)
+ Λ̃3

(
f ′,

{
λ0

j , j = 1, . . . , m0
}
, s
)))(

K̃b1 (0)
)s

+O

(
b1−s

1,T log2s+1 (Tb2,T ) + b−s
1,T

log2s+1 (Tb2,T )
Tb2,T

)
,

where Λ2(f ′′, C̃, s) depends on f (u, ω) , the second partial derivative of f (u, ω) in u at the continuity
points in C̃ and s, and Λ̃3(f ′, {λ0

j , j = 1, . . . , m0}, s) depends on f (u, ω) , ∆f (·) and s.

Proof of Lemma S.B.6. We first write 1′(Σ
Ṽ
Wb1)sΣ

Ṽ
1 using an argument similar to the one used to

derive (S.B.31),

� 1

0

∑
1≤r1,..., r2s+2≤T

E
(
Ṽr2s+1 (us+1) Ṽr2s+2 (us+1)

)� 1

0
· · ·

� 1

0
Πs

j=1

×
{
E
(
Ṽr2j−1 (uj) Ṽr2j (uj)

)
w (b1,T (r2j − r2j+1))

}
du

= Tb2,T

⌊T b2,T ⌋−1∑
k2s+2=−⌊T b2,T ⌋+1

� 1

0

�
Π
f (us+1/T, ω2s+1) e−ik2s+2ω2s+1Πs

j=1

� 1

0
· · ·

� 1

0

×

f (u2j−1/T, ω2j−1)
⌊T b2,T ⌋−1∑

k2, k4,..., k2s=−⌊T b2,T ⌋+1

Tb2,T − |k2j |
Tb2,T

�
Π
K̃b1 (ω2j) ei(k2j+k2j+1)ω2j

 dωdu
= Tb2,T (2π)2s+1

�
Π2s+1

(
Sb1 (µ)

� 1

0
Ks+1

2 (x) dx+ S2,b1 (µ) + S3,b1 (µ)
)

Ψ(2s+2)
T b2,T

(µ) dµ (S.B.44)

+O
(
b2

2,T b
−s
1,T log2s−1 (Tb2,T )

)
+O

(
b−s

1,T

log2s (Tb2,T )
Tb2,T

)
,

where Ψ(2s+2)
T b2,T

(µ), Sb1 (µ) and dµ = dµ1 . . . dµ2s+1 are defined as in (S.B.31),

S2,b1 (µ) = b2
2,T

(� 1

0
x2K2 (x) dx

)� 1

0
Ks

2 (x) dx
∑
j∈J

∂2

∂u2
j

�
C̃

· · ·
�

C̃
f (u1, µ1) K̃b1 (µ1 + µ2) . . .

× K̃b1 (µ1 + . . .+ µ2s) f (u2s+1 , µ1 + . . .+ µ2s+1) du,

with J = {1, 3, . . . , 2s+ 1} and S3,b1 (ω, µ) depends on the discontinuity points, i.e.,

S3,b1 (µ) = b2
2,T

� 1

0
Ks

2 (x) dx
(
1
{
u1 = λ0

j , j = 1, . . . , m0
}

∆f,j (µ1)
)
K̃b1 (µ1 + µ2)

. . . K̃b1 (µ1 + . . .+ µ2s) f (u2s−1, µ1 + . . .+ µ2s+1)
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...

+ b2
2,T

� 1

0
Ks

2 (x) dxf (u1, ω − µ2 − . . .− µ2s) K̃b1 (ω − µ3 − . . .− µ2s)

× K̃b1 (µ1 + . . .+ µ2s) 1
{
u2s−1 = λ0

j , j = 1, . . . , m0
}

∆f,j (µ1 + . . .+ µ2s+1) ,

with ∆f,j (ω) defined in (S.B.36). Proceeding as in the proof of Lemma S.B.4, we divide the range of
integration of the integral involving Sb1 (µ) in (S.B.44), Π2s+1, into two sets, M and its complement Mc,
where M = {|µj | ≤ πb1,T / (2s+ 2) , j = 1, . . . , 2s+ 1}. We have

∣∣∣∣�
M
Sb1 (µ) Ψ(2s+2)

T b2,T
(µ) dµ−

�
M

(� 1

0
f (u, 0) du

)s+1

K̃s
b1 (0) Ψ(2s+2)

T b2,T
(µ) dµ

∣∣∣∣
= O

(
b−s−1

1,T

)�
Π2s+1

2s∑
j=2

|µj |
∣∣∣Ψ(2s+2)

T b2,T
(µ)
∣∣∣ dµ

= O
(
b−s−1

1,T (Tb2,T )−1 log2s+1 (Tb2,T )
)
, (S.B.45)

using (S.B.17), (S.B.24), Assumption 4.1 and 4.4. On the other hand, the contribution from Mc is less
than or equal to

Tb2,T (2π)2s+1
�

Mc

|Sb1 (µ)|
∣∣∣Ψ(2s+2)

T b2,T
(µ)
∣∣∣ dµ+O

(
b−s

1,T log2s+1 (Tb2,T )
)
, (S.B.46)

where we have used (S.B.16). Using the same argument used for (S.B.42), the expression in (S.B.46) is
less than or equal to

�
M′

s∏
j=1

� 1

0

� 1

0

∣∣∣f (u2j−1, λ2j−1) K̃b1 (λ2j)DT b2,T
(λ2j − λ2j−1) (S.B.47)

×DT b2,T
(λ2j+1 − λ2j) f (u2s+1, λ2s+1) DT b2,T

(λ1)DT b2,T
(−λ2s−1)

∣∣∣ du2s+1du2j−1dλ,

where M′ = {|λ1| > πb1,T / (2s+ 2)}∪{|λ2 − λ1| > πb1,T / (2s+ 2)}∪. . .∪{|λ2s−1 − λ2s| > πb1,T / (2s+ 2)}
and (S.B.47) is nonzero only if |λ2| , |λ4| , . . . , |λ2s| ≤ πb1,T .

If |λj+1 − λj | > πb1,T / (2s+ 2) for at least one index j ∈ {1, . . . , 2s} we can obtain a bound of order
((Tb2,T )−1b−s−1

1,T log2s+1(Tb2,T )) for (S.B.47) as in Lemma S.B.5.
Next, we have

Tb2,T (2π)2s+1
∣∣∣∣�

Π2s

(Sb2 (µ) + Sb3 (µ)) Ψ(2s+2)
T b2,T

(µ) dµ (S.B.48)

− b2
2,T

�
Π2s

(
Λ̃2
(
f ′′, C̃, s

)
+ Λ̃3

(
f ′,

{
λ0

j , j = 1, . . . , m
}
, s
))
K̃s

b1 (0) Ψ(2s+2)
T b2,T

(µ) dµ
∣∣∣∣.

By Assumption 4.9, (∂2/∂u2)f (u, ω) for u ∈ C̃, (∂/∂u−) f (u, ω) and (∂/∂u+) f (u, ω) for u a disconti-
nuity point have similar smoothness properties in ω to those of f (u, ω). Thus, the proof used above to
bound (S.B.45) can be repeated which then results in (S.B.48) being O(b2

2,T b
−s−1
1,T log2s+1(Tb2,T ). □
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Lemma S.B.7. Let Assumption 4.1, 4.2 (p > 1), 4.3-4.4 and 4.7 (0 < q < 1) hold. Then, ||ΣV Wb1 || ≤
C1ν2,T where C1 depends on f (·, ·) andK, 0 < C1 < ∞ and ν2,T = max{b−1

1,T log2 T, T (2−p)/2pb
−1/2
1,T log2 T )}

→ ∞.

Proof of Lemma S.B.7. We have

∥ΣV Wb1∥ = sup
∥x∥=1

∣∣∣∣∣∣
T∑

j,h=1
xjxh

T∑
t=1

T∑
s=1

�
Π2
f (t/T, λ) K̃b1 (ω) eitλe−isωei(hω−jλ)dλdω

∣∣∣∣∣∣+O
(
T−1

)

= sup
∥x∥=1

∣∣∣∣∣∣
T∑

t=1
f (t/T, λ) eitλ

∑
j,h

xjxh

�
Π2
K̃b1 (ω)DT (−ω) ei(hω−jλ)dλdω

∣∣∣∣∣∣+O
(
T−1

)

≤ sup
∥x∥=1

∣∣∣∣∣∣
�

ω≤ϵ

�
λ

T∑
t=1

f (t/T, λ) eitλDT (−ω)
∑
j,h

xjxhK̃b1 (ω) ei(hω−jλ)dλdω

∣∣∣∣∣∣
+ sup

∥x∥=1

∣∣∣∣∣∣
�

ω>ϵ

�
λ

T∑
t=1

f (t/T, λ) eitλDT (−ω)
∑
j,h

xjxhK̃b1 (ω) ei(hω−jλ)dλdω

∣∣∣∣∣∣+O
(
T−1

)
≜ A1 + o (1) +O

(
T−1

)
. (S.B.49)

Let L2,T : R → R be the periodic extension with period 2π of

L2,T (ω) =
{
T, |ω| ≤ 1/T,
1/|ω|, 1/T ≤ |ω| ≤ |π|.

