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1 Introduction

The twin problems of detecting and dating the origination and subsequent implosion of

bubbles have garnered considerable attention in the econometrics literature over the past two

decades. These issues are of immense practical importance as policymakers can e↵ectively

use information on the presence of bubbles to devise and implement specific policies in order

to mitigate their potentially adverse consequences. Accordingly, a multitude of procedures

has been developed for ex post detection and date-stamping of bubble episodes as well as

real-time monitoring for the origination of bubbles. The procedures have been applied to

a wide variety of applications including stock, real estate, commodity, and art markets, as

well as prices of cryptocurrencies, thereby testifying to their empirical relevance. Given the

volume of literature on this topic, we do not attempt an exhaustive survey and instead refer

to Hu (2023) and Skrobotov (2023) for recent comprehensive reviews of the literature.

This paper studies the problem of retrospectively dating the inception and implosion of

bubbles conditional on their detection. This is an important issue since, as noted by Harvey

et al. (2017), e↵ective date-stamping strategies can provide useful information regarding

the type of economic and financial events that are typically associated with bubble-like

phenomena and thereby caution policymakers to take appropriate action in case similar

events are deemed to occur in the near future. A plethora of methods has been proposed to

address the problem of ex-post date-stamping which vary according to the particular bubble

model specification adopted as well as whether the break dates (i.e., the dates of inception

and implosion) are estimated jointly or recursively/sequentially.

Phillips et al. (2011) [PWY henceforth] proposed a recursive procedure based on right-

tailed unit root tests to detect the presence of explosive behavior as well as date-stamp

the origination and termination of such behavior. Their date-stamping algorithm hinges on

comparing the sequence of recursively computed Augmented Dickey-Fuller (ADF) statistics

with their corresponding right-tailed critical values. Phillips and Yu (2009) established

the consistency of PWY’s dating estimators assuming that the data generating process is

characterized by a single bubble. Specifically, the origination of the bubble was modeled as

a transition from a unit root process to a mildly explosive process while its termination was

modeled as an instantaneous collapse to a new level at which unit root behavior resumes

and continues until the end of the sample. These testing and date-stamping procedures

were subsequently extended to a multiple bubbles framework by Phillips et al. (2015a) [PSY

henceforth] and their asymptotic properties were derived by Phillips et al. (2015b).
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Harvey et al. (2017) suggested an alternative date-stamping approach that jointly es-

timates the origination and collapse dates in a single bubble model based on minimizing

the sum of squared residuals in combination with a Bayesian Information Criterion (BIC)

for model selection. Instead of an abrupt crash as in Phillips and Yu (2009), the collapse

mechanism in Harvey et al. (2017) entails a transition from an explosive to a stationary

regime followed by a reversion to unit root behavior. Phillips and Shi (2018) established

the large sample validity of the PSY approach under alternative forms of bubble implosion

including the transient collapse dynamics espoused by Harvey et al. (2017). Harvey et al.

(2017) conducted Monte Carlo simulations to show that their proposed dating procedure

outperforms the PSY procedure in finite samples.

A di↵erent date-stamping approach involves estimating the origination and collapse dates

sequentially. In a single bubble framework, Pang et al. (2021) showed that the collapse date

can be consistently estimated by minimizing the sum of squared residuals in a single break

model; the origination date is then estimated using the subsample preceding the estimated

date of collapse. Although the estimated origination date is inconsistent, the timing as a

fraction of the sample size was shown to be consistent. Kurozumi and Skrobotov (2023)

extended the analysis in Pang et al. (2021) to allow for unit root behavior following the

collapse. They obtained results similar to Pang et al. (2021) regarding the origination and

collapse dates and additionally established conditions under which the date of recovery (i.e.,

the switch to the unit root path) can be consistently estimated. Finally, Harvey et al. (2020)

proposed a two-step approach to date-stamping multiple bubbles that o↵ers an improvement

over PSY’s recursive approach. The first step involves using the PSY procedure to identify

date windows in which explosive behavior starts and ends. In the second step, the date

estimates are obtained by applying a model-based BIC approach within each date window.

This paper proposes a new ordinary least squares (OLS)-based procedure to retrospec-

tively date the emergence and collapse of bubbles by minimizing a modified sum of squared

residuals. Adopting the same DGP as Phillips and Yu (2009), we first demonstrate analyti-

cally that the standard OLS dating estimators obtained by minimizing the sum of squared

residuals are inconsistent and date both the origination and implosion points with a delay.

In particular, the estimate of the origination date is shown to converge to the true implosion

date while the implosion date estimate converges to a date in the post-implosion period

that is determined by the level of trimming employed. A simple modification of the OLS

procedure that involves omitting the residual corresponding to the implosion date is shown

to yield consistent estimates of both the origination and collapse dates.
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A second contribution of our paper is to develop an e�cient date-stamping algorithm

that can simultaneously estimate the origination and collapse dates in a framework with

multiple bubbles. While a brute-force grid search procedure is computationally very costly

with multiple bubbles, the proposed algorithm yields equivalent estimates but only requires

computing time comparable to that for a single bubble model. Our algorithm is a modifica-

tion of existing dynamic programming algorithms proposed by Bai and Perron (2003) [BP

henceforth] and Perron and Qu (2006) [PQ henceforth] for estimating a linear regression

model with multiple breaks. In particular, our algorithm exploits the explicit form of the

unit root restrictions (pertaining to the non-bubble regimes) to directly embed them into the

recursive optimization problem which obviates the reliance on an iterative scheme that re-

quires initial values. This feature alleviates our algorithm from the problem of local minima

which can a↵ect approaches based on iterative schemes. Extensive simulation experiments

indicate that our proposed procedure typically delivers estimates with lower bias and root

mean squared error relative to extant approaches. An application to oil prices illustrates the

relevance of the proposed method in practice.

Our paper is closely related to earlier work by Kejriwal et al. (2013) who develop Wald

tests of the unit root hypothesis against structural changes in persistence. Their model

under the alternative hypothesis involves switches between unit root [I(1)] and stationary

[I(0)] regimes without any discontinuities between regimes. They employ the iterative dy-

namic programming algorithm proposed by PQ to estimate the break dates subject to the

unit root restrictions in the relevant regimes. The PQ algorithm extends the BP algorithm

designed for unrestricted estimation of the break dates to allow for linear restrictions on the

regression coe�cients. In contrast to Kejriwal et al. (2013), our model entails discontinuities

between regimes due to the abrupt implosion of the bubbles which necessitates a modifica-

tion of the PQ algorithm (via omission of specific residuals) to ensure that the parameters

are consistently estimated. Simulations show that our proposed algorithm often yields im-

proved estimates relative to the modified version of the PQ algorithm. The source of this

improvement emanates from the fact that the PQ algorithm relies on an iterative scheme

that employs unrestricted break date estimates as initial values which can potentially inflate

the variance of the final estimates in small samples.

The rest of the paper is organized as follows. Section 2 presents the basic model with

a single bubble and derives the large sample properties of the standard and modified OLS

estimators. Section 3 considers a general framework with multiple bubbles and develops an

e�cient algorithm for dating their emergence and collapse. Section 4 contains a set of Monte
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Carlo experiments to assess the finite sample properties of our proposed estimators relative

to existing alternatives. Section 5 presents an empirical illustration and section 6 concludes.

Supplementary Appendices (for online publication only) A and B contain, respectively, the

proofs of theoretical results and additional Monte Carlo results.

2 The Basic Model

We first consider a scalar random variable yt generated by a single bubble specified as

yt =

8
><

>:

yt�1 + ut, 1  t  T
0
1

�yt�1 + ut, T
0
1 + 1  t  T

0
2

yT 0
1
+ z

⇤ +
Pt

j=T 0
2+1 uj, T

0
2 + 1  t  T

(1)

where ut is i.i.d. with E(ut) = 0, E(u2
t ) = �

2 and y0 = op(T 1/2), z
⇤ = Op(1). This is

the same data generating process (DGP) adopted by Phillips and Yu (2009) and PWY

for modeling a single bubble: the stochastic process switches from an I(1) regime to an

explosive one at date T
0
1 , followed by a collapse at date T

0
2 + 1 with a subsequent return

to (pre-bubble) martingale behavior which continues until the end of the sample (T ). We

refer to (T 0
1 , T

0
2 ) as the true break dates and (�0

1,�
0
2) as the true break fractions so that T 0

1 =

b�0
1T c and T

0
2 = b�0

2T c. For some small positive number ✏, we define the set T✏(2) = {(T1, T2);

|T2 � T1| � b✏T c , T 1 � b✏T c , T2  b(1� ✏)T c}. The set T✏(2) contains candidate break

dates (T1, T2) that are separated by a positive fraction ✏ (the level of trimming) of the sample

size. Our objective is to consistently estimate the break dates (T 0
1 , T

0
2 ) and the parameter

� that determines the degree of explosive behavior.

2.1 OLS Estimation

We will start with standard OLS estimation. The estimation procedure imposes the unit

root restriction in the first and last regimes while estimating � using an OLS regression of

yt on a constant and yt�1 using observations in the second regime as demarcated by the

potential break dates (T1, T2). Define the following quantities:

ȳ2 = (T2 � T1)
�1

T2X

t=T1+1

yt, ȳ2,�1 = (T2 � T1)
�1

T2X

t=T1+1

yt�1,

�̂(T1, T2) =

"
T2X

t=T1+1

(yt�1 � ȳ2)
2

#�1 T2X

t=T1+1

(yt�1 � ȳ2)yt.
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The OLS estimates of the parameters are obtained as

(T̂1, T̂2) = arg min
(T1,T2)2T✏(2)

SSR(T1, T2),

where

SSR(T1, T2) =
T1X

t=2

(�yt)
2 +

T2X

t=T1+1

[yt � ȳ2 � �̂(T1, T2)(yt�1 � ȳ2,�1)]
2 +

TX

t=T2+1

(�yt)
2 (2)

is the sum of squared residuals based on candidate break dates (T1, T2). The estimate of � is

then obtained as �̂ = �̂(T1, T2).

Following Harvey et al. (2017), our theoretical analysis models the autoregressive pa-

rameter � as fixed and independent of the sample size. An alternative “mildly explosive”

framework, developed by Phillips and Magdalinos (2007), models the parameter as being

dependent on the sample size such that it converges to one at a slower rate than the sample

size. The advantage of the latter framework is that it permits the application of an in-

variance principle that facilitates asymptotically pivotal inference. Since our interest lies in

investigating the consistency/inconsistency properties of di↵erent estimators, we adopt the

fixed parameter framework for our asymptotic analysis.

The large sample behavior of the OLS estimates is stated in the following result.

Theorem 1 Suppose that yt is generated by (1) with (T 0
1 , T

0
2 ) 2 T✏(2). Then we have

(a) T̂1 � T
0
2

p! 0, T̂2 � (T 0
2 + b✏T c) p! 0;

(b) �̂
p! 0.

Theorem 1 shows that the OLS estimates of the break dates are inconsistent with each

break date estimate selecting a break date later than the corresponding true break date.

Specifically, the second true break date T 0
2 is in fact consistently estimated by the first break

date estimate T̂1 while the estimate T̂2 dates the termination of explosive behavior with a

delay determined by the trimming level ✏. Moreover, the OLS estimate of the autoregressive

coe�cient is also inconsistent and biased towards zero.

The intuition for this result can be understood as follows. First, there are four principal

sources of contamination that may potentially a↵ect SSR(T1, T2). The first involves the

squared di↵erence between the first post-crash observation yT 0
2+1 and the final observation

in the explosive regime yT 0
2
. Any combination of (T1, T2) with T1 > T

0
2 or T2  T

0
2 is a↵ected

by this form of contamination. The second source which is relevant when T1 < T
0
2 , T2 >

5



T
0
2 arises from the inclusion of both explosive and post-crash I(1) observations when esti-

mating � which generates a mean-reverting behavior and hence imparts a downward bias to

the autoregressive estimate. The third source emanates from incorrectly treating observa-

tions from the explosive regime as I(1) observations and thus taking their first di↵erence.

Any combination of (T1, T2) with T1 > T
0
1 is a↵ected by this form of contamination. The

fourth and final source of contamination occurs when T1 = T
0
2 , T2 � T

0
2 + b✏T c in which

case � is estimated using post-crash I(1) observations in time periods {T 0
2 +1, ..., T 0

2 +b✏T c}.
Moreover, the extent of this contamination (in terms of its impact on SSR) increases with

the number of post-crash observations included in this estimation sample.

Next, among the aforementioned sources of contamination, the first source is dominant,

followed by the second, third and fourth sources, in that particular order. The reason is that

the first source involves the first di↵erence between an I(1) and an explosive observation

which entails a larger increase in the sum of squared residuals relative to the three other

sources. The second source of contamination dominates the third since the former treats the

explosive regime as stationary in large samples while the latter treats the explosive regime

as I(1). Finally, the fourth source is dominated by the others since it only involves the

post-crash I(1) observations while the others also involve explosive observations.

Combining the above facts, it follows that the sum of squared residuals is minimized at

T̂1 = T
0
2 , T̂2 = T

0
2 + b✏T c . Theorem 1(b) follows from the fact that, in large samples, � is

estimated using observations in time periods {T 0
2 + 1, ..., T 0

2 + b✏T c}. The sum of squared

residuals from this estimation sample is minimized at �̂ = 0 to ensure that the e↵ect of the

explosive observation yT 0
2
is asymptotically negligible.

2.2 Modified Estimation

To address the issue of inconsistency, we suggest a simple modification of the OLS pro-

cedure. In particular, we propose omitting the residual that corresponds to the potential

collapse date T2 + 1 when constructing the overall global sum of squared residuals. Thus,

the modified OLS estimates are obtained as (eT1,
eT2) = argmin(T1,T2)2T✏(2) SSRom(T1, T2) and

e� = �̂(eT1,
eT2), where

SSRom(T1, T2) =
T1X

t=2

(�yt)
2 +

T2X

t=T1+1

[yt � ȳ2 � �̂(T1, T2)(yt�1 � ȳ2,�1)]
2 +

TX

t=T2+2

(�yt)
2

and “om” denotes omission. Note that unlike SSR(T1, T2), SSRom(T1, T2) omits the term

(�yT2+1)2. We label by (eT1,
eT2,

e�) and (T̂1, T̂2, �̂) the estimators with and without omission,
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respectively. The consistency of the OLS estimates with omission is established in the

following result.

