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Abstract

In social networks or spatial experiments, one unit’s outcome often depends

on another’s treatment, a phenomenon called interference. Researchers are inter-

ested in not only the presence and magnitude of interference but also its evolution

based on factors like distance, neighboring units, and connection strength. How-

ever, the non-random nature of these factors and complex correlations across

units pose challenges for inference. This paper introduces the Partial Null Ran-

domization Testing (PNRT) framework to address these issues. The proposed

method is finite-sample valid and applicable without network structure assump-

tions, utilizing randomization testing and pairwise comparisons. Unlike exist-

ing Conditional Randomization Tests, PNRT avoids the need for conditioning

events, making it more straightforward to implement. Simulations demonstrate

the method’s desirable power properties and its applicability to general interfer-

ence scenarios.
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1 Introduction

In social networks or spatial experiments, the outcome for one unit often depends on the

treatment assigned to another, a phenomenon known as interference.1 Researchers are not

only interested in the existence and magnitude of such interference but also in how it evolves

within a network.2 For instance, Blattman et al. (2021) examines a large-scale experiment in

Bogotá, Colombia, focusing on the impact of a hotspot policing policy on crime by treating

each street segment as the unit of analysis. To assess the policy’s total welfare impact, it

is crucial to evaluate whether interference occurred following treatment assignment, such as

crime displacement or deterrence in nearby neighborhoods.3 Additionally, Blattman et al.

(2021) tests the distance of spillover effects to determine which units are sufficiently far from

treated ones to serve as a control group in the analysis. As noted by Blattman et al. (2021),

standard errors are often underestimated due to complex clustering patterns, suggesting

that a design-based approach and randomization inference might be more appropriate in

many network settings where the nature of spillovers is unknown.4 Consequently, recent

studies, including Blattman et al. (2021), leverage the Fisher Randomization Tests(FRT)

for inference, as it is exact in finite samples (Fisher, 1925). However, classical FRT is not

guaranteed to be valid when testing for interference (Athey et al., 2018).

In this paper, I introduce a novel unconditional randomization testing framework called

Partial Null Randomization Testing (PNRT), designed to detect interference and analyze its

evolution within networks. This nonparametric method is finite-sample valid and applicable

without requiring assumptions about the network structure, relying solely on the randomness

of treatment assignments.5 Given its robustness, I propose PNRT as a benchmark for network

analysis.

An essential concept in implementing the FRT is imputability : all potential outcomes are

1For example, Bayer et al. (2008) explore the effect of social interactions on labor market outcomes, while
Angrist (2014) examine the peer effect on students’ achievement.

2For example, Bond et al. (2012) investigates whether spillover effects extend beyond users’ immediate
friends to their friends of friends. Some theoretical work, such as Toulis and Kao (2013), would ex-ante
assume away the spillover effects of friends of friends. Rajkumar et al. (2022) studies how job mobility
relates to the intensity of links, differentiating between strong and weak ties.

3This assumes that interactions pass through neighboring units, resulting in spillover effects.
4Blattman et al. (2021) P.2027: “Many urban programs are both place-based and vulnerable to spillovers.

This includes efforts to improve traffic flow, beautify blighted streets and properties, foster community
mobilization, and rezone land use. The same challenges could arise with experiments in social and family
networks.”

5It is finite sample exact in the sense that its probability of false rejection in finite samples will not exceed
the user-prescribed nominal probability (Pouliot, 2024).
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observed across different treatment assignments under the null (Rosenbaum, 2007; Hudgens

and Halloran, 2008). However, testing for interference involves partially sharp null hypothe-

ses, which introduce two primary challenges. First, only a subset of potential outcomes is

imputable. Second, the set of units with imputable outcomes varies with different treatment

assignments. For instance, under the null hypothesis of no spillover effects on streets not

treated by hotspot policing, there is no information about treated streets, and the set of

streets experiencing spillover effects varies with each treatment assignment.

To address the first challenge, I propose pairwise imputable statistics, a bivariate function

T (Dobs, D) involving the observed assignment Dobs and the randomized assignments D. It is

restricted to only imputable units under both observed and randomized assignments under

the null hypothesis while resembles conventional test statistics defined by Imbens and Rubin

(2015) .6 The critical difference lies in the role of the observed assignment Dobs: it not

only determines the values of the outcome vector, as in conventional test statistics, but also

identifies the set of units that are imputable under Dobs. Despite this seeming restriction,

I demonstrate that pairwise imputable statistics can accommodate various test statistics

commonly used in sharp null hypotheses. For example, in the difference-in-means estimator,

we compare the spillover group with the control group, where Dobs determines both the units

included in the computation and the values of the outcome variable, while D determines

group assignments, implicitly excluding treated units under D.

However, the second challenge—variation in the set of imputable units—makes it difficult

to guarantee validity when directly using pairwise imputable statistics in FRT. Specifically,

p-values are constructed within the fixed set of imputable units following Dobs, comparing

the observed test statistics T (Dobs, Dobs) with other randomized test statistics T (Dobs, D).

Nevertheless, T (Dobs, Dobs) belongs to the same distribution as T (D,D), which differs from

T (Dobs, D) even under the null due to the variation in the set of imputable units across differ-

ent treatment assignments. This variability makes naive implementations of unconditional

randomization testing unable to control size effectively.

To overcome this, I draw inspiration from recent advances in selective inference (Wen

et al., 2023; Guan, 2023) and construct PNRT p-values through pairwise inequality compar-

isons between T (D,Dobs) and T (Dobs, D) for each pair of observed and potential assignments

(Dobs, D). Since pairwise imputable statistics use only imputable units under both observed

and randomized assignments, both terms are computable under the partial null hypothesis.

6The test statistics often depend on the observed outcome and randomized assignment. As Imbens and
Rubin (2015) noted, given the potential outcome function, the observed outcome is a function of the observed
assignment.
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The validity of the procedure is established through the symmetry of these pairwise com-

parisons, similar to the conformal lemma in Guan (2023). I propose two types of PNRT:

pairwise comparison-based PNRT and minimization-based PNRT. Theoretically, the pairwise

comparison-based PNRT controls type I error below α when the rejection level is α/2, and the

minimization-based PNRT controls the type I error at the rejection level α. Both methods

rely only on the randomness in the treatment assignment and are valid under arbitrary fixed

designs and network structures. Moreover, in the case of a sharp null hypothesis, T (D,Dobs)

equals T (Dobs, Dobs) and T (Dobs, D) equals T (D,D), so both PNRT procedures encompass

FRT as a special case under sharp null hypotheses. Additionally, a multiple hypothesis test-

ing adjustment procedure ensures Family Wise Error Rate (FWER) control when defining

the “neighborhood” of interference concerning distance measures or tie strengths.

To illustrate PNRT’s applicability, I revisit Blattman et al. (2021), which reported signif-

icant spillover effects on property crime but not violent crime. A simulation study calibrated

to the actual dataset demonstrates PNRT’s desirable power properties and its suitability

for general interference scenarios. Regarding size control, the pairwise comparison-based

PNRT empirically controls type I errors, even at the rejection level α, suggesting that the

theoretical result provides a guarantee in the worst-case scenario. Conversely, the classical

FRT method tends to over-reject under partial null hypotheses. As for power, the pairwise

comparison-based PNRT with a rejection level of α demonstrates superior power compared

to alternatives and maintains desirable power even at a rejection level of α/2. Moreover,

PNRT’s reanalysis suggests that contrary to Blattman et al. (2021), the spillover effect might

be significant at the 10% level for violent crime, while effects for property crime may be in-

significant. This finding could potentially alter the welfare analysis if violent crime is deemed

more severe and in need of stricter control.

This paper contributes to two strands of literature. First, it advances causal infer-

ence under interference. Unlike model-based approaches that rely on parametric assump-

tions (Sacerdote, 2001; Bowers et al., 2013; Toulis and Kao, 2013), this work aligns with

the randomization-based method (also called design-based inference), which uses treatment

assignment randomness as the source of uncertainty for inference, treating all potential

outcomes as fixed constants (Abadie et al., 2020, 2022). Within the randomization-based

method, there are at least two inferential frameworks for causal inference with interference:

the Fisherian and Neymanian perspectives (Li et al., 2018). The Neymanian approach fo-

cuses on randomization-based unbiased estimation and variance calculation (Hudgens and

Halloran, 2008; Aronow and Samii, 2017; Pollmann, 2023), with inference and interval es-
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timation based on normal approximations in asymptotic settings, often requiring sparse

networks or local interference.7

In contrast, this paper follows the Fisherian perspective, focusing on detecting causal ef-

fects with finite-sample exact randomization-based testing (Dufour and Khalaf, 2003; Lehmann

and Romano, 2005; Rosenbaum, 2020). Acknowledging FRT’s invalidity for testing inter-

ference, prior literature has proposed Conditional Randomization Testing (CRT), which re-

stricts the test to a conditioning event involving a subset of units and assignments where the

null hypothesis is sharp.8 Different papers have suggested various procedures for designing

these conditioning events to ensure finite-sample exact testing. However, many CRT meth-

ods are tailored to specific circumstances, such as clustered interference (Basse et al., 2019,

2024), and cannot be extended to more general settings. Additionally, designing condition-

ing events to ensure nontrivial power is challenging, often leading to power loss (Puelz et al.,

2021). Lastly, conditioning events for general interference are computationally demanding,

typically requiring extensive time for implementation. The main contribution of this paper is

developing a valid testing procedure free from conditioning events for testing partially sharp

null hypotheses. This procedure offers three key advantages: broad applicability, avoidance

of complex conditioning events, and straightforward implementation. A simulation study

with spatial interference calibrated to Blattman et al. (2021) illustrates PNRT’s superior

power to CRT, which involves complex conditioning events that restrict power. This advan-

tage is precious given the high cost of collecting information for each unit in network analysis

and the often minimal interference effects (Taylor and Eckles, 2018; Breza et al., 2020).

As illustrated in previous literature, such as Athey et al. (2018) and Basse et al. (2019),

the confidence intervals for certain causal parameters are constructed by inverting tests. As

noted by Basse et al. (2024), this approach provides finite-sample exact tests with mini-

mal model assumptions compared to model-based approaches. Additionally, randomization-

based methods can be combined with model-based frameworks, such as the linear-in-means

model (Manski, 1993), to potentially increase power or extend the framework beyond random

experiments while ensuring test validity (Wu and Ding, 2021; Basse et al., 2024; Borusyak

and Hull, 2023).

Second, beyond the network setting, this method extends randomization testing to any

partial sharp null hypothesis. Since Neyman et al. (2018) acknowledged the limitation of

FRT for testing only sharp null hypotheses, researchers have developed various strategies for

7See also, Basse and Airoldi (2018); Viviano (2022); Wang et al. (2023); Vazquez-Bare (2023)
8See, for example, Aronow (2012); Athey et al. (2018); Basse et al. (2019); Puelz et al. (2021); Zhang and

Zhao (2021); Basse et al. (2024); Hoshino and Yanagi (2023)
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different types of weak nulls. For example, Ding et al. (2016), Li et al. (2016), and Zhao and

Ding (2020) investigate the null hypothesis of no average treatment effect; Caughey et al.

(2023) validate randomization testing for certain classes of test statistics under bounded

nulls; Zhang and Zhao (2021) construct conditional randomization testing for partial sharp

null following the similar idea as Athey et al. (2018) and Puelz et al. (2021), applying this

idea in time-staggered adoption designs. To my knowledge, PNRT is the first procedure to

address partial null hypotheses using unconditional testing.

Structure of the paper. First, Section 2 introduces the general setup and establishes

all necessary notation. Then, Section 3 presents the PNRT procedure, which includes the

pairwise imputable statistics (Section 3.1) and the p-value based on pairwise comparisons

(Section 3.2). Section 4 proposes a framework for determining the boundary of interference

and adjusting for sequential testing. Next, Section 5 applies the method to a large-scale

policing experiment in Bogotá, Colombia, with Section 5.1 reporting the results of a Monte

Carlo experiment calibrated to this setting. Finally, Section 6 concludes the paper. The

Appendix provides additional empirical and theoretical results, as well as the proofs.

2 Setup and null hypothesis of interest

Consider N units with index i ∈ {1, 2, ..., N}, and a treatment assignment vector D =

(D1, . . . , DN) ∈ {0, 1}N , where Di ∈ {0, 1} denote unit i’s treatment. Let X be the collected

pre-treatment characteristics, such as age and gender. They can be used to control for units’

heterogeneity, and I do not attempt to evaluate their effects on the outcome. The treatment

assignment is random and follows a known probability distribution P (D) where P (d) =

pr(D = d) is the probability of the assignment D taking on the value d. The probability

distribution may or may not depend on covariates X: it doesn’t depend on X when we

have a complete randomization or cluster randomization; it depends on X when we have a

stratified randomization design or matched-pair design. Let Y (d) = (Y1(d), . . . , YN(d)) ∈ RN

be the potential outcome when the treatment assignment is d, where potential outcome of

unit i under assignment d is Yi(d). I allow unit i’s potential outcome to depend on another

unit j’s treatment assignments, which allows violation of the classic SUTVA proposed by

Cox (1958) and enables us to consider situations when spatial/network interference exists.

