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Abstract
We consider a linear regression model with serially correlated errors. It is well

known that with �xed regressors Generalized Least-Squares is more e¢ cient than Or-
dinary Least-Squares (OLS). However, there are usually three main reasons advanced
for adopting OLS instead of GLS. The �rst is that it is generally believed that OLS
is valid whether the regressors are exogenous (uncorrelated with past innovations) or
not, while GLS is only consistent when dealing with pre-determined regressors (uncor-
related with future innovations). Second, OLS is more robust than GLS. Third, the
gains in accuracy can be minor and the inference can be misleading (e.g., bad coverage
rates of the con�dence intervals). We argue that all three claims are wrong, in general
and under some weak conditions. The �rst contribution is to dispel the fact that OLS
is valid with non-exogenous regressors, while GLS is valid only with exogenous regres-
sors. Under some regularity conditions, we show the opposite to be true. The second
contribution is to show that GLS is much more robust that OLS even when the regres-
sors are exogenous. By that we mean that even a blatantly incorrect GLS correction
can achieve a lower MSE than OLS. The third contribution is to devise a feasible GLS
procedure valid whether or not the regressors are exogenous, which achieves a MSE
close to that of the correctly speci�ed infeasible GLS. We also brie�y address issues
related to correcting for heteroskedastic errors.
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1 Introduction

We consider a linear regression model with serially correlated errors. If the regressors are

�xed or strictly exogenous (i.e., uncorrelated with the innovations at all leads and lags), Gen-

eralized Least-Squares (GLS) is BLUE, hence more e¢ cient than Ordinary Least-Squares

(OLS). If the regressors are pre-determined (i.e., uncorrelated with future innovations), GLS

is no longer unbiased but is consistent and asymptotically e¢ cient. With exogenous regres-

sors OLS is consistent, though not e¢ cient. Early work concentrated on �xed regressors or

equivalently strictly exogenous regressors. This remained the case well into the 80s; e.g.,

Amemiya (1986). Contributions to construct GLS estimates include Cochrane and Orcutt

(1949), Prais and Winsten (1954), Durbin (1970), Amemiya (1973), among others.

The limit distributions of both the OLS and GLS estimators were well known but it was

not well established how to consistently estimate the limit variance of the OLS estimate.

Spurred by the development of the Generalized Method of Moments (GMM) by Hansen

(1982) econometricians started to tackle this problem. Early contributions (in a more general

non-linear context) include White and Domowitz (1984a), White and Domowitz (1984b),

Newey and West (1987) and a comprehensive treatment was provided by Andrews (1991)

who used results from the theory of spectral density estimation developed much earlier. Since

then all the theoretical and empirical work has concentrated on OLS and a �ood of papers

have been devoted to deliver improved estimates of the limit variance of OLS so that the

con�dence intervals have accurate �nite sample coverage rates. This continues to this day.

There is barely any mention or work about GLS in the theoretical and empirical literature

when dealing with the linear model with serially correlated errors, at least in econometrics.

One is satis�ed using OLS with a disregard for ways to improve the properties of the estimate

per se; e.g., bias, variance and MSE (mean-squared errors). The goal is only to provide good

estimates of the con�dence interval of the OLS estimate.

There are generally three main reasons for adopting OLS instead of GLS. 1) There seems

to be a misconception, though not shared by all, about whether OLS is valid with the

regressors being exogenous or not (i.e., uncorrelated with past innovations or not), while

GLS is inconsistent with non-exogenous regressors. This view is now taught early on in

undergraduate textbooks; e.g., Stock and Watson (2019), ch. 16. 2) When applying GLS

one needs to choose a speci�cation to model the nature of the serial correlation in the errors.

It is then argued that an incorrect speci�cation can lead to worse results than using OLS;

i.e., it is believed that while OLS is sub-optimal relative to GLS, it is more robust than
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GLS, which can deliver worse outcomes (e.g., higher MSE) when not choosing a proper

speci�cation for the serial correlation in the errors; see, e.g., Engle (1974), Judge et al.

(1985), p. 281, and Choudhury et al. (1999). 3) Even with a decent speci�cation, the gains

in accuracy can be minor and the inference can be misleading; e.g., bad coverage rates using

standard estimates of the asymptotic variance to construct the con�dence intervals. Our

goal is to show that all three claims are, in general, wrong under weak conditions.

Our focus is on the linear model. Of course, our results relies on some crucial assumptions.

The �rst is that the regressors are pre-determined, which is often viewed as less controversial

for applications than the requirement of exogenous regressors. The second is that the errors

are a stationary process with a Wold linear invertible representation. This is usually satis�ed

but may fail in some models, especially those involving rational expectations arguments.

Under the stated conditions, the �rst contribution is to dispel the belief that OLS is valid

with non-exogenous regressors, while GLS is valid only with exogenous regressors. We show

the opposite to be true, in general. The misconception likely arose from a misconceived

notion of exogenous versus pre-determined regressors when the errors are correlated. We

consider the linear model y = X�+u and ut stationary so that it has a linear representation

in terms of a (possibly) in�nite linear model of the form C(L) =
P1

j=0 ctet�j with et being

an i:i:d: sequence. The usual argument for the consistency of GLS relies of whether xt is

exogenous with respect to ut. We argue that this leads to an incorrect result. One should

analyze the issue of the consistency of GLS by assessing whether xt is exogenous with respect

to the innovations et. For OLS, it does not matter since the condition remains E(xtut) = 0.

But this implies E(xt
P1

j=0 ctet�j) = 0, which requires regressors exogenous with respect

to et. Theoretical and simulation evidence substantiate these statements. Non-exogenous

regressors can imply inconsistent OLS estimates, while the GLS estimates are consistent.

Also, unlike OLS, GLS is consistent with lagged dependent variables as regressors.

The second contribution is to show that GLS is more robust that OLS, in that even

a blatantly incorrect GLS correction can achieve a lower MSE than OLS when both are

consistent. For illustration, we take a simple AR(1) correction with parameter � applied to

a model with exogenous regressors so that both OLS and GLS are consistent. We show that,

in most cases, GLS will have lower MSE than OLS for a wide range of processes and values

of �, as long as � is of the same sign as the �rst-order covariance of the residuals, say coru(1).

A simple procedure that pre-tests for serial correlation and applies a GLS correction with

a randomly drawn value of � with the same sign as the estimate of coru(1) based on the

estimated residuals will not do worse than OLS. This shows that GLS can be applied with
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a misspeci�ed structure and still yield improvements over OLS. Also, it shows that issues of

bias in the estimates of the parameters used to apply GLS will not make GLS less e¢ cient

than OLS. However, we can do better by choosing a good speci�cation for the error process

in order to achieve the lowest possible MSE and good �nite-samples coverage rates for the

con�dence intervals. This calls for a good feasible GLS (FGLS) procedure.

The third contribution is to devise a FGLS procedure valid with pre-determined regres-

sors whether or not they are exogenous, which achieves a MSE close to that of the infeasible

GLS procedure that uses the true structure (and parameters) of the serial correlation in the

errors. Care must be applied. For instance, for an AR(1) process the usual procedure of

Cochrane and Orcutt (1949) will not work. It is based on estimating the autocorrelation

parameter using the OLS residuals. Since OLS is inconsistent when the regressors are not

exogenous, this approach fails. Instead, we propose a procedure based on a generalization

of the so-called Durbin (1970) regression, whose coe¢ cients are consistent with or without

exogenous regressors. Using the resulting quasi-di¤erenced series, we apply an autoregressive

approximation of order, say kT , with kT chosen using the Bayesian Information Criterion

(BIC); see Schwarz (1978). The simulations show that the resulting FGLS estimate performs

surprisingly well in �nite samples. It delivers estimates having lower MSE than OLS, often by

a wide margin. The �nite sample coverage rates of the con�dence intervals constructed using

the standard asymptotic distribution are very close to the nominal level with lengths much

shorter than using OLS with heteroskedasticity and autocorrelation consistent standard er-

rors. We provide extensive evidence for both exogenous and non-exogenous regressors. In

most cases, the MSE of the FGLS is close to that of the infeasible GLS estimate.

A non-trivial exception for which OLS remains valid with serially correlated errors and

non-exogenous regressors pertains to h steps ahead predictive regressions as in, e.g., Hansen

and Hodrick (1980). Under rational expectations, the errors areMA(h�1) and the regressors
are uncorrelated with the errors. Still, we show that GLS is valid and leads to much more

e¢ cient estimates, contrary to what is asserted in Hansen and Hodrick (1980), provided the

MA process is invertible. In the Supplement, we also consider the case with both serial

correlation and heteroskedasticity. We propose a two-step GLS procedure suggested by

González-Coya and Perron (2024a) to �t the heteroskedasticity and further reduce the MSE.

The consistency of the GLS and FGLS procedure requires pre-determined regressors (un-

correlated with future innovations). This condition is certainly less contentious than the

exogeneity assumption that requires the regressors to be uncorrelated with past innovations,

at least in well speci�ed models, otherwise one could forecast future innovations. Neverthe-
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less, it is still possible to have a misspeci�ed model or a model with some lagged endogeneity,

which implies that OLS is consistent while GLS is not because the regressors are not pre-

determined. However, correlation between past regressors and future innovations implies

that the innovations are correlated with some variables. This is a problem of omitted vari-

ables being available or not as observations. If the omitted variable is observed (e.g., a lagged

value of some covariate), then one includes the relevant lag as regressor. This purges all cor-

relation between past regressors and current innovations so we are back with pre-determined

regressors and GLS is e¢ cient. When the omitted variable is unobserved, things are more

complex. OLS can be consistent while GLS is not. However, these are knife-edge cases in the

sense that minor changes in the speci�cation renders OLS inconsistent; e.g., adding lagged

regressors or having the omitted unobserved variable being serially correlated.

The rest of the paper is structured as follows. Section 2 provides the general setup and

motivation. It also provides results about the conditions under which OLS and GLS are

consistent. Section 3 discusses the robustness of GLS. Section 4 presents preliminary issues

related to the feasible GLS estimate proposed. Section 5 presents the main Feasible GLS

procedures for the general case with an invertible short-memory stationary process for the

errors. Issues related to the inclusion of lagged dependent variables and the importance of

the assumption of pre-determined regressors are also included. Section 6 presents extensive

simulations about the �nite sample properties of the OLS and FGLS estimates and how

close they are to achieving the precision of the infeasible GLS estimate, for a wide variety

of processes for the serial correlation in the errors. Both cases with exogenous and non-

exogenous regressors are covered. Section 7 provides brief concluding remarks. A Supplement

contains some technical derivations, additional material and simulation results.

2 General setup and motivation1

Consider a scalar time series of random variable yt generated by:

yt = x
0
t� + ut; t = 1; : : : ; T; (1)

where x0t = (x1t; : : : ; xkt) is a vector of regressors (or covariates), �
0 = (�1; : : : ; �k) a vector

of unknown coe¢ cients, T is the sample size. In matrix notation: y = X� + u, with

y = (y1; :::; yT )
0, u = (u1; :::; uT )

0 and X = (x01; :::; x
0
T )
0. The ordinary least-squares (OLS)

estimate of � is �̂ = (X 0X)�1X 0y. We assume that the error sequence ut is a stationary

1The material in this section was �rst discussed in Perron (2021). This paper now supersedes it.
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process so that it admits a Wold representation of the form

ut = C(L)et =
P1

j=0 cjet�j; (2)

where c0 = 1. The roots of C(L) are assumed to be outside the unit circle, so that ut is

invertible and has an in�nite autoregressive representation. Also,
P1

j=0 jjcjj < 1, so that
ut is a short-memory processes. For now, we assume that et � i:i:d: (0; �2e) (independent

and identically distributed innovations). We consider heteroskedastic innovations in the

Supplement. We also consider later what happens when the process is non-invertible. As a

matter of terminology, we label ut as the errors and et as the innovations.

We assume that E[etxt] = 0, otherwise some instrumental variable procedure would be

needed. We say that the regressors are �pre-determined�if:

E [xt(et+1; :::; eT )] = 0; (3)

i.e., regressors uncorrelated with future innovations. Throughout, we shall maintain that

this is the case with some comments about what happens when it does not hold in Section

5.2. We label the regressors as exogenous if

E [xt(et�1; :::; e1)] = 0; (4)

i.e., regressors uncorrelated with past innovations. This last condition is often seen as prob-

lematic, e.g., , Stock and Watson (2019), pp. 588-597. The assumption of pre-determined

regressors is usually seen as much less contentious, at least in well speci�ed models, otherwise

one could forecast future innovations. The terminology used di¤er in the literature. What

we label as pre-determined is sometimes referred to as exogenous, and what we refer to as

exogenous is labeled as strictly exogenous; e.g., Stock and Watson (2019), p. 573. We shall

continue with our terminology. Also, the conditions are usually stated in terms of condition

expectations, i.e., E [xtjet+1; :::; eT ] = 0 or E [xtjet�1; :::; e1] = 0. Since these imply (3) and
(4), respectively, and we make use of the latter only, this is without loss of generality. More

importantly, we de�ne the relation between the regressors and the innovations et, not the

errors ut as is commonly done in the literature. The bene�ts of doing this will become clear.

2.1 Conditions for the Consistency of OLS

It is well known that the main condition (again apart from technical issues) for the consis-

tency of the OLS estimate is that E(xtut) = 0. This condition is usually seen as unproblem-

atic apart from obvious cases of omitted variables in ut correlated with some regressor, or the

5



presence of lagged dependent variables. The only problem is then that the limit variance is

di¤erent from that obtained assuming i:i:d: errors and calls for the use of heteroskedasticity

and autocorrelation consistent covariance matrix estimates, HAC estimates for short.

However, this condition requires, in general, exogenous regressors, sinceE(xt
Pt

j=0 cjet�j) =

0 is required. In general, this implies the requirement E(xtet�j) = 0 or E(etxt+j) = 0, which

is unlikely to be satis�ed when the regressors are not exogenous. We state that this is the

case �in general�since there are many ways in which the regressors could be non-exogenous

and E(xtut) = 0. We view these as knife-edge cases. For example, xt is correlated with

et�2 but ut = et + c1et�1 + c3et�3. Also, the correlation between xt and various lags of et is

such that the stated condition holds. For instance, suppose that ut is an MA(2). Then, if

c1E(xet�1) = �c2E(xtet�2) and E(xtet) = 0, we have E(xtut) = 0. Such cases are, however,
unlikely to hold in practice. See also Section 2.1.1.

Another way of assessing this result is to argue that a regression with serially correlated

errors is dynamically misspeci�ed. Consider an AR(1) model of the form ut = �ut�1 +

et. Then, E(utxt) = 0 implies that xt is exogenous with respect to et since E(utxt) =

�E(ut�1xt)+E(etxt) = 0 if E(ut�1xt) = 0 or equivalently E(et�jxt) = 0, in general. In other

words, E(ytjxt) = x0t� if xt is exogenous, except for some knife-edge cases.

Example 1. Consider a simple regression of consumption on income, say ct = �+�inct+ut.
Suppose you have a unexpected event that a¤ect your potential consumption beyond your

regular income, which is re�ected here in et. Then most likely one would consume part of it

this period, and smaller parts in future periods. This would lead, as a rough approximation,

to an error process ut of an AR(1) type given by ut = �ut�1 + et. It is plausible to argue it

is uncorrelated with past income (since it was unforecastable) and also with current income

(because of time to adjust). Then, income is pre-determined with respect to the shocks et. In

future periods, agents will most likely adjust to re-establish the desired balance. For instance,

future income is to some extent forecastable. If you are young you may expect it to be higher.

Then, you are likely to consume almost all your windfall (maybe more via borrowing). This

a¤ects the error in the regression. Hence, income is not exogenous with respect to past

innovations. If � 6= 0, the shocks will persist for some time. Hence, current income will be
correlated with past shocks. Therefore, current income will also be correlated with the current

value of ut causing inconsistency of the OLS estimate. Note that the example given pertains

to past shocks a¤ecting future levels of consumption, not the past levels of income, which may

a¤ects current consumption; e.g., because of habit formation. This suggests including lagged

income as a regressors, which restores regressors to be pre-determined, see Section 5.2.
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2.1.1 The Rational Expectations (RE) case

There is one non-trivial and empirically relevant exception for which OLS remains valid

when the errors are serially correlated and the regressors are not exogenous. This pertains

to multi-steps ahead predictive regressions as examined, for instance, in the in�uential work

of Hansen and Hodrick (1980). In their framework, it is supposed that E(yt+hj�t) = x0t�,

where �t is the information set available at time t. Then,

yt+h = x
0
t� + ut+h; (5)

with ut+h = yt+h � E(yt+hj�t) so that the errors terms are forecast errors from using the

best predictor based on xt. It can be shown that ut+h is an MA(h � 1) process. Since
xt � �t, E(xtut+h) = 0 and OLS is consistent. Following our notation, we can write (5)

as yt = x0t�h� + ut, where ut =
Ph�1

j=0 cjet�j. OLS is then consistent only requiring pre-

determined regressors so that E[xt�h
Ph�1

j=0 cjet�j] = 0. Hence, such cases involve no issue

related to exogenous regressors and the fact that the regressors are pre-determined is an

implication of the rational expectations hypothesis. Still, as discussed in Remark 4 below,

GLS remains consistent with non-exogenous regressors.