Theorem 2 Suppose that yt is generated by (1) with (T 0
1 , T

0
2 ) 2 T✏(2). Then we have

(a) eT1 � T
0
1

p! 0, eT2 � T
0
2

p! 0;

(b) e� p! �.

The intuition for this result can be understood by referencing the four sources of con-

tamination discussed above. First, note that none of these sources of contamination a↵ect

SSRom(T 0
1 , T

0
2 ). The case eT2 < T

0
2 is then ruled out because if eT2 < T

0
2 , SSRom(eT1,

eT2) is

a↵ected by the first source of contamination. Similarly, the case eT2 > T
0
2 is eliminated since

if eT2 > T
0
2 , SSRom(eT1,

eT2) would be impacted by the second and fourth sources of con-

tamination. The case eT1 > T
0
1 is ruled out since SSRom(eT1,

eT2) would then be susceptible

to the third source of contamination. Finally, the case eT1 < T
0
1 is eliminated by the fact

that SSRom(eT1,
eT2) would then be a↵ected by the contamination stemming from treating

the pre-bubble I(1) observations as observations from the explosive regime. Consequently,

the sum of squared residuals is minimized in large samples when eT1 = T
0
1 ,

eT2 = T
0
2 . This

discussion also suggests that the collapse date is likely to be more accurately estimated than

the origination of explosiveness since any deviation of eT2 from T
0
2 entails a larger increase

in the sum of squared residuals (in terms of order of magnitude) than a similar deviation of
eT1 from T

0
1 . This feature will be borne out in the simulations presented in Section 4.

3 The General Model with Multiple Bubbles

This section proposes a new algorithm for estimating multiple break dates that can improve

upon existing approaches. To this end, we consider a generalization of model (1) that can

accommodate multiple bubbles:

yt = (�iyt�1 + ut)1(�i > 1) + (

T 0
iX

s=T 0
i�1+1

us + y
⇤
T 0
i�1

)1(�i = 1),

y
⇤
T 0
i�1

= yT 0
i�2

1(i > 1) + z
⇤
i ; z

⇤
i = Op(1), (3)

where 1  i  m + 1 with the convention T
0
0 = 0 and T

0
m+1 = T . The process is therefore

subject to m breaks or m+ 1 regimes with break dates (T 0
1 , ..., T

0
m). When m is even, there

are m/2 or (m/2 + 1) explosive regimes when the initial regime has a unit root [I(1)] or is
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explosive, respectively. When m is odd, there are (m + 1)/2 regimes of explosive behavior

regardless of whether the initial regime is I(1) or explosive. In this paper, we will primarily

consider the case where the initial regime is I(1) and briefly discuss the case with an initial

explosive regime (see Remark 1 below).

Given the inconsistency of the standard OLS estimators as demonstrated in Section 2,

we focus on modified least squares estimation that involves omitting the residuals corre-

sponding to the potential bubble implosion dates. The modified estimates of the break

dates are obtained as (eT1, ...,
eTm) = argmin(T1,...,Tm)2T✏(m) SSRom(T1, ..., Tm) where T✏(m) =

{(T1, ..., Tm); |Ti+1 � Ti| � b✏T c , T1 � b✏T c , Tm  b(1� ✏)T c} and

SSRom(T1, ..., Tm) =
T1X

t=2

(�yt)
2 +

T2X

t=T1+1

[yt � �̂2(T1, T2)yt�1 � ĉ2(T1, T2)]
2 +

T3X

t=T2+2

(�yt)
2

+...+
TX

t=Tm+1+[1�l(m)]

[yt � {l(m)�̂m+1(Tm, Tm+1) + (1� l(m))}yt�1

�l(m)ĉm+1(Tm, Tm+1)]
2
, (4)

with l(m) = 1 if m is odd, and zero otherwise. The estimates (ĉi(Ti�1, Ti), �̂i(Ti�1, Ti))

are obtained from an OLS regression of yt on a constant and yt�1 using observations t =

Ti�1+1, Ti�1+2, ..., Ti. A standard grid search procedure to minimize (4) would require least

squares operations of order O(Tm) and thus be computationally very expensive for m > 2.

An e�cient approach to this problem is to employ the principle of dynamic programming

that only requires operations of order O(T 2) regardless of the number of breaks. BP and

PQ develop algorithms based on this principle for estimating multiple breaks in a linear

regression model. In order to motivate our proposed algorithm, we first discuss in Section

3.1 the PQ algorithm which is an extension of the BP algorithm. The proposed algorithm

is then presented in Section 3.2.

3.1 The Perron and Qu (2006) Algorithm

PQ propose a computationally e�cient dynamic programming algorithm to estimate the

break dates in a linear regression framework with multiple breaks subject to a set of linear

restrictions on the regression coe�cients. Their algorithm extends the BP algorithm designed

for unrestricted estimation of the break dates in order to obtain more precise (i.e., lower

variance) estimates. Kejriwal et al. (2013) use the PQ algorithm to estimate the break dates

in an autoregressive model characterized by switches between I(1) and I(0) regimes where
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the I(1) restrictions are imposed in the relevant regimes. In contrast to Kejriwal et al. (2013),

our model involves discontinuities between regimes due to abrupt implosion of the bubbles

that necessitates the omission of particular residuals to ensure consistent estimation.

The PQ algorithm does not omit the residuals for any of the time periods but can be

easily modified to allow for such omission. We will henceforth refer to this modification as

the PQ algorithm with omission. From (4), it is evident that our optimization problem is

a special case of that considered in PQ which imposes the restrictions ci = 0, �i = 1 in the

I(1) regimes. Thus, the PQ algorithm with omission can be employed to obtain the break

date estimates by recasting our problem within their framework.

The PQ algorithm entails the use of an iterative scheme that iterates between estimating

the break dates and the regression coe�cients until convergence. The initialization step

in this scheme employs the unrestricted BP estimates. As with any iterative procedure,

whether a global or local minimum is achieved depends on the initial values. In particular,

the precision of the algorithm depends crucially on the first step estimates of the break dates.

As noted by PQ (p. 383), in cases where the global minimum is not achieved, the estimates

are typically very far from the true values, often at the beginning or the end of the sample.

3.2 The Proposed Algorithm

Motivated by the preceding discussion, we develop an e�cient dating algorithm that exploits

the explicit form of the I(1) restrictions (i.e., the parameters in some regimes taking specific

values) to directly incorporate them in the optimization problem, thereby obviating the

reliance on initial values. Unlike the PQ estimates, our proposed estimates are equivalent

to those obtained from a grid search procedure since the restricted sum of squared residuals

can be computed directly without resorting to an iterative scheme. Monte Carlo simulations

conducted in Section 4 demonstrate that our proposed algorithm often delivers estimates with

improved statistical properties compared to the PQ algorithm (with or without omission).

In particular, we will show that the PQ estimates often incur higher variance than our

recommended estimates which stems from the relatively high variance of the BP estimates

used as initial values.

To describe the proposed algorithm, we introduce the following notation. Let SSR1(1, j) =Pj
t=2(�yt)2. For i = 2, ...,m+ 1, let

SSRi(j + 1, n) =

8
<

:

Pn
t=j+1(yt � �̂iyt�1 � ĉi)2,

Pn
t=j+2(�yt)2,

if i is even

if i is odd
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The implementation of the proposed algorithm involves the following steps:

1. Compute and store the triangular matrix of the global unrestricted sums of squared

residuals GSSR
u, the triangular matrix of the global restricted sums of squared resid-

uals with omission GSSR
r
om, and a vector V SSR1 containing all permissible sums of

squared residuals SSR1(1, j) (details of this step are provided below).

2. Compute and store the restricted sums of squared residuals SSRom({T1,n}), for 2h 
n  T � (m � 1)h, where h = b✏T c , by solving the following dynamic programming

problem:

SSRom({T1,n}) = min
hjn�h

[SSR1(1, j) + SSR2(j + 1, n)].

3. Sequentially compute and store SSR({Tr,n}) for r = 2, ...,m� 1, with n ranging from

(r + 1)h to T � (m� r)h. This is achieved by solving the following problem:

SSRom({Tr,n}) = min
rhjn�h

[SSRom({Tr�1,j}) + SSRr+1(j + 1, n)],

where SSRi(j+1, n) is the entry (j+1, n) of GSSR
u if i is even, or the entry (j+1, n)

of GSSR
r
om if i is odd.

4. Finally, compute

SSRom({Tm,T}) = min
mhjT�h

[SSRom({Tm�1,j}) + SSRm+1(j + 1, T )].

Remark 1 The algorithm is easily modified to accommodate the case in which the start-

ing regime is explosive instead of I(1). In fact, both cases can be nested within a general

framework at the expense of some additional notation. Define the following quantities:

SSR1(1, j, ✓1) =

8
<

:

Pj
t=2(yt � �̂1yt�1 � ĉ1)2,

Pj
t=2(�yt)2,

if ✓1 = 1,

if ✓1 = 0.

And, for i = 2, ...,m+ 1,

SSRi(j + 1, n, ✓i) =

8
<

:

Pn
t=j+1(yt � �̂iyt�1 � ĉi)2,

Pn
t=j+2(�yt)2,

if ✓i = 1,

if ✓i = 0.

For an I(1) starting regime, we set ✓i = 0 if i is odd and ✓i = 1, otherwise. Similarly, for

an explosive starting regime, we set ✓i = 1 if i is odd, and ✓i = 0, otherwise. Then, we

only need to replace SSR1(1, j) by SSR1(1, j, ✓1) and SSR2(j+1, n) by SSR2(j+1, n, ✓2) in

step 2 above, SSRr+1(j+1, n) by SSRr+1(j+1, n, ✓r+1) in step 3, and SSRm+1(j+1, T ) by

SSRm+1(j + 1, T, ✓m+1) in step 4.
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We now discuss the computation of the quantities GSSR
u
, GSSR

r
om, and V SSR1 in-

volved in step 1 of the algorithm. The dynamic programming algorithm of BP uses the

triangular matrix of unrestricted sums of squared residuals (SSRs) for all permissible seg-

ments to search for the optimal break dates. Specifically, the algorithm requires storage of

these SSRs that would be considered when searching over the optimal partition of break

dates. Let this triangular matrix of global unrestricted SSRs be denoted GSSR
u. The unre-

stricted SSR for an (i, j) segment (with starting date i and ending date j), denoted SSR
u
i,j, is

stored in entry (i, j) of GSSR
u. Similarly, we can store the restricted SSRs for all permis-

sible (i, j) segments, obtained by imposing a unit root and omitting the first observation of

the segment, in a di↵erent triangular matrix, say, GSSR
r
om. The entry (i, j) of GSSR

r
om is

denoted SSR
r,om
i,j . The quantities SSRu

i,j and SSR
r,om
i,j are computed recursively via

SSR
u
i,j = SSR

u
i,j�1 + û

2
i,j,

SSR
r,om
i,j = SSR

r,om
i,j�1 + (�yj)

2
, SSR

r,om
i,i+1 = 0,

with the recursive residuals ûi,j obtained as [see Brown et al. (1975)]

ûi,j =
yj � yj�1�̂[i:j�1] � ĉ[i:j�1]r

1 + y0
j�1

⇣
y0
[i:j�2]y[i:j�2]

⌘�1

yj�1

,

with yj = (1, yj)0, yi:j = (yi,yi+1, ...,yj)
0
, where �̂[a:b] and ĉ[a:b] are the estimates obtained

using observations from a to b. Finally, the elements of the vector V SSR1 are computed as

V SSR1(j) = SSR1(1, j) for h  j  T �mh, where

SSR1(1, j) = SSR1(1, j � 1) + (�yj)
2; h+ 1  j  T �mh

SSR1(1, h) =
hX

t=2

(�yt)
2
.

In what follows, we will refer to our proposed algorithm as the joint search (JS) algorithm

with omission. To examine the impact of omission, the Monte Carlo analysis in Section 4 also

includes a version of the JS algorithm without omission. This version can be implemented

following similar steps as those above except that no residuals are omitted at any step.

4 Monte Carlo Evidence

This section presents a set of Monte Carlo simulations to numerically evaluate the finite

sample performance of the di↵erent dating estimators as well as to assess the adequacy of
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the large sample results derived in section 2. The simulation design is based on the DGP

specified in (3) with m 2 {2, 4}, i.e., one and two bubbles. The details for each DGP are as

follows.

DGP-1: A single bubble model specified by (1) with (�0
1,�

0
2) 2 {(0.5, 0.65), (0.4, 0.6)}

and � 2 {1.02, 1.05}.

DGP-2: A two bubbles model specified by

yt =

8
>>>>>><

>>>>>>:

yt�1 + ut, 1  t  T
0
1 ,

�1yt�1 + ut, T
0
1 + 1  t  T

0
2 ,

yT 0
1
+ z

⇤
1 +

Pt
j=T 0

2+1 uj, T
0
2 + 1  t  T

0
3 ,

�2yt�1 + ut, T
0
3 + 1  t  T

0
4 ,

yT 0
3
+ z

⇤
2 +

Pt
j=T 0

4+1 uj T
0
4 + 1  t  T.

For the break locations, we follow the design used in Table 7 of Phillips et al. (2015a)

(PSY henceforth), which corresponds to �
0
1 = 0.2, �0

2 2 {0.3, 0.35, 0.4}, �0
3 = 0.6 and �

0
4 2

{0.7, 0.75, 0.8}, yielding nine possible combinations for the duration of the first (�0
2 � �

0
1 2

{0.1, 0.15, 0.2}) and second bubble (�0
4 � �

0
3 2 {0.1, 0.15, 0.2}). For brevity, we only report

the results for the cases with �
0
i � �

0
i�1 = 0.2; i = 2, 4. The results for the other cases are

qualitatively similar and available upon request. The autoregressive parameters are set to

�1 = �2 = 1.05.

We experiment with three di↵erent serial correlation structures in the error component

{ut}. In the first case, ut ⇠ i.i.d. N (0, 1). In the second, {ut} follows an AR(1) process:

ut = 0.5ut�1+ et, et ⇠ i.i.d. N (0, 1). Finally, the third case considered is a MA(1) structure

for {ut}: ut = et + 0.5et�1, et ⇠ i.i.d. N (0, 1). To save space, we only present in the main

text the results for the i.i.d. case and defer the other cases to Appendix B.

In all experiments, the perturbations z
⇤
, z

⇤
1 , z

⇤
2 are randomly drawn from a N (1, 1) dis-

tribution. The level of trimming is set to ✏ 2 {0.05, 0.10}. We only report results for

✏ = 0.10 since those for ✏ = 0.05 were very similar. The number of replications is 5,000.