Throughout the paper, I assume the following objects are observed: 1) the realized vector

of treatments for all units in the network, denoted by Dobs; 2) the realized outcomes for all
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of the units, denoted Y obs ≡ Y (Dobs) = (Y1(D
obs), . . . , YN(D

obs)); 3) The N × N proximity

matrix G, where the (i, j)-th component Gi,j ≥ 0, represents a “distance measure” between

units i and j, which allowed to be either a continuous or discrete variable. I normalizeGi,i = 0

for all i = 1, 2, . . . , N , and Gi,j > 0 for all i ̸= j. This measure would be context-specific:9

Example 1 (Spatial Distance). Consider settings where units interact locally through shared

space, such as street segments in a city in Blattman et al. (2021). Gi,j would be the spatial

distance between units i and j.

Example 2 (Network Distance). Consider settings where units are linked in a social network,

such as friends in Facebook in Bond et al. (2012). Gi,j measures the distance between units i

and j, such that Gi,j = 1 for friends, Gi,j = 2 for friend s of friends, etc. Gi,j = ∞ if i and

j are not connected to accommodate the case with disconnected networks and the interest in

partial interference, such as cluster interference (Sobel, 2006; Basse et al., 2019).

Example 3 (Intensity of the Link). Researchers might not only observe whether two units

are linked but also the intensity of the link inti,j between units i and j, such as frequency of

interaction or volume of email correspondence (Goldenberg et al. (2009); Bond et al. (2012);

Rajkumar et al. (2022)). Following the classic study from Granovetter (1973), one might be

interested in how interference differs across the weak and strong ties defined by the intensity

measure. Here, denote ¯int = maxi,j∈{1,...,N}inti,j, one option is to define Gi,j = ¯int− inti,j.

So, the increase of Gi,j implies a weaker connection as in Example 1 and Example 2.

I adopt a design-based inference approach where D is treated as random, but G,X, P

and the potential outcome schedule Y (·) are taken as fixed. For simplicity in notation, they

are not treated as arguments of any functions in the rest of the paper.

2.1 Sharp null and partial null hypothesis

In Fisher (1925), randomization testing is introduced with the sharp null hypothesis. For-

mally defined as the following:

Definition 1 (Sharp null hypothesis).

H0 : Yi(d) = Yi(d
′) for all i ∈ {1, . . . , N}, and any d, d′ ∈ {0, 1}N

9Similar to Pollmann (2023), my method can also accommodate the non-network settings. For example,
we can consider firms selling differentiated products and define the distance measure as the distance in the
product space.
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This hypothesis represents a classic null hypothesis, often called the null hypothesis of

no treatment effect whatsoever. Under this hypothesis, all missing potential outcomes are

“observed” (Zhang and Zhao, 2023). This sharp null hypothesis allows the classical Fisher

randomization tests to be assessed, as all potential outcomes can be imputed under the

null. FRT involves randomly reassigning treatments D to units, calculating the test statistic

for each reassignment, and comparing these statistics to the observed value to determine

significance. The p-value is constructed as the proportion of D such that the coefficient is

higher than the observed coefficient. A detailed discussion can be found in Appendix A.1.

However, this strong null hypothesis is unreasonable in certain cases. Hence, the partial

null hypothesis is introduced, allowing the potential outcome to differ for certain assignment

vectors. Formally defined as follows:

Definition 2 (Partial null hypothesis).

H0 : Yi(d) = Yi(d
′) for all i ∈ {1, . . . , N}, and any d, d′ ∈ Di ⊊ {0, 1}N

Notice that the set Di changes with each i, and it is strictly a subset of {0, 1}N . As noted
in Zhang and Zhao (2023), the missing potential outcomes are only partially “observed”

under the partial null hypothesis. The sharp null hypothesis in Definition 1 can be thought

of as a special case that Di = {0, 1}N for any i. When considering the existence or evolution

of interference within a network, researchers are often interested in whether there is an

interference beyond a certain distance ϵs that di = 1 is excluded so that these sets only

consider strictly spillover effects, whereas Definition 1 also includes di = 1.

Definition 3 (Distance interval assignment set). For unit i ∈ {1, . . . , N}, and given distance

ϵs, distance interval assignment set is

Di(ϵs) ≡ {d ∈ {0, 1}N :
N∑
j=1

1{Gi,j ≤ ϵs}dj = 0}

and given any d ∈ Di(ϵs), I call unit i is in the distance interval (ϵs,∞).

This set includes all treatment assignments where unit i is at least a distance ϵs away

from any treated units, which I refer to as being “in the distance interval (ϵs,∞) from any

treated units.” For any ϵs ≥ 0, since Gi,i = 0, we have 1{Gi,i ≤ ϵs} = 1, which implies that

di = 0 in Di(ϵs). Specifically, when ϵs = 0, Di(0) includes all the treatment assignments d

such that di = 0.
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For any ϵs < 0, given that Gi,j ≥ 0 for all i, j, we have 1{Gi,j ≤ ϵs} = 0. Therefore,

Di(ϵs) = {0, 1}N . If we instead focus on treatment assignments where unit i is within the

distance interval (a, b], the corresponding set can be written as Di(a)/Di(b). Although the

method introduced in this paper can generally apply to all partial null hypotheses, the rest

of the paper will specifically focus on the following special case of the partial null hypothesis:

Definition 4 (Partial null hypotheses of interference on distance ϵs ≥ 0).

Hϵs
0 : Yi(d) = Yi(d

′) for all i ∈ {1, . . . , N}, and any d, d′ ∈ Di(ϵs)

In other words, this partial null hypothesis asserts that no interference exists beyond

distance ϵs, where the meaning of distance is context-specific. If ϵs = 0, we would test

the partial null hypothesis of no interference since Di(0) includes all treatment assignments

such that di = 0. This could serve as an alternative to cluster robust standard errors for

conducting inference on interference in practice. If ϵs > 0, researchers can use this approach

to identify the neighborhood of interference or to find a safe comparison group for a later

estimation step.

Example 1 (Spatial Distance (cont.)). When units are street segments, for some spatial

distance ϵs (e.g., 500 meters), Di(ϵs) represents the set of treatment assignments where

unit i is 500 meters away from any treated street segments. The partial null hypothesis of

interference Hϵs
0 would test whether a spillover effect exists on an untreated unit 500 meters

away from any treated units.

Example 2 (Network Distance (cont.)). Suppose two schools are far apart, with 100 students

in each school, and we are interested in the cluster interference of the treatment within the

schools, such as the effect of deworming drugs as in Miguel and Kremer (2004). Suppose

we don’t have access to student-level linkage and are interested in cluster interference within

each school. We can consider students as units with a distance of 100 to all other students

in the same school and a distance of ∞ to students in the other school. Then, set ϵs = 0 to

test the existence of cluster interference.10

Example 3 (Intensity of the Link (cont.)). When units are people with cell phones, and

we observe the number of text messages between different units, with a maximum of, for

example, 50 messages per week, we can construct the ”distance” measurement reflecting the

10One might be interested in setting ϵs = 101 to test interference across schools. However, as noted by
Puelz et al. (2021), such a test might not be feasible due to a lack of power in practice.
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intensity of the link as 50 minus the number of messages between units. Then, for a distance

ϵs = 40, Di(ϵs) represents the set of treatment assignments where unit i has fewer than

50 − 40 = 10 messages with any treated units. The partial null hypothesis of interference

Hϵs
0 would test whether interference exists for an untreated unit with fewer than 10 messages

with any treated units.

A toy example. Consider 6 students as the units connected in a regular polygon, as

shown in Figure 1. The units are connected if they are friends with each other. Suppose

the outcome of interest, Y , is the number of hours they spend studying each day, and there

is a random treatment D as a new version of the textbooks. Only one unit is treated

randomly, with P (d) = 1/6 for each potential assignment. Let Dobs = (1, 0, 0, 0, 0, 0) and

Y obs = (2, 5, 3, 1, 4, 6).

Figure 1: Left: Structure of the six units in the toy example. Right: Distance matrix for
the toy example.

Hence, when unit i1 is treated, units i2 and i6 are the direct friends of the treated unit,

and units i3 and i5 are the friends of friends of the treated unit. If, instead, unit i2 is treated,

units i1 and i3 are the direct friends of the treated unit, and units i4 and i6 are the friends

of friends of the treated unit.

If researchers find it possible to have a peer effect and would like to test the existence of

it by the partial null hypothesis in Definition 4 with ϵs = 0:

H0
0 : Yi(d) = Yi(d

′) for all i ∈ {1, . . . , N}, and any d, d′ ∈ {0, 1}N such that di = d′i = 0
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As a partial null hypothesis, the potential outcome schedule aligns with the scenario

described in Table 1, where certain potential outcomes may be missing values.

Table 1: Potential outcome schedule under Partial Null

Assignment D Potential Outcome Yi
i1 i2 i3 i4 i5 i6

(1, 0, 0, 0, 0, 0) 2 5 3 1 4 6
(0, 1, 0, 0, 0, 0) ? ? 3 1 4 6
(0, 0, 1, 0, 0, 0) ? 5 ? 1 4 6
(0, 0, 0, 1, 0, 0) ? 5 3 ? 4 6
(0, 0, 0, 0, 1, 0) ? 5 3 1 ? 6
(0, 0, 0, 0, 0, 1) ? 5 3 1 4 ?

Legend: Potential outcome schedule with the partial null hypothesis under Definition 4 for the toy example:
Assignment D includes all the potential assignments with the first row as the observed assignment Dobs;
Potential outcomes are with ? are non-imputable values under the partial null.

A natural idea is to consider a subset of units or assignments for which imputation

is possible. However, let’s fix the subset of units as all the units with imputable potential

outcomes under the null given the observed treatment assignmentDobs. There is no guarantee

that those units would still be ϵs distance away from any treated units. For example, as we

can see in table 1, all units i2 to i6 are control units under D
obs when i1 is treated, and there

is no other potential assignment d that could keep i2 to i6 in the control group. Thus, the

partial null hypothesis induces a technical barrier when using randomization testing, and

naively choosing a fixed subset of units wouldn’t work.

2.2 Preview of the PNRT procedures for testing the existence of

interference

Consider the setting described in Blattman et al. (2021), where we observe a treatment

assignment Dobs. Suppose we plan to run a regression of the number of crimes on a spillover

proximity indicator that the units are within 250 meters of any treated unit. This proximity

indicator would be related to the treatment assignment Dobs. We may include additional

covariates in the regression, but the test statistic of interest will be the coefficient on the

indicator.

In the following section, I introduce two Partial Null Randomization Testing (PNRT) pro-

cedures designed to perform inference for the partial null hypothesis: the pairwise comparison-

based PNRT and the minimization-based PNRT. Both methods share a common set of steps:

Step 1. Randomly reassign treatments D to units. For each reassignment D, identify the

subsample of units that would not be treated under either Dobs or D.
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Step 2. Using the observed outcome in the subsample, run the first regression as if Dobs

were the treatment assignment to obtain the regression coefficient β. Then, run a second

regression as if D were the treatment assignment to obtain the regression coefficient β′.

Step 3. P-value calculation:

For the pairwise comparison-based PNRT, calculate the p-value as the proportion of

reassignments D for which β′ > β.

For the minimization-based PNRT, first find the minimum value of β across all reassign-

ments D, denoted β̃. Then, calculate the p-value as the proportion of reassignments D for

which β′ ≥ β̃.

The subsequent sections of the paper provide a detailed discussion of why these two

procedures lead to valid hypothesis testing.

3 Two types of Partial null randomization testing

3.1 Pairwise imputable statistics

Given some missing potential outcomes, the first technical challenge is constructing the test

statistic. In practice, researchers typically have a distance ϵc in mind such that any units

with distance ϵc away from the treated units would not be affected by interference. For

example, in a spatial setting, we might be confident that there is no interference if units are

ϵc = 1000 meters away from any treated units. If we are interested in cluster interference,

we might be confident that there is no spillover once ϵc is larger than any distance within

each cluster, meaning there is no interference across different clusters.

Thus, a natural choice of test statistics would involve a comparison between units in

the distance interval (ϵs, ϵc] from treated units replacing the treated group in the class test

statistic and the units in the distance interval (ϵc,∞) from treated units as a pure control

group. If the researcher doesn’t have such a distance ϵc in mind, section 4.2 proposes a

sequential testing procedure to help select the appropriate ϵc. In fact, even if ϵc is misspecified

and doesn’t offer a clean comparison group for interference, the proposed testing procedure

remains valid, although it might affect the power of the test.