Lemma S.A.1-2 in Casini and Perron (2023) showed that∣∣∣∣∣
T∑

t=1
f (t/T, λ) e−itλ

∣∣∣∣∣ ≤ L2,T (λ) , (S.B.50)

and
�

Π L2,T (λ) dλ ≤ CL log T for T > 1 and CL > 0 being a constant independent of T . Let XT (ω) =∑T
j=1 xje

ijω. Then, the contribution to A1 from |λ| ≤ ϵ is bounded by

sup
∥x∥=1

�
ω≤ϵ

�
λ

∣∣∣∣∣
T∑

t=1
f (t/T, λ) eitλ

∣∣∣∣∣ |DT (−ω)| |XT (ω)| |XT (λ)|
∣∣∣K̃b1 (ω)

∣∣∣ dλdω
≤ sup

∥x∥=1
b−1

1,T sup
ω∈Π

|K (ω) |
�

Π
L2,T (λ)

(�
Π

|DT (−ω)| |XT (ω)| |XT (λ)|
)
dλdω

≤ sup
∥x∥=1

b−1
1,T sup

ω∈Π
|K (ω) |

(�
Π
L2,T (λ)2 dλ

)1/2 (�
Π

|XT (λ)|2 dλ
)1/2

×
(�

Π
|DT (−ω)|2 dω

)1/2 (�
Π

|XT (ω)|2 dω
)1/2

≤ 2πC2b
−1
1,T sup

ω∈Π
|K (ω) | log2 T, (S.B.51)
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where 0 < C2 < ∞ and we have used supω∈Π |K (ω) | = O(b−1
1,T ), (

�
ω |XT (ω) |2dω) = 2π and (S.B.50). For

|λ| > ϵ the contribution to A1 is bounded by

sup
∥x∥=1

�
ω≤ϵ

T∑
t=1

(�
Π

(f (t/T, λ))p dλ

)1/p (�
Π

|eitλXT (λ) |
p

p−1dλ

)(p−1)/p ∣∣∣DT (−ω)XT (ω) K̃b1 (ω)
∣∣∣ dωdω

≤ C2 sup
∥x∥=1

T∑
t=1

(�
Π

|eitλXT (λ) |
p

p−1dλ

)(p−1)/p �
ω≤ϵ

∣∣∣DT (−ω)XT (ω) K̃b1 (ω)
∣∣∣ dω

≤ C2 sup
∥x∥=1

T∑
t=1

(�
Π

|eitλ|
p

p−1dλ

)(p−1)/p �
ω≤ϵ

(�
Π

|XT (λ) |
p

p−1dλ

)(p−1)/p

×
(�

Π
|DT (−ω)| dω

)(�
Π

|XT (ω)|2 dω
)1/2 (�

Π

∣∣∣K̃b1 (ω)
∣∣∣2 dω)1/2

≤
√

2πC2

(
sup

ω
|K (ω) |

)1/2
∥K∥1 (2π)(p−1)/p T

2−p
2p b−1

1,T log2 T, (S.B.52)

where 0 < C2 < ∞ and we have used supx,λ |XT (λ)| ≤
√
T and

(�
Π

|XT (λ) |
p

p−1dλ

)(p−1)/p

=
(�

Π
|XT (λ) |2+ 2−p

p−1dλ

)(p−1)/p

=
(�

Π
|XT (λ) |2|XT (λ) |

2−p
p−1dλ

)(p−1)/p

≤
(�

Π
|XT (λ) |2T

1
2

( 2−p
p−1

)
dλ

)(p−1)/p

≤ (2π)(p−1)/p T
2−p
2p .

From (S.B.51)-(S.B.52) we have A1 ≤ C1ν2,T for some C1 such that 0 < C1 < ∞. □

Lemma S.B.8. Let Assumption 4.1, 4.2 (for some p > 1), 4.3, 4.4 and b1,T + T−1b−1
1,T log3 T → 0 hold.

Then, there exists c2 > 0 such for ∥t∥ > c1mT with c1 > 0 we have |ψ (t)| ≤ exp
{
−c2m

2
T

}
, where

mT = min{(Tb1,T )−1/2 log T, T (p−1)/p} → ∞.

Proof of Lemma S.B.8. The proof is similar to the proof of Lemma 15 in Velasco and Robinson (2001)
with the difference that reference to Lemma 16 there is changed to reference to Lemma S.B.7. □

Lemma S.B.9. Let Assumption 4.1, 4.2 (p > 1), 4.3-4.4, 4.7 (0 < q < 1) and 4.8-4.9 hold. Then, ||Σ
Ṽ
Wb1 || ≤

C1ν2,T where C1 depends on f (u, ω) and K, 0 < C1 < ∞ and ν2,T = max{b−1
1,T log (Tb2T ) , (Tb2,T )(2−p)/2p

b
−1/2
1,T )} → ∞.

Proof of Lemma S.B.9. The proof is similar to the proof of Lemma S.B.7. □

Lemma S.B.10. Let Assumption 4.1, 4.2 (p > 1), 4.3-4.4, 4.8-4.9 and b1,T + (Tb1,T b2,T )−1 log3 T → 0
hold. Then, there exists a c4 > 0 such for ∥t∥ > c3m2,T with c3 > 0 we have |ψ (t1, t2)| ≤ exp(−c4m

2
2,T ),

where m2,T = min{(Tb2,T b1,T )1/2/ log(Tb2,T ), (Tb2,T )(p−1)/p} → ∞.
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Proof of Lemma S.B.10. Following Bentkus and Rudzkis (1982) and Velasco and Robinson (2001) we first
study the characteristic function of ĴDK,T . Define τ (t2) = E(exp(it2v2)) = τ ′ (t2) exp(−it2Υ2,T ), where

τ ′ (t2) =

∣∣∣∣∣∣I − 2it2√
Tb2,T /b1,T V2,TJT

Σ
Ṽ
Wb1

∣∣∣∣∣∣
−1/2

=
T∏

j=1

1 − 2it2
λ̃j√

Tb2,T /b1,T V2,TJT

−1/2

,

and λ̃j are the eigenvalues of Σ
Ṽ
Wb1 . Note that

1 =Var (v2) = b1,T

Tb2,T

1
V2

2,TJ
2
T

2Tr
[
(Σ

Ṽ
Wb1)2

]
= b1,T

Tb2,T

2
V2

2,TJ
2
T

T∑
j=1

λ̃2
j ,

where we have used the normality of {Vt} and the relationship between the trace and the eigenval-
ues. Rearranging yields

∑T
j=1 λ̃

2
j = 2−1b−1

1,TTb2,T V2
2,TJ

2
T = O(b−1

1,TTb2,T ). Further, we have maxj |λ̃j | =
sup∥x∥=1 |Σ

Ṽ
Wb1x, x| = ||Σ

Ṽ
Wb1 ||. We can apply Lemma S.B.9 to yield

max
j

∣∣∣λ̃j

∣∣∣ ≤ C1ν2,T , ν2,T = max
{
b−1

1,T log (Tb2T ) , (Tb2,T )(2−p)/2pb
−1/2
1,T

}
→ ∞,

where C1 > 0 is such that C1 < ∞. Let gj = λ̃j(C1ν2,T )−1 and note that for T large enough we have
|gj | ≤ 1. Using

∑T
j=1 g

2
j = (2C2

1ν
2
2,T )V2

2,TJ
2
T b

−1
1,TTb2,T we yield

|τ (t2)| ≤
T∏

j=1

(
1 + 4t2

C2
1ν

2
2,T

b−1
1,TTb2,T V2

2,TJ
2
T

)−(1/4)g2
j

=
(

1 + t22
ν2

2,T

b−1
1,TTb2,T

4C2
1

V2
2,TJ

2
T

)−(1/8)C−2
1 V2

2,T J2
T b−1

1,T T b2,T ν−2
2,T

=
(

1 + t22
ν2

2,T

b−1
1,TTb2,T

[
C2 +O

(
b2

1,T + ϵT b2,T
(2)
)])−(1/2)

(
C−1

2 +O
(

b2
1,T +ϵT b2,T

(2)
))

T b2,T b−1
1,T ν−2

2,T

,

where C2 = C2
1/(π34(

� 1
0 f (u, 0) du)2 ∥K∥2

2 ∥K2∥2
2) and we have applied (1 + at) ≥ (1 + t)a which is valid

for t ≥ 0 and 0 ≤ a ≤ 1. Thus, for all η > 0, we have

|τ (t2)| ≤
(
1 + η2

1

)−η2
(

T b2,T b−1
1,T ν−2

2,T

)
, (S.B.53)

for |t2| > η
√
Tb2,T b

−1
1,T ν

−1
2,T and for η1 > 0 and η2 > 0 depending on η.

Next, we consider the joint characteristic function ψT (t1, t2). Its modulus is equal to

|ψT (t1, t2)| = |τ (t2)| exp
(

−1
2 t

2
1ξ

′
2,T R

(
I − 2it2Σ

Ṽ
Q2,T

)−1
Σ

Ṽ
ξ2,T

)
, (S.B.54)

where R (A) stands for the real part of A. From Anderson (1958, p. 161) R(Σ−1
Ṽ

− 2it2Q2,T )−1 =
R(I−2it2Q2,T )−1Σ

Ṽ
is positive definite since t2Q2,T is real. Then ξ′

2,T R(I−2it2Σ
Ṽ
Q2,T )−1Σ

Ṽ
ξ2,T > 0 for
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all t2 ∈ R. Thus, |t2| ≤ d
√
Tb2,T b

−1
1,T /ν2,T for all d > 0 and ξ′

2,T R(I − 2it2Σ
Ṽ
Q2,T )−1Σ

Ṽ
ξ2,T > ϵ for some

ϵ > 0 depending on d because ||Σ
Ṽ
Q2,T || = O(Tb2,T b

−1
1,T )−1/2||Σ

Ṽ
Wb1 || = (O(Tb2,T b

−1
1,T )−1/2ν2,T ), and

||ξ2,T || = (
√
Tb2,TJT )−1√

12 + 12 + . . .+ 12 = 1/
√
b2,TJT , with JT → 2π

� 1
0 f (u, 0) du, 0 < f (u, 0) < ∞

for all u by Assumption 4.1. Then, for |t1|
√

2 > d1
√
Tb2,T b

−1
1,T /ν2,T and |t2|

√
2 ≤ d1

√
Tb2,T b

−1
1,T /ν2,T and

some ϵ1 > 0 depending on d1,

exp
(

−1
2 t

2
1ξ

′
2,T R

(
I − 2it2Σ

Ṽ
Q2,T

)−1
Σ

Ṽ
ξ2,T

)
≤ exp

(
−1

2 t
2
1ϵ1

)
≤ exp

(
−1

4d
2
1ϵ1

Tb2,T b
−1
1,T

ν2
2,T

)
. (S.B.55)

From (S.B.53)-(S.B.55), there exists a d2 > 0 such that |ψT (t) | ≤ exp(−d2(Tb2,T b
−1
1,T /ν

2
2,T )) for {t :

||t|| > d1
√
Tb2,T b

−1
1,T /ν2,T } ⊂ B1 ∪ B2 where B1 = {t ∈ R2 : |t2| > (d1/

√
2)
√
Tb2,T b

−1
1,T /ν2,T } and

B2 = {t ∈ R2 : |t2| ≤ (d1/
√

2)
√
Tb2,T b

−1
1,T /ν2,T and |t1| > (d1/

√
2)
√
Tb2,T b

−1
1,T /ν2,T }, and the lemma

follows because Tb2,T b
−1
1,T /ν

2
2,T = m2

2,T → ∞. □

S.B.2.2 Additional Lemmas Used for the Proofs of Theorem 4.1-4.2

We first present a result about the limit of JT and a result about the bias of ĴHAC,T .