2.1.2 Summary

Our purpose is to clarify the conditions under which OLS is consistent. Nothing new is

o¤ered. The main condition still remains E(xtut) = 0. One often reads that GLS should not

be applied because it requires exogenous regressors. Since OLS is routinely applied, some

researchers may think that issues of exogeneity are irrelevant for the consistency of OLS and

only argue that it is enough to ensure that the regressors and the innovations (the et) are

contemporaneously uncorrelated. Stating the condition as E(xt
Pt

j=0 cjet�j) = 0 (for the

linear processes considered) makes it clear that exogeneity of the regressors with respect to

all past innovations is needed except for the �RE case�and some knife-edge occurrences. Of

course, this requires working with the Wold representation for ut. It may well be the case

that one has some structural model not in this form and is able to deduce that E(xtut) = 0

directly. Then issues of exogeneity with respect to ut (or et) become irrelevant.

2.2 Conditions for the Consistency of GLS

Since ut is assumed stationary, let V (u) = �2e
, a symmetric, non-singular, and positive

de�nite matrix. Then, there exists a non-singular matrix D such that D0D = 
�1. The GLS
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estimate is given by �̂GLS = (X
0
�1X)

�1
X 0
�1y and, using (1),

�̂GLS � � =
�
X 0
�1X

��1
X 0
�1u = (X 0D0DX)

�1
X 0D0Du:

The main condition for consistency is that

p limT!1 T
�1X 0
�1u = p limT!1 T

�1X 0D0Du = 0: (6)

In other words, DX and Du must be uncorrelated, at least in large samples. Consistency

can be achieved as follows. Note �rst that we can choose D to be lower triangular. For

instance, the Cholesky decomposition gives 
 = LL0 with L lower triangular. We can set

D = L�1, which will be lower triangular. The elements of DX are of the form
Pt

j=1 dtjx
0
j,

which for row t involves only current and past x�s. The next condition is to ensure that Du

recovers the vector of innovations (e1; e2; :::; et; :::) at least in large samples. This is where

the assumption of the invertibility of the MA representation is important, i.e., that the roots

of C(L) be all outside the unit circle. Then, ut has an autoregressive representation of the

form A(L)ut = et. A common practice is to approximate this possibly in�nite AR process

by a �nite order one, with the order increasing with T , i.e., use the process

ut =
PkT

j=1 �jut�j + et;kT ;

with kT increasing at some appropriate rate as T increases. This is a standard approach in

the time series literature with a long history of useful applications. Note that as T increases,

et;kT approaches et. The details for the implementation are in Section 5. Then, we have,

limT!1E[X
0D0Du] = E[

P1
t=1(

Pt
j=1 dtjx

0
j)
0et] = 0; (7)

requiring only pre-determined regressors. Therefore, GLS is consistent without the need for

exogenous regressors.

Remark 1. Since D0D = 
�1, GLS is invariant to the choice of D. Hence, only pre-

determined regressors are needed whatever the choice of D, provided the invertibility condition

holds. Consider the AR(1) model with a forward �lter, i.e., D chosen to be upper triangular,

call it F . Ignoring the �rst and last observations F = D0, the condition for consistency is

E[(xt � �xt+1)(ut � �ut+1)] = E[(xt � �xt+1)((1� �2)ut � �et+1)] = 0;

which requires a) E[xt+1et+1] = 0, holding by assumption; b) E[xtet+1] = 0, satis�ed with

predetermined regressors; and c) E[(xt � �xt+1)ut] = 0, also holding with non-exogenous
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regressors since

E[(xt � �xt+1)ut] = E[(xt � �xt+1)
Pt

j=0 �
jet�j] = E[xt�

jet�j]� �E[xt+1�j�1et�j+1]
= �jE[xtet�j]� �jE[xt+1et�j+1] = 0;

since the last two terms are equivalent. What is needed is solely that there exist one decom-

position of 
�1 with D lower triangular and Du = e, at least in large samples.

Consider AR(1) errors, ut = �ut�1 + et. Ignoring the �rst observation for simplicity,

D =

26666664
1 0 0

�� 1
. . .

0 �� 1

37777775 (8)

and

p limT!1 T
�1X 0D0Du = p limT!1 T

�1PT
t=2(xt � �xt�1)(ut � �ut�1):

For this quantity to converge to zero, the conditions often advanced for (6) to hold are

E(xtut) = E(xtut�1) = E(xt�1ut) = 0. It is often argued that the condition E(xtut�1) = 0 is

problematic following (4); see Stock and Watson (2019), pp. 584-585, who use this reasoning

to argue that GLS requires exogenous regressors and, hence, have limited appeal in practice.

But this overlooks the fact that ut is a composite of the fundamental sources of variations,

namely et, and ignores the structure of the model. Also, assessing exogeneity conditions

based on the relation between xt and ut is not appropriate. Since the GLS regression is OLS

applied to the regression y� = X�� + e, where y� = Dy and X� = DX, issues related to the

exogeneity of the regressors need to be analyzed via the relation of X� to e and not of X to

u. There are no more u�s in the model. Indeed, we can write (6) as

T�1 (DX)0 (Du) = T�1
PT

t=2 (xt � �xt�1) et: (9)

Thus, for consistency, we need E (xt � �xt�1) et = 0, or E(xtet) = E(xt�1et) = 0, for all t,
which is satis�ed as long as the regressors are predetermined. There is no need to assume

exogenous regressors. Then, assuming � known, one can consistently estimate � using the

quasi-di¤erence regression

(yt � �yt�1) = (xt � �xt�1)0� + et; (t = 2; :::; T ): (10)
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When ut is general linear process, GLS simply amounts to OLS applied to the regression

(yt �
PkT

j=1 �jyt�j) = (xt �
PkT

j=1 �jxt�j)
0� + ekt; (t = kT + 1; :::; T ):

Remark 2. It is useful to expand on the condition (9). Suppose we apply GLS with some
arbitrary value j��j < 1. Then, with D� as de�ned by (8) with �� instead of �,

T�1 (D�X)0 (D�u) = T�1
PT

t=2 (xt � ��xt�1) (ut � ��ut�1)
= T�1

PT
t=2 (xt � ��xt�1) (et � (�� ��)ut�1)

= T�1
PT

t=2 (xt � ��xt�1) (et � (�� ��)(et�1 + �ut�2)):

Therefore, assuming pre-determined regressors, i.e., E(xtet) = E(xt�1et) = 0, for all t, what

is needed for consistency is either a) exogenous regressors so that E(xtet�1) = E(xtet�2) =

E(xt�1et�2) = 0, irrespective of the value of � and ��; or b) non-exogenous regressors and

� = ��. Accordingly, if the regressors are exogenous, GLS is consistent using any value of

��, including 0, so that OLS is consistent, a well-known result, see above. On the other

hand, with non-exogenous regressors, we need � = �� for consistency, i.e., the correct value

of the parameter of the serial correlation in ut. Of importance is the fact that when � 6= 0,
the value �� = 0 is not permitted, showing that OLS is indeed inconsistent as claimed above

using other arguments. This result can be extended to more general cases. The fact that

the correct GLS transformation is needed is exempli�ed by the arguments advanced by Flood

and Garber (1980) who argued, correctly, that applying an AR(1) correction to a model with

ARMA(1; 1) errors leads to GLS being inconsistent. However, unlike what they stated, this

does not mean that GLS is not applicable. It simply needs to be applied correctly.

Remark 3. An important implication of our result is the fact that unlike OLS, GLS is
consistent with lagged dependent variables as regressors. This follows given that (7) remains

0 when xt includes lagged dependent variables given E(yt�jet) = 0 (j � 1). Since in the

original model estimated by OLS, a lagged dependent variable implies E(xtut) 6= 0, OLS is
inconsistent. The GLS transformation can be viewed as a way to obtain a regression with

pre-determined regressors with respect to the relevant innovations et.

Remark 4. Contrary to the claim made by Hansen and Hodrick (1980), and re-iterated in

Hansen and West (2002), GLS is, in general, consistent with predictive regressions of the

type discussed in Section 2.1.1, provided the MA process is invertible. This follows trivially

since (7) is satis�ed if the regressors only include lagged values at delay h, i.e., the GLS

regression still only involves predetermined regressors with respect to the innovations et. We

show in the Supplement, Section S.4, that even for this case GLS performs much better.
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3 The Robustness of GLS

It is often argued that GLS may be less robust than OLS because a wrong speci�cation of the

process for ut may lead GLS to have higher MSE than OLS. We show that this is incorrect.

To have meaningful comparisons, we assume exogenous regressors so that both OLS and GLS

are consistent. Note �rst that GLS is consistent even when using a misspeci�ed model when

the regressors are exogenous and pre-determined. Suppose you assume that V (u) = �2e
�

while the correct speci�cation is V (u) = �2e
. Let 

�1
� = D0

�D� and 
�1 = D0D. Then,

T�1X 0
�1� u = T
�1X 0
�1� D

�1e = T�1(HX)0e
p! 0;

since HX with H = X 0
�1� D
�1 is simply a linear combination of all the regressors, which

are uncorrelated with the innovations at all leads and lags (and current value). We shall

show that when adopting a simple AR(1) speci�cation, it is possible to obtain GLS estimates

that performs no worse than OLS, and most often much better, irrespective of the true data-

generating process for the errors, as long as it is stationary. For reasons that will become

clear, we apply an AR(1) GLS with some known value �, i.e., OLS applied to the regression

(10). We ignore the initial condition for simplicity. We have the following results about the

relative MSE of OLS and GLS.

Theorem 1. Let ut be a zero mean stationary process and �̂GLS the estimate applying OLS to
(10) for a given value �. The scalar exogenous variable xt satis�es p limT!1 T

�1PT�j
t=1 xtxt+j =

Rx(j), corx(j) = Rx(j)=Rx(1), with similar de�nitions for coru(j). Also, hxu(0) is the

spectral density function at frequency zero of xtut, eRxu(1) = R �
�� cos(�)hx(�)hu(�)d�, andeRxu(2) = R ��� cos(2�)hx(�)hu(�)d� with hx(�) and hu(�), the spectral density function of xt

and ut, respectively. Then, limT!1(MSE(�̂GLS)=MSE(�̂OLS)) < 1if

�2 � 2�(1 + �2) eRxu(1)=hxu(0) + �2 eRxu(2)=hxu(0) < 2�2 corx(1)2 � 2�(1 + �2) corx(1):
The result in the previous Theorem, proved in the Supplement, is useful but opaque as

far as obtaining useful insights given the level of generality. The following corollary considers

the case with i:i:d: regressors. While restrictive, the results allow important insights that

still apply with a serially correlated regressor; see Section S.2 of the Supplement.

Corollary 1. Under the same conditions as in Theorem 1, except that xt � i:i:d:(0; �2x),

limT!1(MSE(�̂GLS)=MSE(�̂OLS)) < 1 if

�=(2(1 + �2))(1 + coru(2)) < coru(1) when � > 0;

�=(2(1 + �2))(1 + coru(2)) > coru(1) when � < 0:
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A necessary condition for such inequalities to hold is that � coru(1) > 0. To explore the

intuitive content, suppose that ut is an AR(1) process with parameter �u and � > 0. Then,

limT!1(MSE(�̂GLS)=MSE(�̂OLS)) < 1 () �(1 + �2u)� 2�u(1 + �2) < 0:

If � = �u, the condition is trivially satis�ed, as expected. Moreover, it is satis�ed unless

�u < 0:27, in which case we need 0 < � < 2�u. As will transpire from the simulations

results, � coru(1) > 0 is nearly also a su¢ cient condition unless coru(1) is small. This is

quite a strong result. It says that applying GLS with an AR(1) speci�cation will lead to an

estimate with lower MSE than OLS for a wide range of data-generating processes for ut by

simply quasi-di¤erencing the data with a parameter � that has the same sign as coru(1), the

�rst-order correlation coe¢ cient of ut. If coru(1) = 0, OLS performs better. This can occur

with serial correlation implying coru(1) = 0 and coru(j) 6= 0 for some j > 1. An example
is an MA(2) process of the form ut = et + �2et�2. We view such cases as knife-edge ones.

When coru(1) is small, the same results hold for a range given by 0 < � < 2�u.

GLS with a simple AR(1) speci�cation will beat OLS for a wide range of quasi-di¤erence

parameters whatever the true DGP for ut. So not only can we misspecify the nature of the

serial correlation but also allow a wide range of values for the quasi-di¤erence parameter,

and still have GLS perform better than OLS. Of course, we are not saying that adopting a

simple AR(1) with a value of � having the same sign as coru(1) is the best. For that, we

need a FGLS procedure that yields an estimate asymptotically equivalent to GLS with the

correct speci�cation for ut. We will cover in Sections 4-5, a method to achieve this goal. We

could extend the results to have alternative GLS procedures, e.g., some AR(k). The results

would be much more complex, though qualitatively similar. Hence, such extensions would

add little to the main message, namely the robustness of GLS.

We illustrate these issues using simulations in the Supplement. The results are in ac-

cordance with the theory. When coru(1) is �large�, GLS has smaller MSE than OLS when

the sign of the quasi-di¤erence parameter is the same as the sign of coru(1). If coru(1) is

�small�GLS is better when � is in the vicinity of coru(1). We also consider a very simple

procedure to obtain a GLS estimate that is (almost) never worse than OLS, subject to very

minor random deviations. First use a test for serial correlation at delay one; we use the LM

test of Godfrey (1978). If the test does not reject the null hypothesis of no serial correlation,

then use OLS. This will occur when coru(1) is �small�. If the test rejects, estimate coru(1)

via the sample �rst-order serial correlation of the OLS residuals. If it is positive (negative),

use any positive (negative) value of the quasi-di¤erencing parameter �. To make clear that
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any value of � will do, in the simulations we simply draw � from a Uniform distribution

with support (0:1; 0:9) when positive value are required and with support (�0:9;�0:1) when
negative values are in order. The hybrid-GLS procedure yields more precise estimates for

almost all cases, with minor exceptions when coru(1) is �small�.

Of course, using the incorrect quasi-di¤erences does not lead to the best outcome as GLS

is optimal only when the correct speci�cation is used. Hence, in order to have estimates

as good as possible (lowest MSE), we need to obtain a parameterization of the DGP for

the errors that is a good approximation to the true one without any prior knowledge about

the true structure. This leads to consider Feasible GLS (FGLS), which we tackle in the

next section. Still, the results of this section are important in that they suggest that some

departures from the true speci�cation due to misspeci�cation or biased parameter estimates

will not make FGLS being less precise than OLS.

4 Issues Related to Constructing a Feasible GLS Estimate

We consider �rst the case with AR(1) residuals to present the main issues of interest. The

model with non-exogenous regressors is

yt = �xt + ut; ut = �ut�1 + et; (11)

with xt = (1; wt)
0, wt = vt + et�1, vt; et � i:i:d:N(0; 1) independent of each other. In

practice, one needs a feasible version of the GLS estimate. Here, the Cochrane and Orcutt

(1949) procedure will not work since it estimates � using the OLS residuals, i.e., �̂CO =PT
t=2 ût�1ût=

PT
t=2 û

2
t�1, where ût = yt � x0t�̂OLS. Without exogenous regressors, �̂OLS is

inconsistent and so will �̂CO. A method valid without exogenous regressors is to �rst estimate

� using Durbin�s regression (Durbin (1970)), which simply re-writes (10) as

yt = �yt�1 + x
0
t� � �x0t�1� + et: (12)

Then, a consistent estimate of �, say �̂D, can be obtained estimating (12) by OLS. Using the

estimate on the lagged dependent variable, one can then construct a feasible version of the

quasi-di¤erence regression (10) using

(yt � �̂Dyt�1) = (xt � �̂Dxt�1)0� + et; (t = 2; :::; T ); (13)

to estimate �. The estimates of � and � will be consistent with regressors exogenous or not

as long as they are pre-determined. Alternatively, one can simply estimate � using OLS
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applied directly to the Durbin regression (12), though this is less e¢ cient since it does not

amount to a GLS procedure. Of course, one can iterate though we do not pursue this avenue.