As illustrated above, using a fixed subset of units is not ideal, especially when we have

different units that are imputable under Hϵs
0 for different Dobs.Therefore, it is essential to

pay special attention only to units imputable under Hϵs
0 given our observed information. For

notational simplicity, let’s fix ϵs and ϵc for the rest of the section.
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Definition 5 (Imputable Units). Given d ∈ {0, 1}N and partial null hypothesis Hϵs
0 , I(d) ≡

{i ∈ {1, . . . , N} : d ∈ Di(ϵs)} ∈ 2{1,...,N} is called Imputable Units under treatment assign-

ment d.

When we are interested in the sharp null H0 instead of the partial null Hϵs
0 , based on

Definition 1, we can treat Di as {0, 1}N . As a result, I(d) = {1, . . . , N} for any d under the

null H0, which makes sense as all the units would be imputable under the sharp null. In

general, given Hϵs
0 and observed treatment Dobs, I(Dobs) contains all the units we can use

for testing: any outcome from units outside this set would not add further information to

the test because the potential outcome we observe is not imputable under the partial null

hypothesis. For example, if ϵs = 0, Di(ϵs) would contain all the assignment d such that

di = 0. Hence, I(Dobs) would include all the units that were not treated under Dobs. In

general, I(d) ̸= I(d′) for any d ̸= d′. For example, when testing the existence of spillover

effects among friends, different people have different friends, so the set of ”friends” of the

treated people would be different for different treatment assignments. In practice, it could

be the case that the set I(Dobs) is empty, which is generally determined by the structure of

the network and the partial null hypothesis of interest. If no units satisfy these criteria, then

I would recommend not rejecting the null hypothesis at all.

i1 i2

i3

i4i5

i6

i1 i2

i3

i4i5

i6

Figure 2: Left: Unit i1 is treated and marked in red. Units i2 to i6 are all imputable and
marked as black. Right: Unit i2 is treated and marked in red. Units i1, i6 to i3 are all
imputable and marked as black.

A toy example (cont.) Under H0
0 , the imputable units for d can be written as I(d) ≡

{i ∈ {1, . . . , N} : di = 0} ∈ 2{1,...,N}. Specifically, as shown in Figure 2, when unit i1 is

treated, all units i2 to i6 belong to the imputable units set; when unit i2 is treated, unit i1

and units i3 to i6 would belong to the imputable unit set. For the rest of the discussion in

the toy example, I would use ϵc = 1.

To help define the test statistics later on, we need to define:
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Definition 6 (Imputable Outcome Vector). For d, d′ ∈ {0, 1}N and partial null hypothesis

Hϵs
0 , YI(d)(d

′) ≡ {Yi(d
′)}i∈I(d) is called the imputable Outcome Vector defined on imputable

units for d with the potential outcome value under the treatment assignment d′.

For the potential outcome vector Y (d′) given the treatment assignment d′, YI(d)(d
′) is a

subvector of it, and the units that are included are determined by d. If the null hypothesis

is a sharp null, as we illustrated before I(d) = {1, . . . , N}, then YI(d)(d
′) = Y (d′). Due to

the partial null, different d implies a different set of units in the imputable outcome vector,

and when d′ = Dobs, Y (d′) = Y obs. This allows us further to define our core idea on the test

statistics:

Definition 7 (Pairwise Imputable Statistics). Let T : RN × {0, 1}N × {0, 1}N → R ∪
{∞} be a measurable function, and given partial null hypothesis Hϵs

0 . T is said to be the

pairwise imputable statistics if T (YI(d)(d), d
′) = T (YI(d)(d

′), d′), for any d, d′ ∈ {0, 1}N such

that Yi(d) = Yi(d
′) for all i ∈ I(d) ∩ I(d′).

The set I(d) ∩ I(d′) in Definition 7 resembles the set H in the Definition 1 of Zhang and

Zhao (2023). Intuitively, it excludes all the units that are not imputable under the partial

null hypothesis in the test statistics. At first glance, the pairwise imputable statistics seems

to restrict the form of the test statistics we can use. However, it turns out to be general

enough to include the test statistics we often use. For example, the classic difference-in-mean

can be defined as:

T (YI(Dobs)(D
obs), D) = ∥ȲI(Dobs)(D

obs){i:D∈Di(ϵs)/Di(ϵc)} − ȲI(Dobs)(D
obs){i:D∈Di(ϵc)}∥

where

ȲI(Dobs)(D
obs){i:D∈Di(ϵs)/Di(ϵc)} =

∑
i∈I(Dobs) 1{D ∈ Di(ϵs)/Di(ϵc)}Yi(D

obs)∑
i∈I(Dobs) 1{D ∈ Di(ϵs)/Di(ϵc)}

,

which is the mean value of units in the distance interval (ϵs, ϵc], and

ȲI(Dobs)(D
obs){i:D∈Di(ϵc)} =

∑
i∈I(Dobs) 1{D ∈ Di(ϵc)}Yi(D

obs)∑
i∈I(Dobs) 1{D ∈ Di(ϵc)}

,

which is the mean value of units in the distance interval (ϵc,∞). Difference-in-mean estimator

is widely used in the literature, such as Basse et al. (2019) and Puelz et al. (2021). The

formula is the same as the classic difference in mean when I(Dobs) = {1, . . . , N}, and whether

i belongs to distance interval (ϵs, ϵc] or (ϵc,∞) depends on D. In practice, it could be the
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case that one of the mean values is undefined as no unit i in I(Dobs) belongs to one of these

two intervals, then we further define T = ∞.

In addition, one can try the rank statistics. Formally, following Imbens and Rubin (2015)

to define rank as

Ri ≡ Ri(YI(Dobs)∩I(D)(D
obs))

=
∑

j∈I(Dobs)∩I(D)

1{Yj(D
obs) < Yi(D

obs)}+ 0.5 ∗ (1 +
∑

j∈I(Dobs)∩I(D)

1{Yj(D
obs) = Yi(D

obs)})

− 1 + ∥I(Dobs) ∩ I(D)∥
2

Hence,

T (YI(Dobs)(D
obs), D) = ∥R̄{i:D∈Di(ϵs)/Di(ϵc)} − R̄{i:D∈Di(ϵc)}∥

When Yi(D
obs) = Yi(D) for all i ∈ I(Dobs)∩I(D), Ri(YI(Dobs)∩I(D)(D

obs)) = Ri(YI(Dobs)∩I(D)(D)),

so the Ri remains the same. Hence, T (YI(Dobs)(D
obs), D) = T (YI(Dobs)(D), D) and satisfies

Definition 7.

See section 5 of Imbens and Rubin (2015) for a detailed discussion on the choice of

statistics in the randomization testing, and section 5 of Athey et al. (2018) for a detailed

discussion on other choices of T in different network settings. One can also use the regression

coefficient of interest illustrated in Hoshino and Yanagi (2023). Although the method is valid

even without using information on covariates, incorporating covariate adjustments in practice

might increase power (Wu and Ding, 2021). See the Appendix D for a detailed discussion.

For the sharp null, because all the units are imputable regardless of the treatment assignment

d, I(d)∩ I(d′) = {1, . . . , N} for any d and d′, all the formula above would be the same as the

classical formula defined in Imbens and Rubin (2015).

A toy example (cont.) Consider the test statistics:

T (YI(Dobs)(D
obs), D) = ∥ȲI(Dobs)(D

obs){i:D∈Di(0)/Di(1)} − ȲI(Dobs)(D
obs){i:D∈Di(1)}∥

As illustrated in the left-hand side of Figure 3, when D = Dobs with unit i1 being treated,

the first term ȲI(Dobs)(D
obs){i:D∈Di(0)/Di(1)} would be the mean outcome value of both i2 and

i6; the second term ȲI(Dobs)(D
obs){i:D∈Di(1)} would be the mean outcome value of i3 to i5. On

the right-hand side of Figure 3, when the randomized treatment assignment D is unit i2

being treated, although i1 and i3 are both in the distance interval (0, 1], the first term would

only use the value of i3 because i1 is not in I(Dobs); the second term would be the mean
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i1 i2

i3

i4i5
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i6

Figure 3: Left: Dobs: Unit i1 being treated (marked as red circle); D = Dobs, so i2 and i6
in the distance interval (0, 1] and both counted in the first term of the difference-in-mean
estimator (marked as blue). Right: Dobs: Unit i1 being treated (marked as red circle); D:
Unit i2 being treated (marked as red square), so i1 and i3 in the distance interval (0, 1], but
only i3 counted in the first term of the difference-in-mean estimator (marked as blue).

outcome value of i4 to i6.

Following the Definition 7 of pairwise imputable statistics, we can have a property to

calculate test statistics using only the observed information:

Proposition 1. Suppose the partial null hypothesis Hϵs
0 holds. Suppose T (YI(d)(d), d

′) is a

pairwise imputable statistics. Then, T (YI(d)(d), d
′) = T (YI(d)(d

′), d′) for any d, d′ ∈ {0, 1}N .

Proof of Proposition 1. For any d, d′ ∈ {0, 1}N . Consider any i ∈ I(d) ∩ I(d′). By the

Definition 5 of Imputable Units, under Hϵs
0 , we have Yi(d) = Yi(d

′). Hence, by the Definition

7 of pairwise imputable statistics, T (YI(d)(d), d
′) = T (YI(d)(d

′), d′).

By proposition 1, let d = Dobs and d′ = D, we have T (YI(Dobs)(D
obs), D) = T (YI(Dobs)(D), D)

under the null Hϵs
0 , which ensures we observe a counterfactual test statistics for comparison.

How about we follow the same steps as in FRT to conduct the testing?

A toy example (cont.) If we replace everything is FRT with the new pairwise imputable

statistics T (YI(Dobs)(D
obs), D), we can obtain Table 2 with all the test statistics. As we can

see, following the definition of p-value in the FRT, pval(Dobs) = P (T (YI(Dobs)(D
obs), D) ≥

T (YI(Dobs)(D
obs), Dobs)) respect toD ∼ P (D). Hence, the p-value equals 1/6 as T (YI(Dobs)(D

obs), Dobs)

is the largest number in the entire column. However, is it a valid testing procedure? The

answer turns out to be NO!

Although we use pairwise imputable statistics, naively constructing the p-value defined

in FRT does not guarantee the validity of the test. For validity, similar to FRT, we need the

following condition under the partial null hypothesis:

T (YI(Dobs)(D
obs), D) ∼ T (YI(Dobs)(D

obs), Dobs)
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Table 2: Naive FRT in the toy example

Dist. to the Treated Unit Potential Outcome Yi T (YI(Dobs)(D
obs), D)

i1 i2 i3 i4 i5 i6
(0, 1, 2, 3, 2, 1) 2 5 3 1 4 6 17/6
(1, 0, 1, 2, 3, 2) ? ? 3 1 4 6 2/3
(2, 1, 0, 1, 2, 3) ? 5 ? 1 4 6 2
(3, 2, 1, 0, 1, 2) ? 5 3 ? 4 6 2
(2, 3, 2, 1, 0, 1) ? 5 3 1 ? 6 1/2
(1, 2, 3, 2, 1, 0) ? 5 3 1 4 ? 1

Legend: Dist. to the Treated Unit: the minimum distance of each unit to the treated units. j means
unit is distance j away from the treated units and belongs to the distance interval (j − 1, j] for j = 1, 2, 3.
0 means the unit itself is being treated in the randomized D. Potential Outcome Yi: Potential outcome of
each unit under the null H0

0 with red ? as missing values. Unit i1 doesn’t belong to set I(Dobs), so the whole
column is marked as red. Blue cells are the units used to calculate the mean value in the first term of the
test statistics. T (YI(Dobs)(D

obs), D): test statistics under different D and fixing Dobs that unit i1 is treated.

where the left-hand side is induced by the randomness of D with Dobs fixed, and the right-

hand side is induced by the randomness of Dobs.

By Proposition 1, under the null, we have the left-hand side:

T (YI(Dobs)(D
obs), D) = T (YI(Dobs)(D), D)

Due to the randomness of the experimental design, we also have the right-hand side:

T (YI(Dobs)(D
obs), Dobs) ∼ T (YI(D)(D), D)

Therefore, to ensure the validity of the test, we need:

T (YI(Dobs)(D), D) ∼ T (YI(D)(D), D)

However, this is not guaranteed under the partial null hypothesis because I(Dobs) ̸= I(D)

in general. Different units have different neighbors in practice, leading to different sets of

imputable units for different treatment assignments, as discussed in the toy example. In

contrast, when testing the sharp null hypothesis, I(Dobs) = {1, . . . , N} = I(D) and the

validity trivially holds.

To address the challenges arising from the variation in imputable unit sets, previous lit-

erature suggests a remedy by designing a conditioning event formed by a fixed subset of

imputable units, called focal units, and a fixed subset of assignments, called focal assign-

ments. Then using Conditional Randomization Tests (CRT) by conducting FRT within the

conditioning event. See a detailed discussion in Appendix A.2. However, in practice, using
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conditioning events naturally introduces two drawbacks.