Lemma S.B.11. Let Assumption 4.1 with df = 1 and ϱ = 0 hold. Then, JT − 2π
� 1

0 f (u, 0) du =
O
(
T−1 log T

)
. If in addition Assumption 2.2-(i) holds, then the order is O(T−1).

Lemma S.B.12. Let Assumption 4.1, 4.3, 4.5, and 4.6 hold. Then,

E
(
ĴHAC,T

)
− 2π

� 1

0
f (u, 0) du− 2π

� 1
0 f

(df ) (u, 0) du
df ! µdf

(K) bdf

1,T = O
(
T−1 log T + b

df +ϱ
1,T

)
.

We now study the cumulants of the normalized spectral estimate h2.

Lemma S.B.13. Let Assumption 4.1, 4.3-4.4 hold. For s > 2 with ϵT (s) = b
df +ϱ
1,T +T−1b1,T log2s−1 T → 0,

we have

κT (0, s) ≜ κT (0, s)
(
T

b1,T

)(s−2)/2

=
df∑

j=0
Ξj (0, s) bj

1,T +O (ϵT (s)) ,

where Ξj (0, s) is bounded and depends on K and f (j) (u, 0) (j = 0, . . . , df ).

A few examples of Ξj (0, s) are Ξ0 (0, s) = (4π)(s−2)/2 (s− 1)!
�

ΠK
s (ω) dω ∥K∥−s

2 and Ξ1(2, s) = 0.
If (∂/∂ω)(

� 1
0 f (u, ω) du)|ω=0 = 0 then Ξj(0, s) = 0 for j ≥ 1. In order to develop an Edgeworth expansion

to approximate the distribution of h, we need to study the cross-cumulants of h.

Lemma S.B.14. Let Assumption 4.1 and 4.3-4.4 hold. For s > 0 with ϵT (s+ 2) → 0, we have

κT (2, s) ≜ κT (2, s) (Tb1,T )s/2 =
df∑

j=0
Ξj(2, s)bj

1,T +O (ϵT (s+ 2)) ,
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where Ξj(2, s) is bounded and depends on K and f (j) (u, 0) (j = 0, . . . , df ).

For example, we have Ξ0(2, s) = (4π)s/2 s!Ks (0) ∥K∥−s
2 and Ξ1(2, s) = 0. Using Lemma S.B.13-

S.B.14 we can substitute out BT and VT in ZT and, by only focusing on the leading terms, we define the
following linear stochastic approximation,

Z̃T ≜ h1
(
1 − 2−1c1b

df

1,T − 2−1√
4π ∥K2∥h2 (Tb1,T )−1/2

)
.

Lemma S.B.15. Let Assumption 4.1, 4.2 (p > 1), 4.3-4.5 and 4.7 (q = 1/(1 + 2df )) hold. Then, ZT has

the same Edgeworth expansion as Z̃T uniformly for convex Borel sets up to order O((Tb1,T )−1/2).

Note that the condition q = 1/(1+2df ) is sufficient for the consistency of ĴHAC,T . Indeed, for df = 2
it implies that b1,T = T−1/5 which coincides with the MSE-optimal bandwidth choice for the quadratic
spectral kernel [cf. Andrews (1991)].6

S.B.2.3 Proof of Lemma S.B.11

Note that JT =
∑T −1

k=−T +1 ΓT (k) where ΓT (k) = T−1∑T
t=|k|+1 E(VtVt−|k|). We have

JT =
T −1∑

k=−T +1

1
T

T∑
t=|k|+1

�
Π
f (t/T, ω) eikωdω

=
T −1∑

k=−T +1

T − |k|
T

� 1

|k|/T

�
Π
f (u, ω) eikωdωdu+O

(
T−1

)
= 2π

� 1

0

�
Π
f (u, ω) Ψ(2)

T (ω) dωdu+O
(
T−1

)
.

Since
�

Π Ψ(2)
T (ω) dω = 1, we can apply the mean value theorem for f (u, ω) in a small interval [−ϵ, ϵ] , ϵ >

0, for some |η| ≤ 1 depending on ω,∣∣∣∣∣JT − 2π
� 1

0
f (u, 0) du

∣∣∣∣∣ ≤ 2π
(�

|ω|≤ϵ
+
�

|ω|>ϵ

) � 1

0

�
Π

|f (u, ω) − f (u, 0)|
∣∣∣Ψ(2)

T (ω)
∣∣∣ dωdu+O

(
T−1

)
= O

(�
|ω|≤ϵ

� 1

0
|ω| |f (1) (u, ωη) |

∣∣∣Ψ(2)
T (ω)

∣∣∣ dudω
+
(� 1

0
(||f (u, ω) ||1 + f (u, 0)) du

)
T−1

)
+O

(
T−1

)
= O

(
T−1 log T

)
+O

(
T−1

)
,

where we have used Assumption 4.1,∣∣∣Ψ(2)
T (ω)

∣∣∣ ≤ 1
2πT |DT (ω)| |DT (−ω)| ≤ 1

πT

∣∣∣ω−2
∣∣∣ ,

6Note that the MSE bounds under nonstationarity in Section 8 in Andrews (1991), which are used to determine
the optimal bandwidth, are not correctly stated [cf. Casini (2022)].
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from (S.B.18)-(S.B.19) and |Ψ(2)
T (ω) | ≤ O

(
(T )−1) if |ω| > ϵ.

For the second result in the lemma, note that

JT =
T −1∑

k=−T +1
T−1

T∑
t=|k|+1

E
(
VtVt−|k|

)
= −

T −1∑
k=−T +1

T−1
|k|∑

t=1
E
(
VtVt−|k|

)
+

T −1∑
k=−T +1

T−1
T∑

t=1
E
(
VtVt−|k|

)
.

Then,∣∣∣∣∣JT − 2π
� 1

0
f (u, 0) du

∣∣∣∣∣ ≤

∣∣∣∣∣∣
T −1∑

k=−T +1
T−1

T∑
t=1

E
(
VtVt−|k|

)
− 2π

� 1

0
f (u, 0) du

∣∣∣∣∣∣+
∣∣∣∣∣∣

T −1∑
k=−T +1

T−1
k∑

t=1
E
(
VtVt−|k|

)∣∣∣∣∣∣ ,
= O

(
T−1

)
,

using Assumption 2.2-(i). □

S.B.2.4 Proof of Lemma S.B.12

We can write ĴHAC,T = 2π
�

Π K̃b1 (ω) IT (ω) dω. Note that

E (IT (ω)) =
� 1

0

�
Π
f (u, λ) Ψ(2)

T (ω − λ) dλdu+O
(
T−1

)
.

Thus, we obtain

E
(
ĴHAC,T

)
= 2π

�
Π
K̃b1 (ω)

� 1

0

�
Π
f (u, α+ ω) Ψ(2)

T (α) dαdudω +O
(
T−1

)
.

Then, using
�

Π Ψ(2)
T (ω) dω = 1 and

�
Π K̃b1 (ω) dω = 1 we have

E
(
ĴHAC,T

)
− 2π

� 1

0
f (u, 0) du− 2πbdf

1,Tµdf
(K)

� 1

0

f(df ) (u, 0)
df ! du

= 2π
�

Π
K̃b1 (ω)

� 1

0

�
Π

Ψ(2)
T (α) (f (u, ω + α) − f (u, ω)) dαdudω

+
�

Π
K̃b1 (ω)

� 1

0

f (u, ω) − f (u, 0) − b
df

1,Tµdf
(K) f

(df ) (u, 0)
df !

 dudω +O
(
T−1

)
≜ A1 +A2 +O

(
T−1

)
.

For ϵ > 0, we introduce the sets A = {|α| , |ω| ≤ ϵ/2} and its complement Ac, both defined in Π2. Let
A11 and A12 be the contributions to A1 corresponding to A and Ac, respectively. Then, applying the
mean value theorem we have

|A11| = 2π
�

|ω|≤ϵ/2

∣∣∣K̃b1 (ω) dω
∣∣∣ dω �

|α|≤ϵ/2

∣∣∣Ψ(2)
T (α)

∣∣∣ |α| dα
� 1

0
sup
|ω|≤ϵ

∣∣∣f (1) (u, ω)
∣∣∣ du

= O
(
T−1 log T

)
,
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where we have used (S.B.18)-(S.B.19) and Assumption 4.1. Let B1 = {|α| > ϵ/2} and B2 = {|ω| > ϵ/2, |α| ≤ ϵ/2}
and note that Ac ⊂ {B1 ∪ B2}. The contribution to A12 from B1 is∣∣∣∣∣

�
|α|>ϵ/2

Ψ(2)
T (α)

�
Π
K̃b1 (ω)

� 1

0
(f (u, ω + α) − f (u, ω)) dudωdα

∣∣∣∣∣
= O

(
T−1

�
Π2

� 1

0

∣∣∣K̃b1 (ω) (f (u, ω + α) − f (u, ω))
∣∣∣ dudωdα)

= O

(
T−1

(
1 +

�
|ω|≤ϵ

� 1

0

∣∣∣K̃b1 (ω) f (u, ω)
∣∣∣ dudω))

= O

(
T−1

�
Π

∣∣∣K̃b1 (ω)
∣∣∣ dω) , (S.B.56)

using (S.B.18)-(S.B.19) and Assumption 4.1. Since K̃b1 (ω) is of reduced magnitude for ω > ϵ/2, the
contribution to A12 from B2 is, for large T ,∣∣∣∣∣

�
|ω|>ϵ/2

�
|α|≤ϵ/2

K̃b1 (ω) Ψ(2)
T (α)

� 1

0
(f (u, ω + α) − f (u, ω)) dudαdω

∣∣∣∣∣ = 0, (S.B.57)

This implies that A12 = O
(
T−1) .