The rest of this section is organized as follows. Section 4.1 discusses the alternative

dating estimators used in the Monte Carlo comparison, Section 4.2 reports results for the

single bubble case (DGP-1), Section 4.3 reports results for the two bubbles case (DGP-2), and

Section 4.3 illustrates that the JS procedure often yields a smaller sum of squared residuals

than the PQ procedure, suggesting that the latter may only attain a local minimum.
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4.1 Alternative Dating Estimators

Our simulation design includes a comparison of five estimators: the PQ estimators with and

without omission, the JS estimators with and without omission, and the dating estimator

proposed by PSY. Throughout, we use “ˆ” to denote an estimator “without omission” and

“˜” to denote an estimator “with omission”. We use the single bubble case (m = 2) to

illustrate the di↵erent estimators.

1. PQ estimator without omission. This estimator, denoted (T̂ PQ
1 , T̂

PQ
2 ), solves the mini-

mization problem

argmin
(T1,T2)

(
T1X

t=2

(�yt)
2 +

T2X

t=T1+1

[yt � �̂(T1, T2)yt�1 � ĉ2(T1, T2)]
2 +

TX

t=T2+1

(�yt)
2

)
, (5)

using as initial values the unrestricted BP estimates obtained by solving the minimiza-

tion problem

argmin
(T1,T2)

8
>>>><

>>>>:

PT1

t=2

h
yt � �̂1(T1, T2)yt�1 � ĉ1(T1, T2)

i2

+
PT2

t=T1+1

h
yt � �̂2(T1, T2)yt�1 � ĉ2(T1, T2)

i2

+
PT

t=T2+1

h
yt � �̂3(T1, T2)yt�1 � ĉ3(T1, T2)

i2

9
>>>>=

>>>>;

,

where
n
ĉi(T1, T2), �̂i(T1, T2)

o
are the unrestricted parameter estimates for regime i based

on the partition (T1, T2).

2. JS estimator without omission. This estimator, denoted (T̂ JS
1 , T̂

JS
2 ), solves the same

minimization problem as (5) but uses the version of the dynamic programming algo-

rithm proposed in section 3 that does not involve omission.

3. PQ estimator with omission. This estimator, denoted (eT PQ
1 , eT PQ

2 ), solves the mini-

mization problem

argmin
(T1,T2)

(
T1X

t=3

(�yt)
2 +

T2X

t=T1+2

[yt � e�(T1, T2)yt�1 � ec2(T1, T2)]
2 +

TX

t=T2+2

(�yt)
2

)
, (6)

using as initial values the unrestricted BP estimates with omission obtained by solving

the minimization problem

argmin
(T1,T2)

8
>>>><

>>>>:

PT1

t=3

h
yt � e�1(T1, T2)yt�1 � ec1(T1, T2)

i2

+
PT2

t=T1+2

h
yt � e�2(T1, T2)yt�1 � ec2(T1, T2)

i2

+
PT

t=T2+2

h
yt � e�3(T1, T2)yt�1 � ec3(T1, T2)

i2

9
>>>>=

>>>>;

,
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where
n
eci(T1, T2),e�i(T1, T2)

o
are the unrestricted parameter estimates for regime i based

on the partition (T1, T2) that are obtained by omitting the first observation of the

regime.

4. JS estimator with omission. This estimator, denoted (eT JS
1 , eT JS

2 ), solves the same min-

imization problem as (6) but uses the dynamic programming algorithm proposed in

section 3 with omission.

5. PSY estimator. The PSY estimator is based on a test statistic that entails taking the

supremum of recursively computed backward and forward Augmented Dickey-Fuller

(ADF) statistics. Specifically, this estimator, denoted (T̂ PSY
1 , T̂

PSY
2 ), is obtained as

T̂
PSY
1 = bT r̂ec ; r̂e = inf

r22[r0,1]

�
BSADFr2(r0) > cv

↵
r2

 
, (7)

T̂
PSY
2 = bT r̂fc ; r̂f = inf

r22[r̂e+ln(T )/T,1]

�
BSADFr2(r0) < cv

↵
r2

 
, (8)

where BSADFr2(r0) = supr12[0,r2�r0]

�
ADF

r2
r1

 
, ADF

r2
r1 denotes the ADF statistic

computed using the observations bTr1c+1, ..., bTr2c , and cv
↵
r2 is the 100(1�↵)% critical

value of the BSADFr2(r0) statistic based on bTr2c observations. We follow PSY

in setting the minimum window width (as a fraction of the sample size) to r0 =

0.01 + 1.8T�1/2 and restricting the duration of bubble(s) to be at least blnT c for

implementing their test procedure. Following Harvey et al. (2017), a lag length of one

(i.e., one lag of �yt) is used to construct the ADF regressions. A nominal size of 5%

is used and the finite sample critical values are simulated under the null hypothesis of

a random walk with no drift and i.i.d. N (0, 1) errors with 10,000 replications.1

PSY also propose a procedure to estimate the number of bubbles based on repeated

implementation of the crossing rules (7) and (8). Specifically, the estimated number of

bubbles is the number of pairs (r̂e r̂f ) over the full sample that satisfy crossing rules of

the form (7) and (8) with r̂f � r̂e � ln(T )/T.(see PSY, p.1056 for further details). Since

our paper presumes the presence of bubbles as opposed to testing for their presence, our

simulation results are conditioned on 5,000 replications in which the PSY procedure identifies

the same number of bubbles as present in the DGP. For example, if the DGP is characterized

by two bubbles, we eliminate those replications in which the PSY procedure identifies a

1We also simulated the critical values under the null hypothesis of a random walk with a small drift as
in PSY. The results were very similar with no qualitative di↵erences.
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smaller/larger number of bubbles and increase the number of replications until we obtain

5,000 replications in which the procedure selects exactly two bubbles.2

4.2 Results for the Single Bubble Case

Table 1 presents results on the accuracy of the break date estimators in terms of how fre-

quently they select the corresponding true break dates or select later dates. Specifically, we

report the following for j 2 {JS, PQ}: (i) p̂Ci (j), which denotes the probability of “correctly”

selecting the i-th break date using procedure j without omission; (ii) p̂Li (j), which denotes

the probability of selecting the i-th break date “later” than the true break date using proce-

dure j without omission; (iii) epCi (j), epLi (j) are defined similarly when procedure j is applied

with omission. Finally, p̂Ci (PSY ) and p̂
L
i (PSY ) denote, respectively, the probabilities of

correctly selecting the i-th break date and selecting the i-th break date “later” than the

true break date using the PSY procedure.

Consider first the estimates of the first break date corresponding to the origination of the

bubble (Panel A). Regardless of the dating method employed, the true break date is selected

only very infrequently, i.e., all methods are inadequate at dating the initiation of the bubble.

In particular, the probability of selecting a date later than the true date is considerable for

each of the methods and typically increases with the sample size.3 Notwithstanding the

overall deficiency of the methods, the JS procedure with omission has the highest accuracy

in dating the onset of explosive behavior relative to the other methods.

Turning to the estimates of the implosion date (Panel B), we note that the estimates

with omission are quite e↵ective in that they correctly identify the implosion date with high

probability and their accuracy increases with the sample size in all cases. This feature is in

accordance with the consistency result derived in Theorem 2. In contrast, the JS and PQ

estimators without omission tend to select a date later than the crash date, and more so as

the sample size increases, consistent with the prediction of Theorem 1. The JS estimator with

omission again emerges as the preferred estimator as it uniformly dominates its competitors

in dating the termination of explosive behavior.

The fact that the collapse of the bubble can be dated with much higher accuracy relative

2We also considered an alternative design adopted by Harvey et al. (2017) where we conditioned our
results on 5,000 replications in which the bubble(s) with the longest duration is (are) chosen for dating
purposes if the PSY procedure identifies a larger number of bubbles than that present in the DGP. The
results were qualitatively similar.

3Kurozumi (2021), inter alia, studies the large sample properties of di↵erent bubble monitoring tests and
finds that they tend to detect bubbles with a delay, and shows that their relative performance depends on
whether the bubble emerges early or late in the monitoring period.
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to its inception follows from the fact that the implosion embodies a much stronger signal than

the origination of explosive behavior so that any deviation of the second break date from

its true value leads to a larger increase in the sum of squared residuals than a comparable

deviation of the first break date from its true counterpart.4 Formally, as shown in the proof

of Theorem 2, {SSRom(T 0
1 + k1, T

0
2 )� SSRom(T 0

1 , T
0
2 )} for k1 6= 0 diverges at a slower rate

than {SSRom(T 0
1 , T

0
2 + k2)� SSRom(T 0

1 , T
0
2 )} for k2 6= 0.

Given the relatively low accuracy of the dating methods at estimating the origination

of the bubble, Table 2 reports the bias and RMSE of the dating estimators when viewed

as estimating the break fractions �
0
1 and �

0
2 instead of the break dates T

0
1 and T

0
2 . The

following findings are noteworthy. First, the JS/PQ estimators without omission are upward

biased in all cases. Moreover, the magnitudes of the bias and RMSE of these estimators

are consistent with the asymptotic theory presented in Section 2. For example, consider

the JS estimator without omission. When T = 400, � = 1.05, (�0
1,�

0
2) = (0.4, 0.6), the

bias and RMSE of the first break date estimator are both around 0.2, while the bias and

RMSE of the second break date estimator are both around 0.10. Since ✏ = 0.10, these values

are in compliance with our large sample result that �̂1
p! �

0
2, �̂2

p! �
0
2 + ✏. Second, the

absolute bias of the JS/PQ estimators with omission as well as the PSY estimator decline

monotonically as the sample size increases in most cases and in all cases when considering

the RMSE. Furthermore, given the sample size and the break locations, the performance of

these estimators in terms of both bias and RMSE improves as the degree of explosiveness (�)

increases. Similarly, a longer duration of the explosive regime holding the other parameters

fixed also induces an improvement in performance. Third, in terms of bias, while the JS

estimator with omission typically dominates the other estimators when T = 400, the PQ

estimator with omission is preferred with smaller sample sizes. Fourth, the JS procedure

with omission delivers estimators with the smallest RMSE in the majority of cases.

Finally, Table 3 reports the bias and RMSE of the autoregressive coe�cient estimators

when evaluated at the estimated break dates. The main findings are as follows. First,

the estimators are downward biased regardless of the procedure employed, the sample size,

and the parameter values. Second, the magnitude of the biases incurred by the JS/PQ

estimators without omission are substantial and increase with the sample size. Third, the

RMSE of the JS/PQ estimators without omission either increase with the sample size (for

4In a similar vein, Pang et al. (2021) and Kurozumi and Skrobotov (2023) adopt a sample splitting
approach where the breaks are estimated one at a time and find that the collapse date is typically estimated
with higher accuracy than the origination date.
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the PQ procedure) or share a non-monotonic relationship with the sample size (for the JS

procedure). In addition, the bias/RMSE magnitudes are again consistent with our theoretical

result that �̂
p! 0 without omission: for example, when T = 400, � = 1.05, (�0

1,�
0
2) =

(0.4, 0.6),
���bias(�̂)

��� ' RMSE(�̂) ' �1.045. Fourth, the bias and RMSE of estimators with

omission both decrease as the sample size increases for all parameter configurations. Fifth,

the JS procedure with omission dominates with respect to bias in all cases. It is also the

dominant procedure in terms of RMSE unless the signal from the explosive regime is weak

and the sample size is small in which case the PSY estimator yields a slightly smaller RMSE.

4.3 Results for the Two Bubbles Case

Tables 4-6 present results for the two bubbles case given by DGP-2. Table 4 reports the

break date selection probabilities for each of the four break dates. Consistent with the single

bubble case, the results show (i) the relatively low accuracy of all procedures in dating the

origination of explosive behavior; (ii) that for each break, the JS/PQ procedures without

omission tend to select a break date later than the corresponding true date; (iii) the JS

procedure with omission can detect the implosion dates with highest accuracy for each of

the sample sizes.

Table 5 reports the bias and RMSE of the break fraction estimators for each of the five

procedures. The findings again indicate that the JS/PQ estimators without omission are

subject to considerable biases which are not mitigated with a larger sample size. In contrast,

their counterparts with omission are much more accurate in terms of both bias and RMSE,

with the JS estimator incurring the smallest bias (RMSE) in most (all) cases.

Table 6 presents the bias and RMSE of the autoregressive coe�cient estimators in the two

explosive regimes. The estimates in both regimes are typically downward biased although the

JS estimates with omission are virtually unbiased when T = 400. These results are strongly

indicative of the consistency (inconsistency) of the JS/PQ estimators with (without) omission

and clearly point to the superiority of the JS procedure.

The results with serially correlated errors in both the single and two bubbles cases are

overall qualitatively similar to those with i.i.d. errors with the dominance of the JS procedure

that incorporates omission over the other procedures being even more evident under serial

correlation, particularly with respect to estimation of the break dates and the autoregressive

coe�cients. Appendix B presents more detailed results.
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4.4 Local versus Global Minimum

This subsection illustrates that the Perron and Qu (2006) algorithm often yields a larger

value for the minimized sum of squared residuals than the proposed joint search algorithm,

indicating that the estimated break dates obtained from the PQ algorithm may only cor-

respond to a local instead of the global minimum. To this end, we present results on the

di↵erence between the sum of squared residuals based on the break date estimates from the

JS and PQ procedures with omission, with a similar pattern holding for the corresponding

procedures without omission. For example, in the single bubble case, after obtaining the

date estimates (eT JS
1 , eT JS

2 ) and (eT PQ
1 , eT PQ

2 ), we compute

SSR
JS
om =

eTJS
1X

t=2

(yt � yt�1)
2 +

eTJS
2X

t=eTJS
1 +1

(yt � ecJS � e�JSyt�1)
2 +

TX

t=eTJS
2 +2

(yt � yt�1)
2
,

SSR
PQ
om =

eTPQ
1X

t=2

(yt � yt�1)
2 +

eTPQ
2X

t=eTPQ
1 +1

(yt � ecPQ � e�PQ
yt�1)

2 +
TX

t=eTPQ
2 +2

(yt � yt�1)
2
,

and their scaled di↵erence

� = T
�1
�
SSR

JS
om � SSR

PQ
om

�
.