First, as Zhang and Zhao (2023) pointed out, there is a trade-off between the sizes of

focal units and focal assignments: a larger subset of treatment assignments often comes with

a smaller subset of experimental units. This inevitably leads to a loss of information, with

fewer units and assignments within conditioning events, potentially affecting the power of

the test. Second, constructing the conditioning event adds a layer of computational burden.

This raises the question: can unconditional randomization testing be valid in finite samples?

Fortunately, this paper demonstrates that the answer is YES! While previous literature

embeds the idea of carefully designing a fixed subset of units to maintain the validity of

randomization testing, my method avoids fixing the subset of units during implementation.

Instead, it maintains valid testing through a carefully designed p-value calculation.

3.2 P-value with pairwise comparison

Inspired by the recent works of Wen et al. (2023) and Guan (2023) from the selective infer-

ence literature, the key idea is to compute p-values directly by summing pairwise inequality

comparisons between T (YI(Dobs)(D
obs), dr) and T (YI(dr)(D

obs), Dobs). When the null hypoth-

esis is false, T (YI(dr)(D
obs), Dobs) would maintain a relatively large value across different dr

since the distance interval for each unit is fixed by Dobs. The change in dr only alters

the set of units used in the test statistics. Therefore, we would expect a small p-value, as

the probability that T (YI(Dobs)(D
obs), dr) is larger than T (YI(dr)(D

obs), Dobs) is low. I refer

to any randomization testing with p-values constructed through this pairwise comparison

idea as Partial Null Randomization Testing (PNRT). Formally, I call the procedure pairwise

comparison-based PNRT, with the p-value defined below:

Definition 8 (P-Value for pairwise comparison-based PNRT). Define pvalpair(Dobs) : D →
[0, 1] as pvalpair(Dobs) = P (T (YI(Dobs)(D

obs), D) ≥ T (YI(D)(D
obs), Dobs)) respect to D ∼ P (D)

In practice, we can calculate this p-value with the following algorithm, where the p-value

is calculated as the mean value of 1 +R draws due to using d = Dobs for r = 0, so there are

R + 1 draws:

Comparison to the inner vs. outer ring strategy One popular strategy for testing

interference at some distance ϵs is the inner vs. outer ring strategy. The idea is that outer ring

units’ outcome values are not affected by the treatment’s interference and could approximate

the control level potential outcome in the treated group. For example, Blattman et al. (2021)
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Algorithm 1 Pairwise comparison-based PNRT Procedure

Inputs : Test statistic T = T (Y (d), d), observed assignment Dobs, observed
outcome Y obs, treatment assignment mechanism P (D), and size α.

for r = 1 to R do
Randomly sample: dr ∼ P (D), Store Tr ≡ T (YI(Dobs)(D

obs), dr).
Store T obs

r ≡ T (YI(dr)(D
obs), Dobs).

end

Output : P-value: ˆpval
pair

= (1 +
∑R

r=1 1{Tr ≥ T obs
r })/(1 +R).

Reject if ˆpval
pair

≤ α/2.

incorporate a similar idea when attempting to pinpoint the distance of the spillover effect.

They first calculate the average mean value across different units in the inner ring and the

average mean value across different units in the outer ring, then test whether there is a

systematic difference between the two groups.11

However, as noted by Pollmann (2023), this strategy requires assumptions beyond the

random experiment: First, as discussed in Aronow (2012), even in a random experiment,

the distance of each unit to the treated units is not random. Thus, the outer ring units

might systematically differ from the inner ring units across different treatment assignments.

Second, as highlighted by Pollmann (2023), even if each unit is equally likely to be in

the inner or outer rings, we need to make functional form assumptions on the potential

outcome to eliminate the bias from such a comparison. Overall, the outer ring units may

not possess potential control outcomes comparable to those of the inner ring units without

further assumptions, potentially leading to biased results.

The idea behind the partial null hypothesis in Definition 4 is to assess interference by

directly testing the value of the same unit’s potential outcome whenever it is at least distance

ϵs away from the treated units. A key advantage of the partial null hypothesis is that it

directly addresses the unit-level potential outcome rather than the average outcome across

different units that might not be compatible even with the random experiment. The critical

contribution of this paper is to show that we can test interference with only the assumption

of random treatment assignment.

11Blattman et al. (2021) use an F-test for the proposed mean difference of outcomes variables “Perceived
risk” and “Crime incidence”. Results can be found in Blattman et al. (2021)’s online appendix subsection
A.2.
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A toy example (cont.) Using the same difference-in-mean estimator as before,

T (YI(D)(D
obs), Dobs) = ∥ȲI(D)(D

obs){i:Dobs∈Di(0)/Di(1)} − ȲI(D)(D
obs){i:Dobs∈Di(1)}∥

Table 3: PNRT in the toy example

Dist. to the Treated Unit Potential Outcome Yi T (YI(Dobs)(D
obs), D) T (YI(D)(D

obs), Dobs)

i1 i2 i3 i4 i5 i6
(0, 1, 2, 3, 2, 1) 2 5 3 1 4 6 17/6 17/6
(1, 0, 1, 2, 3, 2) ? ? 3 1 4 6 2/3 10/3
(2, 1, 0, 1, 2, 3) ? 5 ? 1 4 6 2 3
(3, 2, 1, 0, 1, 2) ? 5 3 ? 4 6 2 2
(2, 3, 2, 1, 0, 1) ? 5 3 1 ? 6 1/2 7/2
(1, 2, 3, 2, 1, 0) ? 5 3 1 4 ? 1 7/3

Legend: Dist. to the Treated Unit: the minimum distance of each unit to the treated units. j means
unit is distance j away from the treated units and belongs to the distance interval (j − 1, j] for j = 1, 2, 3.
0 means the unit itself is being treated in the randomized D. Potential Outcome Yi: Potential outcome of
each unit under the null H0

0 with red ? as missing values. Units i2 and i6 are in the distance interval (0, 1]
under Dobs, so the two columns are marked as deep blue. Units i3 to i5 are in the distance interval (1,∞)
under Dobs, so the three columns are marked as light blue.

According to Table 3, only whenD has unit i1 and unit i4 being treated, T (YI(Dobs)(D
obs), D) ≥

T (YI(D)(D
obs), Dobs). So, pvalpair = 2/6. In practice, similar to Guan (2023), we can use

1/2 to discount the number of equalities and decrease the p-value without compromising the

validity of the test. Additionally, in the simulation, I tried using a uniform random number

multiplied by the number of equalities, and the test remained valid.

The validity of Algorithm 1 is implied by the symmetric between T (YI(Dobs)(D
obs), dr)

and T (YI(dr)(D
obs), Dobs) under Hϵs

0 . Intuitively, given the Dobs and dr, both terms are

restricted to units i ∈ I(Dobs) ∩ I(dr) by Definition 7. Additionally, by Proposition 1, under

the null, consider d = D and d′ = Dobs, T (YI(D)(D
obs), Dobs) = T (YI(D)(D), Dobs) which

is the counterfactual value of T (YI(Dobs)(D
obs), D) by flipping the observed assignment and

randomized assignment between D and Dobs. Hence, the pairwise comparison is symmetric

and implies the following theorem:

Theorem 1. Suppose the partial null hypothesis Hϵs
0 is true. Then the p-value pvalpair

in Definition 8 constructed by the pairwise comparison-based PNRT Algorithm 1 satisfied

P (pvalpair(Dobs) ≤ α/2) ≤ α, for any α > 0, where the probability is with respect to Dobs ∼
P (D).

Proof and a discussion in the case with too many potential treatment assignments can

be found in Appendix B.
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The primary limitation of Theorem 1 is that, when rejecting the null hypothesis at

significance level α, the probability of a false rejection is bounded by 2α instead of α. A

straightforward approach to address this is to reject the null when the p-value is below α/2

rather than α. Another possible method, inspired by Wen et al. (2023), involves adopting a

more conservative testing procedure.

3.3 Minimization-based PNRT

The key idea is to construct T̃ (Dobs) = mind∈{0,1}N (T (YI(d)(D
obs), Dobs)), and the define the

following p-value:

Definition 9 (P-Value for minimization-based PNRT). Define pvalmin(Dobs) : D → [0, 1] as

pvalmin(Dobs) = P (T (YI(Dobs)(D
obs), D) ≥ T̃ (Dobs)) respect to D ∼ P (D)

In practice, we can calculate this value with the following algorithm, where the p-value

is calculated as the mean value of 1 +R draws due to using d = Dobs for r = 0, so there are

R + 1 draws:

Algorithm 2 Minimization-based PNRT Procedure

Inputs : Test statistic T = T (Y (d), d), observed assignment Dobs, observed
outcome Y obs, treatment assignment mechanism P (D), and size α.

for r = 1 to R do
Randomly sample: dr ∼ P (D), Store Tr ≡ T (YI(Dobs)(D

obs), dr).
Store T obs

r ≡ T (YI(dr)(D
obs), Dobs).

end

Compute : T̃ ⋆(Dobs) = minr=1,...,R(T
obs
r ))

Output : P-value: ˆpval
min

= (1 +
∑R

r=1 1{Tr ≥ T̃ ⋆(Dobs)})/(1 +R).

Reject if ˆpval
min

≤ α.

As shown in table 3, in the toy example, T̃ (Dobs) = 2, so pvalmin = 1/2 with two

other equal numbers. The key difference between minimization-based PNRT and pairwise

comparison-based PNRT is that by taking the minimization, we ensure the size control as

shown in theorem 2.

Theorem 2. Suppose the partial null hypothesis Hϵs
0 is true. Then the p-value pvalmin de-

fined in the minimization-based PNRT algorithm 2 is a valid p-value, i.e. P (pvalmin(Dobs) ≤
α) ≤ α, for any α ∈ [0, 1], where the probability is with respect to Dobs ∼ P (D).

Proof can be found in Appendix B.
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Too many potential treatment assignments. When N is large, finding the minimum

and constructing T̃ (Dobs) can be challenging. However, simulations in section 5.1 show that

Algorithm 2 with R = 1000, while not computing the true T̃ (Dobs), remains conservative

and ensures validity.

To guarantee the validity of Algorithm 2 when the number of units is large, one approach

is to use optimization methods to find an approximation T̃R(Dobs) of the minimization

T̃ (Dobs) so that T̃ (Dobs) ≥ T̃R(Dobs) − ηR with probability 1 − η. Hence, we only need to

adjust the rejection level to α̃ to satisfy α = α̃(1 − η) + η, ensuring the test remains valid.

However, this method adds a computational burden.

Alternatively, one can combine the Conditional Randomization Tests (CRT) with PNRT

to reduce the number of potential treatment assignments, making it easier to find T̃ (Dobs)

within the conditioning event. For example, as pointed out by Athey et al. (2018) and Zhang

and Zhao (2023), researchers often trim the potential assignment space to all treatment

assignments with the same number of treated units as the observed assignment. The testing

procedure remains valid as a two-stage process: first, formulate the number of treated units

by the observed assignment, and second, conduct testing within the trimmed assignment

space. Using PNRT in this case allows for a much larger set of focal units, potentially

increasing power.

Trade-off in the conservatism. To avoid computational difficulties while maintaining

the validity of the test, researchers can simply use pairwise comparison-based PNRT as

outlined in Algorithm 1 with a rejection level of α/2. The later simulation shows that

this straightforward adjustment has higher power than minimization-based PNRT, and it is

actually a conservative way to ensure validity in the worst-case scenario, as there are cases

where the rejection level α is valid. I will leave the detailed discussion to Section 5.1.

3.4 Comparison to previous literature

As illustrated earlier, the key difference is that the units included in I(d) vary across different

assignments d, utilizing all imputable units for testing. The procedure in Owusu (2023)

shares a similar property but is more complicated to implement, involving tuning parameters,

and is only valid asymptotically. PNRT is easy to implement without any tuning parameters

and is valid in finite samples.

In the case of the sharp null, we know I(d) = {1, . . . , N}, ∀d ∈ {0, 1}N , hence T̃ (Dobs) =

mind∈{0,1}N (T (YI(d)(D
obs), Dobs)) = T (Y (Dobs), Dobs), ∀Dobs ∈ {0, 1}N . Therefore, both
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pairwise comparison-based PNRT and minimization-based PNRT coincide with the classical

Fisher Randomization Tests (FRT). The proposed method nests FRT but ensures validity

under partial null by allowing the set of units included in test statistics to vary across different

assignments.