As for A2 we apply a Taylor’s expansion of f (u, ω) around ω = 0 and we split the integral into two
parts for |ω| ≤ ϵ and |ω| > ϵ, denoted as A21 and A22, respectively. We have for |η| ≤ 1 depending on ω,

A21 =
�

|ω|≤ϵ
K̃b1 (ω)

� 1

0

df −1∑
j=1

f (j) (u, 0) ω
j

j! + f(df ) (u, ηω) ω
df

df ! − f(df ) (u, 0)
df ! µdf

(K) bdf

1,T

 dudω
=

df −1∑
j=1

�
Π
ωjK̃b1 (ω) dω

� 1

0
f (j) (u, 0) 1

j!du

+ d−1
f

�
|ω|≤b1,T π

ωdf K̃b1 (ω)
� 1

0

(
f(df ) (u, ηω) − f(df ) (u, 0)

)
dudω

= O

(�
|ω|≤b1,T π

∣∣∣K̃b1 (ω)
∣∣∣ |ω|df +ϱ dω

)
= O

(
b

df +ϱ
1,T

)
,

where we have used Assumption 4.5 and the fact that as b1,T → 0 the integration is within [−ϵ, ϵ] and
that by Assumption 4.1 f(df ) (u, 0) is Lipschitz continuous of order ϱ for all u ∈ [0, 1]. We can use the
same argument used for A12 to show that A22 = 0. □

S.B.2.5 Proof of Lemma S.B.13

From the definition of QT , we have

κT (0, s) = 2s−1 (s− 1)! (VTJT )−s (T/b1,T )−s/2 Tr((ΣV Wb1)s),
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for s > 1. By Lemma S.B.3,

κT (0, s) = κT (0, s) (b1,TT )(s−2)/2 = 2s−1 (s− 1)! (2π)2s−1

(VTJT )s

 df∑
j=0

Lj (s) bj
1,T +O (ϵT (2s))

 . (S.B.58)

Using again Lemma S.B.3 with s = 2 to evaluate V2
T yields

V2
T

J2
T

4π2 = 1
4π2Tb1,T Var

(
ĴHAC,T

)
= 1

4π2Tb1,T Var
(

V′Wb1

T
V
)

= 2b1,T

4π2T
Tr
(
W 2

b1Σ2
V

)
= 2b1,T

4π2T

T (2π)3
df∑

j=0
Lj (2) bj−1

1,T + Tb−1
1,T ϵT (2)


= 4π

df∑
j=0

Lj (2) bj
1,T + ϵT (2) ,

where we have use the normality of Vt. Lemma S.B.3 implies that 0 < L0 (2) < ∞ and Lj (2) are fixed
constants independent of T . Then

(
VT

JT

2π

)−s

= (4π)−s/2
df∑

j=0
Hj (s) bj

1,T +O (ϵT (s)) , (S.B.59)

where H0 (s) = L0 (2)−s/2 and so on. Denoting c (0, s) = (4π)(s−2)/2 (s− 1)! and using (S.B.58)-(S.B.59)

we yield the following expression for the cumulants, κT (0, s) = c (0, s)
∑df

j=0 Pj (s) bj
1,T +O (ϵT (s)), where

Pj (s) =
∑j

t=0Ht (s)Lj−t (s) are constants not depending on T with P1 (s) = 0, P2 (s) = H0 (s)L2 (s) +
J2 (s)L0 (s), and so on. Setting Ξj (0, s) = c (0, s)Pj (s) the lemma follows. □

S.B.2.6 Proof of Lemma S.B.14

Note that for s > 0 we have

κT (2, s) = 2ss!ξ′
T (ΣV QT )s ΣV ξT = 2ss! 1

TJT

b
s/2
1,T

T s/2Vs
TJ

s
T

1′ (Wb1ΣV )s ΣV 1.

From Lemma S.B.4,

κT (2, s) = (Tb1,T )s/2 2ss! 1
TJT

b
s/2
1,T

T s/2Vs
TJ

s
T

1′ (Wb1ΣV )s ΣV 1

= (Tb1,T )s/2 2ss! 1
TJT

b
s/2
1,T

T s/2Vs
TJ

s
T

(
T (2π)2s+1

(� 1

0
f (u, 0) du

)s+1 (
K̃b1 (0)

)s

+ O
(
b−1−s

1,T log2s+1 T
))

=
( 2π
JT VT

)s 2π
� 1

0 f (u, 0) du
JT

(4π)s s!
(� 1

0
f (u, 0) du

)s

K (0)s +O (ϵT (s+ 2)) ,
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where we have used the fact that K̃b1 (0) = b−1
1,TK (0). Using Lemma S.B.11 and eq. (S.B.59), we yield

κT (2, s) =
( 2π
JT VT

)s (
1 +O

(
T−1 log T

))
(4π)s s!

(� 1

0
f (u, 0) du

)s

K (0)s +O (ϵT (s+ 2))

= (4π)−s/2 (4π)s s!
(� 1

0
f (u, 0) du

)s

K (0)s
df∑

j=0
Hj (s) bj

1,T +O (ϵT (s+ 2)) ,

where the Hs (j) are as in the proof of Lemma S.B.13. The lemma follows by setting Ξj(2, s) =
(4π)−s/2 (4π)s s! (

� 1
0 f (u, 0) du)sK (0)sHj (s). □

S.B.2.7 Proof of Theorem 4.1

We first construct the approximation for ψT (t). It follows from Velasco and Robinson (2001) and
Taniguchi and Puri (1996) that only the cumulants κT (0, s) and κT (2, s) are nonzero, and that the
cumulant generating function is given by

logψT (t) = 1
2 ∥it∥2 +

τ+1∑
s=3

(Tb1,T )(2−s)/2

s!
∑

|r|=s

s!
r1!r2!κT (r1, r2) (it1)r1 (it2)r2 +RT (τ) , (S.B.60)

where r = (r1, r2)′ with r1 ∈ {0, 2} and |r| = r1 + r2, and

RT (τ) = (Tb1,T )−τ/2
(
R0,τ+2 (it2)τ+2 +R2,τ (it1)2 (it2)τ

)
, τ even,

RT (τ) = (Tb1,T )−τ/2 1
(τ + 2)!

(
κT (0, τ + 2) (it2)τ+2 + (τ + 2) (τ + 1)

2 κT (2, τ) (it1)2 (it2)τ
)

+ (Tb1,T )−τ/2
(
R0,τ+3 (it2)τ+3 +R2,τ+1 (it1)2 (it2)τ+1

)
, τ odd,

where the R0,j and R2,j are bounded. Using Lemma S.B.13-S.B.14, we have

logψT (t) = 1
2 ∥it∥2 +

τ+1∑
s=3

(Tb1,T )(2−s)/2

s!

(
κT (0, s) (it2)s + s (s− 1)

2 κT (2, s− 2) (it1)2 (it2)s−2
)

+RT (τ)

= 1
2 ∥it∥2 +

τ+1∑
s=3

(Tb1,T )(2−s)/2
(
BT (s, t) +

{
(it2)s + (it1)2 (it2)s−2

}
O (ϵT (s))

)
+RT (τ) ,

where

BT (s, t) = 1
s!

df∑
j=0

bj
1,T

{
Ξj(0, s) (it2)s + s (s− 1)

2 Ξj(2, s− 2) (it1)2 (it2)s−2
}
.
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The approximation of the characteristic function of u using its cumulant generating function is

AT (t, τ) = exp
{1

2 ∥it∥2
}1 +

τ+1∑
j=3

(Tb1,T )(2−j)/2∑
r

τ+1∏
n=3

[BT (n, t)]rn
1

r3! · · · rτ+1!

 ,
where r = (r3, . . . , rτ+1)′, rn ∈ {0, 1, . . .}, and the summation is over all r satisfying

∑τ+1
n=3 (n− 2) rn =

j − 2. To obtain a second-order Edgeworth expansion we set τ = 2 and we include in AT (t, 2) terms up
to order (Tb1,T )−1/2,

AT (t, 2) = exp
{1

2 ∥it∥2
}(

1 +BT (3, t) (Tb1,T )−1/2
)
, (S.B.61)

where in BT (3, t) includes only the leading term in bj
1,T (j = 0) in the expansion for the culumant of

order three. Note that the characteristic function of Q(2)
T (·) is AT (t, 2).

The rest of the proof consists of studying the distance between the true distribution and its Edgeworth
approximation. Lemma S.B.16 studies the Edgeworth approximation for the characteristic function for
∥t∥ ≤ c1

√
Tb1,T , whereas Lemma S.B.8 analyzes its tail behavior. The desired result follows from the

same steps as in Theorem 1 of Velasco and Robinson (2001) which relies on Lemma S.B.2. □

Lemma S.B.16. Let Assumption 4.1, 4.3, 4.4 and b1,T + (Tb1,T )−1 log5 T → 0 hold. There exists δ1 > 0
such that, for ∥t∥ ≤ δ1

√
Tb1,T and a number d1 > 0,

|ψT (t) −AT (t, 2)| ≤ exp
{

−d1 ∥t∥2
}
F̃ (∥t∥)O

(
(Tb1,T )−1/2

(
b2

1,T + ϵT (3)
)

+ 1
Tb1,T

)
,

where F̃ (∥t∥) is a polynomial in t with bounded coefficients and AT (t, 2) is defined as in (S.B.61).

Proof of Lemma S.B.16. It is similar to the proof of Lemma 14 in Velasco and Robinson (2001). □

S.B.2.8 Proof of Lemma S.B.15

It is similar to the proof of Lemma 5 in Velasco and Robinson (2001). □

S.B.2.9 Proof of Theorem 4.2

Consider the transformation s = (s1, s2)′ = (Z̃T (h1, h2), h2)′ = ∆T (h) say, and its inverse h = ∆−1
T (s) =

(h†
1(s1, s2), s2)′. Let LT = {h : |hi| < l1T

γ , 0 < γ < df/(3(1 + 2df )), i = 1, 2}, where li are some fixed
constants. Using (1 + x)−1 = 1 − x+ x2 − x3 + . . . for |x| < 1, we have uniformly in the set LT ,

h†
1 (s) = s1

[
1 + 1

2c1b
df

1,T + 1
2

√
4π ∥K2∥ s2 (Tb1,T )−1/2

]
+ o

(
(Tb1,T )−1/2

)
.