We analyze this quantity graphically as follows. We sort the di↵erences from smallest to

largest (across the replications) and include a vertical line showing the x-th replication at

which � is exactly 0 (i.e., both estimators find the same minimum). To the left of this line,

we have SSR
JS
om < SSR

PQ
om while to the right, we have SSRJS

om = SSR
PQ
om . The reference line

y = 0 is drawn in each plot to show that � never exceeds 0, i.e., SSRJS
om  SSR

PQ
om always

holds.

Figure 1 plots the results for DGP-1 with i.i.d. errors, where the break locations (�0
1,�

0
2) 2

{(0.5, 0.65), (0.4, 0.6)}. Figure 2 presents similar results for DGP-2. Specifically, we consider

two break location configurations: �0
S1 = (0.2, 0.3, 0.7, 0.8) and �

0
S2 = (0.2, 0.4, 0.6, 0.8). The

patterns for the other seven break location configurations are similar and hence omitted.

The findings can be summarized as follows. First, the number of replications in which

SSR
JS
om is strictly smaller than SSR

PQ
om can be considerable, as indicated by the location

of the vertical line in each figure. Second, the maximal di↵erence between SSR
JS
om and

SSR
PQ
om can also be substantial, as indicated by the scale of the y-axis. Third, the number

of replications for which PQ is unable to find the global minimum decreases as � and/or T

increases, as expected.
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Finally, we also compared the average (over 5,000 replications) computing time incurred

by the JS and PQ procedures to obtain the break date estimates and did not find any

notable di↵erence between them. Thus, JS not only delivers estimates with better statistical

properties than PQ but is also computationally e�cient.

5 Empirical Illustration

The unprecedented surge in crude oil prices between 2003 and 2008 and its subsequent col-

lapse during the Global Financial Crisis has been a subject of extensive debate and discussion

among academics and policymakers. The West Texas Intermediate (WTI) price, regarded

as one of the principal benchmarks for crude oil based on quality and location, rose from

below $30 per barrel at the beginning of 2003 to about $147 in mid-July 2008 followed by a

dramatic collapse to below $40 in December 2008. A substantial body of research has been

devoted to studying the major determinants of oil price fluctuations over this period. Kilian

(2009) adopted a structural vector autoregressive modeling approach to show that oil price

shocks are primarily driven by a combination of aggregate demand and pre-cautionary de-

mand shocks with a minor contribution from supply shocks, while Kilian and Murphy (2014)

found a limited role for speculative demand shocks in explaining crude oil price movements.

In contrast, Hamilton (2009) attributed the sharp spike in oil prices between 2007-08 to a

combination of demand shocks and stagnation in world production over 2005-07 but sug-

gested that the ensuing collapse may be consistent with the bursting of a speculative bubble.

Shi and Arora (2012) and Tsvetanov et al. (2016) provided evidence in favor of a rational

bubble in crude oil prices, in accordance with the increased financialization of the oil futures

markets and the expansion of index trading since 2004. More recently, Pavlidis et al. (2018)

exploited the fact that in the presence of a speculative bubble, the di↵erence between the

future spot price and the expected price is explosive regardless of whether the fundamental

component is explosive. They apply the PWY and PSY testing procedures to this di↵erence

to conclude against the presence of speculative bubbles over the period 1990-2013. In our

empirical analysis, we do not take a stand on whether the explosive behavior in crude oil

prices is driven by fundamental or speculative factors. Rather, we use the crude oil price

series to illustrate the e�cacy of our proposed approach in date-stamping the origination

and termination of explosive behavior between 2003-2008.

Our analysis is based on the monthly real crude oil price computed as the nominal WTI

price deflated by the U.S. consumer price index (CPI). The data are obtained from the FRED-

MD database maintained by the Federal Reserve Bank of St. Louis and span the period from
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January 1986 to July 2014 so that the sample size is 343. The start date is chosen to avoid

the period of regulation of the WTI market until the early 1980s while the end date is chosen

to avoid the short period of a rapid price decline between late 2014 and early 2015 as well as

the highly volatile regime between early 2020 and late 2022 during the COVID pandemic.

Figure 3 plots the real oil price along with the sequence of BSADFr2(r0) statistics and the

corresponding sequence of 95% critical values, where r2 2 [r0, 1] and r0 = 0.01+1.8T�1/2 [see

(7)-(8)]. The plot indicates that the oil price was characterized by relatively mild fluctuations

until 2003 followed by a distinct run-up until 2008 with a sharp spike over the period 2007-

2008 culminating in a dramatic collapse in July 2008. The PSY dating algorithm found

a single statistically significant episode of explosive behavior between October 2007 and

August 2008. Shorter periods of explosiveness were ruled out by the requirement that their

duration be at least blnT c = 5 observations.

Next, we report the results of two ex post tests for explosiveness conducted for the

full sample period. The first corresponds to the testing strategy recommended by PWY

and entails taking the maximum of the ADF statistic sequence computed over a forward

expanding sample of observations. Specifically, the test statistic is given by

SADF (r0) = sup
r22[r0,1]

{ADF
r2
0 },

where ADF
r2
0 is the ADF statistic based on observations in the range [0, r2]. The second test

statistic was proposed by PSY and is based on taking the maximum of the BSADFr2(r0)

sequence over r2 2 [r0, 1]. Thus, the statistic is given by

GSADF (r0) = sup
r22[r0,1]

{BSADFr2(r0)} .

As shown in PSY, GSADF (r0) o↵ers a more powerful testing strategy than SADF (r0) with

multiple bubbles due to its double recursive nature that allows flexible window widths while

SADF (r0) fixes the starting point of the recursion on the first observation. The results,

presented in Panel A of Table 7, indicate that the null hypothesis of a unit root is rejected

by the SADF test at the 5% level and the GSADF test at the 1% level, thereby confirming

the presence of explosive behavior over the full sample.

We now turn to the results obtained from applying the di↵erent date-stamping methods.

Panel B of Table 7 presents the estimated regimes obtained by fitting a single bubble model

using each of the methods described in Section 4.1. The trimming level is set to 10% for the

JS and PQ procedures. The JS procedure with omission dates the origination and termina-

tion of explosive behavior in September 2003 and August 2008, respectively. The estimated
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origination date was associated with a period of rapid economic growth in the OECD coun-

tries as well as China leading to an increase in the global demand for oil. Kilian (2009) used

a historical decomposition of the real oil price based on a structural vector autoregression

to show that the cumulative e↵ect of aggregate demand shocks on the real oil price started

to increase in late 2003. The estimated implosion date corresponds to the unfolding of the

Global Financial Crisis that was associated with a sharp decrease in the global demand for

oil. In comparison, the JS procedure without omission estimates the origination and termi-

nation dates as July 2008 and July 2011, respectively. These estimates are consistent with

the theoretical analysis presented in Section 2. Specifically, the estimated start date of July

2008 is only a month prior to the collapse date estimated by the JS procedure with omission

which is in close accordance with the prediction in Theorem 1 that the OLS estimate of the

start date converges to the true implosion date in large samples. Similarly, the duration

between the estimated end dates from the JS procedure with and without omission is 35

months, quite close to the large sample prediction of b✏T c = b0.1⇥ 343c = 34 months. A

graphical comparison of the JS date estimates with and without omission is presented in

Figure 4. The PQ procedure with omission estimates the explosive regime to run from July

1990 to August 2008. To our knowledge, such an extended duration of explosive behavior

has little theoretical or empirical support in the literature. The PQ estimator without omis-

sion estimates the start and end dates of explosive behavior at September 2008 and June

2011, respectively, again in compliance with the prediction in Theorem 1. Finally, the PSY

procedure identifies the explosive episode as lasting from October 2007 to August 2008 corre-

sponding to the sharp spike in the oil price between 2007-2008 but fails to detect exuberance

in the period prior to 2007.

Panel B of Table 7 also reports the results of the SADF and GSADF tests conducted

within each of these regimes. The rejection pattern of these tests provide evidence on whether

the estimated regimes are in fact consistent with the single bubble DGP in (1). Thus, if the

first and third estimated regimes are in fact I(1), the tests can be expected to fail to reject

the unit root null in these regimes while if the second estimated regime is in fact explosive,

the tests can be expected to reject. The rejection pattern for the JS and PQ procedures

with omission are consistent with the single bubble specification although, as noted above,

the estimated explosive regime for the latter is implausibly long. For each of the other three

date-stamping procedures, the rejection pattern by at least one of the tests does not conform

to a single bubble model. For instance, the JS procedure without omission finds evidence of

explosiveness in the first estimated regime from January 1986 to June 2008 but not in the
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subsequent regimes, a pattern that is consistent with the prediction in Theorem 1.

Finally, we examine the sensitivity of the di↵erent date-stamping methods to variations

in the sample period. Specifically, we consider subsamples that remove the first and/or

the last six months from the full sample. Table 8 presents the results. The robustness of

the JS procedure with omission is evident from these results. In particular, while the date

estimates from the other approaches tend to vary with the sample period, the proposed

approach delivers the same date estimates regardless of the sample period considered. While

this evidence is consistent with the fact the the proposed approach yields estimates that

minimize the global sum of squared residuals, the erratic behavior of the PQ estimates with

omission is consistent with the fact that these estimates may be susceptible to the problem

of local minima.

6 Conclusion

This paper studies the properties of least squares estimates of the parameters in autore-

gressive models that involve switches between unit root and explosive regimes, where each

explosive regime is followed by an implosion before the re-emergence of a unit root regime. It

is shown that standard OLS estimators of the break dates/fractions and autoregressive coef-

ficients are inconsistent due to their failure in properly accounting for the implosion points.

A simple modification in the form of omitting the residuals corresponding to the potential

implosion points when estimating the parameters restores consistency of the estimators. We

also develop an e�cient dynamic programming algorithm that facilitates estimation of the

break dates without being susceptible to the problem of local minima, unlike the Perron

and Qu (2006) iterative scheme based on initial values obtained from unrestricted Bai and

Perron (2003) estimation. Monte Carlo simulations and an empirical application are used to

provide support for our proposed method.
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Table 1: Probabilities of break date selection (single bubble)

Panel A: First date estimates

� T T 0
1 bpC1 (JS) bpL1 (JS) bpC1 (PQ) bpL1 (PQ) epC1 (JS) epL1 (JS) epC1 (PQ) epL1 (PQ) bpC1 (PSY ) bpL1 (PSY )

1.02 100 50 0.00 0.79 0.00 0.70 0.03 0.35 0.02 0.38 0.02 0.56

1.02 200 100 0.00 0.92 0.00 0.90 0.03 0.46 0.01 0.46 0.01 0.73

1.02 400 200 0.00 0.97 0.00 0.97 0.04 0.56 0.02 0.47 0.00 0.86

1.02 100 40 0.00 0.88 0.00 0.84 0.03 0.47 0.02 0.51 0.02 0.73

1.02 200 80 0.00 0.96 0.00 0.95 0.03 0.54 0.01 0.58 0.01 0.83

1.02 400 160 0.00 0.99 0.00 0.99 0.03 0.63 0.01 0.57 0.00 0.93

1.05 100 50 0.00 0.95 0.00 0.91 0.08 0.38 0.04 0.38 0.02 0.77

1.05 200 100 0.00 0.99 0.00 0.99 0.11 0.52 0.05 0.39 0.01 0.91

1.05 400 200 0.00 1.00 0.00 1.00 0.15 0.53 0.07 0.39 0.01 0.95

1.05 100 40 0.00 0.98 0.00 0.97 0.07 0.47 0.03 0.51 0.01 0.90

1.05 200 80 0.00 1.00 0.00 0.99 0.07 0.55 0.03 0.49 0.01 0.95

1.05 400 160 0.00 1.00 0.00 1.00 0.12 0.57 0.06 0.43 0.01 0.96

Panel B: Second date estimates

� T T 0
2 bpC1 (JS) bpL2 (JS) bpC2 (PQ) bpL2 (PQ) epC2 (JS) epL2 (JS) epC2 (PQ) epL2 (PQ) bpC2 (PSY ) bpL2 (PSY )

1.02 100 65 0.00 0.89 0.10 0.79 0.64 0.26 0.51 0.40 0.28 0.19

1.02 200 130 0.00 0.96 0.04 0.92 0.85 0.11 0.64 0.33 0.49 0.12

1.02 400 260 0.00 0.98 0.01 0.97 0.96 0.03 0.78 0.21 0.74 0.06

1.02 100 60 0.00 0.94 0.07 0.88 0.70 0.24 0.52 0.43 0.29 0.21

1.02 200 120 0.00 0.97 0.02 0.96 0.89 0.08 0.60 0.38 0.55 0.11

1.02 400 240 0.00 0.99 0.01 0.99 0.97 0.02 0.71 0.28 0.82 0.06

1.05 100 65 0.00 0.97 0.05 0.92 0.88 0.10 0.70 0.28 0.71 0.07

1.05 200 130 0.00 0.99 0.00 0.99 0.98 0.02 0.87 0.13 0.91 0.03

1.05 400 260 0.00 1.00 0.00 1.00 1.00 0.00 0.98 0.02 0.87 0.12

1.05 100 60 0.00 0.99 0.02 0.97 0.93 0.06 0.66 0.33 0.79 0.06

1.05 200 120 0.00 1.00 0.00 1.00 0.99 0.01 0.80 0.20 0.93 0.03

1.05 400 240 0.00 1.00 0.00 1.00 1.00 0.00 0.97 0.03 0.80 0.20

Note: 1) The superscript ’C’ denotes the probability of correctly selecting the true break date.

2) The superscript ’L’ denotes the probability of selecting a date later than the true break date.

3) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.