In the case of partial null, compared to conditional randomization tests, I(Dobs) is the

counterpart of NU, and {0, 1}N is the counterpart of DU. Recognizing PNRT as conditional

randomization tests with the “conditioning event” (I(Dobs), {0, 1}N), PNRT has a larger

size of the event but construct p-value differently. However, restricting the focal assignment

set to DU, and fixing the focal units set NU in place of I(Dobs), the p-value constructed

follow Definition 8 and Definition 9 would coincide with the original CRT. Thus, the larger

“conditioning event” might lead to a higher power if the extra potential assignments and

units are useful. If including all the assignments from {0, 1}N is not optimal, combining

PNRT with CRT could avoid missing test statistics and selecting more relevant assignments

to increase power (Lehmann and Romano, 2005; Hennessy et al., 2015). How to leverage the

flexibility introduced by PNRT to optimize power performance is left for future research.

Additionally, since the value of T (YI(d)(D
obs), Dobs) only depends on I(d) for a fixing

Dobs, it might be the case that when we have large N , the variation of I(d) is very small,

making pairwise comparison-based PNRT similar to minimization-based PNRT. In that case,

pairwise comparison-based PNRT would achieve the asymptotic validity control of α rather

than 2α in the finite sample case. A formal proof might be worth exploring in the future.

4 Framework to determine the boundary of interfer-

ence

In practice, researchers may seek to estimate a sequence of partial null hypotheses at varying

distances, ϵs, to identify the neighborhood of interference. This approach can be instrumental

in selecting a pure control distance or evaluating how interference evolves with distance. To

this end, we consider a sequence of distance thresholds:

ϵ0 < ϵ1 < ϵ2 < · · · < ϵK < ∞

where K ≥ 1 is chosen to include the setting introduced in earlier sections. For instance, if

the objective is to test for the presence of interference, one could set K = 1 with ϵ0 = ϵs = 0

and ϵ1 = ϵc.

Utilizing this sequence of distances, we can test a sequence of null hypotheses as defined
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in Definition 4, where ϵs ∈ {ϵ0, . . . , ϵK}. However, it is important to note that not all distance

levels will yield nontrivial power.

Firstly, there is a trade-off between the number of thresholds tested and the power of each

test. While testing more thresholds can provide a deeper understanding of how interference

varies with distance, it may also diminish the power to detect interference, particularly if

certain threshold groups lack sufficient units. Based on simulation exercises, I recommend

ensuring that each observed exposure level includes at least 20 units to maintain nontrivial

power at a significance level of α = 0.05.

Secondly, in some instances, ϵK may represent the maximum distance in the network,

leaving no further options for ϵc. While it is still possible to test HϵK
0 , it may be necessary to

explore alternative variations, such as the number of nearby treated units, as suggested by

Hoshino and Yanagi (2023), to construct a test statistic with nontrivial power. For simplicity,

this section will focus on testing Hϵk
0 for k ≤ K − 1.

A toy example (cont.) Based on the above setup, one might consider setting K = 3

with (ϵ0, ϵ1, ϵ2, ϵ3) = (0, 1, 2, 3). However, it may only be feasible to test H0
0 , H

1
0 , and H2

0 , as

testing the partial null hypothesis H3
0 requires at least one unit to be at a distance greater

than 3 from any treated unit, which is not the case in this example. Therefore, for this toy

example, I would set K = 2 with (ϵ1, ϵ2) = (1, 2).

Following Definition 4 ofHϵs
0 , the multiple hypotheses we consider have a nested structure:

Proposition 2. Suppose there exists K̄ ≥ 0 such that, for any k ≤ K̄ − 1, Hϵk
0 is false, and

H
ϵK̄
0 is true. Then, Hϵk

0 is true for any k ≥ K̄.

Proof of Proposition 2. By Definition 4, if H
ϵK̄
0 is true, then Yi(d) = Yi(d

′) for all

i ∈ {1, . . . , N} and any d, d′ ∈ Di(ϵ
K̄).

Observe that, for any i ∈ 1, . . . , N , by Definition 3:

Di(ϵ0) ⊃ Di(ϵ1) ⊃ · · · ⊃ Di(ϵK)

Hence, for any k ≥ K̄, and any d, d′ ∈ Di(ϵk) ⊆ Di(ϵK̄), Yi(d) = Yi(d
′) for all i ∈

{1, . . . , N}. By Definition 4, Hϵk
0 is true for any k ≥ K̄.

By Proposition 2, interference would exist only up to a certain boundary. Given this

nested structure, we would prefer an inference method that helps determine such boundaries

by rejecting the null hypothesis up to some distance while not rejecting it beyond that point.

However, in practice, we might encounter a situation whereHϵk
0 cannot be rejected, butH

ϵk+1

0
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can be. This could occur either because the test lacks the power to reject the false null Hϵk
0 ,

or because the test erroneously rejects the true null H
ϵk+1

0 due to multiple hypothesis testing.

To address the issue of multiple hypothesis testing, I propose controlling for the family-wise

error rate (FWER) to mitigate the risk of over-rejecting true null hypotheses:

Definition 10 (Family-wise error rate over all Hϵk
0 for k = 0, . . . , K − 1.). Suppose there

exist K̄ ≥ 0, such that for any k ≤ K̄ − 1, Hϵk
0 is false, and H

ϵK̄
0 is true. Define FWER =

P (∃k ≥ K̄,Hϵk
0 is rejected).

The definition of FWER in Definition 10 is motivated by the nested structure of Hϵk
0 ,

wherein the null hypothesis is true for any k ≥ K̄. The critical question is how we should

reject all the Hϵk
0 when determining the boundary while still controlling for FWER.

4.1 A valid procedure to determine the neighborhood of interfer-

ence

Amajor challenge in testing how interference evolves with distance lies in addressing the issue

of multiple hypothesis testing when conducting a series of tests to identify the neighborhood

of interference. To manage the increased error rate that arises from multiple tests, and

drawing inspiration from Meinshausen (2008) and subsection 15.4.4 of Lehmann and Romano

(2005), I propose Algorithm 3.

Algorithm 3 Sequential Testing Procedure

Inputs : Test statistic T = T (Y (d), d), observed assignment Dobs, observed
outcome Y obs, treatment assignment mechanism P (D).

Set : K̂ = 0.
for k = 0 to K − 1 do

Testing Hϵk
0 using PNRT procedure, collect pvalk.

If pvalk ≤ α, set K̂ = k + 1 and reject Hϵk
0 .

If pvalk > α, Break
end
Output : Significant spillover within distance ϵK̂ .

Algorithm 3 is designed to control the FWER while taking advantage of the nested struc-

ture of sequential hypothesis testing. Unlike typical multiple-hypothesis testing procedures,

such as the Bonferroni-Holm procedure, which would reject the null at a level smaller than

α, this algorithm does not require adjusting the significance level and potentially increases

power compared to traditional multiple-hypothesis testing adjustments (Meinshausen, 2008).
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Moreover, if the unadjusted p-values increase as k increases, indicating that interference di-

minishes with distance, there is no loss of power compared to not making multiple hypothesis

testing adjustments since we would naturally not reject any null beyond a certain distance.

When using the pairwise comparison-based PNRT for each k, rejecting at the α/2 level

ensures size control. For the partial null hypothesis Hϵk
0 , a natural choice for ϵc is ϵk+1.

Theorem 3 guarantees the FWER control of Algorithm 3.

Theorem 3. The Sequential Testing Procedure constructed by Algorithm 3 controls the fam-

ilywise error rate at α.

Proof of Theorem 3. Without loss of generality, consider minimization-based PNRT

below. The same proof holds when using the pairwise comparison-based PNRT with a

rejection level of α/2.

Suppose for any k < K̄, Hϵk
0 s are false, and H

ϵK̄
0 is true. Then, by Algorithm 3, if

there exist k ≥ K̄ that Hϵk
0 is rejected, it must be the case that H

ϵK̄
0 is rejected. Thus, by

Definition 10:

FWER = P (pval1 ≤ α, pval2 ≤ α, . . . , pvalK̄ ≤ α) ≤ P (pvalK̄ ≤ α) ≤ α.

because H
ϵK̄
0 is true.

A toy example (cont.) Algorithm 3 can be implemented in two steps: First, collect

pval0 for H0
0 and reject H0

0 if pval0 ≤ α. If H0
0 is not rejected, report that no significant

interference was found. If H0
0 is rejected, proceed to the second step, collect pval1 for H1

0 ,

and reject H1
0 if pval1 ≤ α. If H1

0 is rejected, report significant interference within distance

2; if H2
0 is not rejected, report significant interference within distance 1.

4.2 Rational of using FWER

In practice, FWER is not the only criterion for controlling error rates in multiple-hypothesis

testing. As Anderson (2008) points out, it may also be worthwhile to consider false discovery

rate (FDR) control in exploratory analyses, as it allows for a small number of Type I errors

in exchange for greater power than FWER control. A looser adjustment algorithm might

be of interest in future work. However, if a policymaker aims to implement a policy in a

distant area, expecting a positive far-distant interference effect, a high FWER might lead

to overly optimistic assumptions about the interference boundary. Therefore, FWER can
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still be helpful by providing a conservative distance threshold, which better accounts for

interference when calculating the expected welfare change.

Additionally, this procedure has the advantage of helping pre-test the pure control group

and ensuring post-inference validity even after this first-step pre-testing.

A procedure to help select pure control group As discussed in Section 3.1, we typi-

cally need a “safe distance” ϵc to construct a pure control group. But how should we choose

this distance? A natural candidate could be ϵK , representing the furthest distance that main-

tains nontrivial power for testing. However, it may be tempting to decrease this distance to

include more units in the pure control group, thereby increasing the power of the test. The

key challenges are: (1) determining which ϵc to choose, and (2) addressing the post-model

selection inference issue highlighted by Leeb and Pötscher (2005).

Theorem 4 guarantees the validity ofHϵk
0 for any k, even after choosing ϵc using Algorithm

3 as a first step. It ensures that subsequent inference using any method, including PNRT

or other asymptotic-based approaches, remains valid when applying the pre-testing rule to

obtain pval(Dobs). Therefore, in practice, researchers might consider using the distance ϵK̂
obtained from Algorithm 3 as the threshold ϵc for the subsequent analysis:

Theorem 4. For any Hϵk
0 with k = 0, . . . , K − 1, suppose the partial null hypothesis Hϵk

0 is

true. Then, given the observed assignment Dobs, consider a two-step pre-testing procedure:

Step 1: Obtain ϵK̂ from Algorithm 3.

Step 2: Use ϵc = ϵK̂ to test Hϵk
0 and obtain pval(Dobs) using any inference method.

The two-step procedure constructed above satisfied P (pval(Dobs) ≤ α) ≤ α.

Proof of Theorem 4 Suppose that for any k ≤ K̄, Hϵk
0 s are false, and H

ϵK̄+1

0 is true. Due

to the nested structure ofHϵk
0 , it is true for any k > K̄. To validate the testing procedure with

the added pre-testing step, we only need to ensure that the p-value P (pval(Dobs) ≤ α) ≤ α

for any H
ϵk̃
0 that k̃ > K̄, which can be split into two terms:

P (pval(Dobs) ≤ α) = p(K̂ ≥ k̃ + 1)P (pval(Dobs) ≤ α|K̂ ≥ k̃ + 1)

+ p(K̂ < k̃ + 1)P (pval(Dobs) ≤ α|K̂ < k̃ + 1)

Following Algorithm 3, we would reject any Hϵk
0 with k < K̂, and failed to reject any

Hϵk
0 with k ≥ K̂. So, when K̂ ≥ k̃ + 1, it must be the case that H

ϵK̄+1

0 is rejected as k̃ > K̄.
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Hence,

p(K̂ ≥ k̃ + 1) ≤ P (pvalK̄+1 ≤ α) ≤ α;

When K̂ < k̃ + 1, we would not reject H
ϵk̃
0 with or without the pre-testing step. Hence,

P (pval(Dobs) ≤ α|K̂ < k̃ + 1) = 0. So,

P (pval(Dobs) ≤ α) ≤ αP (pval(Dobs) ≤ α|K̂ ≥ k̃ + 1) ≤ α

The rationale is as follows: If the pre-testing procedure does not reject any true null

hypothesis, the second-step inference will avoid re-testing these true nulls, thus preventing

any false rejections. On the other hand, if the pre-testing does reject some true nulls,

there is a minimal chance – less than α, as ensured by the design of Algorithm 3 – that

the second-step inference might over-reject due to testing different hypotheses on the same

dataset. Consequently, the probability of a false rejection remains below the significance level

α. Without this adjustment, we could encounter issues with post-model selection inference.

Refer to Appendix C for a more detailed discussion. Still, the chosen ϵc could be smaller than

the actual boundary due to the conservative nature of Algorithm 3. Therefore, researchers

should carefully weigh the benefits of implementing the pre-testing step in their analysis.

5 Application: Reanalysis of crime in Bogotá

In 2016, Bogotá, Colombia, conducted a large-scale experiment described by Blattman

et al. (2021). The study involved 136, 984 street segments, with 1, 919 identified as crime

“hotspots.” Among these hotspots, 756 were randomly assigned to a treatment involving

increased daily police patrolling duties from 92 to 169 minutes over eight months. The orig-

inal study also included an independent intervention to enhance municipal services, which is

peripheral to the main focus. The primary outcome of interest was the number of crimes on

each street segment, encompassing both property crimes and violent crimes such as assault,

rape, and murder.