It is useful to illustrate the issues via simple simulation experiments. The speci�cations

are the same as (11) for the AR(1) case and is yt = x0t� + ut, where xt = (1; wt)
0 with

wt = vt + et�1, and ut = �ut�1 + et is an AR(1) process; vt; et � i:i:d:N(0; 1) independent of
each other. We set u0 = 0, without loss of generality, � = (1; 1)0, � = 0:8 and T = 500. The

simulations are based on 10,000 replications. Note that E (etxt+1) 6= 0, so that the regressors
are not exogenous. Accordingly, E(xtut) 6= 0 and OLS is inconsistent. Note that E (etxt) = 0
so that no �classical�endogeneity problem is present. Also E(xtet�j) = 0 (j > 0) so that

GLS is consistent. We consider the following regressions, where � = ��:

a) yt = x0t� + ut (OLS); b) yt = x0t� + �yt�1 + x
0
t�1� + eut (Durbin)

c) yt � �yt�1 = (xt � �xt�1)0 � + et (GLS); d) yt � �̂yt�1 = (xt � �̂xt�1)0 � + et (FGLS)

The �rst is simply OLS; the second is the Durbin regression from which consistent estimates

of � and � can be obtained. The third is the infeasible GLS based on the known value of �

(to be used as a benchmark). The fourth is a feasible GLS regression for which we shall use

two estimates of �: a) that used in the Cochrane and Orcutt procedure based on

�̂ =
PT

t=2 ût�1ût=
PT

t=2 û
2
t ; (14)

where ût = yt � x0t�̂OLS. As argued above, this should lead to an inconsistent estimate
of �. This method is labelled CO-FGLS. b) The estimate of � obtained from the Durbin

regression, with the method labelled as FGLS. The results are presented in Table 1.

Obviously, the bias and MSE of OLS is very large, in accordance with the fact that it is

inconsistent. The Durbin and FGLS methods lead to very small biases, in accordance with

the fact that they yield consistent estimates. The FGLS has better �nite sample properties

and performs nearly as well as the infeasible GLS method. The CO-FGLS method has

surprisingly small bias (and MSE) despite being inconsistent. This can be explained as

follows. The estimate of � given by (14) has a substantial bias so that the mean of the

estimate of � is 0.63 instead of 0.8. As argued in Section 3, it is better to do any kind of GLS

method instead of OLS. Here, the quasi-di¤erencing operation is biased but still e¤ective in

substantially reducing the bias in the estimate of �, though not as well as when using a less

biased and consistent estimate as provided by the Durbin regression and used in the FGLS

method. Using simulations with T = 10; 000, we veri�ed that the bias and MSE of OLS

and CO-FGLS remains the same, while those for Durbin, GLS and FGLS are nearly zero.
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The FGLS estimate of � is, however, more e¢ cient than that obtained from the Durbin

regression with a MSE 31% smaller in the simulations. FGLS also remains more e¢ cient in

large samples since the Durbin regression does not impose relevant restrictions; see Remark

6 for more details. Hence, we shall only consider the FGLS method.

5 FGLS for the general case

We now present the recommended feasible method, applicable for all cases except with

lagged dependent variables as regressors, discussed later. Assuming invertibility, we can

approximate the linear processes (2) by some autoregression whose order increases with T ,

i.e., use ut =
PkT

j=1 �jut�j + ekt, with kT !1 at some appropriate rate so that ekt is nearly

i:i:d:. Then (12) and (13) are replaced by

yt =
PkT

j=1 �jyt�j + x
0
t� �

PkT
j=1 x

0
t�j�j + ekt; (15)

(yt �
PkT

j=1 �̂
D
j yt�j) = (xt �

PkT
j=1 �̂

D
j xt�j)

0� + ekt; (t = kT + 1; :::; T ); (16)

where �̂Dj (j = 1; :::; kT ) are the OLS estimates of the coe¢ cients associated with the lagged

dependent variables from regression (15). Of course, one can iterate starting with any

consistent estimate. However, as our simulations will show the estimates have very good

properties so that iterations are not warranted. The FGLS estimate can then be computed

in two steps: 1) For any given kT , estimate (15) by OLS and use BIC to select the lag length

k�T . The search is made for kT 2 [0; kmaxT ] and the method suggested by Ng and Perron (2005)

is used to ensure a proper comparison across models with di¤erent values of kT , i.e., using the

same e¤ective number of observations, namely T � kmaxT . The maximal order kmaxT increases

with T , but in practice the method is robust to reasonable values. We use kmaxT = 12 when

T = 200; 500. Hence, BIC selects k�T = argminkT [ln(�̂
2
ek�) + (ln(T � kmaxT )=(T � kmaxT ))kT ],

where �̂2ek� = (T � kmaxT )�1
PT

t=kmax+1
ê2kt and êkt are the residuals from applying OLS to

(15) using observations t = kmaxT + 1; :::; T for each value of kT . 2) From step 1, use the

estimates �̂Dj (j = 1; :::; k
�
T ) to construct the quasi-di¤erenced variables (yt �

Pk�T
j=1 �̂

D
j yt�j)

and (xt �
Pk�T

j=1 �̂
D
j xt�j). The FGLS estimate of � is then obtained applying OLS to the

regression (16) with kT = k�T using the observations t = k
�
T + 1; :::; T .

The FGLS estimate will have the same asymptotic properties as the infeasible GLS

estimate. The arguments are as follows. If the process is an AR(p), BIC will select a value k�T
that converges in probability to p. The estimates �̂Dj are consistent for �j (j = 1; :::; k

�
T ). For

general linear short-memory processes k�T = Op(ln(T )), which increases to in�nity. Hence,
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jj�̂Dj ��jjj = Op(T�1=2), where jj � jj is the Euclidean norm of the vector. This holds following
Berk (1974) under the same conditions, basically that kT !1 and k3T=T ! 0. Since these

rates allow a log rate of increase for kT , the same result holds when selecting kT using BIC,

which implies a log rate of increase as shown in Hannan and Deistler (2012). Given the

consistency and rate of convergence of �̂Dj , it is then easy to show the equivalence between

FGLS and the infeasible GLS. The estimation of the parameters �̂Dj has no �rst-order e¤ect.

Since the technical arguments involve only modi�cations of already established results, we

omit the details. Hence, the asymptotic distribution is given by

p
T (�̂ � �) d! N(0; p limT!1 �

2
e(X

0
�1X)�1);

and the limit variance is consistently estimated by �̂2ek[(xt�
Pk�T

j=1 �̂
D
j xt�j)

0(xt�
Pk�T

j=1 �̂
D
j xt�j)]

�1,

where �̂2ek = (T � k�T )�1
PT

t=kT+1
ê2kt, with êkt the estimated residuals from applying OLS to

the FGLS regression (16) with kT = k�T . The main idea is to have some transformations to

make the regression residuals as close as possible to the contemporaneous true errors and

then have this regression involve only past regressors so that only pre-determined regressors

are required. Asymptotically, it works. It is a standard approach in the time series literature.

Of course, in �nite samples, some leftover correlation might be present. Then, it is an issue

about whether the asymptotic approximation and the choice of the tuning parameters k�T
provide good approximations in �nite sample. In Section 6, we provide extensive simulations

to show that a) the mean, variance and MSE are close to that which could be obtained using

the infeasible GLS procedure; b) the coverage rates of the con�dence intervals are near the

nominal level, i.e., the asymptotic distribution is a good approximation; c) the length of the

con�dence intervals are shorter (higher precision) compared to other methods.

Remark 5. Amemiya (1973) analyzed feasible GLS when the errors ut are an ARMA(p; q)
process approximated by an AR(kT ) with kT increasing with T . He uses the OLS residuals

and assumes �non-stochastic�regressors. Our results show that his proposed method is valid

only under the assumption of exogenous regressors. Still, our approach is closely related. For

a similar more recent treatment, see Fang et al. (2023). For more advanced treatments, see

Hannan and Kavalieris (1986) and Hannan and Deistler (2012), among many others.

Remark 6. In order to improve upon OLS, Baillie et al. (2024) proposed using the Durbin
regression (15). They claim correctly that the estimate of � is consistent whether the re-

gressors are exogenous or not. However, this leads to a less e¢ cient estimates compared to

FGLS, which can be substantial even though it remains more e¢ cient than OLS. Additional
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simulation experiments showed our FGLS procedure to be more e¢ cient mostly due to the

fact that with serially correlated regressors issues of multicolinearity reduces e¢ ciency; see

also González-Coya and Perron (2024b) who present evidence of very poor power of tests

when using the Durbin regression for cases calibrated to real data. Hence, we shall not

further consider methods to estimate � based on (15). As discussed below, it o¤ers no ad-

ditional advantage in extended contexts such as regressors with lagged dependent variables

and non-predetermined regressors. Their method need not impose the so-called common fac-

tor restriction. But our goal is to establish the most e¢ cient method for the linear model

adopted, which is GLS. If one views the common factor restriction as unreasonable, the

problem becomes di¤erent and we have nothing to say about this 2.

Example 2. González-Coya and Perron (2024b) consider issues related to testing the Un-
covered Interest Parity (UIP) condition. Let st = ln(St) and ft;h = ln(Ft;h), where St and

Ft;h are the levels of the spot exchange rate and the h-period forward exchange rate at time

t. The UIP condition is also frequently expressed as E (st+h � stj�t) = (ft;h � st). Since
st+h � ft;h is an approximate measure of the rate of return to speculation, we can express
the e¢ cient-markets hypothesis as ft;h = E (st+hj�t). This implies forecast errors st+h� ft;h
uncorrelated with information available at time t, �t. The Fama (1984) regression is

st+h � st = �+ �(ft;h � st) + ut+h; (17)

with h = 4 for 1-month forward rates and h = 12 for 3-month forward rates, when using

weekly data. Under the e¢ cient-market hypothesis, H0 : � = 0; � = 1 so that the log of

the forward rate provides an unbiased forecast of the log of the future spot exchange rate.

Derivations from � = 1 are sometimes interpreted as a measure of the variation of the

premium in the forward rate. The component ut+h is a forecast error having an MA(h� 1)
structure. It is derived from an assumption of rational expectations with no frictions. It

seems reasonable to argue that frictions are present such that E (st+h � stj�t) = (ft;h � st)
holds on average and that temporary serially correlated deviations could be present. Then

the model is still (17) but with vt+h instead of ut+h, where vt+h is a more general linear

process that depends on past innovations; e.g. an ARMA(1; h). Then, OLS is consistent,

2For the record, which is incorrectly stated in their paper, their prior versions (e.g., arXiv:2203.04080v1)
before presenting our work at the NBER-NSF time series conference in September 2022 labelled the method
as DynReg and argued that it was a device to improve the �nite sample coverage rate over OLS+HAC. It
continued to claim that OLS was consistent and GLS not when the errors are serially correlated. Their newer
versions changed the label of the method as the Durbin regression and they now claim that OLS is inconsistent
while GLS is. These changes were in no doubt fostered by our work, but improperly acknowledged.
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though not e¢ cient under (17) but inconsistent with vt+h instead of ut+h if (ft;h � st) is
not exogenous with respect to past innovations. On the other hand, FGLS is consistent and

e¢ cient under both cases. A negative estimate of � in regression (17) is a robust �nding

in the literature; see Engel (1996). This is known as the �forward discount anomaly�; it

is a widespread empirical �nding that the returns on nominal exchange rates appear to be

negatively correlated with the lagged forward premium. Using data from a variety of country

pairs, González-Coya and Perron (2024b) replicate this �nding using the OLS estimates.

However, the FGLS estimates are drastically di¤erent. They are mostly above 0. They

interpret the large di¤erences between the OLS and the FGLS estimates as evidence of OLS

being inconsistent, which could account for the forward discount anomaly. To substantiate

this claim, they present evidence of serial correlation in the errors at lags greater than h�1.

5.1 The case with lagged dependent variables as regressors

As stated in Remark 3, GLS is consistent with lagged dependent variables as regressors.

However, alternative methods to get consistent estimate of the parameters �j (j = 1; :::; k
�
T )

are needed to construct the FGLS estimate. Consider the model

yt =
Ppy

j=1 �jyt�j + x
0
t� + ut;

where ut = C(L)et is again a linear invertible stationary short-memory process and xjt
(j = 1; :::; k) are pre-determined regressors. When constructing the Durbin regression, one

pre-multiply both sides by (1 �
Pk�T

i=1 �jL
i) for some k�T selected via the BIC information

criterion. Assuming k�T = py for simplicity, this leads to the regression

yt =
Pk�T

j=1 �
�
jyt�j + (x

0
t�j �

Pk�T
j=1 x

0
t�j�j) + ekt; (18)

where ��j = �j + �j for j = py and �j = (�j1; :::; �jk) with �ji = �ji�j. Accordingly, the

parameters �j cannot be identi�ed using the coe¢ cient on the lagged dependent variable

��j since �j is unknown. However, as suggested by Wallis (1967), one can obtain consistent

estimates using the fact that �j = �ji=�ji. Hence, one simply estimate the regression model

(18) by OLS, get estimates �̂j and �̂ji and construct the estimates �̂
D
j = �̂ji=�̂j. One can then

proceed to construct the FGLS estimates as described in Step 2 above. The only drawback

is that if the number of regressors xjt is greater than one, there are multiple choices for each

value of i. In principle, choosing anyone will lead to a consistent estimate in well speci�ed

models. Simulations and applications reported in González-Coya and Perron (2024b) show
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that the results are not sensitive to the choice of the variable used. This is because GLS is

quite robust to small variations in the quasi-di¤erencing parameters �j.

In the case of predictive regressions assuming rational expectations, only lagged depen-

dent variables may be included as regressors, in which case the procedure described above

is not applicable. These take the form yt+h = �0 +
Pm

j=1 �jyt�j + ut+h, where m < h. For

instance, in Hansen and Hodrick (1980), h = 13 and m = 2 with yt+h = st+h�ft, where st+h
is the (log) spot exchange rate at time t+h and ft the (log) h-period forward exchange rate

at time t. Under rational expectations, all coe¢ cients should be 0. Both OLS and GLS are

consistent since past regressors are uncorrelated with ut+k, even if the latter have anMA(12)

structure given the assumption of rational expectations. One can construct consistent es-

timates of �j using the OLS residuals, say eut, given that OLS is consistent. Let the �tted
value obtained for an OLS regression of eut on kT lags be eut =Pk�T

j=1 �̂
O
j eut�j + eetk. The FGLS

estimates are obtained using �̂Oj instead of �̂
D
j in (16). If rational expectations does not hold

so that the errors are, say, an AR(p) process (e.g., adaptive expectations), then both OLS

and FGLS are inconsistent, though infeasible GLS remains consistent. Another example is

the estimation of local projections to estimate impulse response functions as suggested by

Jordà (2005). For a particular equation of the VAR model, these take the form

yt+s = c
s +Bs+11 yt�1 +B

s+1
2 yt�2 + :::+B

s+1
p yt�p + ut+s; (19)

for s = 0; 1; :::; h, where h is the maximal horizon for the impulse response functions. Then,

ut+s is a forecast error having an MA(s� 1) structure, uncorrelated with all past values of
the variables. OLS is consistent and we can estimate the parameters for the autoregressive

representation using the OLS estimates ût+s obtained from (19). Lusompa (2023) presents

an alternative more complex procedure.

5.2 Issues related to pre-determined regressors

The crucial condition for GLS to be consistent is that the regressors be pre-determined. of

course it is possible to concoct a model which implies that OLS is consistent while GLS is

not because the regressors are not pre-determined. Take the following example:

yt = �+ �xt + ut; t = 1; : : : ; T; (20)

xt = vt + �t; ut = �uut�1 + "
u
t + ��t�1 = �uut�1 + et; (21)

where et = "ut + ��t�1, �t; "
u
t � i:i:d:N(0; 1) are independent of each other. We allow vt to

be serially correlated, with vt = �vvt�1 + "
v
t , where "

v
t � i:i:d:N(0; 1) independent of �t and
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"ut . It is then the case that E(xtut) = 0 so that OLS is consistent and when using (20) as

the regression, E(xt�1et) 6= 0, so that GLS is inconsistent. This is indeed the case. Note,

however, that allowing �t to be serially correlated renders OLS inconsistent. This case is one

with an unobserved variable in the innovations correlated with only the past regressors. If

we simply change �t�1 in (21) to �t or allow �t to be serially correlated, OLS, GLS, Durbin

and so one are no longer consistent. What is common is the case with �t�1 being an observed

variable; e.g., the lagged value of some covariate xt�1. Here, one can simply introduce xt�1
as a regressor and use the regression

yt = �+ �xt + �xt�1 + u
�
t ; t = 1; : : : ; T: (22)

The error term u�t = �uu
�
t�1+"

u
t is then purged of the component �t�1 and one can apply GLS

provided the lagged values fxt�2; xt�3; :::g are not subject to any other source of correlation
with et independent of �t�1. In other words, all lagged vales of xt�1 can be a function of

�t�1 but not correlated with ut via some other independent component. If that would be the

case then, one could simply add a further lagged value xt�2 as a regressor in (22). And so

on, if needed. Hence, with innovations a¤ected by omitted observable variables, the problem

is easy to �x. Simply include enough lags of the covariates as regressors. This is in fact

the reason why Baillie et al. (2024) advocate using the Durbin regression as a means to

have estimates robust to non-predetermined regressors. They include all lags of both the

dependent and original regressors as covariates. Doing so, they lose considerable e¢ ciency.