4) The method with the highest probability of correctly selecting the true break date is highlighted in bold.
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Table 2: Bias and RMSE of break fraction estimates (single bubble)

� �0
1 �0

2 T b�JS
1

b�PQ
1

e�JS
1

e�PQ
1

b�PSY
1

b�JS
2

b�PQ
2

e�JS
2

e�PQ
2

b�PSY
2

Panel A: Bias

1.02 0.5 0.65 100 0.077 0.036 �0.092 �0.087 0.021 0.080 0.078 0.021 0.048 �0.047

1.02 0.5 0.65 200 0.122 0.113 �0.054 �0.053 0.036 0.062 0.077 0.007 0.040 �0.045

1.02 0.5 0.65 400 0.140 0.139 �0.006 �0.030 0.051 0.052 0.063 �0.000 0.019 �0.027

1.02 0.4 0.6 100 0.160 0.137 �0.019 0.004 0.106 0.096 0.106 0.031 0.069 �0.009
1.02 0.4 0.6 200 0.185 0.182 �0.007 0.025 0.097 0.064 0.083 0.007 0.051 �0.023

1.02 0.4 0.6 400 0.196 0.195 0.020 0.023 0.092 0.055 0.065 0.002 0.025 �0.007

1.05 0.5 0.65 100 0.134 0.117 �0.052 �0.060 0.038 0.088 0.106 0.010 0.041 �0.022

1.05 0.5 0.65 200 0.147 0.146 0.001 �0.034 0.051 0.063 0.083 0.001 0.015 �0.008

1.05 0.5 0.65 400 0.149 0.149 0.009 �0.015 0.038 0.054 0.064 0.000 0.002 �0.002

1.05 0.4 0.6 100 0.193 0.188 �0.019 0.009 0.092 0.089 0.119 0.008 0.055 �0.001
1.05 0.4 0.6 200 0.199 0.198 0.014 0.007 0.079 0.064 0.087 0.001 0.024 0.000
1.05 0.4 0.6 400 0.200 0.200 0.017 �0.003 0.049 0.054 0.063 0.000 0.003 0.001

Panel B: RMSE

1.02 0.5 0.65 100 0.183 0.191 0.207 0.214 0.200 0.158 0.157 0.125 0.133 0.205

1.02 0.5 0.65 200 0.164 0.167 0.166 0.192 0.182 0.107 0.119 0.075 0.102 0.185

1.02 0.5 0.65 400 0.155 0.156 0.097 0.151 0.145 0.076 0.084 0.044 0.065 0.141

1.02 0.4 0.6 100 0.207 0.200 0.169 0.182 0.221 0.149 0.154 0.112 0.140 0.193

1.02 0.4 0.6 200 0.202 0.201 0.138 0.172 0.187 0.096 0.111 0.063 0.108 0.160

1.02 0.4 0.6 400 0.201 0.201 0.091 0.150 0.148 0.069 0.079 0.036 0.063 0.107

1.05 0.5 0.65 100 0.160 0.161 0.149 0.185 0.137 0.121 0.141 0.068 0.102 0.131

1.05 0.5 0.65 200 0.152 0.152 0.068 0.128 0.100 0.073 0.099 0.029 0.055 0.081

1.05 0.5 0.65 400 0.151 0.151 0.039 0.066 0.067 0.057 0.070 0.014 0.019 0.048

1.05 0.4 0.6 100 0.202 0.200 0.125 0.165 0.142 0.113 0.146 0.054 0.112 0.099

1.05 0.4 0.6 200 0.200 0.200 0.069 0.130 0.108 0.072 0.101 0.021 0.063 0.057

1.05 0.4 0.6 400 0.200 0.200 0.044 0.066 0.072 0.057 0.068 0.011 0.020 0.032

Note: 1) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.

2) The best method is highlighted in bold.

26



Table 3: Bias and RMSE of AR(1) estimates (single bubble)

� �0
1 �0

2 T b�JS b�PQ e�JS e�PQ b�PSY

Panel A: Bias

1.02 0.5 0.65 100 �0.858 �0.725 �0.315 �0.328 �0.298
1.02 0.5 0.65 200 �0.895 �0.842 �0.169 �0.274 �0.232

1.02 0.5 0.65 400 �0.918 �0.901 �0.057 �0.176 �0.122

1.02 0.4 0.6 100 �0.894 �0.801 �0.304 �0.369 �0.287
1.02 0.4 0.6 200 �0.935 �0.900 �0.147 �0.338 �0.205

1.02 0.4 0.6 400 �0.954 �0.943 �0.041 �0.254 �0.087

1.05 0.5 0.65 100 �1.006 �0.932 �0.178 �0.288 �0.178

1.05 0.5 0.65 200 �1.027 �1.016 �0.051 �0.131 �0.063

1.05 0.5 0.65 400 �1.036 �1.034 �0.008 �0.016 �0.034

1.05 0.4 0.6 100 �1.035 �0.993 �0.144 �0.348 �0.150

1.05 0.4 0.6 200 �1.037 �1.030 �0.036 �0.206 �0.043

1.05 0.4 0.6 400 �1.044 �1.044 �0.004 �0.031 �0.035

Panel B: RMSE

1.02 0.5 0.65 100 0.955 0.826 0.464 0.491 0.381
1.02 0.5 0.65 200 0.933 0.893 0.292 0.460 0.324

1.02 0.5 0.65 400 0.937 0.926 0.132 0.382 0.232

1.02 0.4 0.6 100 0.974 0.879 0.450 0.533 0.372
1.02 0.4 0.6 200 0.959 0.933 0.268 0.532 0.295

1.02 0.4 0.6 400 0.967 0.960 0.108 0.483 0.196

1.05 0.5 0.65 100 1.038 0.976 0.319 0.491 0.286
1.05 0.5 0.65 200 1.033 1.024 0.135 0.339 0.157

1.05 0.5 0.65 400 1.039 1.038 0.041 0.109 0.102

1.05 0.4 0.6 100 1.063 1.015 0.282 0.561 0.256
1.05 0.4 0.6 200 1.041 1.035 0.108 0.447 0.118

1.05 0.4 0.6 400 1.045 1.045 0.033 0.173 0.086

Note: 1) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.

2) The best method is highlighted in bold.
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Table 4: Probabilities of break date selection (two bubbles)

�1 T T 0
i bpCi (JS) bpLi (JS) bpCi (PQ) bpLi (PQ) epCi (JS) epLi (JS) epCi (PQ) epLi (PQ) bpCi (PSY ) bpLi (PSY )

Panel A: First break date [i=1]

1.05 100 20 0.00 0.98 0.01 0.92 0.05 0.45 0.03 0.60 0.02 0.93

1.05 200 40 0.00 1.00 0.00 0.99 0.05 0.58 0.02 0.64 0.01 0.96

1.05 400 80 0.00 0.99 0.00 1.00 0.08 0.63 0.03 0.58 0.01 0.97

Panel B: Second break date [i=2]

1.05 100 40 0.00 0.98 0.10 0.88 0.92 0.06 0.53 0.41 0.66 0.08

1.05 200 80 0.00 0.99 0.01 0.98 0.98 0.02 0.57 0.39 0.91 0.04

1.05 400 160 0.00 0.99 0.00 1.00 1.00 0.00 0.73 0.25 0.80 0.19

�2 T T 0
i bpCi (JS) bpLi (JS) bpCi (PQ) bpLi (PQ) epCi (JS) epLi (JS) epCi (PQ) epLi (PQ) bpCi (PSY ) bpLi (PSY )

Panel C: Third break date [i=3]

1.05 100 60 0.00 0.98 0.01 0.87 0.09 0.51 0.04 0.61 0.01 0.91

1.05 200 120 0.00 0.99 0.00 0.98 0.10 0.56 0.04 0.59 0.01 0.95

1.05 400 240 0.00 0.99 0.00 1.00 0.12 0.57 0.05 0.51 0.00 0.98

Panel D: Fourth break date [i=4]

1.05 100 80 0.00 0.98 0.19 0.80 0.95 0.04 0.65 0.34 0.82 0.01

1.05 200 160 0.00 0.99 0.02 0.97 0.99 0.01 0.70 0.29 0.94 0.02

1.05 400 320 0.00 0.99 0.00 1.00 1.00 0.00 0.83 0.16 0.81 0.19

Note: See notes to Table 1.

Table 5: Bias and RMSE of break fraction estimates (two bubbles)

�1 T �0
1 �0

2
b�JS
1

b�JS
2

e�PQ
1

e�PQ
2

e�JS
1

e�JS
2

e�PQ
1

e�PQ
2

b�PSY
1

b�PSY
2

Panel A: Bias of first bubble estimators

1.05 0.2 0.4 100 0.200 0.090 0.170 0.100 0.000c 0.010 0.060 0.060 0.110 0.000s

1.05 0.2 0.4 200 0.200 0.070 0.200 0.090 0.020c 0.000s 0.070 0.040 0.090 0.000s

1.05 0.2 0.4 400 0.200 0.060 0.200 0.060 0.020c 0.000s 0.050 0.020 0.060 0.000s

Panel B: RMSE of first bubble estimators

1.05 0.2 0.4 100 0.200 0.120 0.190 0.130 0.090c 0.050s 0.140 0.120 0.140 0.090

1.05 0.2 0.4 200 0.200 0.080 0.200 0.100 0.070c 0.020s 0.140 0.100 0.120 0.050

1.05 0.2 0.4 400 0.210 0.080 0.200 0.070 0.050c 0.010s 0.110 0.080 0.070 0.020

�2 T �0
3 �0

4
b�JS
3

b�JS
4

e�PQ
3

e�PQ
4

e�JS
3

e�JS
4

e�PQ
3

e�PQ
4

b�PSY
3

b�PSY
4

Panel C: Bias of second bubble estimators

1.05 0.6 0.8 100 0.190 0.070 0.150 0.070 0.010c 0.000s 0.050 0.030 0.070 �0.030

1.05 0.6 0.8 200 0.200 0.060 0.190 0.070 0.020c 0.000s 0.050 0.030 0.070 �0.010

1.05 0.6 0.8 400 0.200 0.050 0.200 0.060 0.020c 0.000s 0.030 0.010 0.050 0.000s

Panel D: RMSE of second bubble estimators

1.05 0.6 0.8 100 0.200 0.090 0.180 0.090 0.080c 0.030s 0.140 0.060 0.120 0.110

1.05 0.6 0.8 200 0.200 0.070 0.200 0.080 0.070c 0.020s 0.130 0.050 0.100 0.070

1.05 0.6 0.8 400 0.200 0.070 0.200 0.070 0.040c 0.000s 0.100 0.040 0.070 0.020

Note: 1) The superscript ’s’ denotes bubble origination estimates with lowest bias/RMSE.

2) The superscript ’c’ denotes bubble crash estimates with lowest bias/RMSE.

3) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.
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Table 6: Bias and RMSE of AR(1) estimates (two bubbles)

�1 �2 T b�JS1
b�PQ
1

e�JS1
e�PQ
1

b�PSY
1

b�JS2
b�PQ
2

e�JS2
e�PQ
2

b�PSY
2

Panel A: Bias

1.05 1.05 100 �1.010 �0.920 �0.150 �0.450 �0.450 �1.050 �0.850 �0.110 �0.390 �0.110

1.05 1.05 200 �1.020 �1.010 �0.050 �0.390 �0.390 �1.040 �1.010 �0.040 �0.300 �0.030
1.05 1.05 400 �1.010 �1.040 �0.010 �0.240 �0.240 �1.050 �1.040 0.000 �0.150 �0.030

Panel B: RMSE

1.05 1.05 100 1.050 0.980 0.290 0.650 0.650 1.060 0.950 0.240 0.610 0.200
1.05 1.05 200 1.030 1.030 0.130 0.620 0.620 1.040 1.030 0.110 0.540 0.100
1.05 1.05 400 1.030 1.040 0.030 0.500 0.500 1.050 1.050 0.020 0.390 0.080

Note: See notes to Table 3.

Table 7: Tests for the Presence of Explosiveness

Panel A: Full Sample Tests

Sample SADF PSADF GSADF PGSADF

1986:01�2014:07 2.024 0.012 3.221 0.006

Panel B: Estimated Regimes and Subsample Tests

Procedure Regime Estimated regime SADF PSADF GSADF PGSADF

JS with I(1) 1986:01�2003:08 �1.733 0.993 0.801 0.751

omission I(e) 2003:09�2008:08 2.104 0.011 2.609 0.039

I(1) 2008:09�2014:07 �1.063 0.884 1.098 0.433

JS without I(1) 1986:01�2008:06 2.024 0.013 3.221 0.005

omission I(e) 2008:07�2011:07 �2.180 0.982 1.173 0.316

I(1) 2011:08�2014:07 �1.869 0.966 �0.795 0.987

PQ with I(1) 1986:01�1990:06 �1.059 0.863 0.397 0.753

omission I(e) 1990:07�2008:08 2.332 0.005 3.221 0.005

I(1) 2008:09�2014:07 �1.063 0.884 1.098 0.433

PQ without I(1) 1986:01�2008:08 2.024 0.012 3.220 0.004

omission I(e) 2008:09�2011:06 2.332 0.005 3.221 0.005

I(1) 2011:07�2014:07 �2.199 0.983 �0.795 0.987

PSY I(1) 1986:01�2007:07 �0.662 0.864 1.017 0.649

I(e) 2007:10�2008:08 3.729 0.026 3.729 0.136

I(1) 2008:09�2014:07 �1.063 0.884 1.098 0.433

Note: 1) SADF , GSADF denote the values of test statistics and PSADF , PGSADF denote the corresponding p-values.

2) I(1) denotes a unit root regime and I(e) denotes an explosive regime.

Table 8: Estimated Explosive Regime of Real Oil Price (di↵erent subsamples)

Start End eT JS
1

eT JS
2

bT JS
1

bT JS
2

eTPQ
1

eTPQ
2

bTPQ
1

bTPQ
2

bTPSY
1

bTPSY
2

1986:01 2014:07 2003:09 2008:08 2008:07 2011:07 1990:07 2008:08 2008:09 2011:06 2007:10 2008:08

1986:01 2014:01 2003:09 2008:08 2008:05 2011:02 1990:07 2008:08 1990:07 2008:08 2007:10 2008:08

1986:07 2014:07 2003:09 2008:08 2008:07 2011:07 1990:07 2008:08 2008:09 2011:06 2007:10 2008:08

1986:07 2014:01 2003:09 2008:08 2008:07 2011:03 2008:05 2011:01 2008:05 2011:01 2007:10 2008:08

1987:01 2014:07 2003:09 2008:08 2008:07 2011:07 2008:09 2011:09 2008:09 2011:09 2007:10 2008:08

1987:01 2014:01 2003:09 2008:08 2008:07 2011:03 2008:05 2011:01 2008:05 2011:01 2007:10 2008:08

Note: The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.
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Figure 1: Di↵erence between sums of squared residuals, � = T�1
(SSRJS

om � SSRPQ
om ) [Single Bubble Case]

Note: The di↵erences are sorted from smallest to largest (across the replications). The vertical
line indicates the replication at which � = 0.