We have P(ZT ∈ C) = P(h ∈ ∆−1
T (C × R)) and from Theorem 4.1,

sup
C

∣∣∣P (h ∈ ∆−1
T (C × R)

)
−Q(2)

T

(
Z−1

T (C × R)
)∣∣∣ = o

(
(Tb1,T )−1/2

)
+cost sup

C
Q(2)

T

((
∂∆−1

T (C × R)
)2ϕT

)
,
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where ϕT = (Tb1,T )−ϖ with 1/2 < ϖ < 1. The rest of the proof is similar to the proof of Theorem 2 in
Velasco and Robinson (2001). □

S.B.3 Additional Lemmas Used for the Proofs of Theorem 4.3-4.4

Lemma S.B.17. Let Assumption 4.1, 4.3, 4.5-4.6 and 4.8-4.9 hold. Then,

E
(
Ĵ∗

DK,T

)
− 2π

� 1

0
f (u, 0) du− 2π

� 1
0 f

(df ) (u, 0) du
df ! µdf

(K) bdf

1,T

− πb2
2,T

� 1

0
x2K2 (x) dx

�
C̃

∂2

∂u2 f (u, 0) du− 2πb2
2,T ∆f (0)

= O
(
b

df +ϱ
1,T + (Tb2,T )−1 log (Tb2,T )

)
+ o

(
b2

2,T

)
.

The term 2πb2
2,T ∆f (0) in Lemma S.B.17 is the contribution to the bias due to the local time-

smoothing in the neighborhoods involving a discontinuity point.
We now consider the cumulants of the normalized spectral estimate v2.

Lemma S.B.18. Let Assumption 4.1, 4.3-4.4 and 4.8-4.9 hold. For s > 2 with ϵT b2,T
(s) = b

df +ϱ
1,T +

(Tb2,T b1,T )−1 log2s−1(Tb2,T ) → 0, we have

κ2,T (0, s) ≜ κ2,T (0, s) (Tb1,T b2,T )(s−2)/2

=
df∑

j=0
Ξ2,j (0, s) bj

1,T + b2
2,T

df∑
j=0

(
Ξ̃2,j (0, s) + Ξ̃3,j (0, s)

)
bj

1,T +O
(
ϵT b2,T

(s)
)
,

where Ξ2,j (0, s) is bounded and depends on K, K2 and on f (j) (u, 0) (j = 0, . . . , df ), Ξ̃2,j (0, s) is bounded
and depends on K, K2, f

(j) (u, 0) and
(
∂2/∂u2) f (u, ω) and Ξ̃3,j (0, s) is bounded and depends on K, K2,

f (j) (u, 0) and ∆f (ω).

We now consider the cross-cumulants of v.

Lemma S.B.19. Let Assumption 4.1, 4.3-4.4 and 4.8-4.9 hold. For s > 0 with ϵT b2,T
(s+ 2) → 0,

κ2,T (2, s) ≜ κ2,T (2, s) (Tb2,T b1,T )s/2 =
df∑

j=0

(
Ξ2,j(2, s) + b2

2,T

(
Ξ̃2,j(2, s) + Ξ̃3,j(2, s)

))
bj

1,T

+O
(
ϵT b2,T

(s+ 2)
)
,

where Ξ2,j(2, s) is bounded and depends on K, K2 and f (j) (u, 0) (j = 0, . . . , df ), Ξ̃2,j (2, s) is bounded

and depends on K, K2, f
(j) (u, 0) and

(
∂2/∂u2) f (u, ω), and Ξ̃3,j (2, s) is bounded and depends on K, K2,

f (j) (u, 0) and ∆f (ω).
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S.B.3.1 Proof of Lemma S.B.17

For r ∈ C̃, using a second-order Taylor’s expansion as in the proof of Theorem 7.3 in Casini and Perron
(2023), we yield

E
(
ĨT (r, ω)

)
= E

 1
2πTb2,T

∣∣∣∣∣
T∑

t=1
exp (−iωt) Ṽt (r)

∣∣∣∣∣
2

= 1
2π

1
Tb2,T

⌊T b2,T ⌋−1∑
k=−⌊T b2,T ⌋+1

T∑
t=|k|+1

�
Π
K2

(
(Tr − (t− k/2)) /T

b2,T

)
f ((t+ k/2)/T, λ) eik(ω−λ)dλ

+O
(
(Tb2,T )−1 log (Tb2,T )

)
=

�
Π
f (r, λ) Ψ(2)

T b2,T
(ω − λ) dλ

+
b2

2,T

2

� 1

0
x2K2 (x) dx ∂

2

∂u2 f (u, ω) |u=r + o
(
b2

2,T

)
+O

(
(Tb2,T )−1 log (Tb2,T )

)
.

In a neighborhood of a break point λ0
j , let r = λ0

j + sb2,T for some s ∈ (0, 1). Then,

E
(
ĨT (r, ω)

)
=

�
Π
f (r, λ) Ψ(2)

T b2,T
(ω − λ) dλ

+ b2,T

(� 1−s

0
xK2 (x) dx ∂

∂u−
f
(
λ0

j , ω
)

+
� 1

1−s
xK2 (x) dx ∂

∂u+
f
(
λ0

j , ω
))

.

When integrating the last term above over r we have

b2
2,T

m0∑
j=1

� 1

0

(
∂

∂u−
f
(
λ0

j , ω
)� 1−s

0
xK2 (x) dx+ ∂

∂u+
f
(
λ0

j , ω
)� 1

1−s
xK2 (x) dx

)
ds.

Thus, we obtain

E
(
Ĵ∗

DK,T

)
= 2π

�
Π
K̃b1 (ω)

� 1

0

�
Π
f (u, α+ ω) Ψ(2)

T (α) dλdudω

+ πb2
2,T

� 1

0
x2K2 (x) dx

�
Π
K̃b1 (ω)

�
C̃

∂2

∂u2 f (u, ω) dudω

+ 2πb2
2,T

�
Π
K̃b1 (ω) ∆f (ω) dω + o

(
b2

2,T

)
+O

(
(Tb2,T )−1 log (Tb2,T )

)
.

Then, using
�

Π Ψ(2)
T (ω) dω = 1,

�
Π K̃b1 (ω) dω = 1, Assumption 4.9 and similar arguments as in the proof

of Lemma S.B.12 applied to the terms involving ∂2

∂u2 f (u, ω) and ∆f (ω), we have

E
(
Ĵ∗

DK,T

)
− 2π

� 1

0
f (u, 0) du− 2πbdf

1,Tµdf
(K)

� 1

0

f(df ) (u, 0)
df ! du
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− πb2
2,T

� 1

0
x2K2 (x) dx

�
C̃

∂2

∂u2 f (u, 0) du− 2πb2
2,T ∆f (0)

= 2π
�

Π
K̃b1 (ω)

� 1

0

�
Π

Ψ(2)
T (α) (f (u, ω + α) − f (u, ω)) dαdudω

+ 2π
�

Π
K̃b1 (ω)

� 1

0

f (u, ω) − f (u, 0) − b
df

1,Tµd (K) f
(df ) (u, 0)
df !

 dudω
+ o

(
b2

2,T

)
+O

(
(Tb2,T )−1 log (Tb2,T )

)
+ o

(
b2

2,T b
q2
1,T

)
≜ A1 +A2 + o

(
b2

2,T

)
+O

(
(Tb2,T )−1 log (Tb2,T )

)
.

To conclude the proof, note that by Lemma S.B.12 we have |A1| + |A2| = O
(
T−1 log T

)
+O(bdf +ϱ

1,T ). □

S.B.3.2 Proof of Lemma S.B.18

We have
κ2,T (0, s) = 2s−1 (s− 1)! (V2,TJT )−s (Tb2,T /b1,T )−s/2 Tr((Σ

Ṽ
Wb1)s),

for s > 1. By Lemma S.B.5,

κ2,T (0, s) = κ2,T (0, s) (Tb1,T b2,T )(s−2)/2 (S.B.62)

= 2s−1 (s− 1)! (2π)2s−1

(V2,TJT )s

 df∑
j=0

Lj (s) bj
1,T + b2

2,T

df∑
j=0

(
(L2,j (s) + L3,j (s)) bj

1,T

)
+O

(
ϵT b2,T

(s)
) .

Using Lemma S.B.5 to evaluate V2
2,T yields

V2
2,T

J2
T

4π2 = 1
4π2Tb1,T b2,T Var

(
Ĵ∗

DK,T

)
= Tb1,T b2,T Var

(� 1

0
Ṽ (r)′ Wb1

Tb2,T
Ṽ (r) dr

)

= 2b1,T

4π2Tb2,T
Tr
(
W 2

b1Σ2
Ṽ

)

= 2b1,T

4π2 (2π)3

 df∑
j=0

Lj (2) bj−1
1,T + b2

2,T

df∑
j=0

(
(L2,j (s) + L3,j (s)) bj−1

1,T

)+ Tb2,T b
−1
1,TO

(
ϵT b2,T

(2)
)

= 4π

 df∑
j=0

Lj (2) bj
1,T + b2

2,T

df∑
j=0

(
(L2,j (s) + L3,j (s)) bj

1,T

)+O
(
ϵT b2,T

(2)
)
,

where we have use the normality of {Vt}. Since Lemma S.B.5 implies that 0 < L0 (2) < ∞ and Lj (2) are
fixed constants independent of T , we then have

(
V2,T

JT

2π

)−s

= (4π)−s/2
df∑

j=0
Hj (2) bj

1,T +O
(
ϵT b2,T

(2)
)
, (S.B.63)
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where H0 (s) = L0 (2)−s/2 and so on. Using (S.B.62)-(S.B.63) we yield

κ2,T (0, s) = c (0, s)

 df∑
j=0

P2,j (s) bj
1,T + b2

2,T

df∑
j=0

((
P̃2,j (s) + P̃3,j (s)

)
bj

1,T

)+O
(
ϵT b2,T

(2)
)
,

where c (0, s) = (4π)(s−2)/2 (s− 1)!, P2,j (s) =
∑j

t=0Ht (s)Lj−t (s) are constants not depending on T with

P2,1 (s) = 0, P2,2 (s) = H0 (s)L2 (s) + H2 (s)L0 (s) and so on, and P̃2,j (s) =
∑j

t=0Ht (s)L2,j−t (s) and

P̃3,j (s) =
∑j

t=0Ht (s)L3,j−t (s). The lemma follows from setting Ξ2,j(0, s) = c (0, s)P2,j (s), Ξ̃2,j(0, s) =
c (0, s) P̃2,j (s) and Ξ̃2,j(0, s) = c (0, s) P̃3,j (s). □

S.B.3.3 Proof of Lemma S.B.19

For s > 0 we have

κ2,T (2, s) = 2ss!ξ′
T

(
Σ

Ṽ
Q2,T

)s
Σ

Ṽ
ξT = 2ss! 1

Tb2,TJT

b
s/2
1,T

(Tb2,T ) s/2Vs
2,TJ

s
T

1′
(
Wb1Σ

Ṽ

)s
Σ

Ṽ
1.