Figure 4(left) illustrates the distribution of hotspots, showing many are clustered closely

together. While only 1, 919 street segments received active treatment, every segment po-

tentially experienced spillover effects, creating a “dense” network that complicates the ap-

plication of cluster-robust standard errors to address unit correlation. The original paper

estimated a negative treatment effect and used Fisher randomization tests (FRT) with a

sharp null hypothesis of no effect for inference.

27



Figure 4: Left: Map of the experimental sample with hotspots street segments in red.
Right: An example of assignment to the four experimental conditions. Source: Blattman
et al. (2021)

Additionally, to assess the total welfare of the policy, it’s crucial to evaluate whether in-

terference occurred following treatment assignment, such as crime displacement or deterrence

in nearby neighborhoods. Therefore, the authors aimed to answer the following questions:

1) Does interference exist? 2) If so, what is its direction (displacement or deterrence)? 3)

What distance is effective for this interference? Given the challenges in modeling correlation

across units within such a dense network, testing a partial null hypothesis, as proposed by

Blattman et al. (2021) and Puelz et al. (2021), becomes relevant. I specify the distance

threshold sequence (ϵ0, ϵ1, ϵ2, ϵ3) = (0, 125, 250, 500) for K = 3, where the distance interval

(500,∞) represents a pure control group with no treated units within 500 meters. Fig-

ure 4(right) provides an example of different distance intervals identified in Blattman et al.

(2021).
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5.1 Power comparison of spatial interference: A simulation study

For a comprehensive approach to testing in such a large-scale experiment, it is prudent to

preselect the preferred method through a simulation study. Specifically, I generate N = 1000

points from a bivariate Gaussian with non-diagonal covariance to simulate the network on a

[0, 1]×[0, 1] space, including 20 hotspots and 7 randomly treated units, mirroring proportions

similar to the original Bogotá study.

Figure 5: Distribution of the Units

Figure 5 illustrates the distribution of units in this space. To simplify, I focused on two

distance thresholds, with (ϵ0, ϵ1, ϵ2) = (0, 0.1, 0.2). Across different treatment assignments,

the distance interval (0, 0.1] comprises approximately 420 units, (0.1, 0.2] around 250 units,

and the pure control group (0.2,∞) around 320 units.

Recall that the partial null hypothesis of interest for k = 0 and 1:

Hϵk
0 : Yi(d) = Yi(d

′) for all i ∈ {1, . . . , N}, and any d, d′ ∈ Di(ϵk)

The potential outcome schedule was calibrated to match the Bogotá street network using

gamma distributions, ensuring they align with the mean and variance of the observed total

crimes, as detailed in Table 4. Additionally, I set a negative treatment effect of 1 while

ensuring all treated units maintained a nonnegative number of crimes. I also incorporated a

decreasing displacement effect with respect to distance levels with a positive τ . Our primary

focus is on the spillover effect, τ .

Throughout the analysis, I compared five methods: 1) The classic FRT using the sharp

null hypothesis of no effect rather than a partial null, which is also used in Blattman et al.
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Table 4: Potential Outcome Schedule in the Simulation

Pure control for “non-hotspots”: Y C
i ∼ Gamma(0.086, 3.081)

Pure control for “hotspots”: Y C
i ∼ Gamma(0.737, 1.778)

Treated unit: Y T
i = max(Y C

i − 1, 0)
Short-range spillover: Yi(d) = Y C

i + τ ∀d ∈ Di(0)/Di(0.1)
Long-range spillover: Yi(d) = Y C

i + 0.5τ ∀d ∈ Di(0.1)/Di(0.2)

Legend: Gamma(k, θ): The first element k is the shape parameter; The second element θ is the scale
parameter. Y C

i represents the pure control potential outcome for unit i; Y T
i represents the potential outcome

for unit i when being treated.

(2021) when conducting inference for spillover effect; 2) The Biclique CRT proposed by Puelz

et al. (2021), which is considered the benchmark for CRT due to its demonstrated power in

simulations involving general interference; 3) The minimization-based PNRT following Algo-

rithm 2 by using the minimum of T (YI(dr)(D
obs), Dobs) across random R assignments rather

than solving the actual minimum; 4) The pairwise comparison-based RNRT with rejection

based on α/2 to ensure validity in the worst case scenario; 5) The pairwise comparison-based

RNRT with rejection based on α.

To select the preferred method, two main criteria guide the testing procedure: First,

under the scenario of no spillover effect (τ = 0), the partial null hypothesis is true and

should be rejected less than or equal to 5% of the time to maintain control over Type I

errors. Second, in the presence of a spillover effect (τ > 0), the partial null hypothesis is

false and should be rejected as frequently as possible to maximize power. To assess power, I

considered 50 τ values spaced equally from 0 to 1, conducting 2,000 simulations for each τ to

compute the average rejection rate for each method. See Appendix C for detailed algorithm.

I focused on displacement effects and used the non-absolute value difference-in-mean for

one-sided testing.

Figure 6(left) shows that only FRT over-rejects the true partial null hypothesis when

τ = 0, which is consistent with the observation in Athey et al. (2018) that testing the sharp

null of no effect is invalid when the actual interest lies in a partial null hypothesis. In my

simulation study, with only 7 units being treated (0.7% of the total units), the rejection rate is

around 10%. Surprisingly, the pairwise comparison-based PNRT without any adjustment at

the level α still maintains good size control, indicating that the 2α control in the theorem is a

worst-case scenario guarantee. Other PNRT algorithms are also valid but more conservative,

with rejection rates below 5%. The biclique conditional randomization testing remains a valid

method with a rejection rate close to 5%.

Regarding the power of the tests, FRT is excluded from the comparison due to its in-
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Figure 6: Left: Power Comparison for H0
0 . Right: Power Comparison for H0.1

0 . The red line
represents the size level α = 0.05. Min PNRT: Minimization-based PNRT by Algorithm 2.
Pair PNRT (0.025): pairwise comparison-based RNRT with rejection based on α/2 to ensure
validity in the worst-case scenario. Pair PNRT (0.05): pairwise comparison-based RNRT
with rejection based on α.

validity. The unadjusted pairwise comparison-based PNRT is the best method, dominating

all others across all effect magnitudes τ . However, concerns about its validity in worst-

case scenarios might persist. Among methods with theoretical size control, the pairwise

comparison-based PNRT with α/2 rejection level appears optimal, although it has slightly

less power than the biclique CRT for very small τ magnitudes. This trade-off is expected

when opting for more conservative testing. The minimization-based PNRT, despite being

dominated by pairwise comparison-based PNRT, outperforms biclique CRT, especially for

larger spillover effect magnitudes τ > 0.5. Lastly, although valid, the biclique CRT lacks

sufficient power, with a rejection rate below 90% even when τ = 1.

Figure 6(right) contrasts the left-hand side. First, all methods are valid under the null,

including FRT. This may be because hotspots rarely belong to either exposure level (0.1, 0.2]

and (0.2,∞). Therefore, despite a negative treatment effect, it doesn’t affect the test statis-

tics used for testing. As with H0
0 , the pairwise comparison-based PNRT and biclique CRT

methods show a rejection rate close to 5%, while the pairwise comparison-based PNRT with

a rejection level of α/2 and the minimization-based PNRT remain conservative.

Second, all methods exhibit significantly lower power compared to H0
0 . This is largely

because only 60% of the units are related to the partial null hypothesis this time, and the

effect magnitude is only 0.5τ . Nonetheless, the pairwise comparison-based PNRT procedures

still demonstrate power when the spillover magnitude τ is large enough and outperforms the
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other methods when using the unadjusted rejection level α. The minimization-based PNRT

seems too conservative due to the minimization over an extensive amount of treatment

assignments. Surprisingly, FRT shows under-rejection and almost no power for any τ . This

can be explained by the intuition behind FRT rejection: the p-value is small if the observed

test statistics exceed most test statistics from randomized treatment assignments. However,

because units in group (0, 0.1] under the observed assignment are included in test statistics

for another randomized assignment d, and these units have spillover effect τ , the observed test

statistics constructed from (0.1, 0.2] and (0.2,∞) no longer exhibit extremely high values,

even for large τ , resulting in a large p-value. This, combined with the discussion in H0
0 ,

illustrates that using FRT and testing the sharp null of no effect can lead to either over-

rejection or under-rejection in practice. Finally, although the biclique CRT method still

has power, it increases much slower than the PNRT methods. This is mainly due to the

complex network structure in spatial interference, making finding a good conditioning event

challenging.

Overall, the simulation results favor the PNRT procedures, especially the pairwise comparison-

based PNRT without size adjustment. Therefore, I used PNRT to replicate the results from

Blattman et al. (2021), employing the non-absolute difference-in-mean estimator.

5.2 PNRT on real data

I replicated the results using the publicly available dataset from Blattman et al. (2021),

which includes the street-level observed treatment and their distance intervals with distance

thresholds: 125m, 250m, and 500m, as well as another 1, 000 pseudo-randomized treatments

and their distance intervals used in the original paper to conduct randomization inference.

However, there is no data on the longitude/latitude of streets, so I cannot extend the ran-

domization testing beyond the given 1, 000 random treatments. Since displacement effects

are crucial as they influence the overall evaluation of the intervention’s total welfare, this

reanalysis aims to assess whether there is a displacement effect and, if so, at what distance it

is significant. In Blattman et al. (2021), the authors found no displacement effect for violent

crimes and a marginally significant displacement effect for property crimes. As discussed

in previous sections, both using FRT for inference of the partial null and pre-selecting the

pure control group without any adjustment is not guaranteed valid and can lead to differ-

ent conclusions. So, how might these conclusions change if we implement a valid testing

approach?

I use the pairwise comparison-based PNRT with the difference-in-mean estimator as
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Table 5: Hot Spots Policing: p-values for testing the spillover effect at different distances

Unadjusted P-values

(0m,∞) (125m,∞) (250m,∞)

Violent crime

Pair PNRT 0.047 0.546 0.045

Pair PNRT + reg 0.105 0.719 0.158

Min PNRT 0.074 0.832 0.518

Property crime

Pair PNRT 0.325 0.346 0.394

Pair PNRT + reg 0.508 0.232 0.619

Min PNRT 0.471 0.809 0.882

Legend: Impact of intensive policing on violent and property crime. Pair PNRT: Pairwise comparison-
based PNRT with the difference-in-mean estimator as the test statistic. Min PNRT: Minimization-based
PNRT with the difference-in-mean estimator as the test statistic. Pair PNRT + reg: Pairwise comparison-
based PNRT with the coefficient from the covariates-included regression, such as police station fixed effects,
with inverse propensity weighting as the test statistic.

the test statistic as the main specification of the testing. Still, I also try to assess the

robustness of the results when using either minimization-based PNRT with the difference-

in-mean estimator as the test statistic or the pairwise comparison-based PNRT with the

coefficient from a regression. Compared to the difference-in-mean estimator, the regression

approach incorporates two additional factors, following Blattman et al. (2021), with a slight

modification:

First, it includes the same covariates, such as control police station fixed effects, except

those related to municipal services treatment.12 Blattman et al. (2021) performed ran-

domization testing by jointly randomizing intensive policing and municipal services rather

than holding one fixed. This approach might complicate the interpretation, especially when

a simple additive model cannot capture interaction effects between the two interventions.

Therefore, I fixed the municipal services intervention and randomized only the intensive

policing to isolate its effect.

Second, the original paper suggests using Inverse Propensity Weighting (IPW) in a

12The specific set of covariates include the number of crimes in 2012-2015, average patrol time per day,
Sq. meters built (100m around) per meter of longitude, distance to the closest shopping center, distance to
the closest educational center, distance to closest religious or cultural center, distance to the closest health
center, distance to closest additional services office (i.e. justice), distance to closest transport infrastructure
(i.e. bus or BRT station), the indicator for industry/commerce zone, the indicator for services sector zone,
income level, eligibility of the municipal services, police station indicator, and their intersections with the
crime hotspot indicator.
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weighted regression. While this approach may still be biased, as it doesn’t fully align with

the formula provided by Aronow et al. (2020), it helps address the potential imbalance in

the spillover group. However, the original specification drops around 50% of observations

due to a lack of overlap conditions, potentially affecting the power of the tests. Therefore, I

utilized the full sample for the regressions rather than selecting a subsample.

See Appendix D for the robustness check on different methods of incorporating covariates.