Figure 2: Di↵erence between sums of squared residuals, � = T�1
(SSRJS

om � SSRPQ
om ) [Two Bubbles Case]

Note: The di↵erences are sorted from smallest to largest (across the replications). The vertical
line indicates the replication at which � = 0.
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Figure 3: Explosiveness in the Real Oil Price

Figure 4: Estimated Dates with and without Omission
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Appendix A: Proofs of Theoretical Results

As a matter of notation, ‘
p!’ and ‘)’ denote, respectively, convergence in probability and weak con-

vergence of the associated probability measures. W (.) denotes a standard Brownian motion on [0, 1] and
O

+
p (.) denotes a random quantity of the specified order that is asymptotically positive. For a random

quantity z, we write z = z0 + op(z0) as z = z0 + s.o., where s.o. represents a term of smaller order in
probability. The true break dates are denoted by T

0
1 =

⌅
�
0
1T

⇧
, T

0
2 =

⌅
�
0
2T

⇧
, where �

0
1,�

0
2 are the true

break fractions. Following ?, we simplify the proofs by assuming that a constant is not included in the
regression.

The data generating process (DGP) considered in the theoretical analysis is restated here for conve-
nience:

yt =

8
>>><

>>>:

yt�1 + ut, 1  t  T
0
1 ,

�yt�1 + ut, T
0
1 + 1  t  T

0
2 ,

yT 0
1
+ z

⇤ +
Pt

j=T 0
2+1 uj , T

0
2 + 1  t  T,

(A.1)

where ut is i.i.d. with E(ut) = 0, E(u2t ) = �
2 and y0 = op(T 1/2), z

⇤ = Op(1).

We first state two lemmas that will be used subsequently. The first follows from Lemma 1 in ?. The
proof of the second follows from standard results for I(1) processes [see, e.g., ?, ?] and is thus omitted.

Lemma A.1 (?) Assume that yt is generated by (A.1). Let ST = T
0
1

h
�
2(T 0

2�T 0
1 )
i
. Then

(a) ST /T ! 1;

(b) y
2
T 0
2
= O

+
p (ST );

(c) S
�1
T

PT 0
2

t=T 0
1+1

y
2
t�1 = (�2 � 1)�1

! + op(1), where ! = limT!1 S
�1/2
T yT 0

2
;

(d)
PT 0

2

t=T 0
1+1

yt�1ut = Op(S
1/2
T ).

Lemma A.2 Assume that yt is generated by (A.1). Then the following results hold jointly:

(a) T
�1PT 0

1
t=1 yt�1ut ) �2(W 2(�0

1)��0
1)

2 ;

(b) T
�2PT 0

1
t=1 y

2
t�1 ) �

2
R �0

1
0 W

2(r)dr;

(c) T
�1/2

yT 0
1
) �W (�0

1);

(d) T
�1/2

yT 0
2+1 ) �W (�0

1);

(e) T
�2PT 0

2+b"T c
t=T 0

2+2
y
2
t�1 ) �

2
R "
0 [W (�0

1 + r)]2dr;

(f) T
�1PT 0

2+b"T c
t=T 0

2+2
yt�1ut ) �

2


W (�0

1){W (�0
2 + ✏)}+ {W (�0

2+✏)�W (�0
2)}2�✏

2

�
.

Proof of Theorem 1: (a) Given (T1, T2), the sum of squared residuals is given by

SSR(T1, T2) =
T1X

t=2

(�yt)
2 +

T2X

t=T1+1

{yt � �̂(T1, T2)yt�1}2 +
TX

t=T2+1

(�yt)
2
, (A.2)
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where

�̂(T1, T2) =

0

@
T2X

t=T1+1

y
2
t�1

1

A
�1

T2X

t=T1+1

ytyt�1. (A.3)

Defining T
0
2,✏ = T

0
2 + b✏T c , we have
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(A.4)
where the last line follows using Lemmas A.1-A.2. Next, suppose that

T̂1 = T
0
2 + k1,

T̂2 = T
0
2,✏ + k2,

where k1, k2 are O(1) integers. Let

F (k1, k2) = SSR(T̂1, T̂2)� SSR(T 0
2 , T

0
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Now, the quantity SSR(T 0
2 , T

0
2,✏) can be written as
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yt�1ut + s.o., (A.6)

where the second equality follows from (A.4).
We will show that if either k1 6= 0 or k2 6= 0, then F (k1, k2) > 0 asymptotically. Note that when

k2 = 0, we must have k1 < 0 due to the restriction T̂2 � T̂1 � b✏T c. Similarly, if k1 = 0, we must have
k2 > 0. We consider each of these cases in turn.

Case 1: k1 < 0, k2 = 0. First, observe that
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= � +
⇣
S
�1
T y

2
T 0
2

n
(�2 � 1)�1(1� �

�2|k1|) + 1
o
+ op(1)

⌘�1 h
��S

�1
T y

2
T 0
2
+ op(1)

i

= � � [�(1� �
�2(|k1|+1))]�1(�2 � 1) + op(1) = �̄ + op(1)

p! �̄ < 1/�, (A.7)

A-3



since �̄ < � � �
�1(�2 � 1) = 1/�. Next, we can write
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Then, subtracting (A.6) from (A.8), we have
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Case 2: k1 = 0, k2 > 0. Following the same steps used to show (A.4), we can show that
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Next, we have
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Then, subtracting (A.6) from (A.10), we have
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Combining Cases 1 and 2, it follows that if either k1 or k2 is non zero, then F (k1, k2) > 0 in the limit.
Thus, it must be the case that k1 = k2 = 0 which proves the result. N

(b) Using (a), we can write
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which proves the result. N
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Proof of Theorem 2: (a) Given (T1, T2), the sum of squared residuals omitting the residual at time
period T2 + 1 is given by
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We can write
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We will show that if either k1 6= 0 or k2 6= 0, then G(k1, k2) > 0 asymptotically. We have four possible
cases depending on the signs of k1 and k2. We consider each of these in turn.

Case 1: k1 > 0, k2 = 0. First, observe that
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Next, we can write
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Now, using (A.14), (A.15) simplifies to
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where the second equality uses (A.14). Then, subtracting (A.13) from (A.16), we have
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Case 2: k1 < 0, k2 = 0. Again, note that �̂(T 0
1 + k1, T

0
2 ) = � +Op(S

�1/2
T ). Next, we can write

SSRom(T 0
1 + k1, T

0
2 ) =

TX

t=2

u
2
t 1(t 6= T

0
2 + 1) +

h
1� �̂(T 0

1 + k1, T
0
2 )
i2 T 0

1X

t=T 0
1+k1+1

y
2
t�1

+ 2
h
1� �̂(T 0

1 + k1, T
0
2 )
i T 0

1X

t=T 0
1+k1+1

yt�1ut +
h
� � �̂(T 0

1 + k1, T
0
2 )
i2 T 0

2X

t=T 0
1+1

y
2
t�1

+ 2
h
� � �̂(T 0

1 + k1, T
0
2 )
i T 0

2X

t=T 0
1+1

yt�1ut. (A.18)

Then, subtracting (A.13) from (A.18) and scaling the di↵erence by T
�1, we have

T
�1

G(k1, 0) = (� � 1)2T�1

T 0
1X

t=T 0
1+k1+1

y
2
t�1 + 2(1� �)

T 0
1X

t=T 0
1+k1+1

yt�1ut + op(1)

= (� � 1)2 |k1|T�1
y
2
T 0
1
+ 2(1� �)T�1/2

yT 0
1
T
�1/2

T 0
1X

t=T 0
1+k1+1

ut + op(1)

= (� � 1)2 |k1|T�1
y
2
T 0
1
+ op(1) = O

+
p (1).

Case 3: k1 = 0, k2 > 0. First, observe that

�̂(T 0
1 , T

0
2 + k2) =

0

@
T 0
2+k2X

t=T 0
1+1

y
2
t�1

1

A
�1

T 0
2+k2X

t=T 0
1+1

ytyt�1

= � +

0

@S
�1
T

T 0
2X

t=T 0
1+1

y
2
t�1 + S

�1
T y

2
T 0
2
+ op(1)

1

A
�1

⇣
��S

�1
T y

2
T 0
2
+ S

�1
T yT 0

2+1yT 0
2

⌘
+ op(1)

= � � �[(�2 � 1)�1 + 1]�1 +Op(T
1/2

S
�1/2
T )

= �
�1 + op(1). (A.19)

Next, we have

SSRom(T 0
1 , T

0
2 + k2) =

TX

t=2

u
2
t 1(t 6= T

0
2 + 1) +

h
� � �̂(T 0

1 , T
0
2 + k2)

i2 T 0
2X

t=T 0
1+1

y
2
t�1

+ 2
h
� � �̂(T 0

1 , T
0
2 + k2)

i T 0
2X

t=T 0
1+1

yt�1ut + {yT 0
2+1 � �̂(T 0

1 , T
0
2 + k2)yT 0

2
}2

+ [1� �̂(T 0
1 , T

0
2 + k2)]

2

T 0
2+k2X

t=T 0
2+2

y
2
t�1 + 2[1� �̂(T 0

1 , T
0
2 + k2)]

T 0
2+k2X

t=T 0
2+2

yt�1ut. (A.20)
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Then, subtracting (A.13) from (A.20) and scaling the di↵erence by S
�1
T , we have

S
�1
T G(0, k2) = (� � �

�1)2S�1
T

T 0
2X

t=T 0
1+1

y
2
t�1 + 2(� � �

�1)S�1
T

T 0
2X

t=T 0
1+1

yt�1ut + �
�2

S
�1
T y

2
T 0
2

+ (1� �
�1)2S�1

T�

T 0
2+k2X

t=T 0
2+2

y
2
t�1 + 2(1� �

�1)S�1
T

T 0
2+k2X

t=T 0
2+2

yt�1ut + op(1)

= (� � �
�1)2S�1

T

T 0
2X

t=T 0
1+1

y
2
t�1 + �

�2
S
�1
T y

2
T 0
2
+ op(1)

= [(� � �
�1)2(�2 � 1)�1 + �

�2]S�1
T y

2
T 0
2
+ op(1) = S

�1
T y

2
T 0
2
+ op(1) = O

+
p (1),

where the first equality uses (A.19) and the second and third use Lemma A.1.

Case 4: k1 = 0, k2 < 0. Observe that in this case,

�̂(T 0
1 , T

0
2 + k2) = � +Op(S

�1/2
T ). (A.21)

Next, we can write

SSRom(T 0
1 , T

0
2 + k2) =

TX

t=2

u
2
t 1(t 6= T

0
2 + 1) +

h
� � �̂(T 0

1 , T
0
2 + k2)

i2 T 0
2+k2X

t=T 0
1+1

y
2
t�1

+ 2
h
� � �̂(T 0

1 + k1, T
0
2 )
i T 0

2+k2X

t=T 0
1+1

yt�1ut + (� � 1)2
T 0
2X

t=T 0
2+k2+2

y
2
t�1

+ 2(� � 1)

T 0
2X

t=T 0
2+k2+2

yt�1ut + (yT 0
2+1 � yT 0

2
)2. (A.22)

Then, subtracting (A.13) from (A.22), scaling the di↵erence by S
�1
T , and using (A.21), we have

S
�1
T G(0, k2) = (� � 1)2S�1

T

T 0
2X

t=T 0
2+k2+2

y
2
t�1 + S

�1
T y

2
T 0
2
+ op(1)

=
h
(� � 1)2(�2 � 1)�1(1� �

�2(|k2|�1)) + 1
i
S
�1
T y

2
T 0
2
+ op(1) = O

+
p (1).

Combining cases 1-4, it follows that if either k1 or k2 is non zero, then G(k1, k2) > 0 in the limit. Thus,
it must be the case that k1 = k2 = 0 which proves the result. N
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(b) Using (a), we can write

�̂ = �̂(T̂1, T̂2) = �̂(T 0
1 , T

0
2 ) + op(1)

=

0

@
T 0
2X

t=T 0
1+1

y
2
t�1

1

A
�1

T 0
2X

t=T 0
1+1

ytyt�1 + op(1)

= � +

0

@
T 0
2X

t=T 0
1+1

y
2
t�1

1

A
�1

T 0
2X

t=T 0
1+1

yt�1ut + op(1)

= � + [Op(ST )]
�1

Op(S
�1/2
T ) + op(1) [using Lemma A.1]

= � +Op(S
�1/2
T )

p! �,

thereby proving the result. N
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Appendix B: Additional Monte Carlo Results

Table B.1: Probabilities of break date selection (single bubble; ut = 0.5ut�1 + et)

Panel A: First date estimates
� T T 0

1 bpC1 (JS) bpL1 (JS) bpC1 (PQ) bpL1 (PQ) epC1 (JS) epL1 (JS) epC1 (PQ) epL1 (PQ) bpC1 (PSY ) bpL1 (PSY )

1.02 100 50 0.00 0.80 0.00 0.72 0.03 0.25 0.02 0.35 0.02 0.57
1.02 200 100 0.00 0.89 0.00 0.85 0.03 0.32 0.02 0.41 0.01 0.69
1.02 400 200 0.00 0.94 0.00 0.92 0.03 0.45 0.02 0.45 0.00 0.82
1.02 100 40 0.00 0.90 0.00 0.85 0.03 0.36 0.02 0.51 0.02 0.73
1.02 200 80 0.00 0.94 0.00 0.92 0.03 0.44 0.01 0.55 0.01 0.81
1.02 400 160 0.00 0.97 0.00 0.96 0.03 0.54 0.01 0.56 0.00 0.89
1.05 100 50 0.00 0.94 0.00 0.90 0.09 0.25 0.05 0.33 0.03 0.74
1.05 200 100 0.00 0.98 0.00 0.97 0.13 0.36 0.07 0.34 0.01 0.88
1.05 400 200 0.00 0.99 0.00 0.99 0.16 0.43 0.10 0.34 0.01 0.94
1.05 100 40 0.00 0.98 0.00 0.96 0.07 0.35 0.03 0.48 0.02 0.86
1.05 200 80 0.00 0.99 0.00 0.99 0.10 0.44 0.05 0.48 0.01 0.93
1.05 400 160 0.00 1.00 0.00 1.00 0.15 0.47 0.09 0.39 0.01 0.95

Panel B: Second date estimates
� T T 0

2 bpC2 (JS) bpL2 (JS) bpC2 (PQ) bpL2 (PQ) epC2 (JS) epL2 (JS) epC2 (PQ) epL2 (PQ) bpC2 (PSY ) bpL2 (PSY )