Our aim is geared to provide an e¢ cient method.

One can test whether the regressors are pre-determined or not. What causes the corre-

lation between the innovations and the regressors is of no consequence. It could be some

omitted lagged variable, some errors in variables correlated with lagged regressors, or what-

ever. The fact is that non-determinedness implies correlation between some variables and

the errors means that tests can be performed for its potential presence. What is needed are

estimates of the residuals based on a consistent estimate of � in (20) whether or not exogene-

ity or pre-determinedness hold. When the omitted variable is observed, this can be achieved

via the Durbin regression (12). The main idea is very simple and involves using a standard

variable addition test (e.g., Engle (1982)). The steps are the following: a) Estimate the

Durbin regression (15) and get the estimate �̂
D
; b) construct the residuals ûDt = yt � �̂

D
xt;

c) De-mean the residuals to obtain euDt = ûDt �T�1PT
t=1 û

D
t ; d) Perform an LM test for vari-

able addition using lagged values of xt. This can be done sequentially using the �rst, then

second, and so on lags. Upon a rejection, include the relevant lagged variables as regressors
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in the main equation (20); e) Apply FGLS as outlined above to this regression. This will

lead to a consistent of estimate of � with regressors exogenous or not. One can also select

the lagged regressors to be included via information criteria, such as the BIC.

When the omitted variable is unobserved, things are more complex. In general, none

of the procedures discussed here will be consistent except in some special cases such as the

model described in (20). If this type of one-period lag endogeneity is deemed relevant, or

some variations that imply the same qualitative results, then one can use the OLS estimate to

construct the residuals since it is consistent. Upon a rejection using the variable addition test,

GLS or FGLS should not be applied if such lagged endogeneity issues are a concern. If the

researcher is con�dent that the regressors are exogenous and contemporaneously uncorrelated

with the innovations, then OLS is preferred as it is consistent, while GLS is not. Baillie et al.

(2024) also cannot handle innovations correlated with past regressors via some unobserved

variable. Cases with OLS consistent while GLS is not can be viewed as knife-edge cases

in the sense that minor changes in the speci�cation renders OLS inconsistent; e.g., adding

lagged regressors or having the omitted unobserved variable being serially correlated. Surely,

many cases with exogenous regressors and non-pre-determined variables for which OLS is

consistent and GLS is not exist. Practitioners must be judicious in applying any method.

6 Simulation results

The issues addressed are the following: the bias, variance and MSE of the FGLS estimates

as well as the exact coverage rate and lengths of the con�dence intervals. We also report

similar results for the infeasible GLS procedure that uses the true value of 
 to construct

the estimate �̂GLS = (X 0
�1X)
�1
X 0
�1y, with V ar(�̂GLSjX) = �2e(X

0
�1X)�1, which is

speci�c to the data-generating process and uses the true values of the parameters. This

is done to assess the extent to which the FGLS procedure is able to provide as precise an

estimate as possible. For AR(1) processes, we also report results for the Cochrane and Orcutt

(1949), labelled CO. For the FGLS procedure, we considered three methods to select the lag

length of the autoregressive approximation: AIC (Akaike (1973)), BIC (Schwarz (1978)) and

the MAIC suggested by Ng and Perron (2001). The best results were obtained using the

BIC, as suggested in Section 5, so we omit results with AIC or MAIC.

It is often the case, with rational expectations models, that the theory predictsMA(h�1)
errors whenever forecasts at horizons h are involved. In the simulations, we shall consider

errors generated from MA(1) processes. It is useful to also consider an approximate GLS

procedure for MA(1) errors for the following reasons: a) an autoregressive approximation
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selected using the BIC may yield a rather parsimonious model that fails to capture the

extent of the serial correlation in the errors; b) we may have prior knowledge that the errors

are an MA(1) process. Hence, we also consider the following approximate GLS procedure,

labelled, GMA. It is based on the OLS regression y�t = x
�
t�+ et, where y

�
t =

Pt�1
j=0(��̂)jyt�j,

x�t =
Pt�1

j=0(��̂)jxt�j with �̂ the MLE (exact or approximate) of � for eut = et + �̂et�1, whereeut = yt � xte� with e� the OLS estimate from the regression (15) with kT = int[4(T=100)2=9].

We consider the DGP yt = �+�x1t+ut. We set (�; �) = (0; 1), without loss of generality.

The sample size is T = 200. For the errors ut, we consider the following speci�cations: 1)

AR(1): ut = �uut�1+et; �u = f�0:5; 0:0; 0:2; 0:5; 0:8g; 2) AR(2): ut = �u1ut�1+�u2ut�2+et;
(�u1; �u2) = f(1:34;�0:42); (0:5; �0:3); (�0:5; 0:3); (0:0; 0:3); (0:5; 0:3)g; 3) MA(1): ut =
et + �et�1; � = f�0:7;�0:4; 0:5g; 4) ARMA(1; 1): ut = �uut�1 + et + �et�1; (�u; �) =

f(�0:5;�0:4); (0:2;�0:4); (0:2; 0:5); (0:5;�0:4); (0:5; 0:5); (0:8;�0:4); (0:8; 0:5)g. Through-

out, et � i:i:d: N(0; 1) and x1t = �xx1t�1 + vt + et�1 with vt � i:i:d:N(0; 1) independent of
et. When  = 0, the regressors are exogenous, while  6= 0 imply non-exogenous regressors.
We report results for �x = 0:8, while the Supplement reports results for �x = 0; see Tables

S.4-S.7. We use 10,000 replications and T = 200, 500. The results are presented in Tables

2-5. We focus our discussion on the MSE and the con�dence intervals.

To construct the con�dence intervals, we simply use the fact that, for some given lag

length k�T , the FGLS estimate is simply OLS obtained from the regression (16), so that an

estimate of (T times) the asymptotic covariance matrix is V ar(�̂FGLS) = �̂2e(X
0
k�T
Xk�T

)�1,

where Xk�T
= (x0k�T+1; :::; x

0
T )
0, xt = (1; x�1t) for t = k

�
T + 1; :::; T , with x

�
t = xt �

Pk�T
j=1 �̂

D
j xt�j

and �̂2e = (T � k�T )�1
PT

t=k�T+1
ê2tkT , with êtkT the OLS residuals from estimating regres-

sion (16) by OLS. For the GMA procedure the variance is estimated similarly, except

that V ar(�̂GMA) = �̂2e(X
�0X�)�1, where X� = (x�01 ; :::; x

�0
T )
0, x�t = (1; x�1t) for t = 1; :::; T ,

with x�t =
Pt�1

j=0(��̂)jxt�j. To construct the con�dence interval of the OLS estimate, we
use the so-called HAC standard errors based on the weighting scheme suggested by An-

drews (1991) with automatic bandwidth selection. This leads to the following estimate of

the asymptotic covariance matrix: V ar(�̂OLS) = (T�1X 0X)
�1
�̂ (T�1X 0X)

�1, where �̂ =

T�1
PT�1

j=�T+1w(j=m)�̂v(j) with �̂v(j) = v̂tv̂
0
t�j for j � 0 and �̂v(j) = T�1

PT
t=�j+1 v̂t+j v̂

0
t

for j < 0, and v̂t = xt(yt � xt�̂OLS). We use the quadratic spectral kernel recommended
by Andrews (1991) for which w(z) = (3=z2) (sin(z)=z � cos(z)), where z = 6�z=5, and

m is the bandwidth parameter constructed using the automatic bandwidth selection using

an AR(1) approximation. The con�dence intervals are constructed in the usual way, via

�̂A;i � z1��=2 � V ar(�̂A)
1=2
ii , where A refers to the estimator (OLS, GLS, FGLS, etc...), i is
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the index for the coe¢ cient, z1��=2 is the 1 � �=2 quantile of the N(0; 1) distribution. We
use � = 0:05, i.e., two-sided 95% con�dence sets. We �rst present results with exogenous

regressors that allows a proper comparison since both OLS and FGLS are consistent.

6.1 Simulations with exogenous regressors

Here  = 0 and both OLS and FGLS are consistent. The following features are noteworthy:

1) The MSE of the FGLS estimate is never higher than when using OLS. It can be dramat-

ically lower; e.g., the empirically relevant case of the AR(2) with parameters 1.34 and -0.42

for which the reduction is 96% when T = 200. Overall, the reductions can be very substan-

tial. 2) In most cases, the MSE of FGLS are near those obtained using the infeasible GLS,

so the suggested procedure nearly achieves the best possible outcome. This is even the case

for processes having an MA component, which are notoriously di¢ cult to approximate using

low order autoregressions. 3) When the error process is strongly correlated the reduction in

MSE comes from both a reduction in bias and variance. When the extent of the correlation

is small, most of the reduction is due to a decrease in variance. 4) As discussed in Section 3,

an AR(2) with parameters (0.0,0.3) causes problems when applying a �rst-order correction.

This is no longer the case selecting kT using the BIC. 5) For the AR(1) case, using the

Cochrane and Orcutt (1949) procedure (valid here because of exogenous regressors) yields

results that are nearly identical to using the more general method advocated. This shows

that FGLS adapts well to the generating process in that a method tailored to work for an

AR(1) does not perform better. 6) For theMA(1) case, the GMA performs as well as FGLS

and the infeasible GLS. In all cases, the gains are mostly due to a decrease in variance.

The results for the coverage rates of the con�dence intervals with nominal level 95% are

presented in the last two column-panels of Tables 2-5. The following features are noteworthy.

1) In most cases, the exact coverage rates for the FGLS method are within 1% of the nominal

level, hence not statistically di¤erent. This holds even with strong correlation in the errors

unlike the method based on OLS, which is subject to high size distortions as extensively

documented previously in the literature. The main reason for why the coverage rates of the

FGLS estimates are near the nominal 95% level is because it involves residuals that are nearly

i:i:d:, in which case the Central Limit Theorem (CLT) is a good approximation even for small

samples. The OLS method involves the product xtut which can be strongly correlated, in

which case a much large sample is needed for the CLT to provide a good approximation.

2) The length of the con�dence set using FGLS is always shorter than that obtained with

OLS. The di¤erences are larger as the process is more strongly correlated. For instance, in

23



the case of the AR(2) with parameters 1.34 and -0.42, the length of the con�dence interval

with FGLS is 77% smaller. With i:i:d: regressors (�x = 0), see the Supplement, the same

qualitative results hold, though the coverage rates of the con�dence intervals for OLS are

close to the nominal level 95% in all cases (similar to FGLS) given that xtut is less correlated.

Overall, the simulations show that the suggested FGLS procedure with BIC to select the

lag length can do no worse than OLS even with near zero correlation. It yields estimates

with much lower MSE, especially as the strength of the serial correlation increases. This is

achieved with no cost and some bene�ts to the coverage rates of the con�dence intervals and

a substantial reduction in their lengths.

6.2 Simulations with non-exogenous regressors

The speci�cations are the same except that now  6= 0. Accordingly, xt is not an exogenous
regressor, it is simply pre-determined. We consider two values of , namely  = 0:25 (weak

correlation) and  = 0:50 (strong correlation). The results are presented in the second and

third horizontal panels of Tables 2-5. Note that the condition E(xtut�1) = 0 usually used to

justify the consistency of GLS is not satis�ed. Still, the results will show its irrelevance as

FGLS performs very well while OLS very poorly. This accords with the theoretical discussion.

The following features are noteworthy. 1) For the MSE (and bias and variance), much of

the same results hold as with exogenous regressors. Again, FGLS performs almost as well as

the infeasible GLS. 2) For MA(1) processes the approximate GLS, labelled GMA, performs

slightly better than FGLS, when T = 200; the di¤erences are substantially reduced when

T = 500, in which case both performs nearly as well as the infeasible GLS. 3) Across all

cases, the main di¤erence is the very large bias and MSE of OLS. For instance, for an AR(1)

with parameter �u = 0:8, the MSE is about 23 times larger than FGLS when T = 200 and

 = 0:5 (and 55 times larger when T = 500). There are even more pronounced examples

like the AR(2) with parameters (1:34;�0:42) for which the di¤erences are 149 times larger

when T = 200 and 363 times when T = 500. Both the bias and variance of OLS are much

larger than those with FGLS for both T = 200; 500, given that OLS is inconsistent.

The results for the coverage rates of the con�dence intervals are presented in the last two

column segments of Tables 2-5. The following features are noteworthy. 1) The results for

OLS are meaningless. The coverage rates are all over the map and can be near 0 with strong

correlation in the errors. Also, they get noticeably worse as T increases. 2) For FGLS, the

coverage rates are near 95% for AR(1) errors. For AR(2) errors, we see some less accurate

coverage rates for  = 0:5. 3) For MA(1) errors, the coverage rates of GMA and FGLS are
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good when  = 0:25, but more precise with GMA when  = 0:5. 4) For ARMA(1; 1) errors,

the coverage rates of FGLS are good for  = 0:25 but less so for  = 0:5.

The results for the case with i:i:d: regressors (�x = 0) are presented in the Supplement.

The same qualitative conclusions hold. Overall, the simulations show that the suggested

FGLS procedure with BIC to select the lag length is by far superior compared to OLS.

Remark 7. As discussed in Section 2.1.1 and Remark 4, in the rational expectations case,
both OLS and GLS are consistent. Simulation experiments in the Supplement show that, with

exogenous or non-exogenous regressors, FGLS is by far superior to OLS in terms of MSE

and length of the coverage rates, with results similar to the case with exogenous regressors.

Remark 8. González-Coya and Perron (2024b) present simulation results about the power
of tests on � for cases calibrated to real data. With exogenous regressors, the tests based on

all methods have nearly the correct size while FGLS has the highest power by a wide margin

over the Durbin regression and OLS, which have very little power. When the regressors are

non-exogenous, OLS has distorted size, as expected, but otherwise the relative power functions

remain the same. The poor performance of the tests based on the Durbin regression steams

from the fact that with regressors that are serially correlated, as is usually the case, the

introduction of all the lagged regressors creates a collinearity problem that in�ates the MSE

of the estimates and thereby reduces power. This is avoided when using FGLS since the �nal

regression is a simple transformation of the original regressors. Also, the relative power can

be deduced by looking at the length of the con�dence intervals, which we report.

Remark 9. If heteroskedasticity in the innovations is a concern, two avenues are possible.
The �rst is to correct the standard errors using a heteroskedasticity-robust covariance matrix

as suggested by, e.g., White (1980) or subsequent variations. Our recommendation is to

apply a further FGLS correction as suggested by González-Coya and Perron (2024a). It is

based on an Adaptive Lasso procedure to �t the skedastic function. The method and some

simulation results are presented in the Supplement, Section S.5. Overall, further reduction

in the MSE are possible even using incorrect covariates to estimate the skedastic function

as long as there is some correlation between the covariates used in the Lasso speci�cation

and those in the true skedastic function. The coverage rate of the con�dence intervals have

an exact size close to the nominal level and the lengths are smaller compared to applying

OLS or correcting only for serial correlation. With homoskedastic innovations, the results

are equivalent to those obtained correcting only for serial correlation. Hence, correcting for

heteroskedasticity when it is not present has no detrimental e¤ect.
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6.3 The case with a non-invertible process

We now consider the case with non-invertible errors with the roots of C(L) inside the unit

circle. For motivation, let us revisit the example discussed in Section 2.1.1. The predictive

model states that E(yt+kj�t) = x0t�, where �t is the information set available at time t.

Then, yt+k = x0t� + ut+k, with ut+k = yt+k � E(yt+kj�t) so that the error terms are forecast
errors from using the best predictor based on xt. It can be shown that ut+k is anMA(k� 1)
process of the form ut+k = et+k+ c1et+k�1+ ::::+ ck�1et+1, with et � i:i:d: (0; �2e). Since xt �
�t, E(xtut+k) = 0, OLS is consistent and can be applied with the relevant HAC correction.