From Lemma S.B.6, we have

κ2,T (2, s) = (Tb1,T b2,T )s/2 2ss! 1
Tb2,TJT

b
s/2
1,T

(Tb2,T ) s/2Vs
2,TJ

s
T

1′
(
Wb1Σ

Ṽ

)s
Σ

Ṽ
1

= (Tb1,T b2,T )s/2 2ss! 1
Tb2,TJT

b
s/2
1,T

(Tb2,T ) s/2Vs
2,TJ

s
T

×
(
Tb2,T (2π)2s+1

((� 1

0
f (u, 0) du

)s+1 � 1

0
Ks+1

2 (x) dx+ b2
2,T Λ̃2

(
f ′′, C̃, s

)
+ b2

2,T Λ̃3
(
f ′,

{
λ0

j , j = 1, . . . , m0
}
, s
))(

K̃b1 (0)
)s

+O

(
b1−s

1,T log2s+1 (Tb2,T ) + b−s
1,T

log2s+1 (Tb2,T )
Tb2,T

))

=
(

2π
JT V2,T

)s 2π
� 1

0 f (u, 0) du
JT

(4π)s s!
((� 1

0
f (u, 0) du

)s � 1

0
Ks+1

2 (x) dx+ b2
2,T

(
Λ̃∗

2 + Λ̃∗
3

))
K (0)s

+O
(
ϵT b2,T

(s+ 2)
)
,

where Λ̃∗
2 and Λ̃∗

3 are equal to Λ̃2 and Λ̃3, respectively, without the factor
� 1

0 f (u, 0) du, and we have used

K̃b1 (0) = b−1
1,TK (0). Using Lemma S.B.11 and (S.B.63), we yield

κ2,T (2, s) =
(
JT V2,T

2π

)−s (
1 +O

(
(Tb2,T )−1 log(Tb2,T )

))
× (4π)s s!

((� 1

0
f (u, 0) du

)s � 1

0
Ks+1

2 (x) dx+ b2
2,T

(
Λ̃∗

2 + Λ̃∗
3

))
K (0)s +O

(
ϵT b2,T

(s+ 2)
)

S-37



alessandro casini, taosong deng and pierre perron

= (4π)−s/2 (4π)s s!
((� 1

0
f (u, 0) du

)s � 1

0
Ks+1

2 (x) dx+ b2
2,T

(
Λ̃∗

2 + Λ̃∗
3

))
K (0)s

df∑
j=0

Hj (s) bj
1,T

+O
(
ϵT b2,T

(s+ 2)
)
,

where the Hj (s) are as in (S.B.63). Letting

Ξ2,j(2, s) = (4π)−s/2 (4π)s s!
(� 1

0
f (u, 0) du

)
sK (0)s

� 1

0
Ks+1

2 (x) dxHj (s)

Ξ̃2,j(2, s) = (4π)−s/2 (4π)s s!Λ̃∗
2K (0)s

� 1

0
Ks

2 (x) dxHj (s)

Ξ̃3,j(2, s) = (4π)−s/2 (4π)s s!Λ̃∗
3K (0)s

� 1

0
Ks

2 (x) dxHj (s) ,

the lemma follows. □

S.B.3.4 Proof of Theorem 4.3

It follows from Velasco and Robinson (2001) and Taniguchi (1987) that only the cumulants κ2,T (0, s) and
κ2,T (2, s) are nonzero, and that the cumulant generating function is given by

logψT (t) = 1
2 ∥it∥2 +

τ+1∑
s=3

(Tb1,T b2,T )(2−s)/2

s!
∑

|r|=s

s!
r1!r2!κ2,T (r1, r2) (it1)r1 (it2)r2 +R∗

T (τ) , (S.B.64)

where r = (r1, r2)′, with r1 ∈ {0, 2} and |r| = r1 + r2, and

R∗
T (τ) = (Tb1,T b2,T )−τ/2

[
R′

0,τ+2 (it2)τ+2 +R′
2,τ (it1)2 (it2)τ

]
, τ even,

R∗
T (τ) = (Tb1,T b2,T )−τ/2 1

(τ + 2)!

[
κ2,T (0, τ + 2) (it2)τ+2 + (τ + 2) (τ + 1)

2 κ2,T (2, τ) (it1)2 (it2)τ
]

+ (Tb1,T b2,T )−τ/2
[
R′

0,τ+3 (it2)τ+3 +R′
2,τ+1 (it1)2 (it2)τ+1

]
, τ odd,

where the R′
0,j and R2,j are bounded. Using Lemma S.B.18-S.B.19, we have

logψT (t) = 1
2 ∥it∥2 +

τ+1∑
s=3

(Tb1,T b2,T )(2−s)/2

s!

(
κ2,T (0, s) (it2)s + s (s− 1)

2 κ2,T (2, s− 2) (it1)2 (it2)s−2
)

+R∗
T (τ)

= 1
2 ∥it∥2 +

τ+1∑
s=3

(Tb1,T b2,T )(2−s)/2
[
B2,T (s, t) +

{
(it2)s + (it1)2 (it2)s−2

}
O (ϵT (s))

]
+R∗

T (τ) ,
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where

B2,T (s, t) = 1
s!

df∑
j=0

bj
1,T

{(
Ξ2,j(0, s) + b2

2,T

(
Ξ̃2,j(0, s) + Ξ̃3,j(0, s)

))
(it2)s

+ s (s− 1)
2

(
Ξ2,j(2, s− 2) + b2

2,T

(
Ξ̃2,j(2, s− 2) + Ξ̃3,j(2, s− 2)

))
(it1)2 (it2)s−2

}
.

The approximation of the characteristic function of v using its cumulant generating function is

A2,T (t, τ) = exp
(1

2 ∥it∥2
)1 +

τ+1∑
j=3

(Tb1,T b2,T )(2−j)/2∑
r

τ+1∏
n=3

(B2,T (n, t))rn
1

r3! . . . rτ+1!

 ,
where r = (r3, . . . , rτ+1)′, rn ∈ {0, 1, . . .}, and the summation is over all r satisfying

∑τ+1
n=3 (n− 2) rn =

j−2. To obtain a second-order Edgeworth expansion we set τ = 2 and we include in A2,T (t, 2) the terms
up to order (Tb1,T b2,T )−1/2,

A2,T (t, 2) = exp
(1

2 ∥it∥2
) [

1 +B2,T (3, t) (Tb1,T b2,T )−1/2
]
, (S.B.65)

where B2,T (3, t) includes only the leading term in bj
1,T (j = 0) in the expansion for the culumant of order

three. Note that the characteristic function of Q(2)
2,T (·) is A2,T (t, 2). We use Lemma S.B.2 with kernel G

to bound the distance between PT and Q(2)
2,T . First,∥∥∥(PT − Q(2)

2,T

)
• GϕT

∥∥∥
TV

≤ 2 sup
B⊂B(0, rT )

∣∣∣(PT − Q(2)
2,T

)
• GϕT

∣∣∣+ 2 sup
B⊂B(0, rT )c

∣∣∣(PT − Q(2)
2,T

)
• GϕT

∣∣∣ ,
where B (0, rT ) is a neighborhood around 0 with radius rT , rT = (Tb1,T b2,T )a with a > 0, and ∥·∥TV
denotes the total variation norm. For B ⊂ B (0, rT )c we have uniformly∣∣∣(PT − Q(2)

2,T

)
• GϕT

∣∣∣ ≤ |PT • GϕT
| +

∣∣∣Q(2)
2,T • GϕT

∣∣∣
≤ P (∥v∥ ≥ rT /2) + 2GϕT

(B (0, rT /2)c) + 2Q(2)
2,T (B (0, rT /2)c) .

By definition of q
(2)
2,T (v) it follows that Q(2)

2,T (B (0, rT /2)c) = o((Tb1,T b2,T )−1/2). In view of the definition

of v2, we have P{∥v∥ ≥ rT /2} = o((Tb1,T b2,T )−1/2). By Lemma S.B.2,

GϕT
(B (0, rT /2)c) = O

(
(ϕT /rT )3

)
= O

(
(Tb1,T b2,T )−3(ϖ+a)

)
= o

(
(Tb1,T b2,T )−1/2

)
.

For B ⊂ B (0, rT ) we have by Fourier inversion∣∣∣(PT − Q(2)
2,T

)
• GϕT

∣∣∣ ≤ (2π)−1 πr2
T

� ∣∣∣(P̂T − Q̂(2)
2,T

)
(t) ĜϕT

(t)
∣∣∣ dt, (S.B.66)
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where P̂T denotes the characteristic function of PT (i.e., P̂T = ψT (t)) and Q̂(2)
2,T = A2,T (t, 2). Let

a′ = 8 × 24/3π−1/3. Using Lemma S.B.20, a bound for (S.B.66) is given by

O
(
(Tb1,T b2,T )2a−1/2

) [
b2

1,T + ϵT b2,T
(3)
]�

∥t∥≤c2
√

T b1,T b2,T

∣∣∣e−d2∥t∥2
F (∥t∥)

∣∣∣ ∣∣∣ĜϕT
(∥t∥)

∣∣∣ dt (S.B.67)

+O (Tb1,T b2,T )2a
�

c2
√

T b1,T b2,T <∥t∥≤a′(T b1,T b2,T )ϖ

� ∣∣∣(P̂T − Q̂(2)
2,T

)
(t) ĜϕT

(t)
∣∣∣ dt.