1.02 100 65 0.00 0.86 0.14 0.78 0.77 0.15 0.58 0.35 0.20 0.29
1.02 200 130 0.00 0.92 0.08 0.87 0.90 0.06 0.67 0.29 0.33 0.27
1.02 400 260 0.00 0.96 0.06 0.92 0.95 0.03 0.78 0.20 0.59 0.18
1.02 100 60 0.00 0.93 0.08 0.87 0.83 0.13 0.56 0.40 0.23 0.34
1.02 200 120 0.00 0.96 0.05 0.92 0.92 0.05 0.63 0.35 0.39 0.28
1.02 400 240 0.00 0.97 0.04 0.95 0.97 0.02 0.76 0.23 0.69 0.16
1.05 100 65 0.00 0.96 0.05 0.92 0.92 0.06 0.72 0.26 0.58 0.18
1.05 200 130 0.00 0.99 0.02 0.98 0.98 0.01 0.87 0.12 0.81 0.10
1.05 400 260 0.00 0.99 0.01 0.99 0.99 0.00 0.98 0.02 0.80 0.18
1.05 100 60 0.00 0.98 0.03 0.96 0.95 0.04 0.67 0.32 0.66 0.16
1.05 200 120 0.00 1.00 0.01 0.99 0.99 0.01 0.83 0.17 0.85 0.11
1.05 400 240 0.00 1.00 0.00 1.00 1.00 0.00 0.97 0.03 0.73 0.27

Note: 1) The superscript ’C’ denotes the probability of correctly selecting the true break date.
2) The superscript ’L’ denotes the probability of selecting a date later than the true break date.
3) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.
4) The method with the highest probability of correctly selecting the true break date is highlighted in bold.
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Table B.2: Bias and RMSE of break fraction estimates (single bubble; ut = 0.5ut�1 + et)

� �0
1 �0

2 T b�JS
1

b�PQ
1

e�JS
1

e�PQ
1

b�PSY
1

b�JS
2

b�PQ
2

e�JS
2

e�PQ
2

b�PSY
2

Panel A: Bias
1.02 0.5 0.65 100 0.075 0.045 �0.121 �0.083 0.052 0.075 0.089 0.011 0.042 �0.015
1.02 0.5 0.65 200 0.111 0.095 �0.091 �0.057 0.067 0.084 0.094 0.001 0.033 �0.019
1.02 0.5 0.65 400 0.129 0.120 �0.038 �0.031 0.068 0.090 0.095 0.000 0.021 �0.019
1.02 0.4 0.6 100 0.164 0.141 �0.053 0.006 0.149 0.103 0.115 0.018 0.065 0.037
1.02 0.4 0.6 200 0.182 0.170 �0.034 0.021 0.144 0.098 0.105 0.004 0.047 0.019
1.02 0.4 0.6 400 0.189 0.184 �0.002 0.020 0.117 0.096 0.102 0.002 0.029 0.007
1.05 0.5 0.65 100 0.130 0.114 �0.090 �0.066 0.063 0.101 0.112 0.005 0.034 0.005
1.05 0.5 0.65 200 0.144 0.141 �0.027 �0.033 0.062 0.100 0.109 0.001 0.014 0.001
1.05 0.5 0.65 400 0.147 0.146 �0.003 �0.015 0.042 0.099 0.103 �0.001 0.002 �0.002
1.05 0.4 0.6 100 0.193 0.184 �0.050 0.003 0.118 0.109 0.126 0.006 0.049 0.027
1.05 0.4 0.6 200 0.198 0.197 �0.007 0.006 0.089 0.103 0.112 0.001 0.021 0.010
1.05 0.4 0.6 400 0.199 0.199 0.006 �0.004 0.048 0.101 0.104 0.000 0.003 0.001

Panel B: RMSE
1.02 0.5 0.65 100 0.182 0.184 0.209 0.202 0.232 0.157 0.144 0.099 0.113 0.225
1.02 0.5 0.65 200 0.167 0.168 0.174 0.181 0.227 0.135 0.129 0.069 0.095 0.219
1.02 0.5 0.65 400 0.158 0.159 0.113 0.140 0.189 0.120 0.115 0.046 0.069 0.178
1.02 0.4 0.6 100 0.206 0.197 0.164 0.173 0.268 0.148 0.147 0.091 0.125 0.225
1.02 0.4 0.6 200 0.204 0.199 0.134 0.160 0.250 0.128 0.126 0.062 0.099 0.202
1.02 0.4 0.6 400 0.202 0.200 0.091 0.131 0.198 0.115 0.114 0.039 0.071 0.150
1.05 0.5 0.65 100 0.159 0.161 0.165 0.178 0.182 0.127 0.135 0.061 0.087 0.168
1.05 0.5 0.65 200 0.153 0.153 0.082 0.117 0.133 0.110 0.117 0.030 0.052 0.112
1.05 0.5 0.65 400 0.151 0.151 0.041 0.060 0.080 0.104 0.107 0.018 0.024 0.060
1.05 0.4 0.6 100 0.202 0.199 0.133 0.162 0.198 0.123 0.141 0.051 0.098 0.150
1.05 0.4 0.6 200 0.200 0.200 0.072 0.119 0.140 0.106 0.116 0.021 0.055 0.090
1.05 0.4 0.6 400 0.200 0.200 0.039 0.061 0.076 0.102 0.105 0.007 0.021 0.038

Note: 1) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.
2) The best method is highlighted in bold.

B-2



Table B.3: Bias and RMSE of AR(1) estimates (single bubble; ut = 0.5ut�1 + et)

� �0
1 �0

2 T b�JS b�PQ e�JS e�PQ b�PSY

Panel A: Bias
1.02 0.5 0.65 100 �0.628 �0.593 �0.099 �0.199 �0.184
1.02 0.5 0.65 200 �0.639 �0.622 �0.060 �0.159 �0.168
1.02 0.5 0.65 400 �0.664 �0.655 �0.027 �0.097 �0.119
1.02 0.4 0.6 100 �0.716 �0.693 �0.101 �0.255 �0.183
1.02 0.4 0.6 200 �0.716 �0.703 �0.059 �0.221 �0.159
1.02 0.4 0.6 400 �0.756 �0.750 �0.023 �0.138 �0.095
1.05 0.5 0.65 100 �0.884 �0.857 �0.071 �0.210 �0.137
1.05 0.5 0.65 200 �0.932 �0.926 �0.025 �0.101 �0.068
1.05 0.5 0.65 400 �0.991 �0.990 �0.006 �0.014 �0.045
1.05 0.4 0.6 100 �0.939 �0.926 �0.061 �0.285 �0.117
1.05 0.4 0.6 200 �0.978 �0.974 �0.019 �0.160 �0.053
1.05 0.4 0.6 400 �1.026 �1.025 �0.002 �0.025 �0.047

Panel B: RMSE
1.02 0.5 0.65 100 0.762 0.719 0.162 0.365 0.234
1.02 0.5 0.65 200 0.722 0.711 0.093 0.316 0.220
1.02 0.5 0.65 400 0.735 0.731 0.046 0.243 0.196
1.02 0.4 0.6 100 0.823 0.791 0.163 0.435 0.235
1.02 0.4 0.6 200 0.785 0.775 0.091 0.402 0.215
1.02 0.4 0.6 400 0.813 0.811 0.041 0.320 0.178
1.05 0.5 0.65 100 0.938 0.916 0.130 0.414 0.206
1.05 0.5 0.65 200 0.956 0.953 0.056 0.284 0.139
1.05 0.5 0.65 400 1.004 1.004 0.022 0.094 0.104
1.05 0.4 0.6 100 0.973 0.962 0.114 0.504 0.187
1.05 0.4 0.6 200 0.992 0.989 0.044 0.385 0.122
1.05 0.4 0.6 400 1.031 1.031 0.014 0.156 0.092

Note: 1) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.
2) The best method is highlighted in bold.
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Table B.4: Probabilities of break date selection (two bubbles; ut = 0.5ut�1 + et)

�1 T T 0
i bpCi (JS) bpLi (JS) bpCi (PQ) bpLi (PQ) epCi (JS) epLi (JS) epCi (PQ) epLi (PQ) bpCi (PSY ) bpLi (PSY )

Panel A: First break date [i=1]
1.05 100 20 0.00 0.97 0.01 0.92 0.07 0.37 0.05 0.49 0.02 0.91
1.05 200 40 0.00 0.98 0.00 0.98 0.08 0.47 0.04 0.54 0.01 0.94
1.05 400 80 0.00 0.99 0.00 1.00 0.09 0.51 0.05 0.48 0.01 0.96

Panel B: Second break date [i=2]
1.05 100 40 0.00 0.97 0.11 0.89 0.97 0.01 0.68 0.27 0.65 0.09
1.05 200 80 0.00 0.98 0.03 0.97 0.99 0.01 0.73 0.23 0.85 0.09
1.05 400 160 0.00 0.99 0.01 0.99 1.00 0.00 0.86 0.13 0.74 0.26

�2 T T 0
i bpCi (JS) bpLi (JS) bpCi (PQ) bpLi (PQ) epCi (JS) epLi (JS) epCi (PQ) epLi (PQ) bpCi (PSY ) bpLi (PSY )

Panel C: Third break date [i=3]
1.05 100 60 0.00 0.97 0.02 0.90 0.12 0.39 0.09 0.52 0.02 0.87
1.05 200 120 0.00 0.98 0.00 0.98 0.13 0.45 0.11 0.50 0.01 0.89
1.05 400 240 0.00 0.99 0.00 1.00 0.16 0.45 0.12 0.43 0.01 0.92

Panel D: Fourth break date [i=4]
1.05 100 80 0.00 0.97 0.15 0.84 0.97 0.02 0.77 0.23 0.82 0.02
1.05 200 160 0.00 0.98 0.04 0.96 0.99 0.01 0.86 0.14 0.88 0.07
1.05 400 320 0.00 0.99 0.01 0.99 1.00 0.00 0.93 0.07 0.73 0.26

Note: See notes to Table B.1.

Table B.5: Bias and RMSE of break fraction estimates (two bubbles; ut = 0.5ut�1 + et)

�1 T �0
1 �0

2
b�JS
1

b�JS
2

e�PQ
1

e�PQ
2

e�JS
1

e�JS
2

e�PQ
1

e�PQ
2

b�PSY
1

b�PSY
2

Panel A: Bias of first bubble estimators

1.05 0.2 0.4 100 0.194 0.110 0.175 0.118 �0.014s 0.000c 0.039 0.032 0.102 0.002
1.05 0.2 0.4 200 0.199 0.104 0.194 0.111 0.001s 0.001c 0.039 0.022 0.096 0.013
1.05 0.2 0.4 400 0.200 0.102 0.199 0.104 0.009s 0.000c 0.021 0.012 0.055 0.003

Panel B: RMSE of first bubble estimators
1.05 0.2 0.4 100 0.200 0.125 0.189 0.134 0.064s 0.021c 0.116 0.082 0.141 0.085
1.05 0.2 0.4 200 0.203 0.113 0.198 0.117 0.057s 0.010c 0.108 0.064 0.136 0.081
1.05 0.2 0.4 400 0.202 0.105 0.200 0.106 0.040s 0.003c 0.082 0.041 0.078 0.036

�2 T �0
3 �0

4
b�JS
3

b�JS
4

e�PQ
3

e�PQ
4

e�JS
3

e�JS
4

e�PQ
3

e�PQ
4

b�PSY
3

b�PSY
4

Panel C: Bias of second bubble estimators
1.05 0.6 0.8 100 0.187 0.087 0.163 0.082 �0.010s 0.001c 0.029 0.021 0.063 �0.022
1.05 0.6 0.8 200 0.193 0.093 0.190 0.095 0.003s 0.000c 0.021 0.014 0.062 �0.006
1.05 0.6 0.8 400 0.197 0.097 0.199 0.099 0.006s 0.000c 0.010 0.006 0.039 0.000c

Panel D: RMSE of second bubble estimators
1.05 0.6 0.8 100 0.199 0.111 0.184 0.092 0.064s 0.017c 0.112 0.049 0.109 0.091
1.05 0.6 0.8 200 0.200 0.106 0.196 0.099 0.053s 0.009c 0.094 0.039 0.108 0.073
1.05 0.6 0.8 400 0.200 0.103 0.199 0.100 0.036s 0.003c 0.065 0.026 0.065 0.029

Note: 1) The superscript ’s’ denotes bubble origination estimates with lowest bias/RMSE.
2) The superscript ’c’ denotes bubble crash estimates with lowest bias/RMSE.
3) The notation “ˆ” indicates “no omission” and “˜” indicates “with omission”.
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Table B.6: Bias and RMSE of AR(1) estimates (two bubbles; ut = 0.5ut�1 + et)

�1 �2 T b�JS1
b�PQ
1

e�JS1
e�PQ
1

b�PSY
1

b�JS2
b�PQ
2

e�JS2
e�PQ
2

b�PSY
2

Panel A: Bias
1.05 1.05 100 �0.940 �0.870 �0.060 �0.300 �0.300 �1.000 �0.850 �0.060 �0.250 �0.090
1.05 1.05 200 �0.950 �0.940 �0.020 �0.230 �0.230 �1.000 �0.960 �0.020 �0.140 �0.040
1.05 1.05 400 �1.010 �1.020 0.000 �0.130 �0.130 �1.030 �1.030 0.000 �0.070 �0.050

Panel B: RMSE
1.05 1.05 100 0.980 0.940 0.120 0.520 0.520 1.010 0.930 0.100 0.470 0.170
1.05 1.05 200 0.980 0.970 0.050 0.470 0.470 1.000 0.980 0.050 0.360 0.110
1.05 1.05 400 1.020 1.030 0.010 0.360 0.360 1.040 1.030 0.010 0.260 0.090

Note: See notes to Table B.3.