For simplicity and without loss of generality we shall restrict ourselves to the case of MA(1)

errors. Suppose that yt is an AR(2) process with parameters (1:34;�0:42). Suppose that
k = 2, then ut+k is an MA(1) with parameter 1.34. Hence, the root is inside the unit

circle and the process is non-invertible. In this case, OLS is consistent since it only requires

E(xtut+2) = 0 which is guaranteed by the rational expectations hypothesis.

Things are more complex with GLS. First, there does not exist a matrix D such that

D0D = 
�1 and Du = e, with the vector of innovations having elements et for t = k; :::; T ,

even in large samples. Continuing with the MA(1) example with ut+2 = et + cet�1, we have

that the covariance matrix of u when the MA parameter is c is simply a scaled version of the

covariance matrix of u when the MA parameter is c�1. Hence, the GLS estimates are the same

using either values since the scale factor cancels. In other words, let �GLS(c) and �GLS(c
�1)

be the GLS estimates with MA parameter c or c�1, then �GLS(c) = �GLS(c
�1). Does that

mean GLS is inconsistent? No. It is simply a consequence of the well known observational

equivalence. If two processes are observationally equivalent, then estimators based on them

will be identical. We can gain some insights by looking at what the transformation of

the model by pre-multiplying by D does. It applies a �lter such that �(L)ut+k has the

same autocovariance function as C(L)et+k. If C(L) is invertible, then �(L) = C(L)�1 and

�(L)ut+k = et+k. This is the case discussed above with consistent and e¢ cient GLS estimates.

When the process is non-invertible, the transformation will involve the observationally

equivalent representation with �(L) = (1 + c�1L). A researcher using the invertible model

would not recover the true structural shocks, but rather

(1� c�1L)�1ut+k = (1� c�1L)�1(1� cL)et+k = (1� c�1L)�1(1� c�1L+ c�1L� cL)et+k
= et + (c

�1 � c)(1� c�1L)�1et+k�1 = et + (c�1 � c)
P1

i=0(c
�1)iet+k�1�i:

A discussion of these issues is contained in Hannan (1971) and Rozanov (1967). The problem

is with the second term, which involves all past values of the innovations. Since the DX
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involves past values of xt, GLS will be consistent with exogenous regressors but will be

inconsistent otherwise. If we consider a model of the form y = X� + u, with ut a general

non-invertible process that is correlated beyond period t, e.g., some non-invertible ARMA

process, then both OLS and GLS fail to be consistent. The problem is that it is very di¢ cult,

given the observational equivalence between the non-invertible and invertible representations,

to ascertain whether the process is invertible or not.

7 Conclusions

We showed that, contrary to the widely held view, a) OLS is, in general, inconsistent with

non-exogenous regressors, while GLS is consistent; 2) GLS is very robust in that an incorrect

speci�cation still allows a lower MSE than OLS; 3) a simple FGLS procedure based on

estimating an approximating AR(k�T ) process with k
�
T chosen using the BIC works very well

and delivers estimates that a) are by far superior to OLS (lower MSE); b) robust to a wide

variety of data-generating process; c) have con�dence intervals with exact coverage rates

close to the nominal level with length much shorter than with OLS. With heteroskedastic

innovations, a method is suggested to further improve the precision of the estimate.

We used the simple linear model as it is the leading case of interest. Our results should

extend to more complex non-linear models estimated by non-linear least-squares or the gen-

eralized method of moments approach. A similar treatment for models with endogenous

regressors contemporarily correlated with the innovations and estimated via some instru-

mental variable procedure is covered in Olivari and Perron (2024). Our results provides a

strong case for abandoning the often-used OLS+HAC approach so common nowadays. In

most cases, it is outright inconsistent in the case of non-exogenous regressors, while GLS

is consistent. Even if the regressors are exogenous, GLS yields estimates with substan-

tially lower MSE and con�dence intervals with adequate coverage rates and shorter lengths.

This holds whether the regressors are exogenous or not, provided a) the regressors are pre-

determined, i.e., past regressors are not correlated with some unobserved component in the

contemporaneous innovations, and b) the stationary linear error process is invertible.
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Table 1: Root mean squared errors, bias and variance of estimators of � and �; AR(1)
model.

� �

OLS Durbin GLS FGLS CO-FGLS FGLS CO-FGLS

RMSE 0.400 0.036 0.025 0.025 0.041 0.034 0.175

Bias 0.400 0.029 0.012 0.020 0.035 0.027 0.171

Variance 0.0031 0.0013 0.0006 0.0006 0.0008 0.0010 0.0013
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Table 3: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

AR(2) case with ρx = 0.8. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

AR(2) OLS GLS FGLS OLS GLS FGLS OLS GLS FGLS OLS FGLS OLS FGLS

T
=

2
0
0

γ = 0

0.5,-0.3 0.32 0.28 0.29 4.54 4.23 4.28 0.34 0.29 0.28 0.95 0.95 0.23 0.21

-0.5,0.3 0.17 0.13 0.13 3.22 2.83 2.86 0.16 0.13 0.13 0.94 0.95 0.16 0.14

1.34,-0.42 11.45 0.42 0.42 26.96 5.15 5.19 8.09 0.40 0.39 0.87 0.94 1.08 0.25

0,0.3 0.31 0.26 0.28 4.39 4.09 4.20 0.22 0.27 0.26 0.90 0.93 0.18 0.20

0.5,0.3 1.86 0.47 0.48 10.79 5.50 5.60 1.27 0.47 0.45 0.86 0.94 0.43 0.27

γ = 0.25

0.5,-0.3 0.36 0.26 0.28 4.83 4.04 4.18 0.31 0.27 0.26 0.92 0.94 0.22 0.20

-0.5,0.3 0.21 0.12 0.13 3.61 2.74 2.84 0.16 0.12 0.12 0.91 0.94 0.15 0.13

1.34,-0.42 27.51 0.39 0.41 44.90 5.00 5.16 7.29 0.37 0.37 0.58 0.94 1.02 0.24

0,0.3 0.32 0.25 0.28 4.58 3.94 4.20 0.20 0.26 0.24 0.86 0.92 0.18 0.19

0.5,0.3 3.79 0.44 0.49 16.41 5.32 5.61 1.14 0.44 0.43 0.64 0.93 0.41 0.26

γ = 0.5

0.5,-0.3 0.41 0.22 0.25 5.35 3.72 4.00 0.25 0.23 0.22 0.85 0.94 0.19 0.18

-0.5,0.3 0.30 0.10 0.12 4.41 2.54 2.79 0.14 0.10 0.10 0.84 0.92 0.15 0.12

1.34,-0.42 58.25 0.33 0.39 71.48 4.61 5.00 5.38 0.32 0.32 0.16 0.92 0.88 0.22

0,0.3 0.36 0.21 0.29 4.91 3.65 4.25 0.17 0.22 0.20 0.79 0.89 0.16 0.18

0.5,0.3 7.50 0.38 0.49 25.20 4.90 5.60 0.83 0.37 0.36 0.25 0.91 0.35 0.24

T
=

5
0
0

γ = 0

0.5,-0.3 0.13 0.11 0.11 2.86 2.66 2.66 0.13 0.11 0.11 0.94 0.94 0.14 0.13

-0.5,0.3 0.06 0.05 0.05 2.02 1.81 1.81 0.06 0.05 0.05 0.94 0.94 0.10 0.09

1.34,-0.42 4.61 0.16 0.16 17.11 3.23 3.23 3.95 0.16 0.16 0.91 0.94 0.77 0.15

0,0.3 0.12 0.11 0.11 2.79 2.62 2.62 0.08 0.10 0.10 0.89 0.94 0.11 0.13

0.5,0.3 0.75 0.19 0.19 6.91 3.51 3.51 0.60 0.18 0.18 0.91 0.94 0.30 0.17

γ = 0.25

0.5,-0.3 0.18 0.11 0.11 3.40 2.57 2.61 0.12 0.10 0.10 0.88 0.94 0.13 0.12

-0.5,0.3 0.11 0.05 0.05 2.67 1.76 1.78 0.06 0.05 0.05 0.86 0.94 0.09 0.08

1.34,-0.42 21.68 0.15 0.16 41.99 3.12 3.19 3.51 0.15 0.15 0.40 0.94 0.72 0.15

0,0.3 0.16 0.10 0.11 3.21 2.54 2.61 0.08 0.10 0.10 0.82 0.94 0.11 0.12

0.5,0.3 2.84 0.18 0.19 14.90 3.40 3.50 0.53 0.17 0.17 0.48 0.94 0.28 0.16

γ = 0.5

0.5,-0.3 0.28 0.09 0.10 4.59 2.39 2.51 0.09 0.09 0.09 0.69 0.93 0.12 0.12

-0.5,0.3 0.18 0.04 0.05 3.67 1.63 1.72 0.05 0.04 0.04 0.68 0.93 0.09 0.08

1.34,-0.42 54.49 0.13 0.15 71.60 2.85 3.08 2.57 0.12 0.12 0.01 0.92 0.62 0.14

0,0.3 0.24 0.09 0.11 4.15 2.35 2.59 0.07 0.08 0.08 0.64 0.92 0.10 0.11

0.5,0.3 6.90 0.15 0.19 25.24 3.10 3.45 0.39 0.15 0.15 0.04 0.92 0.24 0.15
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Table 5: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

ARMA(1,1) case with ρx = 0.8. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

ARMA(1,1) OLS GLS FGLS OLS GLS FGLS OLS GLS FGLS OLS FGLS OLS FGLS

T
=

2
0
0

γ = 0

-0.5,-0.4 0.09 0.04 0.04 2.38 1.60 1.61 0.11 0.04 0.05 0.97 0.96 0.13 0.09

0.2,-0.4 0.13 0.13 0.13 2.90 2.82 2.84 0.16 0.13 0.15 0.96 0.96 0.16 0.15

0.2,0.5 0.59 0.39 0.41 6.07 4.93 5.10 0.51 0.39 0.38 0.92 0.94 0.28 0.24

0.5,-0.4 0.25 0.24 0.25 3.96 3.91 3.95 0.22 0.25 0.22 0.93 0.93 0.18 0.18

0.5,0.5 1.30 0.43 0.46 9.00 5.19 5.40 1.05 0.43 0.43 0.90 0.94 0.40 0.26

0.8,-0.4 0.88 0.43 0.46 7.41 5.21 5.41 0.59 0.43 0.41 0.86 0.93 0.30 0.25

0.8,0.5 5.12 0.39 0.41 17.83 4.93 5.09 3.65 0.38 0.40 0.87 0.94 0.73 0.25

γ = 0.25

-0.5,-0.4 0.48 0.04 0.04 6.08 1.52 1.63 0.12 0.04 0.05 0.60 0.96 0.13 0.08

0.2,-0.4 0.19 0.12 0.14 3.48 2.69 2.96 0.15 0.12 0.14 0.93 0.95 0.15 0.14

0.2,0.5 1.00 0.35 0.40 8.30 4.73 5.04 0.47 0.37 0.36 0.79 0.94 0.27 0.24

0.5,-0.4 0.23 0.22 0.23 3.84 3.73 3.82 0.21 0.23 0.21 0.92 0.93 0.18 0.18

0.5,0.5 3.15 0.39 0.46 15.28 4.96 5.44 0.96 0.41 0.41 0.64 0.93 0.38 0.25

0.8,-0.4 1.59 0.39 0.46 10.52 4.99 5.39 0.54 0.41 0.39 0.69 0.93 0.28 0.25

0.8,0.5 13.75 0.35 0.43 32.12 4.67 5.21 3.30 0.36 0.38 0.56 0.93 0.70 0.24

γ = 0.5

-0.5,-0.4 1.23 0.04 0.05 10.38 1.48 1.82 0.12 0.03 0.04 0.08 0.93 0.13 0.08

0.2,-0.4 0.32 0.11 0.19 4.64 2.61 3.36 0.13 0.10 0.12 0.81 0.90 0.14 0.13

0.2,0.5 1.77 0.31 0.42 11.94 4.42 5.19 0.36 0.32 0.30 0.49 0.89 0.23 0.22

0.5,-0.4 0.22 0.21 0.24 3.81 3.62 3.94 0.17 0.20 0.18 0.90 0.90 0.16 0.16

0.5,0.5 6.58 0.34 0.53 23.97 4.60 5.73 0.71 0.35 0.35 0.21 0.88 0.32 0.23

0.8,-0.4 2.90 0.36 0.52 15.33 4.77 5.73 0.40 0.35 0.33 0.35 0.88 0.24 0.23

0.8,0.5 29.47 0.30 0.53 51.13 4.36 5.73 2.39 0.31 0.32 0.14 0.88 0.59 0.22

T
=

5
0
0

γ = 0

-0.5,-0.4 0.03 0.02 0.02 1.45 0.98 0.98 0.04 0.02 0.02 0.96 0.96 0.08 0.05

0.2,-0.4 0.05 0.05 0.05 1.83 1.76 1.77 0.06 0.05 0.05 0.95 0.96 0.09 0.09

0.2,0.5 0.23 0.16 0.17 3.85 3.26 3.30 0.21 0.15 0.15 0.94 0.93 0.18 0.15

0.5,-0.4 0.10 0.10 0.10 2.51 2.50 2.50 0.09 0.09 0.09 0.93 0.93 0.11 0.12

0.5,0.5 0.51 0.18 0.19 5.70 3.45 3.51 0.45 0.17 0.17 0.92 0.93 0.26 0.16

0.8,-0.4 0.35 0.18 0.19 4.69 3.40 3.46 0.27 0.17 0.17 0.90 0.94 0.20 0.16

0.8,0.5 2.05 0.16 0.17 11.31 3.22 3.27 1.73 0.15 0.16 0.91 0.94 0.51 0.15

γ = 0.25

-0.5,-0.4 0.38 0.01 0.02 5.83 0.97 1.05 0.04 0.01 0.02 0.15 0.95 0.08 0.05

0.2,-0.4 0.11 0.05 0.05 2.68 1.72 1.85 0.06 0.05 0.05 0.85 0.95 0.09 0.09

0.2,0.5 0.68 0.15 0.17 7.15 3.06 3.25 0.19 0.14 0.14 0.64 0.93 0.17 0.15

0.5,-0.4 0.11 0.09 0.10 2.57 2.40 2.52 0.08 0.09 0.08 0.91 0.92 0.11 0.11

0.5,0.5 2.41 0.16 0.19 14.06 3.20 3.46 0.40 0.16 0.16 0.41 0.93 0.25 0.16

0.8,-0.4 1.14 0.17 0.19 9.28 3.27 3.49 0.24 0.16 0.16 0.55 0.94 0.19 0.16

0.8,0.5 10.88 0.14 0.17 30.18 2.98 3.26 1.54 0.14 0.15 0.34 0.94 0.48 0.15

γ = 0.5

-0.5,-0.4 1.00 0.01 0.02 9.71 0.89 1.11 0.04 0.01 0.01 0.00 0.92 0.08 0.05

0.2,-0.4 0.19 0.04 0.06 3.84 1.60 1.99 0.05 0.04 0.04 0.62 0.91 0.09 0.08

0.2,0.5 1.56 0.13 0.17 11.87 2.89 3.28 0.14 0.12 0.12 0.13 0.90 0.15 0.14

0.5,-0.4 0.12 0.08 0.11 2.81 2.26 2.64 0.07 0.08 0.07 0.84 0.88 0.10 0.10

0.5,0.5 6.04 0.15 0.22 23.86 3.07 3.71 0.30 0.14 0.14 0.02 0.89 0.21 0.15

0.8,-0.4 2.66 0.15 0.19 15.54 3.06 3.47 0.18 0.14 0.13 0.08 0.90 0.16 0.14

0.8,0.5 27.70 0.13 0.21 51.30 2.89 3.58 1.11 0.12 0.12 0.01 0.88 0.41 0.14
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In Section S-1, we present the proofs of Theorem 1 and Corollary 2. In Section S-2, we
report the simulation discussed in Section 3. Additional simulations results are reported in
Section S-3 that complement those in Section 6, while Section S-4 presents simulation results
for predictive regressions. Section S-5 discusses our suggested method to correct for possible
heteroskedasticity in the errors. The method is presented as well as simulations showing
that further reductions in MSE can be achieved.

S-1 Proof of some results

Proof of Theorem 1. The GLS estimator is the OLS estimator of the quasi-di¤erenced
equation

(yt � �yt�1) = (xt � �xt�1)
0� + et; (t = 2; :::; T ):

Let wt = ut � �ut�1 and note that wt is a �lter: wt =  (L)ut with  (L) = (1 � �L). Let
� = E[ww0] so that

��1 =

26666666666664

1 ��

�� 1 + �2 �� 0

�� 1 + �2 ��
. . .