Discussion on the difference conclusion. Table 5 reveals a significant displacement

effect for violent crimes but not for property crimes. After adjusting for multiple hypothesis

testing using Algorithm 3, both pairwise comparison-based PNRT and minimization-based

PNRT methods agree on a significant short-range spillover within 125m at the 10% level

using the difference-in-mean estimator. Suppose we do not apply the α/2 adjustment to the

pairwise comparison-based PNRT, as suggested in the simulation study. In that case, the

short-range spillover within 125m is significant at the 5% level with the difference-in-mean

estimator. It remains marginally significant at the 10% level with the regression coefficient.13

There is no clear evidence of additional spillover effects beyond 125m for violent crimes and

no evidence of spillover effects at any distance for property crimes. The unadjusted p-value

of 0.045 for the (250m,∞) interval using pairwise comparison-based PNRT might suggest a

potential spillover effect within this range. However, it could also be a false discovery due to

multiple hypothesis testing. Importantly, Table 5 is presented to illustrate the methodology

rather than to draw definitive conclusions about the effects of hotspot policing, which would

require addressing issues beyond the scope of this paper.14

In line with Puelz et al. (2021), p-values tend to increase with the inclusion of covariate

adjustments, likely due to the heterogeneous nature of spillover effects. This observation

suggests that geographic distance alone may not fully capture the intensity of these effects.

In future work, we could enhance the distance measure by incorporating additional factors,

such as socioeconomic disparities between street segments, as discussed in Puelz et al. (2021).

13This also suggests that the distance interval (125m,∞) could serve as a more appropriate control group,
in contrast to the (250m,∞) interval used by Blattman et al. (2021).

14A potential explanation, consistent with standard economic models of crime, is that violent crime in
Bogotá’s hotspots may not be solely expressive violence, as implied by Blattman et al. (2021). Instead, some
crimes might be highly concentrated with instrumental motives driven by generally mobile criminal rents.
By increasing the risk of detection, criminals are deterred from committing crimes in specific locations, but
the crime itself may simply relocate rather than be deterred. As pointed out by Blattman et al. (2021),
violent crimes are often considered more severe than property crimes, making the potential displacement
effect a critical consideration when evaluating the overall welfare impact of the policy intervention.
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6 Conclusion

This paper introduces a straightforward testing framework for interference in network set-

tings. The proposed tests are computationally simpler than previous methods while main-

taining desirable power and size properties, making them highly practical for applied use.

Beyond network settings, the PNRT method has broader applicability. For instance,

Zhang and Zhao (2021) demonstrated that partial null hypotheses are relevant in time-

staggered designs. This suggests an intriguing direction for future research: extending the

framework to quasi-experimental settings and observational studies. In quasi-experimental

designs, a unified framework applicable to time-staggered adoption, regression discontinuity,

and network settings would be invaluable (Borusyak and Hull, 2023; Kelly, 2021). In obser-

vational studies, incorporating propensity score weighting to create pseudo-random synthetic

treatments and conducting sensitivity analyses would be essential, as noted by Rosenbaum

(2020).

Although simulation results have shown PNRT to perform favorably compared to CRT,

its power properties in broader contexts remain unexplored. Fortunately, theoretical insights

from studies such as Basse et al. (2019) and Puelz et al. (2021) have highlighted the power

properties of CRT, and Wen et al. (2023) has discussed the near minimax optimality of

pairwise p-values. These findings suggest that further investigation into the power properties

of the PNRT method could be both feasible and fruitful.
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Appendix A Review of the FRT and CRT

A.1 Review of the fisher randomization tests

The original Fisher randomization tests (FRT), as proposed by Fisher (1925), was designed

for a binary treatment scenario without interference. In this framework, each Yi(d) depends

solely on di, resulting in only two potential outcomes: potential outcome when in the treat-

ment group Yi(1) and potential outcome when in the control group Yi(0) for every unit i.

The standard approach to testing whether the treatment has an effect typically involves the

following null hypothesis:

H0 : Yi(0) = Yi(1), i = 1, 2, ..., N,

which is a special case of the null hypothesis in Definition 1.

Let T (Y,D) : RN × D → R denote a test statistic as the function of Y and D, typically

the differences in mean, rank statistics, etc. For instance, an example test statistic could be

the absolute difference in means between treated and control units:

T (Y obs, D) = ∥Ȳ obs
{i:Di=1} − Ȳ obs

{i:Di=0}∥ (A.1)

where Ȳ obs
{i:Di=1} =

∑N
i=1 1{Di=1}Yi∑N
i=1 1{Di=1} , Ȳ obs

{i:Di=0} =
∑N

i=1 1{Di=0}Yi∑N
i=1 1{Di=0} . In practice, we can also use the

non-absolute value version of test statistics for the one-side testing.

Denote Tobs = T (Y obs, Dobs). The p-value is then defined as pval(Dobs) = P (T (Y obs, D) ≥
Tobs) respect to D ∼ P (D), reflecting a stochastic version of the ”proof by contradiction”

method discussed by Imbens and Rubin (2015): If there are few potential assignments D

with T (Y obs, D) ≥ Tobs, it suggests that observing the current value Tobs under the null

hypothesis is highly improbable. Consequently, the p-value would be lower, increasing the

likelihood of rejecting the null hypothesis. The formal testing procedure can be outlined

as follows, where the p-value is calculated as the mean value of 1 + R draws due to using

d = Dobs for r = 0, so there are R + 1 draws:

Observe that, if H0 is true, one must have Tr = T (Y obs, D′) = T (Y (D′), D′) for any D′ ∼
P (D′). Since D′ is a random draw from P (D), we have Tr = T (Y (D′), D′) ∼ T (Y obs, Dobs) =

Tobs, leading to an valid test at any level α, where P{pval ≤ α} ≤ α, for all α ∈ [0, 1] when

the null hypothesis is true. A formal proof can be found in Basse et al. (2019) and Zhang

and Zhao (2023).
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Algorithm 4 Fisher Randomization Tests (FRT)

Inputs : Test statistic T = T (Y (d), d), observed assignment Dobs, observed
outcome Y obs, treatment assignment mechanism P (D), and size α.

Compute : The observed test statistic, Tobs = T (Y obs, Dobs).
for r = 1 to R do

Randomly sample: dr ∼ P (D), Store Tr ≡ T (Y obs, dr).
end

Output : P-value: ˆpval = (1 +
∑R

r=1 1{Tr ≥ Tobs})/(1 +R).
Reject if p-value≤ α.

Table A6: Illustration of FRT in the toy example

Assignment D Potential Outcome Yi T (Y obs, D)
i1 i2 i3 i4 i5 i6

(1, 0, 0, 0, 0, 0) 2 5 3 1 4 6 1.8
(0, 1, 0, 0, 0, 0) 2 5 3 1 4 6 1.8
(0, 0, 1, 0, 0, 0) 2 5 3 1 4 6 0.6
(0, 0, 0, 1, 0, 0) 2 5 3 1 4 6 3
(0, 0, 0, 0, 1, 0) 2 5 3 1 4 6 0.6
(0, 0, 0, 0, 0, 1) 2 5 3 1 4 6 3

Legend: Potential outcome schedule for the toy example: Assignment D includes all the potential as-
signments with the first row as the observed assignment Dobs; Potential outcomes are the same for each
potential assignment under the sharp null of no effect; T (Y obs, D) is the absolute value of the difference in
mean defined in equation A.1.

A toy example (cont.) Under SUTVA, without any interference, Table A6 illustrates

the potential outcome schedule for FRT in the toy example. Following the algorithm 4, the

observed test statistics is 1.8. T (Y obs, D) when unit i4 and i6 are treated have values of

3, which are larger than 1.8, and have the same value of 1.8 when unit i2 is treated. So,

the P-value is 2/3, and we can use a uniform random variable in practice for the tie-break

without influencing the validity of the testing (Lehmann and Romano (2005)). One can also

repeat the testing procedure with the non-absolute difference for one-side testing.

What if we use FRT for partial null hypothesis? For the partial null hypothesis,

as illustrated in the appendix by Athey et al. (2018), the FRT procedure might over-reject

under the null. The main reason is that implementing FRT for a partial null hypothesis

mistakenly treats the missing potential outcomes, as illustrated in Table 1, with the sharp

null of no effect. Hence, the rejection of the test ignores the variation arising from the

treatment effects. For example, Bond et al. (2012) tested for spillovers from a randomly

assigned encouragement to vote in the 2010 U.S. elections. This was implemented as a
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permutation test that implicitly assumed the absence of direct effects. Even though Bond

et al. (2012) elsewhere rejected that null hypothesis, Athey et al. (2018) show that such tests

can dramatically inflate Type I error rates.

A.2 Review of conditional randomization tests

Pioneered by Aronow (2012) and Athey et al. (2018), recent literature, including Basse et al.

(2019) and Puelz et al. (2021), has turned to Conditional Randomization Tests (CRT) to

tackle various kinds of network interference settings. The key idea in this line of research

is that although the null hypothesis Hϵs
0 is not sharp in general, it can be “made sharp”

by restricting our attention to a well-chosen conditioning event (Basse et al., 2019): U =

(NU,DU) ∼ P (U|Dobs). This event includes a subset of units, called focal units (NU ⊆
{1, . . . , N}), and a subset of assignments, called focal assignments (DU ⊆ {0, 1}N), that
satisfy Definition A11:

Definition A11 (Conditions for Conditioning Event). Given partial null hypothesis Hϵs
0 .

For any conditioning Event U = (NU,DU) ∈ 2{1,...,N} × 2{0,1}
N
, we have for any i ∈ NU,

Yi(d) = Yi(d
′) for any d, d′ ∈ DU under Hϵs

0 .

Definition A11 combined Definition 3 and Section 4 from Athey et al. (2018), empha-

sizing the restrictive nature of the conditioning event. Theorem 3 from Basse et al. (2019)

reinterprets this condition in the context of exposure mapping, a low-dimensional summary

of the treatment assignments, which can be misspecified in practice. Both Athey et al.

(2018) and Basse et al. (2019) allow NU ⊈ I(Dobs). However, they need to restrict the set of

focal assignments to fix the exposure levels of units not in I(Dobs), and they do not use this

information in the test statistics. The final implementation in Basse et al. (2019) still uses

a set NU ⊆ I(Dobs).

Different papers have different P (U|Dobs) to choose U: Both Aronow (2012) and Athey

et al. (2018) only considered conditioning mechanisms of the form P (U|Dobs) = P (U), where
conditioning is either random or guided by known auxiliary information but is not condi-

tioned on the observed assignment. This failure to use all the observed information would

cause a loss of power. Basse et al. (2019) identified this weakness and proposed a two-step

conditional mechanism tailored to cluster interference. They formalized the idea as sampling

from a carefully constructed distribution P (U|Dobs) and then ran a test conditional on U.
Puelz et al. (2021) extended this framework using the Biclique decomposition method to con-

struct the conditioning event for general interference, including both clustered and spatial
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interference. Both Basse et al. (2019) and Puelz et al. (2021) constructed U ∼ P (U|Dobs)

with CRT restricted to the conditioning event U and use the restricted test statistic under

the conditioning event for further comparison:

Definition A12 (Conditioning Event Restricted Test Statistics). Let TU(Y, d) : RN ×
{0, 1}N → R be a measurable function. TU is said to be Conditioning Event Restricted

Test Statistics on U if TU(Y, d) = TU(Y ′, d′), for any (Y, Y ′, d, d′) ∈ R2N ×{0, 1}2N such that

Yi = Y ′
i , di = d′i for all i ∈ NU

The test statistics in Definition A12 is similar to the pairwise imputable statistics in

Definition 7: The value of the test statistic is only related to the units in NU. Therefore, the

p-value is constructed similarly to FRT by restricting everything on U, following the CRT

procedure below, where the p-value is calculated as the mean value of 1 + R draws due to

using d = Dobs for r = 0, so there are R + 1 draws:

Algorithm 5 Conditional Randomization Testing (CRT)

Inputs : Test statistic T = T (Y (d), d), observed assignment Dobs, observed
outcome Y obs, treatment assignment mechanism P (D), size α, and
design of conditioning event P (U|Dobs).

Draw : U ∼ P (U|Dobs).
Compute : The observed test statistic, TU

obs = TU(Y obs, Dobs).
for r = 1 to R do

Randomly sample: dr ∼ P (D|U) ∝ P (U|D)P (D), Store TU
r ≡ TU(Y obs, dr).

end

Output : P-value: ˆpval = (1 +
∑R

r=1 1{TU
r ≥ TU

obs})/(1 +R).
Reject if p-value≤ α.

A toy example (cont.) By Definition A11, we need ∀d ∈ DU, i ∈ NU, di = 0 for H0
0 : If

there exist i with di = 1, for any other d′ ∈ DU, we need d′i = 1. However, by experimental

design, only one unit would be treated, so d = d′∀d, d′ ∈ DU. This essentially results in one

effective treatment, causing no power.