(S.B.68)

The integral over ∥t∥ > a′ (Tb1,T b2,T )ϖ is equal to zero from (S.B.21). Choosing a ≤ 1/4 (S.B.67) is

o(((Tb1,T b2,T ))−1/2).
By Lemma S.B.10, for c2m2,T < ∥t∥ the expression in (S.B.68) is bounded by

O
(
(Tb1,T b2,T )2a

)�
c2

√
T b1,T b2,T <∥t∥≤a′(T b1,T b2,T )ϖ

e−d3m2
2,T dt + o

(
(Tb1,T b2,T )−1/2

)
,

for some d3 > 0. This implies that (S.B.68) is bounded byO(((Tb1,T b2,T )2(ϖ+a))e−d3m2
2,T )+o((Tb1,T b2,T )−1/2)

since by Assumption 4.7-4.8 it holds m2,T ≥ ϵ(Tb2,T )ϵ for some ϵ > 0 depending on q and p. □

Lemma S.B.20. Let Assumption 4.1, 4.3-4.4, 4.8-4.9 and b1,T +(Tb1,T b2,T )−1 log5(Tb2,T ) → 0 hold. Then
there exists a c2 > 0 such that, for ∥t∥ ≤ c2

√
Tb1,T b2,T and a d2 > 0,

|ψT (t) − A2,T (t, 2)| ≤ exp
(
−d2 ∥t∥2

)
F̃ (∥t∥)O

(
(Tb1,T b2,T )−1/2

(
b2

1,T + ϵT b2,T
(3)
)

+ 1
Tb1,T b2,T

)
,

where F̃ (∥t∥) is a polynomial in t with bounded coefficients and A2,T (t, 2) is defined in (S.B.65).

Proof of Lemma S.B.20. From Feller (1971, p. 535) for complex α and β it holds that |ea − 1 − b| ≤
eγ(|a− b| + |b|2 /2), where γ = max{|a| , |b|}. We set

a = logψ (t) − 1
2 ∥it∥2 = (Tb1,T b1,T )−1/2 ∑

|r|=3

s!
r1!r2!κ2,T (r1, r2) (it1)r1 (it2)r2 +R∗

T (2) ,

where the right-hand side follows from (S.B.64). Let b = (Tb1,T b1,T )−1/2B2,T (3, t) where B2,T (3, t) is
defined after (S.B.65). Using Lemma S.B.18-S.B.19 for s = 3 we have

|a− b| ≤
∣∣∣∣∣(Tb1,T b1,T )−1/2O

(
b2

1,T + ϵT b2,T
(3)
) (

(it2)3 + (it1)2 (it2)
)

(S.B.69)

+ 1
Tb1,T b2,T

(
R′

0,4 (it2)4 +R′
2,2 (it1)2 (it1)2

)∣∣∣∣∣
≤ P1 (∥t∥)O

(
(Tb1,T b1,T )−1/2

(
b2

1,T + ϵT b2,T
(3)
)

+ 1
Tb1,T b2,T

)
,

where P1 is a polynomial of degree of 4. Note that |b|2 /2 ≤ P2 (∥t∥)O(Tb1,T b1,T )−1) where P2 is a
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polynomial of degree 6. Then, for some polynomial P

|a− b| + |b|2

2 ≤ P (∥t∥)O
(

(Tb1,T b1,T )−1/2
(
b2

1,T + ϵT b2,T
(3)
)

+ 1
Tb1,T b2,T

)
.

Next, we need to find a bound for γ = max {|a| , |b|}. For ∥t∥ ≤ cb

√
Tb1,T b2,T with cb > 0 we have

|b| =
∣∣∣(Tb1,T b1,T )−1/2B2,T (3, t)

∣∣∣ ≤ ∥t∥2
{ 1

3! (Tb1,T b1,T )−1/2 [|Ξ2,0(0, 3)| + 3 |Ξ2,0(2, 1)| ∥t∥]
}

(S.B.70)

≤ ∥t∥2
{
cb

3! (|Ξ2,0(0, 3)| + 3 |Ξ2,0(2, 1)|)
}

≤ ∥t∥2 Tb,

where 0 < Tb < 1/4 by choosing cb sufficiently small. For a given a we can choose a ca > 0 sufficiently
small such that, for ∥t∥ ≤ ca

√
Tb1,T b1,T ,

|a| ≤ ∥t∥2
{

1
3! (Tb1,T b1,T )−1/2

[
|Ξ2,0(0, 3)| + 3 |Ξ2,1(2, 1)| +O

(
b2

1,T + ϵT b2,T
(3)
)]

(S.B.71)

× ∥t∥ + (Tb1,T b1,T )−1
[∣∣∣R′

0,4

∣∣∣+ ∣∣∣R′
2,2

∣∣∣] ∥t∥2
}

≤ ∥t∥2
{
ca

3!
[
|Ξ2,0(0, 3)| + 3 |Ξ2,0(2, 1)| +O

(
b2

1,T + ϵT b2,T
(3)
)]

+ c2
a

[∣∣∣R′
0,4

∣∣∣+ ∣∣∣R′
2,2

∣∣∣]}
≤ ∥t∥2

{1
4 +O

(
b2

1,T + ϵT b2,T
(3)
)}

.

From (S.B.70)-(S.B.71) we have for ∥t∥ ≤ c2
√
Tb1,T b1,T with c2 = min {ca, cb},

exp (γ) ≤ exp
{

∥t∥2
[1

4 +O
(
b2

1,T + ϵT b2,T
(3)
)]}

,

or

exp
{

−1
2t2 + γ

}
≤ exp

{
∥t∥2

[
−1

4 +O
(
b2

1,T + ϵT b2,T
(3)
)]}

≤ exp
{

−d2 ∥t∥2
}
, (S.B.72)

for some d2 > 0. Note that ψ (t) = exp{1
2 ∥it∥2 + a} and A2,T (t, 2) = exp{1

2 ∥it∥2}(1 + b). Using
(S.B.69)-(S.B.72) the result of the lemma follows. □

S.B.3.5 Proof of Theorem 4.4

Consider the following linear stochastic approximation to UT ,

ŨT ≜ v1

(
1 − 1

2c1b
df

1,T − 1
2

√
4π ∥K∥2 ∥K2∥2 v2 (Tb1,T b2,T )−1/2 − 1

2c2b
2
2,T

)
. (S.B.73)
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Consider the transformation s = (s1, s2)′ = (ŨT (h1, v2) , v2)′ = ∆T (v) say, and its inverse v = ∆−1
T (s) =

(h†
1 (s1, s2) , s2)′. Let γ > 0 be such that

T 3γ

(Tb1,T b2,T )3/2 → 0,

and define LT = {v : |vi| < liT
γ , i = 1, 2}, where li are some fixed constants. Using (1 + x)−1 =

1 − x+ x2 − x3 + . . . for |x| < 1, we have uniformly in the set LT ,

h†
1 (s) = s1

[
1 + 1

2c1b
df

1,T + 1
2

√
4π ∥K2∥ ∥K2∥2 s2 (Tb1,T b2,T )−1/2 + 1

2c2b
2
2,T

]
+ o

(
(Tb1,T b2,T )−1/2

)
.

We have P(UT ∈ C) = P(v ∈ ∆−1
T (C × R)) and from Theorem 4.1,

sup
C

∣∣∣P (v ∈ ∆−1
T (C × R)

)
−Q(2)

2,T

(
∆−1

T (C × R)
)∣∣∣

= o
(
(Tb1,T b2,T )−1/2

)
+ cost sup

C
Q(2)

2,T

((
∂∆−1

T (C × R)
)2ϕT

)
, (S.B.74)

where ϕT = (Tb1,T b2,T )−ρ, 1/2 < ρ < 1. From the continuity of ∆T , we can obtain, for some c > 0,

Q
(2)
2,T

((
∂∆−1

T (C × R)
)2ϕT

)
≤ Q

(2)
2,T

(
∆−1

T (∂C)cϕT × R
)
, (S.B.75)

and

Q
(2)
2,T

(
∆−1

T (C × R)
)

=
�

LT ∩∆−1
T (C×R)

φ2 (x) q(2)
2,T (x) dx + o

(
(Tb1,T b2,T )−1/2

)
=

�
L∗

T ∩{C×R}
φ2
(
∆−1

T (s)
)
q

(2)
2,T

(
∆−1

T (s)
)

|J | ds + o
(
(Tb1,T b2,T )−1/2

)
,

where φ2 (·) is the bivariate standard normal density, L∗
T = ∆T (LT ), and |J | is the Jacobian of the

transformation. Neglecting the terms that contribute o((Tb1,T b2,T )−1/2) to the integrals, we yield

φ2
(
∆−1

T (s)
)

= φ (s1)φ (s2)
(

1 − 1
2s

2
1

[
c1b

df

1,T + 1
2

√
4π ∥K∥2 ∥K2∥2 s2 (Tb1,T b2,T )−1/2 + 1

2c2b
2
2,T

])
,

(S.B.76)

and

q
(2)
2,T (v) = 1 + 1

3! (Tb1,T b2,T )−1/2 (Ξ2,0 (0, 3) H3 (v2) + Ξ2,0 (2, 1) H2 (h1) H1 (v2)) , (S.B.77)

where

|J | = 1 + 1
2c1b

df

1,T + 1
2

√
4π ∥K2∥ ∥K2∥2 s2 (Tb1,T b2,T )−1/2 + 1

2c2b
2
2,T .
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For j = 1, 2, 3 let pj (s) denote polynomials not depending on T . We have

Q
(2)
2,T

(
∆−1

T (C × R)
)

=
�

C
φ (s1)

{�
R

[
1 + p1 (s) (Tb1,T b2,T )−1/2 + p2 (s) bdf

1,T + p3 (s) b2
2,T

]
φ (s2) ds2

}
ds1

(S.B.78)

+ o
(
(Tb1,T b2,T )−1/2

)
=

�
C
φ (s1)

[
1 + r1 (s1) (Tb1,T b2,T )−1/2 + r2 (s1) bdf

1,T + r3 (s1) b2
2,T

]
ds1

+ o
(
(Tb1,T b2,T )−1/2

)
,

where rj (s1) are polynomials in s1 for j = 1, 2, 3 with bounded coefficients. Integration with respect to
s2 in R yields r1 (x) = 0, r2 (x) = −2−1c1

(
x2 − 1

)
and r3 (x) = −2−1c2

(
x2 − 1

)
. Using (S.B.74)-(S.B.78)

provides the second-order Edgeworth expansion for the linear stochastic approximation ŨT . Since Lemma
S.B.21 below shows that ŨT and UT have the same Edgeworth expansion, the proof is concluded. □

Lemma S.B.21. Let Assumption 4.1, 4.2 (p > 1) and 4.3-4.5, 4.8-4.10 hold. Then, UT has the same
Edgeworth expansion as ŨT uniformly for convex Borel sets up to the order O((Tb1,T b2,T )−1/2).