0 �� 1 + �2 ��

�� 1

37777777777775
:

Hence, the GLS estimator can be written as

�̂GLS = (X
0��1X)�1X 0��1y; �̂GLS � � = (X 0��1X)�1X 0��1u:

The variance of the GLS estimator is

Var(�̂GLS) = (X
0��1X)�1X 0��1
��1X(X 0��1X)�1:

The OLS estimator can be written as

�̂OLS = (X
0X)�1X 0y; �̂OLS � � = (X 0X)�1X 0u:

A-1



with Var(�̂OLS) = (X
0X)�1X 0
X(X 0X)�1. Since both estimators are consistent the limit of

their MSE is equivalent to the limit of their variance. We have,

limT!1 T Var(�̂OLS) = p limT!1(T
�1X 0X)�1T�1X 0
X(T�1X 0X)�1

= Rx(0)
�22�hxu(0):

Note that hxu(0) is (2� times) the spectral density function of the process zt = xtut. By the
Convolution Theorem, we have,

hxu(!) =

Z �

��
hx(�)hu(! � �)d�;

and thus

hxu(0) =

Z �

��
hx(�)hu(��)d� =

Z �

��
hx(�)hu(�)d�;

since hu(��) = hu(�). The asymptotic variance of the GLS estimator is

limT!1 T Var(�̂GLS) = p limT!1(T
�1X 0��1X)�1T�1X 0��1
��1X(T�1X 0��1X)�1

= ((1 + �2)Rx(0)� 2�Rx(1))
�22�hx�u�(0); (A.1)

where x�t = xt� �xt�1 and u�t = ut� �ut�1. The spectral density function of x�t is thus given
by

hx�(!) = j (e�i!)j2hx(!)
= (1� �e�i!)(1� �ei!)hx(!)

= (1 + �2 � 2� cos(!))hx(!):

Analogously, the spectral density function of u�t , is given by

hu�(!) = (1 + �
2 � 2� cos(!))hu(!):

Hence, the spectral density function at frequency zero of the process z�t = x�tu
�
t is

hx�u�(0) =

Z �

��
h�x(�)h

�
u(��)d�

=

Z �

��
(1 + �2 � 2� cos(�))2hx(�)hu(�)d�

= (1 + �2)2hxu(0)� 4�(1 + �2)
Z �

��
cos(�)hx(�)hu(�)d�

+4�2
Z �

��
cos(�)2hx(�)hu(�)d�

= (1 + �2)2hxu(0)� 4�(1 + �2)
Z �

��
cos(�)hx(�)hu(�)d�

+2�2
Z �

��
(1 + cos(2�))hx(�)hu(�)d�

= (2�2 + (1 + �2)2)hxu(0)� 4�(1 + �2) eRxu(1) + 2�
2 eRxu(2):
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Now, we can write equation (A.1) as

limT!1 T Var(�̂GLS) = ((1 + �2)Rx(0)� 2�Rx(1))
�22�((2�2 + (1 + �2)2)hxu(0)

�4�(1 + �2) eRxu(1) + 2�
2 eRxu(2))

and the ratio of interest is

limT!1

 
MSE(�̂GLS)

MSE(�̂OLS)

!
=
limT!1 T Var(�̂GLS)

limT!1 T Var(�̂OLS)

=
Rx(0)

2

((1 + �2)Rx(0)� 2�Rx(1))2
(2�2 + (1 + �2)2)hxu(0)� 4�(1 + �2) eRxu(1) + 2�

2 eRxu(2)

hxu(0)
;

and thus,

limT!1

 
MSE(�̂GLS)

MSE(�̂OLS)

!
< 1

i¤ (2�2 + (1 + �2)2)� 4�(1 + �2)
eRxu(1)

hxu(0)
+ 2�2

eRxu(2)

hxu(0)
< ((1 + �2)� 2� corx(1)))2

i¤ �2 � 2�(1 + �2)
eRxu(1)

hxu(0)
+ �2

eRxu(2)

hxu(0)
< 2�2 corx(1)

2 � 2�(1 + �2) corx(1):�

Proof of Corollary 1: Note that if xt is i:i:d:, its spectral density function is hx(!) =
(2�)�1Rx(0) for all !. Thus, using the results in Theorem 1:

hxu(!) =

Z �

��
hx(�)hu(�)d� = hx(0)

Z �

��
hu(�)d�

=
1

2�
Rx(0)Ru(0)

and eRxu(1) =

Z �

��
cos(�)hx(�)hu(�)d� = hx(0)

Z �

��
cos(�)hu(�)d� =

1

2�
Rx(0)Ru(1);

eRxu(2) =

Z �

��
cos(2�)hx(�)hu(�)d� = hx(0)

Z �

��
cos(2�)hu(�)d� =

1

2�
Rx(0)Ru(2):

Hence,

limT!1

�
MSE(�̂GLS)=MSE(�̂OLS)

�
< 1

i¤ �2 � 2�(1 + �2) coru(1) + �2 coru(2) < 0

i¤
�

2(1 + �2)
(1 + coru(2)) < coru(1) when � > 0;

i¤
�

2(1 + �2)
(1 + coru(2)) > coru(1) when � < 0:�
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S-2 Simulations related to Section 3.

We illustrate the issues discussed in Section 3 using simulations. We consider the following
DGP:

yt = �+ �xt + ut;

where xt � i:i:d: (0; 1). We set (�; �) = (0; 1), without loss of generality. The sample
size is T = 200. For the errors ut, we consider the following speci�cations: 1) AR(1):
ut = �uut�1 + et; �u = f�0:5; 0:0; 0:2; 0:5; 0:8g; 2) AR(2): ut = �u1ut�1 + �u2ut�2 + et;
(�u1; �u2) = f(1:34;�0:42); (0:5;�0:3); (�0:5; 0:3); (0:0; 0:3); (0:5; 0:3)g; 3) MA(1): ut =

et + �et�1; � = f�0:7;�0:4; 0:5g; 4) ARMA(1; 1): ut = �uut�1 + et + �et�1; (�u; �) =
f(�0:5;�0:4); (0:2;�0:4); (0:2; 0:5); (0:5;�0:4); (0:5; 0:5); (0:8;�0:4); (0:8; 0:5)g. Through-
out, et � i:i:d: N(0; �2e) independent of xj for all t and j so that the regressors are exogenous,
otherwise OLS would be inconsistent and the comparisons meaningless. We set �2x = �2e = 1.
For all cases, we consider a range of values for the parameters. These are chosen mostly arbi-
trarily, except for the �rst pair of the AR(2) case, which are typical estimates for detrended
U.S. real GDP; e.g., Blanchard (1981). In all cases, we adopt an AR(1) speci�cation with
di¤erent values of the quasi-di¤erencing parameter �. The results are presented in Table
S.1. The �rst column reports the value of coru(1) and the main entries are the MSE of GLS
relative to the MSE of OLS for various value of � in the range (�0:9; 0:9). We shall discuss
the purpose of the values reported in the last column later.
It is most instructive to start with the AR(1) case. When �u = 0, as expected OLS is best

and GLS has higher MSE. When �u = �0:5, GLS has lower MSE for all negative values of
� and, vice versa, when �u = 0:5; 0:8, GLS has lower MSE for all positive values of �. When
�u = 0:2, a small value, things are more complex. Here, GLS is best when � 2 (0:1; 0:4)
but marginally worse than OLS when � 2 (0:5; 0:9) (and, of course also worse when � is
negative). These results are what one would expect from Corollary 1, in particular the fact
that when �u < 0:5 GLS is better when 0 < � < 2�u. The results for the other cases are
qualitatively similar and in accordance with the theory. When coru(1) is �large�, GLS has
smaller MSE than OLS when the sign of the quasi-di¤erence parameter is the same as the
sign of coru(1). If coru(1) is �small�GLS is better when � is in the vicinity of coru(1). Of
special interest is the AR(2) case with (�u1; �u2) = (1:34;�0:42), which is roughly typical of
many macroeconomic time series given the strong serial correlation. In this case, the gains in
MSE reduction over OLS are of the order of 95% when � 2 (0:6; 0:9). These are substantial
gains, which can be obtained by merely using an incorrect AR(1) process with a wide range
of values of �. This illustrates strong robustness to using GLS.
The theoretical and simulation results suggest a very simple procedure to obtain a GLS

estimate that is (almost) never worse than OLS, subject to very minor random deviations.
First use a test for serial correlation at delay one; we use the LM test of Godfrey (1978). If
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the test does not reject the null hypothesis of no serial correlation, then use OLS. This will
occur when coru(1) is �small�. If the test rejects, estimate coru(1) via the sample �rst-order
serial correlation of the OLS residuals. If it is positive (negative), use any positive (negative)
value of the quasi-di¤erencing parameter �. To make clear that any value of � will do, in
the simulations we simply draw � from a Uniform distribution with support (0:1; 0:9) when
positive value are required and with support (�0:9;�0:1) when negative values are in order.
The results for the relative MSE of GLS over that of OLS are reported in the last column
of Table S.1 under the heading �hybrid�. They show that this hybrid-GLS procedure yields
more precise estimates for all cases, except for few minor cases due to random variations
when coru(1) is �small�. An exception is when coru(1) = 0 and there is correlation at higher
lags; see the AR(2) case with (�u1; �u2) = (0:0; 0:3). We view this as a knife-edge case.
Tables S.2-S.3 report corresponding results when xt is an AR(1) process given by xt =

�xxt�1+ vt with vt � i:i:d: N(0; 1), with �x = 0:5 and �x = 0:8. The results are qualitatively
similar.

Remark 1. In the hybrid procedure discussed above, we use the OLS residuals to construct
an estimate of coru(1). From the results in Section 2.1, the OLS estimates of the parameters
are inconsistent when the regressors are not exogenous. Here, however, the regressors are
exogenous. When constructing a FGLS estimate, we do not need this hybrid procedure.

Remark 2. After the �rst draft of this paper was completed, we became aware of the work
by Koreisha and Fang (2001). They present exact bounds for the relative variance of OLS,
GLS and Feasible GLS allowing for misspeci�cation of the process generating the errors when
constructing the FGLS estimate. The results depend on the covariance matrix of the errors,
the exact nature of the GLS structure used and the method to construct the FGLS estimate,
the regressors and the sample size. The bounds are, however, not informative and quite
complex. Accordingly they resort to simulation experiments using approximate autoregressive
processes of order 1, 7 and 14 when T = 200 to construct the FGLS estimate. In the paper,
they report results for few selected cases, which do not allow addressing several of the issues
discussed above, e.g., the e¤ect of the sign of the quasi-di¤erence parameter, the strength of
the correlation in the errors. They wrongly conclude that GLS (constructed using an AR
misspeci�cation) is always better than OLS. As shown above this is not the case.

S-3 Additional simulations related to Section 6

Tables S.4-S.7 present simulations results related to those presented in Section 6. The setup
is exactly the same, except that we set �x = 0, instead of �x = 0:8. The goal is simply to
show robustness of the results. The are indeed qualitatively similar.
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S-4 Simulations with predictive regressions

As discussed in Section 2.1.1 and Remark 4, in the case of predictive regressions assuming
rational expectations, both OLS and GLS are consistent. We present the results of a small
simulation experiment to show that, with exogenous or non-exogenous regressors, FGLS is
by far superior to OLS in terms of MSE and length of the coverage rates, when the MA
process is invertible. The setup adopted corresponds to regression

yt+k = x0t� + ut+k

with k = 2 so that the errors are MA(1). The data-generating process is similar to that
used above except that the regressors are lagged two periods so that yt = � + �xt�2 + ut,
ut = et+�et�1 and xt = �xxt�1+vt+et�1 with vt and et independent i:i:d:N(0; 1) variables.
We set (�; �) = (0; 1), �x = 0 and again  = 0 (exogenous regressors),  = 0:25 (weak
correlation) and  = 0:50 (strong correlation). We also consider � = �0:7, �0:4 and 0:5.
The results are presented in Table S.8. With  = 0, the results are similar to those in

Table 4. FGLS and GMA have much lower MSE than OLS and are nearly as e¢ cient as
the infeasible GLS, especially when T = 500. The coverage rates for all methods are near
the nominal 95% level, except when the MA parameter is strongly negative. Again, the
length of the con�dence intervals are shorter with FGLS and GMA compared to OLS. With
non-exogenous regressors, the results are broadly similar. The only exception is that the
coverage rates for GMA are substantially lower than the nominal level. Those for FGLS are
adequate except when � = �0:7. This is in line with our theoretical results.

S-5 Correcting for heteroskedasticity

In this section, we now consider a FGLS procedure for heteroskedasticity in the errors et. We
describe the method suggested by González-Coya and Perron (2024) based on an Adaptive
Lasso procedure to �t the skedastic function. Lasso is a non-parametric estimation method
�rst proposed by Tibshirani (1996). It selects regressors amongst a potentially large set wtj
(j = 1; :::; d), where d can be very large, by imposing a `1 penalty on their size. Lasso forces
the coe¢ cients to be equally penalized. We can, however, assign di¤erent weights to di¤erent
coe¢ cients. If the weights are data-dependent and properly chosen, this can enhance the
properties of Lasso, in particular when the irrelevant covariates are highly correlated with
the relevant ones. To that e¤ect, Zou (2006) considered the adaptive Lasso given by

�̂
A
= argmin�f(1=2)

PT
t=1(log(v

2
t )� �0 �

Pd
j=1wtj�j)

2 + �
Pd

j=1 #̂j
���j��g; (A.2)

where #̂j = j�̂jj� ,  > 0 and �̂j is a root-T -consistent estimator of �j. Here, vt is some
process exhibiting heteroskedasticity, though no serial correlation, to be speci�ed below. The
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implementation of Adaptive Lasso to obtain a �t to the skedastic function is as follows. 1)
Compute the �rst-step estimate of � as the solution to the Ridge regression problem:

�̂
ridge

= argmin�f(1=2)
PT

t=1(log(v
2
t )� �0 �

Pd
j=1wtj�j)

2 + �r
Pd

j=1 �
2
jg;

where �r is selected via cross-validation. 2) Compute the weights as #̂j = j�̂ridgej j� . The
Adaptive Lasso estimates are then

�̂
A
= argmin�f(1=2)

PT
t=1(log(v

2
t )� �0 �

Pd
j=1wtj�j)

2 + �A
Pd

j=1 j�̂
ridge

j j� 
���j��g;

where the two tuning parameters, �A and  are selected via the following K-cross-validation
method: a) Fix L possible values for  ; we use L = 6 and  c = (0; 0:25; 0:5; 0:75; 1; 2). b)
Fix a partition for the K-fold cross-validation, i.e., split the data into K roughly equal-
sized parts. We use K = 10. Let � : f1; : : : ; Tg 7! f1; : : : ; Kg be an indexing function
that indicates the partition to which observation t is allocated to by the randomization. c)
For every  ci , compute the optimal cross-validated �

A
i and the mean cross-validated error.

For the kth part, we �t the model to the other K � 1 parts of the data, and calculate the
prediction error of the �tted model when predicting the kth part of the data. We do this for
k = 1; : : : ; K and combine the K estimates of the prediction error. Denote by f̂�ki (w) the
�tted function, computed with the kth part of the data removed and using  ci . Then the
cross-validation estimate of the prediction error is

CV(f̂i) = T�1
PT

t=1 L
�
log(v2t ); f̂

��(t)
i (w)

�
;

where L(�) is a loss function; we use the MSE. Let �Ai be the value that minimizes CV(f̂i). d)
The cross-validated pair (�A�;  c�) used is the one that minimizesCV(�Ai ;  

c
i) for i = 1; : : : ; L.