Following Definition A12, difference-in-mean estimator can be used as formula below:

TU(Y obs, D) = ∥ȲNU(D
obs){i:D∈Di(0)/Di(1)} − ȲNU(D

obs){i:D∈Di(1)}∥

Given units i1 is treated in the observed Dobs, one example of a valid U would be choosing

NU = {i2, i4, i6}, and DU = {(1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0)}. We can construct

the potential outcome table as in Table A7.
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Table A7: CRT in the toy example

Dist. to the Treated Unit Potential Outcome Yi TU(Y obs, D)
i2 i4 i6

(0, 1, 2, 3, 2, 1) 5 1 6 4.5
(2, 1, 0, 1, 2, 3) 5 1 6 3
(2, 3, 2, 1, 0, 1) 5 1 6 1.5

Legend: Dist. to the Treated Unit: the minimum distance of each unit to the treated units. j means
unit is distance j away from the treated units and belongs to the distance interval (j − 1, j] for j = 1, 2, 3.
0 means the unit itself is being treated in the randomized D. Potential Outcome Yi: Potential outcome of
each unit under the null H0

0 with red ? as missing values. Blue cells are the units used to calculate the mean
value in the first term of the test statistics. TU(Y obs, D): test statistics under different D and fixing Dobs

that unit i1 is treated.

According to Algorithm 5, the p-value equals 1/3 since the observed test statistic is the

highest. However, in practice, designing U and P (U|Dobs) in more complex settings to ensure

nontrivial power can be challenging.

Appendix B Proof of the Theorems

Proof of Theorem 1. Given any α > 0, consider the subset of assignment

D ≡ {Dobs|pvalpair(Dobs) ≤ α/2}.

Therefore, we can denote P (pvalpair(Dobs) ≤ α/2) =
∑

Dobs∈D P (Dobs) = x. To prove the

theorem, we want to show x ≤ α.

Denote H(Dobs, D) = 1{T (YI(Dobs)(D
obs), D) ≥ T (YI(D)(D), Dobs)}, then by construction,

H(Dobs, D) +H(D,Dobs) ≥ 1.

Under Hϵs
0 , by proposition 1 and the Definition 8 of p-value,

pvalpair(Dobs) =
∑

D∈{0,1}N
H(Dobs, D)P (D).

Now, consider the term ∑
Dobs∈D

∑
D∈{0,1}N

H(Dobs, D)P (D)P (Dobs)
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On the one hand, it equals to∑
Dobs∈D

pvalpair(Dobs)P (Dobs) ≤ (α/2)(
∑

Dobs∈D

P (Dobs)) = xα/2

On the other hand, by flipping D and Dobs in the same set D:∑
Dobs∈D

∑
D∈D

H(Dobs, D)P (D)P (Dobs) =
∑
D∈D

∑
Dobs∈D

H(D,Dobs)P (Dobs)P (D)

=
∑
D∈D

∑
Dobs∈D

H(D,Dobs)P (D)P (Dobs)

=
∑

Dobs∈D

∑
D∈D

H(D,Dobs)P (D)P (Dobs)

Hence, we would have:∑
Dobs∈D

∑
D∈{0,1}N

H(Dobs, D)P (D)P (Dobs) ≥
∑

Dobs∈D

∑
D∈D

H(Dobs, D)P (D)P (Dobs)

=
∑

Dobs∈D

∑
D∈D

(H(D,Dobs) +H(Dobs, D))P (D)P (Dobs)/2

≥
∑

Dobs∈D

∑
D∈D

P (D)P (Dobs)/2 = x2/2

Hence, x2/2 ≤ xα/2 implying x ≤ α. As mentioned before, using 1/2 to discount the

number of equalities doesn’t affect the validity of the test becauseH(Dobs, D)+H(D,Dobs) ≥
1 would still hold.

Too many potential treatment assignments. When the number of units N is large,

there would be 2N potential treatment assignments,which is a large number in practice. In

such cases, given Dobs and Algorithm 1, we can show that ∥ ˆpval
pair

− pvalpair(Dobs)∥ =

Op(R
−1/2). Specifically, by ˆpval

pair
= (1 +

∑R
r=1 1{Tr ≥ T obs

r })/(1 + R) and dr ∼ P (D)

independently, we have Edr
ˆpval

pair
= pvalpair(Dobs) and

V ar( ˆpval
pair

) = V ar(1{Tr ≥ T obs
r })/(1 +R) = pvalpair(Dobs)(1− pvalpair(Dobs))/(1 +R)

Hence, by Chebyshev’s inequality, ∥ ˆpval
pair

− pvalpair(Dobs)∥ = Op(R
−1/2).
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Proof of Theorem 2. To avoid confusion, denote PDobs as probability respect to Dobs and

PD as probability respect to D.

Under the nullHϵs
0 , by Proposition 1 and setting d = D, d′ = Dobs, we have T (YI(D)(D), Dobs) =

T (YI(D)(D
obs), Dobs). Hence, we have T̃ (Dobs) = mind∈{0,1}N (T (YI(d)(d), D

obs)).

Then, by construction, T̃ (Dobs) ∼ T̃ (D) ≤ T (YI(Dobs)(D
obs), D), and

pvalmin(Dobs) = PD(T (YI(Dobs)(D
obs), D) ≥ T̃ (Dobs)) ≥ PD(T̃ (D) ≥ T̃ (Dobs))

Therefore,

PDobs(pvalmin(Dobs) ≤ α) ≤ PDobs(PD(T̃ (D) ≥ T̃ (Dobs)) ≤ α)

Let U be a random variable with the same distribution as T̃ (D) as induced by P (D), FU

be its cumulative distribution function, we have PD(T̃ (D) ≥ T̃ (Dobs)) = 1 − FU{T̃ (Dobs)},
which is a random variable induced by Dobs ∼ P (Dobs). Hence, PD(T̃ (D) ≥ T̃ (Dobs)) =

1− FU(U), and by the probability integral transformation, PD(T̃ (D) ≥ T̃ (Dobs)) respect to

Dobs has a uniform [0, 1] distribution under Hϵs
0 . So, for any α ∈ [0, 1]

PDobs(pvalmin(Dobs) ≤ α) ≤ PDobs(PD(T̃ (D) ≥ T̃ (Dobs)) ≤ α) ≤ α

Appendix C Other algorithms in the paper

Algorithm in Blattman et al. (2021) for pure control group Other approaches, like

the one used by Blattman et al. (2021), often employ a prespecified rule by starting with

the null hypothesis H
ϵK−1

0 and collapsing any unrejected nulls into a single control condition.

However, this method might encounter issues with post-model-selection inference, leading to

over-rejection under the null.

In Blattman et al. (2021), they implement Algorithm 6 with K = 2 and (ϵ0, ϵ1, ϵ2) =

(0, 250m, 500m).

Following Algorithm 6, the procedure involves two steps: In the first step, we collect

pval1 for H250
0 and reject H250

0 if pval1 ≤ α. If H250
0 is rejected,the process terminates, and

we report that ϵc = 500. If H250
0 is not rejected, we proceed to the second step by collecting

pval0 for H0
0 and reject H0

0 if pval0 ≤ α. If H0
0 is rejected, we report ϵc = 250; If H0

0 is not
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Algorithm 6 A procedure for pure control group

Inputs : Test statistic T = T (Y (d), d), observed assignment Dobs, observed
outcome Y obs, treatment assignment mechanism P (D).

Set : K̂ = K.
for k = K − 1 to 0 do

Testing Hϵk
0 using PNRT procedure, collect pvalk.

If pvalk ≤ α, reject Hϵk
0 , Terminate.

If pvalk > α, set K̂ = k.
end
Output : Set pure control group with ϵc = ϵK̂ .

rejected, we report there is no significant interference whatsoever.

As illustrated in Algorithm 6, this procedure does not incorporate any size adjustment

for multiple hypothesis testing issues. Consequently, it is possible to over-reject the partial

null hypothesis, leading to an ϵc larger than the true distance for the pure control group.

Specifically, for any given k̃ where H k̃
0 is true, the probability p(K̂ ≥ k̃ + 1) exceeds α. For

example, if there is no spillover and k̃ = 0, p(K̂ ≥ 1) > α due to multiple hypothesis testing.

In extreme cases, if P (pval(Dobs) ≤ α|K̂ ≥ k̃+1) is close to 1, the true null hypothesis could

be over-rejected using this pre-selection procedure.

Algorithm for simulation exercise in Section 5.1 As outlined in Algorithm 7:

Algorithm 7 Simulation Study Procedure

Inputs : 5000 randomly chose assignments as the potential assignments set,
DS.
The biclique decomposition of DS for Puelz et al. (2021).

Set : Spillover effect τ and corresponding schedule of potential outcomes.
for s = 1 : S do

Sample Dobs
s from DS, and generate Y obs

s .
Implement the algorithms and collect corresponding pval(Dobs

s ) using R = 1000.
Average the # of rejections to get the power for that fixed τ .

end
Output : Power plot of each algorithm.

Appendix D Incorporating covariate adjustment

In practice, we often have access to covariates X, and incorporating this information is

crucial for enhancing the power of tests, particularly when these covariates are predictive of
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potential outcomes (Wu and Ding, 2021). Since the choice of test statistic does not affect the

validity of the testing procedure for the partial null hypothesis of interest, I propose three

approaches for incorporating covariates in the analysis:

The first approach is PNRT with regression. As illustrated in the main text, this method

involves conducting PNRT using regression coefficients from a simple OLS model as the

test statistic. This OLS model includes a binary variable indicating whether a unit receives

spillovers at a certain distance and known covariates, such as information about the neigh-

borhood and social center points. A similar approach is discussed in Puelz et al. (2021).

The second approach is PNRT with residuals outcome. The key idea here is to use the

residuals from a model-based approach, such as regression with covariates of interest, rather

than the raw outcome variables. We first obtain predicted values Ŷi for the sample outcomes

and then use the residuals, defined as the difference between observed outcomes and predicted

values êi = Y obs
i − Ŷi, for the PNRT procedures as the Y defined in the main text. A similar

approach for FRT is proposed by Rosenbaum (2020), with detailed discussion in Sections 7

and 9.2 of Basse and Feller (2018).

The third approach is PNRT with pairwise residuals. In this method, for each pair of

treatment assignments (Dobs, D), we conduct a regression with covariates within the im-

putable units set to transform the outcomes into residuals before testing and constructing

the p-values accordingly. This approach can be viewed as combining the first and second

methods.

As shown in Table D8, the p-values are very similar across the different methods, allow-

ing researchers to choose the most practical implementation. Additionally, as discussed in

Section C.3 of Basse et al. (2024), one can stratify potential assignments based on covariates

to balance the focal units. This is done by stratifying both the permutations and the test

statistic by an additional discrete covariate. However, we could not implement and compare

p-values from this method due to limitations in the original dataset.

Similar to the findings in Puelz et al. (2021), I observed that p-values increased after con-

trolling for covariates. This suggests that covariates help control spillover effects, indicating

that geographic distance alone may be insufficient to capture the intensity of spillovers. This

implies the presence of heterogeneous spillover effects that cannot be fully captured by the

partial null hypothesis defined at the unit level. In an extreme case, if the spillover effect is

perfectly correlated with covariates, the underlying partial null hypothesis would be rejected,

as the spillover effect exists. However, regression adjustment might eliminate the nonzero

spillover effect, leading to increased p-values under the same partial null hypothesis.
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Table D8: P-values for pairwise comparison-based PNRT with different specifications

Unadjusted P-values

(0m,∞) (125m,∞) (250m,∞)

Violent crime

Reg (WLS) 0.105 0.719 0.158

Reg (OLS) 0.156 0.767 0.110

Pair residuals 0.119 0.726 0.142

Residuals outcome 0.114 0.757 0.166

Property crime

Reg (WLS) 0.508 0.232 0.619

Reg (OLS) 0.494 0.462 0.560

Pair residuals 0.481 0.252 0.565

Residuals outcome 0.455 0.250 0.578

Legend: P-values of pairwise comparison-based PNRT across different methods. Reg (WLS): PNRT with
regression, using the coefficient from the covariates-included regression with inverse propensity weighting
as the test statistic. Reg (OLS): PNRT with regression, using the coefficient from the covariates-included
regression without weighting as the test statistic. Pair residuals: PNRT with pairwise residuals, where
residuals are constructed from the pairwise subset regression in the first step. The coefficient from the no-
covariates regression with inverse propensity weighting is then used as the test statistic. Residuals outcome:
PNRT with residuals outcome, where residuals are constructed for all units in the first step, followed by
using the coefficient from the no-covariates regression with inverse propensity weighting as the test statistic.

Researchers should interpret these results cautiously and decide on the null hypothesis

of interest beforehand. If a researcher is interested in testing for no spillover effects after

controlling for covariates, PNRT can be extended to accommodate the work by Ding et al.

(2016). One can refer to Owusu (2023) for investigating heterogeneous effects in network

settings. Alternatively, if interested in the weak null of the average effect being equal to

zero (see Zhao and Ding (2020); Basse et al. (2024)), one should note that the construction

of p-values in PNRT differs from those in CRT and FRT, making classical approaches for

weak nulls potentially inapplicable. Further investigation into these differences would be of

interest to future research.
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