Proof of Lemma S.B.21. We first expand UT (v) around 0 in LT with |η2| ≤ 1,

UT = dTh1 − 1
2d

3
T V2,Th1v2 (Tb1,T b2,T )−1/2 + U∗

1,T (Tb1,T b2,T )−1 , (S.B.79)

where dT = (1 + B2,T )−1/2 and

U∗
1,T = 3

8
(
1 + B2,T + η2V2,T v2 (Tb1,T b2,T )−1/2

)−5/2
V2

2,Th1v
2
2.

We now express UT in terms of ŨT where the latter is defined in (S.B.73). Substituting for B2,T and V2,T

in (S.B.79), we yield UT = ŨT + U∗
T (Tb1,T b2,T )−1 where U∗

T =
∑3

i=1 U
∗
i,T ,

U∗
2,T = h1

(
O
(
(b1,T b2,T ) −1 log T + Tb2,T b

1+df +ϱ
1,T

)
+ o

(
Tb3

2,T b1,T

))
and

U∗
3,T = h1v2O

(
(Tb1,T b2,T )1/2

(
b2

1,T + ϵT (2)
))
.

We now show that U∗
T (Tb1,T b2,T )−1 can be neglected with error o((Tb1,T b2,T )1/2). This follows from

Theorem 2 in Chibisov (1972) provided that the following condition holds,

P
(
|U∗

T | > γT

√
Tb1,T b2,T

)
≤

3∑
i=1

P
(∣∣∣U∗

i,T

∣∣∣ > 1
3γT

√
Tb1,T b2,T

)
= o

(
(Tb1,T b2,T )−1/2

)
, (S.B.80)

for some positive sequence {γT } such that γT → 0 and γT
√
Tb1,T b2,T → ∞. Note that

(Tb1,T b2,T )−1/2 U∗
2,T = h1O

(
(Tb2,T )1/2 b

−3/2
1,T (Tb2,T )−1 log T + (Tb2,T b1,T )1/2 b

df +ϱ
1,T

)
.
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By Assumption 4.10 the right-hand side above is O((Tb2,T b1,T )−υ) for some υ > 0. Further,

(Tb1,T b2,T )−1/2 U∗
3,T = h1v2O

(
b2

1,T + ϵT (2)
)

= O((Tb2,T b1,T )−υ),

for some υ > 0. Since h1 and v2 have finite moments of all orders, we can take γT = 1/ log T and apply
Chebyshev’s inequality to establish P(|U∗

i,T | > 3−1γT
√
Tb1,T b2,T ) = o((Tb1,T b2,T )−1/2) for i = 2, 3.

It remains to show P(|U∗
1,T | > 3−1γT

√
Tb1,T b2,T ) = o((Tb1,T b2,T )−1/2). We have

P
(∣∣∣U∗

1,T

∣∣∣ > 1
3γT

√
Tb1,T b2,T

)
< P

(∣∣∣∣38V2
2,Th1v

2
2

∣∣∣∣ (Tb1,T b2,T )−1/4 > γ
1/2
T

)
+ P

(∣∣∣1 + B2,T + η2V2,T v2 (Tb1,T b2,T )−1/2
∣∣∣ (Tb1,T b2,T )−1/4 > γ

1/2
T

)
.

≜ A1 +A2.

Using Chebyshev’s inequality A1 = o((Tb1,T b2,T )−1/2). Using (Tb1,T b2,T )−1/10 γ
−1/5
T → 0 we yield

A2 < C2P
(∣∣∣v2 (Tb1,T b2,T )−1/2

∣∣∣ > c2
)

= o
(
(Tb1,T b2,T )−1/2

)
,

where C2 and c2 are some positive constants and we have used Chebyshev’s inequality. □

S.B.4 Proof of the Results of Section 5

S.B.4.1 Proof of Theorem 5.1

Consider first the numerator of tDM,i. We have

T 1/2
n dL = δ2OP

(
T 1/2

n T−1
n nδ

)
+OP

(
T 1/2

n T−1
n (Tn − nδ)1/2

)
N (0, JDM)

= δ2OP
(
T−1/2

n nδ

)
+OP (1) ,

for some JDM ∈ (0, ∞) where nδ depends on the length of the segment where the mean of x
(2)
t shifts by

δ. The factor δ2 follows from the quadratic loss.
Next, we focus on the expansion of the denominator of tDM,i which hinges on which LRV estimator

is used. We begin with part (i). Under Assumption 4.6 b1,T → 0 as T → ∞. Using Theorem S.A.1,

ĴdL,NW87,T =
⌊b−1

T ⌋∑
k=−⌊b−1

T ⌋
(1 − |b1,Tk|) Γ̂ (k)

=

⌊
b−1

1,T

⌋∑
k=−

⌊
b−1

1,T

⌋ (1 − |b1,Tk|)
� 1

0
c (u, k) du
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+

⌊
b−1

1,T

⌋∑
k=−

⌊
b−1

1,T

⌋ (1 − |b1,Tk|)
(

2−1
(
Tb − Tm − 1

Tn

)(
Tn − Tb − 2

Tn

)
δ4 + oP (1)

)

= CJDM +

⌊
b−1

1,T

⌋∑
k=−

⌊
b−1

1,T

⌋ (1 − |b1,Tk|)
(

2−1
(
Tb − Tm − 1

Tn

)(
Tn − Tb − 2

Tn

)
δ4 + oP (1)

)
,

for some C > 0 such that C < ∞. By Exercise 1.7.12 in Brillinger (1975),⌊
b−1

1,T

⌋∑
k=−

⌊
b−1

1,T

⌋ (1 − |b1,Tk|) exp (−iωk) = b1,T

sin
⌊

b−1
1,T

⌋
ω

2
sin ω

2


2

.

Evaluating the expression above at ω = 0 and applying L’Hôpital’s rule we yield,⌊
b−1

1,T

⌋∑
k=−

⌊
b−1

1,T

⌋ (1 − |b1,Tk|) = b1,T


⌊

b−1
1,T

⌋
2
1
2


2

=
⌊
b−1

1,T

⌋
.

Therefore, ĴdL,NW87,T = CJDM + δ4OP
(
b−1

1,T

)
and

|tDM,NW87| ≤
δ2OP

(
T

−1/2
n nδ

)
+OP (1)(

δ4O
(
b−1

1,T

))1/2 (S.B.81)

=
δ2O

(
T ζ

n

)
δ2O

(
b

−1/2
1,T

) = O
(
T ζ

nb
1/2
1,T

)
,

which implies Pδ(|tDM,NW87| > zα) → 0.
Under Assumption 4.7 with q = 1/3, similar derivations yield |tDM,NW87| = O(T ζ−1/6

n ) and Pδ(|tDM,NW87| >
zα) → 0.

In part (ii), b1,T = T−1. Proceeding as in (S.B.81) we have |tDM,KVB| = O(T ζ−1
n ) and Pδ(|tDM,KVB| >

zα) → 0 since T ζ−1
n → 0.

Finally, we consider part (iii). Using Theorem 3.1, we have

ĴdL,DK,T =
Tn−1∑

k=−Tn+1
K1

(
b̂1,Tk

) nT

Tn

⌊Tn/nT ⌋∑
r=1

ĉDK,T (rnT /T, k)

=
Tn−1∑

k=−Tn+1
K1

(
b̂1,Tk

) nT

Tn

⌊Tn/nT ⌋∑
r=1

(
c (rnT /T, k)

+ δ21
{(

|rnT + k/2 + n2,T /2 + 1) − T 0
j |/n2,T

)
∈ (0, 1)

})
+ oP (1)
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= JDM + δ2OP

b̂−1
1,T

T b̂2,T

nT

nT

Tn

+ oP (1) .

It follows that

|tDM,DK| =
δ2OP

(
T

−1/2
n nδ

)
+OP (1)(

JDM + δ2OP
(
b−1

1,T b̂2,T

))1/2

= δ2O
(
T ζ

n

)
,

and so Pδ(|tDM,DK| > zα) → 1 since T ζ
n → ∞. □
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Figure S.1: a) top panel: plot of {dt}; b) mid-panel: plot of the sample autocovariances Γ̂ (k) of {dt}; c) bottom panel: plot the

periodogram I (ω) of {dt}. In all panels δ = 2.
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Figure S.2: a) top panel: plot of {dt}; b) mid-panel: plot of the sample autocovariances Γ̂ (k) of {dt}; c) bottom panel: plot the

periodogram I (ω) of {dt}. In all panels δ = 5.
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Figure S.3: The figure plots ĉT (u, k) for u = 236/400, λ0
1, 264/400 in the top, mid and bottom panel, respectively. In all panels

δ = 2.
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Figure S.4: The figure plots IL (u, ω) for u = 236/400, λ0
1, 264/400 in the top, mid and bottom panel, respectively. In all panels

δ = 2.
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Figure S.5: The figure plots ĉT (u, k) for u = 236/400, λ0
1, 264/400 in the top, mid and bottom panel, respectively. In all panels

δ = 5.
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Figure S.6: The figure plots IL (u, ω) for u = 236/400, λ0
1, 264/400 in the top, mid and bottom panel, respectively. In all panels

δ = 5.
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