Note that we do not have in mind any oracle model. The aim is to be agnostic about such
knowledge and to try to devise a method as robust as possible that allows a reduction in the
MSE. Since the skedastic function is, in general, not consistently estimated, there is a need
to further correct the variance estimate of the FGLS estimator using a Heteroskedasticity
Robust version. We denote the resulting �tted value of the skedastic function by ev2t .
Here, vt � êtk, the residuals from applying the GLS regression

(yt �
Pk�T

j=1 �̂
D
j yt�j) = (xt �

Pk�T
j=1 �̂

D
j xt�j)

0� + ekt; (t = k�T + 1; :::; T ); (A.3)

Let �̂F�C denote the GLS estimate that corrects only for serial correlation and �̂F�CH , the
one that corrects for both serial correlation and heteroskedasticity. To be more precise,
we apply the following steps: a) Estimate by OLS the quasi-di¤erenced regression (A.3) to
obtain the residuals êtk; b) Estimate the model log(maxfê2tk; �2g) = �0 �

Pd
j=1 ztj�j, via

Adaptive Lasso, where � = 0:1 is some small positive number to avoid dealing with residuals
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that are nearly zero. Note that zt may include some or all elements of xt or transformations
of them. Denote the predicted values from this model by evt � ee2tk; c) �̂F�CH is the weighted
least squares (WLS) estimator of the quasi-di¤erenced regression (A.3), with weights given
by ee�2tk .
In order to construct con�dence intervals for the parameter � of interest, introducing some

�nite sample re�nements can be bene�cial. Here, we describe the particular form adopted,
following Miller and Startz (2019) and Rothenberg (1988). We focus on the estimate of the
asymptotic variance of the FGLS estimator:

V ar(�̂F�CH) = (T
�1X 0fW�1X)�1
̂(T�1X 0fW�1X)�1; (A.4)

where fW is a diagonal matrix with entries ewtt = evt(w)2 � ee2tk, the predicted values obtained
from the procedure to �t the skedastic function vt(w), X is the matrix of regressors, 
̂ =
T�1X 0�̂F�CHX with �̂F�CH a diagonal matrix with tth entry given by:

�̂F�CHtt =
ê2tk�F�CH

(ee2tk)2
 

1

(1� ht;F�CH)
2 + 4

ht;F�C
k

d̂f

!
; (A.5)

where êF�CH = [ê1;F�CH ; :::; êT;F�CH ]0 are the estimated residuals from the FGLS regression
correcting for serial correlation and heteroskedasticity, i.e., êtF�CH = y�t � �̂F�CHx

�
t , with

y�t = (yt �
Pk�T

j=1 �̂
D
j yt�j)=(ee2tk)1=2; (A.6)

x�t = (xt �
Pk�T

j=1 �̂
D
j xt�j)=(ee2tk)1=2: (A.7)

d̂f is an estimate of the degrees of freedom used in the estimation of the weights. For Lasso,
the number of nonzero coe¢ cients is an unbiased estimate for the degrees of freedom (Zou
et al. (2007)). The con�dence intervals for the kth coe¢ cient is then obtained using �̂F�CH;k
� z1��=2SE(�̂F�CHk);where z1��=2 is the 1 � �=2 quantile of the normal distribution and

SE(�̂FGLS;k) := (V ar(�̂F�CH))
1=2
kk , with V ar(�̂F�CH) de�ned in (A.4).

S-5.1 Simulation results with heteroskedasticity

We consider the linear model (1) with serially correlated and heteroskedastic errors. The
speci�cations are the same as in the text except that et � N(0; vt (z)) or, equivalently,
et =

p
vt (z)"t, where "t � i:i:d: N(0; 1). We apply a FGLS accounting for heteroskedasticity

in the FGLS regression used to correct for serial correlation,

yt �
Pk�T

j=1 �̂
D
j yt�j = (xt �

Pk�T
j=1 �̂

D
j xt�j)

0� + etk; (t = k�T + 1; :::; T );

This is then equivalent to applying OLS to the regression y�t = x�t� + etk�F�CH , where y�t
and x�t are de�ned by (A.6) and (A.7) and the estimate of ee2tk is constructed as outlined
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in the previous section. We only consider a subset of the cases used earlier with T = 200.
These are: 1) AR(1): ut = 0:5ut�1 + vt(z)

1=2"t; 2) AR(2): ut = 1:34ut�1 � 0:42ut�2 +
vt(z)

1=2"t; 3) MA(1): ut = vt(z)
1=2"t + 0:5vt�1(z)

1=2"t�1; 4) ARMA(1; 1): ut = 0:8ut�1 +

vt(z)
1=2"t � 0:4vt�1(z)1=2"t�1, where "t � i:i:d: N(0; 1). We consider three speci�cations

for the skedastic function �t(�) as in Romano and Wolf (2017). These are, from weak to
strong heteroskedasticity: a) Power function: �t(x)1 = x2t ; b) Squared log function: �t(x)2 =
[log(xt)]

2; c) Exponential of a second-degree polynomial: �t(x)3 = exp (0:2xt + 0:2x2t ). The
input matrix isW = (1; w; w2; cos(w); cos(2w); cos(3w)). We consider two cases: a) wt = xt,
which assumes that we select the correct variable in�uencing the skedastic function; b)
wt = �xt + (1� �)qt with qt � U(1; 4) and � �Bernouli(�) with � = 0:75. In this case, the
covariate used to model the skedastic function is not the same as the true one but is correlated
with it, the correlation being �. Note that in practice, one can include a vast set of potential
covariates. Hence, with the parsimonious set considered, the improvements obtained in terms
of MSE and length of the con�dence intervals should be viewed as conservative.
The results are reported in Table S.9; the �rst panel for wt = xt and the second for

wt = �xt + (1 � �)qt. We present the MSE, bias and variance of the FGLS estimate as
well as the coverage rates and lengths of the con�dence intervals obtained using the method
discussed in the previous section. We also present results for the OLS estimate, the FGLS
estimate that accounts only for serial correlation (F-C) and the FGLS estimate that accounts
for both serial correlation and heteroskedasticity (F-CH). This is done to gauge the extent
of the improvement provided by the correction for heteroskedasticity. Note that when using
F-C, we construct the con�dence intervals that correct for serial correlation the same way as
we do for F-CH, i.e., applying the same correction for potential remaining heteroskedasticity.
When the covariate used is the correct one, we see important reduction in the MSE of

the F-CH estimate relative to F-C, more so as the heteroskedasticity is stronger. Both the
variance and the bias contribute to the reductions in the MSE. Since correcting for serial
correlation via a FGLS procedure provides substantially more precise estimates relative to
OLS, needless to say that the same applies when further correcting for heteroskedasticity.
The coverage rates of the con�dence intervals have an exact size close to the nominal level.
The OLS estimates also have good coverage rates in most cases but can be sensitive to the
strength of the serial correlation; e.g., the AR(2) case. However, the lengths are substantially
smaller using F-CH compared to OLS and to a lesser extent compared to F-C.
The results in the bottom panel pertains to the case with an incorrect covariate, though

correlated with the correct one. The results are similar with the exception that the incremen-
tal reductions in MSE, bias and variance provided by the correction for heteroskedasticity
are smaller, as expected. Nevertheless, they are still important enough in magnitude. Hence,
using incorrect covariates to estimate the skedastic function can still lead to more precise
estimates, as long as there is some correlation between the two sets of covariates. The cov-
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erage rate of the con�dence intervals have an exact size close to the nominal level and the
lengths are much smaller than those with OLS and, to some extent, than with F-C.
We also performed simulation experiments with homoskedastic errors. The results were

then essentially equivalent to those obtained with F-C. This means that correcting for het-
eroskedasticity when it is not present has no detrimental e¤ect on the precision of the esti-
mate, a result emphasized by González-Coya and Perron (2024). Overall, the results show
that a further correction for heteroskedasticity can lead to more precise estimates and smaller
lengths of the con�dence intervals compared to only correcting for serial correlation.
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Table S.5: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

AR(2) case with ρx = 0. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

AR(2) OLS GLS FGLS OLS GLS FGLS OLS GLS FGLS OLS FGLS OLS FGLS

T
=

2
0
0

γ = 0

0.5,-0.3 0.63 0.38 0.39 6.26 4.96 5.03 0.64 0.38 0.38 0.95 0.94 0.31 0.24

-0.5,0.3 1.11 0.38 0.38 8.36 4.93 4.97 1.11 0.38 0.38 0.95 0.95 0.41 0.24

1.34,-0.42 5.24 0.17 0.17 18.02 3.32 3.33 5.10 0.17 0.17 0.94 0.95 0.88 0.16

0,0.3 0.54 0.45 0.46 5.89 5.39 5.44 0.55 0.47 0.46 0.95 0.95 0.29 0.27

0.5,0.3 1.08 0.37 0.38 8.29 4.86 4.92 1.06 0.38 0.38 0.94 0.95 0.40 0.24

γ = 0.25

0.5,-0.3 1.88 0.36 0.38 11.86 4.82 4.97 0.60 0.36 0.35 0.68 0.94 0.30 0.23

-0.5,0.3 2.51 0.35 0.38 13.08 4.73 4.92 1.07 0.36 0.35 0.79 0.94 0.40 0.23

1.34,-0.42 13.88 0.17 0.17 31.60 3.28 3.31 4.75 0.16 0.16 0.73 0.95 0.85 0.16

0,0.3 0.52 0.42 0.45 5.80 5.21 5.26 0.53 0.44 0.44 0.94 0.94 0.28 0.26

0.5,0.3 2.25 0.35 0.38 12.42 4.73 4.95 1.00 0.36 0.35 0.82 0.94 0.39 0.23

γ = 0.5

0.5,-0.3 4.46 0.31 0.38 19.89 4.37 4.90 0.49 0.31 0.30 0.18 0.92 0.27 0.22

-0.5,0.3 5.06 0.31 0.40 20.39 4.40 5.02 0.94 0.31 0.30 0.43 0.90 0.38 0.22

1.34,-0.42 30.83 0.14 0.15 51.46 2.96 3.12 4.06 0.14 0.14 0.26 0.94 0.78 0.15

0,0.3 0.50 0.38 0.47 5.61 4.89 5.47 0.47 0.37 0.37 0.94 0.92 0.27 0.24

0.5,0.3 4.62 0.31 0.42 19.25 4.39 5.16 0.88 0.30 0.30 0.46 0.89 0.36 0.22

T
=

5
0
0

γ = 0

0.5,-0.3 0.27 0.15 0.15 4.14 3.07 3.08 0.26 0.15 0.15 0.95 0.95 0.20 0.15

-0.5,0.3 0.45 0.16 0.16 5.34 3.17 3.17 0.45 0.15 0.15 0.95 0.95 0.26 0.15

1.34,-0.42 2.17 0.07 0.07 11.62 2.04 2.04 2.17 0.07 0.07 0.95 0.96 0.57 0.10

0,0.3 0.23 0.19 0.19 3.80 3.48 3.48 0.22 0.18 0.18 0.95 0.95 0.18 0.17

0.5,0.3 0.45 0.15 0.15 5.33 3.09 3.09 0.44 0.15 0.15 0.95 0.95 0.26 0.15

γ = 0.25

0.5,-0.3 1.62 0.13 0.14 11.79 2.91 3.02 0.24 0.14 0.14 0.33 0.95 0.19 0.15

-0.5,0.3 1.77 0.14 0.15 11.81 3.00 3.08 0.43 0.14 0.14 0.58 0.94 0.26 0.15

1.34,-0.42 11.79 0.06 0.06 31.31 1.98 2.00 2.03 0.06 0.06 0.40 0.93 0.56 0.10

0,0.3 0.21 0.17 0.18 3.62 3.26 3.37 0.21 0.17 0.17 0.95 0.95 0.18 0.16

0.5,0.3 1.79 0.14 0.15 11.86 2.94 3.06 0.42 0.14 0.14 0.56 0.94 0.25 0.15

γ = 0.5

0.5,-0.3 4.17 0.12 0.14 19.94 2.74 2.99 0.19 0.12 0.12 0.01 0.92 0.17 0.13

-0.5,0.3 4.34 0.12 0.15 19.91 2.82 3.14 0.37 0.12 0.12 0.08 0.91 0.24 0.13

1.34,-0.42 29.61 0.05 0.06 52.75 1.86 1.91 1.72 0.05 0.05 0.01 0.95 0.51 0.09

0,0.3 0.20 0.15 0.19 3.56 3.10 3.45 0.19 0.15 0.15 0.94 0.91 0.17 0.15

0.5,0.3 4.26 0.12 0.15 19.68 2.77 3.10 0.37 0.12 0.12 0.09 0.92 0.24 0.13
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Table S.7: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

ARMA(1,1) case with ρx = 0. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

ARMA(1,1) OLS GLS FGLS OLS GLS FGLS OLS GLS FGLS OLS FGLS OLS FGLS

T
=

2
0
0

γ = 0

-0.5,-0.4 1.13 0.27 0.29 8.52 4.56 4.28 1.06 0.38 0.28 0.96 0.95 0.40 0.21

0.2,-0.4 0.55 0.51 0.52 5.91 5.67 5.74 0.52 0.49 0.49 0.94 0.95 0.28 0.27

0.2,0.5 0.79 0.31 0.34 7.04 4.49 4.67 0.74 0.31 0.33 0.94 0.95 0.34 0.23

0.5,-0.4 0.54 0.52 0.53 5.85 5.77 5.80 0.50 0.50 0.50 0.94 0.94 0.28 0.28

0.5,0.5 1.22 0.22 0.24 8.77 3.78 3.94 1.14 0.22 0.24 0.94 0.95 0.42 0.19

0.8,-0.4 0.75 0.43 0.45 6.95 5.29 5.42 0.69 0.43 0.42 0.94 0.95 0.33 0.25

0.8,0.5 2.83 0.16 0.17 13.47 3.20 3.30 2.68 0.16 0.17 0.95 0.95 0.64 0.16

γ = 0.25

-0.5,-0.4 5.55 0.26 0.31 21.44 4.10 4.51 0.99 0.25 0.26 0.43 0.93 0.39 0.20

0.2,-0.4 0.70 0.44 0.52 6.68 5.34 5.75 0.49 0.46 0.46 0.90 0.94 0.27 0.26

0.2,0.5 3.34 0.27 0.33 16.59 4.19 4.62 0.69 0.29 0.31 0.47 0.96 0.33 0.21

0.5,-0.4 0.50 0.44 0.48 5.65 5.28 5.55 0.48 0.47 0.47 0.94 0.94 0.27 0.26

0.5,0.5 6.56 0.20 0.25 23.67 3.58 3.98 1.07 0.21 0.22 0.36 0.95 0.40 0.18

0.8,-0.4 1.52 0.37 0.41 10.23 4.87 5.15 0.67 0.40 0.39 0.80 0.94 0.32 0.24

0.8,0.5 11.95 0.14 0.18 30.92 3.06 3.42 2.54 0.15 0.16 0.53 0.94 0.62 0.15

γ = 0.5

-0.5,-0.4 13.91 0.21 0.36 36.08 3.61 4.65 0.82 0.21 0.22 0.01 0.89 0.35 0.18

0.2,-0.4 1.07 0.39 0.71 8.71 4.95 6.78 0.41 0.39 0.39 0.75 0.86 0.25 0.24

0.2,0.5 8.29 0.25 0.48 27.75 4.01 5.45 0.57 0.25 0.27 0.04 0.87 0.30 0.19

0.5,-0.4 0.56 0.40 0.57 6.01 5.04 6.09 0.40 0.40 0.40 0.91 0.90 0.25 0.24

0.5,0.5 16.59 0.18 0.36 39.56 3.40 4.73 0.89 0.18 0.19 0.01 0.87 0.37 0.16

0.8,-0.4 3.01 0.34 0.50 15.63 4.61 5.66 0.58 0.34 0.33 0.47 0.89 0.82 0.23

0.8,0.5 27.92 0.13 0.27 50.66 2.89 4.18 2.16 0.13 0.14 0.06 0.84 0.57 0.14

T
=

5
0
0

γ = 0

-0.5,-0.4 0.43 0.10 0.11 5.22 2.59 2.63 0.42 0.10 0.11 0.95 0.95 0.25 0.13

0.2,-0.4 0.21 0.19 0.20 3.66 3.49 3.54 0.21 0.19 0.19 0.95 0.94 0.18 0.17

0.2,0.5 0.29 0.12 0.12 4.34 2.69 2.74 0.30 0.12 0.13 0.96 0.96 0.21 0.14

0.5,-0.4 0.20 0.20 0.20 3.56 3.56 3.56 0.20 0.20 0.20 0.95 0.95 0.18 0.17

0.5,0.5 0.43 0.08 0.09 5.32 2.25 2.30 0.46 0.09 0.09 0.97 0.95 0.27 0.12

0.8,-0.4 0.27 0.17 0.17 4.16 3.28 3.32 0.28 0.17 0.17 0.96 0.95 0.21 0.16

0.8,0.5 1.03 0.06 0.06 8.17 1.91 1.94 1.11 0.06 0.07 0.96 0.95 0.41 0.10

γ = 0.25

-0.5,-0.4 4.85 0.10 0.11 21.12 2.48 2.61 0.39 0.10 0.10 0.07 0.93 0.24 0.12

0.2,-0.4 0.43 0.19 0.21 5.39 3.47 3.63 0.19 0.18 0.18 0.79 0.93 0.17 0.16

0.2,0.5 2.97 0.12 0.14 16.39 2.79 3.02 0.28 0.12 0.11 0.13 0.93 0.21 0.13

0.5,-0.4 0.26 0.20 0.23 4.11 3.55 3.85 0.19 0.19 0.18 0.90 0.93 0.17 0.17

0.5,0.5 5.90 0.09 0.11 23.35 2.33 2.56 0.43 0.08 0.09 0.06 0.92 0.26 0.11

0.8,-0.4 1.16 0.17 0.18 9.46 3.26 3.41 0.27 0.16 0.16 0.57 0.93 0.20 0.15

0.8,0.5 10.22 0.06 0.07 30.21 1.97 2.15 1.05 0.06 0.06 0.15 0.93 0.40 0.10

γ = 0.5

-0.5,-0.4 13.54 0.09 0.15 36.35 2.34 3.05 0.33 0.08 0.09 0.00 0.88 0.23 0.12

0.2,-0.4 0.84 0.16 0.24 8.28 3.20 3.90 0.16 0.15 0.15 0.47 0.89 0.16 0.15

0.2,0.5 8.00 0.10 0.17 27.85 2.49 3.31 0.23 0.10 0.10 0.00 0.87 0.19 0.12

0.5,-0.4 0.32 0.17 0.28 4.62 3.26 4.31 0.16 0.16 0.16 0.84 0.86 0.16 0.15

0.5,0.5 16.23 0.07 0.13 39.83 2.10 2.92 0.36 0.07 0.07 0.00 0.87 0.23 0.10

0.8,-0.4 2.74 0.14 0.19 15.78 3.00 3.45 0.24 0.13 0.14 0.09 0.90 0.19 0.14

0.8,0.5 27.60 0.05 0.09 51.74 1.78 2.43 0.89 0.05 0.05 0.00 0.87 0.37 0.09



T
ab

le
S
.8
:
B
ia
s,

em
p
ir
ic
al

M
ea
n
S
q
u
ar
ed

E
rr
or
,
V
a
ri
a
n
ce
,
C
ov
er
a
g
e
R
a
te

a
n
d
L
en
g
th

o
f
C
o
n
fi
d
en
ce

In
te
rv
a
ls
.
P
re
d
ic
ti
ve

re
g
re
ss
io
n
w
it
h

ρ
x
=

0.
(F

ir
st

3
co
lu
m
n
s
ar
e
m
u
lt
ip
li
ed

b
y
10
0)
.