Table B.7: Probabilities of break date selection (single bubble; ut = et + 0.5et�1)

Panel A: First date estimates
� T T 0

1 bpC1 (JS) bpL1 (JS) bpC1 (PQ) bpL1 (PQ) epC1 (JS) epL1 (JS) epC1 (PQ) epL1 (PQ) bpC1 (PSY ) bpL1 (PSY )

1.02 100 50 0.00 0.81 0.00 0.73 0.03 0.24 0.02 0.34 0.02 0.59
1.02 200 100 0.00 0.93 0.00 0.90 0.03 0.32 0.02 0.40 0.01 0.77
1.02 400 200 0.00 0.97 0.00 0.96 0.04 0.46 0.02 0.41 0.00 0.90
1.02 100 40 0.00 0.91 0.00 0.86 0.03 0.37 0.01 0.50 0.02 0.76
1.02 200 80 0.00 0.97 0.00 0.95 0.03 0.44 0.01 0.54 0.01 0.87
1.02 400 160 0.00 0.99 0.00 0.98 0.03 0.56 0.01 0.53 0.00 0.95
1.05 100 50 0.00 0.96 0.00 0.93 0.09 0.26 0.05 0.33 0.02 0.83
1.05 200 100 0.00 0.99 0.00 0.99 0.12 0.40 0.06 0.34 0.01 0.96
1.05 400 200 0.00 1.00 0.00 1.00 0.15 0.47 0.09 0.35 0.00 0.97
1.05 100 40 0.00 0.99 0.00 0.98 0.08 0.37 0.04 0.47 0.01 0.92
1.05 200 80 0.00 1.00 0.00 1.00 0.09 0.48 0.04 0.45 0.01 0.97
1.05 400 160 0.00 1.00 0.00 1.00 0.13 0.52 0.07 0.40 0.00 0.98

Panel B: Second date estimates
� T T 0

2 bpC2 (JS) bpL2 (JS) bpC2 (PQ) bpL2 (PQ) epC2 (JS) epL2 (JS) epC2 (PQ) epL2 (PQ) bpC2 (PSY ) bpL2 (PSY )

1.02 100 65 0.00 0.89 0.13 0.79 0.78 0.15 0.58 0.35 0.23 0.24
1.02 200 130 0.00 0.96 0.06 0.91 0.93 0.04 0.71 0.26 0.45 0.17
1.02 400 260 0.00 0.98 0.03 0.96 0.98 0.01 0.84 0.15 0.75 0.10
1.02 100 60 0.00 0.94 0.07 0.89 0.83 0.13 0.56 0.41 0.24 0.27
1.02 200 120 0.00 0.98 0.03 0.95 0.95 0.04 0.67 0.32 0.52 0.18
1.02 400 240 0.00 0.99 0.01 0.98 0.99 0.01 0.80 0.20 0.83 0.08
1.05 100 65 0.00 0.98 0.04 0.94 0.94 0.04 0.75 0.23 0.70 0.11
1.05 200 130 0.00 1.00 0.01 0.99 0.99 0.00 0.91 0.09 0.91 0.04
1.05 400 260 0.00 1.00 0.00 1.00 1.00 0.00 0.99 0.01 0.87 0.12
1.05 100 60 0.00 0.99 0.02 0.98 0.97 0.02 0.71 0.28 0.76 0.09
1.05 200 120 0.00 1.00 0.00 1.00 1.00 0.00 0.85 0.15 0.92 0.05
1.05 400 240 0.00 1.00 0.00 1.00 1.00 0.00 0.98 0.02 0.78 0.22

Note: See notes to Table B.1.
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Table B.8: Bias and RMSE of break fraction estimates (single bubble; ut = et + 0.5et�1)

� �0
1 �0

2 T b�JS
1

b�PQ
1

e�JS
1

e�PQ
1

b�PSY
1

b�JS
2

b�PQ
2

e�JS
2

e�PQ
2

b�PSY
2

Panel A: Bias
1.02 0.5 0.65 100 0.081 0.047 �0.120 �0.088 0.045 0.091 0.094 0.011 0.043 �0.028
1.02 0.5 0.65 200 0.125 0.114 �0.086 �0.058 0.063 0.097 0.104 0.002 0.032 �0.025
1.02 0.5 0.65 400 0.139 0.135 �0.027 �0.038 0.074 0.097 0.102 �0.001 0.016 �0.011
1.02 0.4 0.6 100 0.168 0.148 �0.050 0.007 0.136 0.112 0.124 0.018 0.066 0.016
1.02 0.4 0.6 200 0.189 0.182 �0.034 0.014 0.134 0.103 0.114 0.004 0.044 0.005
1.02 0.4 0.6 400 0.196 0.193 0.000 0.010 0.107 0.101 0.106 0.001 0.023 0.001
1.05 0.5 0.65 100 0.138 0.126 �0.080 �0.069 0.062 0.110 0.124 0.004 0.033 �0.002
1.05 0.5 0.65 200 0.148 0.146 �0.017 �0.038 0.068 0.104 0.116 0.000 0.011 0.003
1.05 0.5 0.65 400 0.149 0.149 0.001 �0.016 0.045 0.101 0.106 �0.000 0.001 �0.001
1.05 0.4 0.6 100 0.196 0.191 �0.043 0.001 0.109 0.113 0.135 0.004 0.046 0.011
1.05 0.4 0.6 200 0.199 0.199 �0.002 �0.003 0.089 0.105 0.117 0.001 0.019 0.005
1.05 0.4 0.6 400 0.200 0.200 0.010 �0.008 0.052 0.102 0.107 0.000 0.002 0.001

Panel B: RMSE
1.02 0.5 0.65 100 0.174 0.182 0.201 0.203 0.214 0.149 0.147 0.090 0.112 0.211
1.02 0.5 0.65 200 0.159 0.161 0.162 0.175 0.198 0.124 0.127 0.052 0.086 0.189
1.02 0.5 0.65 400 0.154 0.155 0.091 0.132 0.154 0.111 0.113 0.033 0.055 0.134
1.02 0.4 0.6 100 0.203 0.197 0.157 0.172 0.247 0.146 0.154 0.086 0.126 0.205
1.02 0.4 0.6 200 0.201 0.199 0.123 0.156 0.216 0.119 0.127 0.047 0.091 0.166
1.02 0.4 0.6 400 0.200 0.200 0.077 0.126 0.158 0.107 0.111 0.023 0.058 0.103
1.05 0.5 0.65 100 0.155 0.156 0.150 0.175 0.148 0.125 0.142 0.049 0.084 0.132
1.05 0.5 0.65 200 0.151 0.151 0.063 0.113 0.104 0.107 0.121 0.017 0.042 0.070
1.05 0.5 0.65 400 0.150 0.150 0.031 0.056 0.067 0.102 0.108 0.008 0.017 0.040
1.05 0.4 0.6 100 0.201 0.199 0.119 0.153 0.163 0.120 0.146 0.036 0.094 0.111
1.05 0.4 0.6 200 0.200 0.200 0.062 0.117 0.119 0.107 0.120 0.014 0.052 0.058
1.05 0.4 0.6 400 0.200 0.200 0.036 0.059 0.069 0.102 0.108 0.005 0.016 0.023

Note: See notes to Table B.2.
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Table B.9: Bias and RMSE of AR(1) estimates (single bubble; ut = et + 0.5et�1)

� �0
1 �0

2 T b�JS b�PQ e�JS e�PQ b�PSY

Panel A: Bias
1.02 0.5 0.65 100 �0.677 �0.627 �0.132 �0.236 �0.211
1.02 0.5 0.65 200 �0.735 �0.717 �0.058 �0.183 �0.172
1.02 0.5 0.65 400 �0.778 �0.771 �0.022 �0.097 �0.102
1.02 0.4 0.6 100 �0.762 �0.729 �0.127 �0.294 �0.205
1.02 0.4 0.6 200 �0.809 �0.793 �0.055 �0.239 �0.161
1.02 0.4 0.6 400 �0.856 �0.852 �0.017 �0.159 �0.072
1.05 0.5 0.65 100 �0.934 �0.906 �0.071 �0.215 �0.135
1.05 0.5 0.65 200 �0.974 �0.969 �0.021 �0.085 �0.050
1.05 0.5 0.65 400 �1.012 �1.011 �0.004 �0.009 �0.032
1.05 0.4 0.6 100 �0.983 �0.969 �0.065 �0.280 �0.112
1.05 0.4 0.6 200 �1.005 �1.003 �0.017 �0.150 �0.040
1.05 0.4 0.6 400 �1.036 �1.036 �0.002 �0.018 �0.038

Panel B: RMSE
1.02 0.5 0.65 100 0.782 0.736 0.206 0.397 0.267
1.02 0.5 0.65 200 0.792 0.779 0.093 0.360 0.232
1.02 0.5 0.65 400 0.818 0.814 0.041 0.262 0.190
1.02 0.4 0.6 100 0.849 0.812 0.198 0.468 0.263
1.02 0.4 0.6 200 0.852 0.840 0.089 0.433 0.227
1.02 0.4 0.6 400 0.884 0.882 0.034 0.367 0.157
1.05 0.5 0.65 100 0.966 0.946 0.135 0.426 0.207
1.05 0.5 0.65 200 0.985 0.981 0.046 0.267 0.119
1.05 0.5 0.65 400 1.018 1.017 0.014 0.079 0.086
1.05 0.4 0.6 100 1.001 0.989 0.125 0.503 0.184
1.05 0.4 0.6 200 1.012 1.010 0.037 0.378 0.105
1.05 0.4 0.6 400 1.038 1.038 0.008 0.132 0.080

Note: See notes to Table B.3.
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Table B.10: Probabilities of break date selection (two bubbles; ut = et + 0.5et�1)

�1 T T 0
i bpCi (JS) bpLi (JS) bpCi (PQ) bpLi (PQ) epCi (JS) epLi (JS) epCi (PQ) epLi (PQ) bpCi (PSY ) bpLi (PSY )

Panel A: First break date [i=1]
1.05 100 20 0.00 0.97 0.01 0.92 0.06 0.38 0.04 0.50 0.02 0.94
1.05 200 40 0.00 0.99 0.00 0.99 0.06 0.51 0.03 0.52 0.01 0.97
1.05 400 80 0.00 1.00 0.00 1.00 0.08 0.57 0.05 0.48 0.01 0.98

Panel B: Second break date [i=2]
1.05 100 40 0.00 0.98 0.12 0.88 0.97 0.02 0.68 0.27 0.64 0.11
1.05 200 80 0.00 0.99 0.02 0.98 0.99 0.00 0.78 0.19 0.90 0.05
1.05 400 160 0.00 1.00 0.00 1.00 1.00 0.00 0.90 0.10 0.78 0.22

�2 T T 0
i bpCi (JS) bpLi (JS) bpCi (PQ) bpLi (PQ) epCi (JS) epLi (JS) epCi (PQ) epLi (PQ) bpCi (PSY ) bpLi (PSY )

Panel C: Third break date [i=3]
1.05 100 60 0.00 0.98 0.02 0.89 0.11 0.41 0.09 0.51 0.01 0.91
1.05 200 120 0.00 0.99 0.00 0.98 0.11 0.48 0.08 0.50 0.01 0.94
1.05 400 240 0.00 1.00 0.00 1.00 0.14 0.51 0.09 0.45 0.00 0.97

Panel D: Fourth break date [i=4]
1.05 100 80 0.00 0.98 0.18 0.81 0.98 0.01 0.80 0.20 0.84 0.01
1.05 200 160 0.00 0.99 0.03 0.96 1.00 0.00 0.89 0.11 0.92 0.04
1.05 400 320 0.00 1.00 0.00 1.00 1.00 0.00 0.96 0.04 0.77 0.22

Note: See notes to Table B.1.

Table B.11: Bias and RMSE of break fraction estimates (two bubbles; ut = et + 0.5et�1)

�1 T �0
1 �0

2
b�JS
1

b�JS
2

e�PQ
1

e�PQ
2

e�JS
1

e�JS
2

e�PQ
1

e�PQ
2

b�PSY
1

b�PSY
2

Panel A: Bias of first bubble estimators

1.05 0.2 0.4 100 0.197 0.114 0.174 0.120 �0.010s 0.001c 0.039 0.032 0.119 0.012
1.05 0.2 0.4 200 0.200 0.105 0.195 0.115 0.005s 0.000c 0.031 0.019 0.099 0.008
1.05 0.2 0.4 400 0.201 0.102 0.200 0.107 0.014s 0.000c 0.016 0.009 0.060 0.002

Panel B: RMSE of first bubble estimators
1.05 0.2 0.4 100 0.202 0.126 0.188 0.137 0.063s 0.019c 0.115 0.081 0.162 0.099
1.05 0.2 0.4 200 0.201 0.109 0.198 0.121 0.055s 0.008c 0.100 0.057 0.129 0.063
1.05 0.2 0.4 400 0.202 0.105 0.200 0.108 0.040s 0.004c 0.074 0.036 0.078 0.025

�2 T �0
3 �0

4
b�JS
3

b�JS
4

e�PQ
3

e�PQ
4

e�JS
3

e�JS
4

e�PQ
3

e�PQ
4

b�PSY
3

b�PSY
4

Panel C: Bias of second bubble estimators
1.05 0.6 0.8 100 0.190 0.091 0.159 0.080 �0.007s 0.000c 0.026 0.019 0.070 �0.026
1.05 0.6 0.8 200 0.197 0.097 0.192 0.096 0.005s 0.000c 0.016 0.011 0.068 �0.007
1.05 0.6 0.8 400 0.199 0.099 0.199 0.100 0.010 0.000c 0.006s 0.004 0.046 0.000c

Panel D: RMSE of second bubble estimators
1.05 0.6 0.8 100 0.200 0.108 0.182 0.091 0.059s 0.013c 0.107 0.045 0.118 0.097
1.05 0.6 0.8 200 0.200 0.102 0.197 0.099 0.049s 0.006c 0.085 0.033 0.102 0.063
1.05 0.6 0.8 400 0.200 0.101 0.200 0.100 0.036s 0.002c 0.056 0.020 0.064 0.021

Note: See notes to Table B.5.
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Table B.12: Bias and RMSE of AR(1) estimates (two bubbles; ut = et + 0.5et�1)

�1 �2 T b�JS1
b�PQ
1

e�JS1
e�PQ
1

b�PSY
1

b�JS2
b�PQ
2

e�JS2
e�PQ
2

b�PSY
2

Panel A: Bias
1.05 1.05 100 �0.960 �0.870 �0.070 �0.300 �0.300 �1.010 �0.840 �0.060 �0.230 �0.090
1.05 1.05 200 �0.990 �0.980 �0.020 �0.200 �0.200 �1.010 �0.980 �0.020 �0.120 �0.030
1.05 1.05 400 �1.020 �1.030 0.000 �0.100 �0.100 �1.040 �1.030 0.000 �0.040 �0.040

Panel B: RMSE
1.05 1.05 100 1.000 0.940 0.140 0.520 0.520 1.020 0.920 0.110 0.450 0.180
1.05 1.05 200 1.000 0.990 0.050 0.440 0.440 1.010 1.000 0.040 0.330 0.100
1.05 1.05 400 1.030 1.030 0.010 0.310 0.310 1.040 1.040 0.010 0.210 0.080

Note: See notes to Table B.3.
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