M
S
E

B
ia
s

V
a
ri
a
n
ce

C
ov
er
a
g
e

L
en

g
h
t

M
A
(1
)

O
L
S

G
L
S

G
M
A

F
G
L
S

O
L
S

G
L
S

G
M
A

F
G
L
S

O
L
S

G
L
S

G
M
A

F
G
L
S

O
L
S

G
M
A

F
G
L
S

O
L
S

G
M
A

F
G
L
S

T=200

γ
=

0

-0
.7

0
.7
5

0
.2
7

0
.3
0

0
.3
3

6
.8
7

4
.1
0

4
.2
7

4
.5
2

0
.7
6

0
.2
7

0
.2
8

0
.3
2

0
.9
4

0
.9
3

0
.9
4

0
.3
4

0
.2
1

0
.2
2

-0
.4

0
.5
7

0
.4
1

0
.4
4

0
.4
4

5
.9
9

5
.0
7

5
.2
3

5
.2
6

0
.5
9

0
.4
3

0
.4
3

0
.4
6

0
.9
5

0
.9
4

0
.9
5

0
.3
0

0
.2
6

0
.2
7

0
.5

0
.6
3

0
.3
6

0
.3
9

0
.4
1

6
.2
5

4
.7
8

4
.9
8

5
.0
9

0
.6
3

0
.3
9

0
.3
9

0
.4
3

0
.9
4

0
.9
4

0
.9
6

0
.3
1

0
.2
4

0
.2
6

γ
=

0
.2
5

-0
.7

0
.7
3

0
.2
7

0
.3
0

0
.3
9

6
.7
7

4
.0
8

4
.3
7

4
.8
8

0
.7
1

0
.2
6

0
.2
1

0
.3
1

0
.9
4

0
.8
8

0
.9
1

0
.3
3

0
.1
8

0
.2
2

-0
.4

0
.5
7

0
.4
3

0
.4
9

0
.4
7

6
.0
5

5
.2
4

5
.5
6

5
.5
1

0
.5
5

0
.4
1

0
.3
5

0
.4
3

0
.9
4

0
.9
1

0
.9
4

0
.2
9

0
.2
3

0
.2
6

0
.5

0
.6
3

0
.3
8

0
.4
7

0
.4
3

6
.3
8

4
.8
8

5
.4
3

5
.2
3

0
.5
9

0
.3
6

0
.4
8

0
.4
1

0
.9
5

0
.9
5

0
.9
4

0
.3
0

0
.2
7

0
.2
5

γ
=

0
.5

-0
.7

0
.6
1

0
.2
3

0
.3
1

0
.4
5

6
.1
5

3
.7
7

4
.4
1

5
.3
5

0
.6
1

0
.2
2

0
.1
6

0
.2
7

0
.9
5

0
.8
3

0
.8
7

0
.3
0

0
.1
5

0
.2
0

-0
.4

0
.4
8

0
.3
6

0
.5
5

0
.4
1

5
.5
1

4
.8
2

5
.8
7

5
.1
0

0
.4
7

0
.3
5

0
.2
7

0
.3
7

0
.9
5

0
.8
3

0
.9
4

0
.2
7

0
.2
0

0
.2
4

0
.5

0
.5
4

0
.3
1

0
.5
4

0
.3
8

5
.9
0

4
.4
5

5
.8
9

4
.9
1

0
.5
0

0
.3
1

0
.5
0

0
.3
5

0
.9
5

0
.9
5

0
.9
4

0
.2
8

0
.2
8

0
.2
3

T=500

γ
=

0

-0
.7

0
.3
0

0
.1
0

0
.1
1

0
.1
1

4
.3
1

2
.5
2

2
.5
6

2
.6
3

0
.3
0

0
.1
0

0
.1
1

0
.1
1

0
.9
5

0
.9
5

0
.9
6

0
.2
2

0
.1
3

0
.1
3

-0
.4

0
.2
3

0
.1
7

0
.1
7

0
.1
8

3
.8
0

3
.2
6

3
.2
9

3
.3
2

0
.2
3

0
.1
7

0
.1
7

0
.1
8

0
.9
5

0
.9
5

0
.9
5

0
.1
9

0
.1
6

0
.1
7

0
.5

0
.2
5

0
.1
5

0
.1
6

0
.1
6

4
.0
1

3
.1
3

3
.2
0

3
.2
3

0
.2
5

0
.1
5

0
.1
5

0
.1
6

0
.9
6

0
.9
5

0
.9
5

0
.2
0

0
.1
5

0
.1
6

γ
=

0
.2
5

-0
.7

0
.2
8

0
.1
0

0
.1
1

0
.1
3

4
.1
9

2
.4
5

2
.6
5

2
.9
3

0
.2
8

0
.1
0

0
.0
8

0
.1
1

0
.9
5

0
.8
9

0
.9
2

0
.2
1

0
.1
1

0
.1
3

-0
.4

0
.2
2

0
.1
6

0
.1
8

0
.1
7

3
.6
9

3
.1
4

3
.3
8

3
.2
4

0
.2
2

0
.1
6

0
.1
4

0
.1
7

0
.9
5

0
.9
1

0
.9
6

0
.1
8

0
.1
5

0
.1
6

0
.5

0
.2
3

0
.1
4

0
.1
7

0
.1
6

3
.8
8

3
.0
4

3
.3
0

3
.2
5

0
.2
4

0
.1
4

0
.1
9

0
.1
5

0
.9
5

0
.9
6

0
.9
5

0
.1
9

0
.1
7

0
.1
5

γ
=

0
.5

-0
.7

0
.2
4

0
.0
8

0
.1
6

0
.1
8

3
.8
8

2
.2
6

3
.3
0

3
.4
8

0
.2
4

0
.0
8

0
.0
6

0
.0
9

0
.9
5

0
.7
3

0
.8
5

0
.1
9

0
.0
9

0
.1
2

-0
.4

0
.1
8

0
.1
3

0
.2
8

0
.1
5

3
.4
0

2
.8
9

4
.3
6

3
.0
2

0
.1
9

0
.1
4

0
.1
1

0
.1
4

0
.9
5

0
.7
5

0
.9
4

0
.1
7

0
.1
3

0
.1
5

0
.5

0
.2
0

0
.1
2

0
.2
0

0
.1
6

3
.5
7

2
.8
0

3
.5
8

3
.2
5

0
.2
0

0
.1
2

0
.2
0

0
.1
3

0
.9
5

0
.9
5

0
.9
3

0
.1
8

0
.1
8

0
.1
4



T
ab

le
S
.9
:
B
ia
s,

em
p
ir
ic
al

M
ea
n
S
q
u
ar
ed

E
rr
or
,
V
a
ri
a
n
ce
,
C
ov
er
a
g
e
R
a
te

a
n
d
L
en
g
th

o
f
C
o
n
fi
d
en
ce

In
te
rv
a
ls
.

S
er
ia
ll
y
co
rr
el
a
te
d
a
n
d

h
et
er
os
ke
d
as
ti
c
er
ro
rs

w
it
h
ρ
x
=

0.
(F

ir
st

3
co
lu
m
n
s
a
re

m
u
lt
ip
li
ed

b
y
1
0
0
).

M
S
E

B
ia
s

V
a
ri
a
n
ce

C
ov
er
a
g
e

L
en

g
h
t

O
L
S

F
-C

F
-C

H
O
L
S

F
-C

F
-C

H
O
L
S

F
-C

F
-C

H
O
L
S

F
-C

F
-C

H
O
L
S

F
-C

F
-C

H

w=x

ν
=

x
2

A
R
(1
)

6
.3
6

3
.7
6

2
.6
5

1
9
.8
5

1
5
.4
2

1
3
.0
5

6
.3
2

3
.7
0

2
.9
6

0
.9
5

0
.9
4

0
.9
6

0
.9
8

0
.7
6

0
.6
8

A
R
(2
)

4
8
.6
1

1
.5
1

1
.0
2

5
4
.5
3

9
.7
4

8
.1
4

3
9
.5
6

1
.5
9

1
.1
6

0
.9
1

0
.9
5

0
.9
6

2
.3
8

0
.5
0

0
.4
2

M
A
(1
)

2
.3
7

0
.4
2

0
.4
0

1
2
.1
7

5
.1
2

4
.9
6

2
.3
6

0
.4
3

0
.3
8

0
.9
4

0
.9
4

0
.9
4

0
.6
0

0
.2
5

0
.2
4

A
R
M
A
(1
,1
)

6
.8
6

4
.1
3

3
.1
1

2
0
.6
2

1
6
.1
8

1
4
.1
5

6
.6
2

3
.8
0

3
.1
5

0
.9
4

0
.9
4

0
.9
6

1
.0
0

0
.7
7

0
.7
0

ν
=

lo
g
(x
)2

A
R
(1
)

0
.7
7

0
.4
6

0
.1
8

6
.9
0

5
.4
0

3
.3
9

0
.7
5

0
.4
6

0
.2
0

0
.9
4

0
.9
5

0
.9
7

0
.3
4

0
.2
7

0
.1
7

A
R
(2
)

6
.0
3

0
.1
9

0
.0
6

1
9
.2
2

3
.4
3

1
.9
6

4
.8
8

0
.2
0

0
.0
7

0
.9
1

0
.9
5

0
.9
6

0
.8
4

0
.1
7

0
.1
0

M
A
(1
)

0
.2
9

0
.0
5

0
.0
5

4
.2
8

1
.8
0

1
.6
8

0
.2
8

0
.0
5

0
.0
4

0
.9
4

0
.9
5

0
.9
2

0
.2
1

0
.0
9

0
.0
8

A
R
M
A
(1
,1
)

0
.8
3

0
.5
0

0
.2
7

7
.2
2

5
.6
3

4
.1
2

0
.7
9

0
.4
7

0
.2
5

0
.9
4

0
.9
5

0
.9
5

0
.3
5

0
.2
7

0
.2
0

ν
=

ex
p
(0
.2
(x

+
x
2
))

A
R
(1
)

1
3
.3
0

8
.1
0

3
.6
1

2
8
.8
8

2
2
.6
7

1
5
.2
6

1
3
.2
5

6
.1
0

4
.0
0

0
.9
4

0
.9
1

0
.9
6

1
.4
1

0
.9
7

0
.7
8

A
R
(2
)

8
2
.0
5

2
.8
1

1
.1
9

7
1
.0
7

1
3
.1
6

8
.7
2

6
8
.0
1

2
.6
2

1
.3
4

0
.9
1

0
.9
4

0
.9
6

3
.1
1

0
.6
4

0
.4
5

M
A
(1
)

4
.6
3

0
.7
2

0
.6
0

1
7
.0
1

6
.6
3

6
.0
8

4
.6
1

0
.7
0

0
.5
2

0
.9
4

0
.9
4

0
.9
3

0
.8
3

0
.3
2

0
.2
8

A
R
M
A
(1
,1
)

1
4
.0
9

8
.9
4

4
.4
8

2
9
.7
3

2
3
.7
0

1
6
.9
6

1
3
.7
5

6
.2
5

4
.3
7

0
.9
3

0
.9
0

0
.9
5

1
.4
4

0
.9
8

0
.8
2

w=ϕx+(1−ϕ)q

ν
=

x
2

A
R
(1
)

6
.9
0

4
.1
5

3
.4
3

2
0
.9
3

1
6
.3
8

1
4
.6
6

6
.3
4

3
.7
2

3
.5
0

0
.9
3

0
.9
4

0
.9
5

0
.9
8

0
.7
6

0
.7
3

A
R
(2
)

4
9
.0
7

1
.7
4

1
.3
6

5
5
.6
4

1
0
.5
1

9
.2
7

3
9
.7
8

1
.5
9

1
.4
1

0
.8
9

0
.9
4

0
.9
5

2
.3
8

0
.5
0

0
.4
6

M
A
(1
)

2
.5
9

0
.4
1

0
.3
9

1
2
.8
2

5
.0
5

4
.9
6

2
.3
6

0
.4
2

0
.4
2

0
.9
3

0
.9
5

0
.9
5

0
.6
0

0
.2
5

0
.2
5

A
R
M
A
(1
,1
)

7
.1
9

4
.3
8

3
.7
3

2
1
.3
7

1
6
.8
5

1
5
.2
5

6
.6
9

3
.8
2

3
.6
5

0
.9
3

0
.9
4

0
.9
4

1
.0
1

0
.7
7

0
.7
5

ν
=

lo
g
(x
)2

A
R
(1
)

0
.8
2

0
.4
9

0
.3
7

7
.2
2

5
.6
5

4
.7
8

0
.7
6

0
.4
6

0
.4
0

0
.9
3

0
.9
5

0
.9
6

0
.3
4

0
.2
7

0
.2
4

A
R
(2
)

5
.9
6

0
.2
1

0
.1
5

1
9
.4
0

3
.6
6

3
.0
1

4
.9
0

0
.2
0

0
.1
7

0
.8
9

0
.9
5

0
.9
6

0
.8
4

0
.1
7

0
.1
5

M
A
(1
)

0
.3
1

0
.0
5

0
.0
5

4
.4
4

1
.7
6

1
.7
0

0
.2
9

0
.0
5

0
.0
5

0
.9
3

0
.9
6

0
.9
5

0
.2
1

0
.0
9

0
.0
8

A
R
M
A
(1
,1
)

0
.8
5

0
.5
2

0
.4
0

7
.3
6

5
.8
4

4
.9
5

0
.8
1

0
.4
7

0
.4
1

0
.9
3

0
.9
4

0
.9
5

0
.3
5

0
.2
7

0
.2
5

ν
=

ex
p
(0
.2
(x

+
x
2
))

A
R
(1
)

1
3
.8
0

8
.4
2

5
.2
2

2
9
.7
6

2
3
.3
9

1
8
.0
5

1
2
.7
9

6
.1
4

5
.4
0

0
.9
3

0
.9
1

0
.9
5

1
.3
9

0
.9
7

0
.9
0

A
R
(2
)

8
4
.1
2

3
.1
3

1
.9
0

7
2
.7
8

1
4
.1
8

1
0
.9
2

6
7
.9
1

2
.6
3

1
.9
6

0
.8
9

0
.9
3

0
.9
5

3
.1
0

0
.6
4

0
.5
4

M
A
(1
)

4
.9
1

0
.7
1

0
.6
3

1
7
.7
6

6
.6
6

6
.2
5

4
.4
8

0
.7
0

0
.6
3

0
.9
3

0
.9
6

0
.9
4

0
.8
2

0
.3
2

0
.3
0

A
R
M
A
(1
,1
)

1
4
.2
1

8
.9
6

5
.9
3

3
0
.1
5

2
4
.2
0

1
9
.2
5

1
3
.3
9

6
.3
1

5
.7
4

0
.9
3

0
.9
1

0
.9
5

1
.4
2

0
.9
9

0
.9
3




