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1 Introduction

In this paper, we re-examine the hypothesis of Uncovered Interest Parity (UIP), which in its

basic form implies that the (nominal) expected return to speculation in the forward foreign

exchange market conditional on available information should be zero. This is an �e¢ cient-

markets hypothesis�(EMH) for foreign exchange markets: if all available information is used

rationally by risk-neutral agents in determining the spot and forward exchange rates, then

the expected rate of return to speculation will be zero and the foreign exchange market is

said to be e¢ cient. This is a joint hypothesis since it includes the assumption of rational

expectations (REH) and the assumption that the risk premium for the forward rate is zero.

In fact, rejection of the UIP hypothesis does not immediately translates into a rejection of

the e¢ ciency of the foreign exchange market, which could be due economic agents being risk

averse. Still testing whether the UIP hypothesis holds has been and continue to be a topic

of considerable interest from both theoretical and empirical perspectives.

Testing the rationality hypothesis and exchange market e¢ ciency is embedded in the

general problem of estimating the parameters of a k-step-ahead linear forecasting equation.

When the sampling interval is �ner than the interval over which forecasts are made (in

this case the maturity time of the forward exchanges rates), the forecast error is serially

correlated. As noted by Hansen and Hodrick (1980), under rational expectations (REH) the

forecast error is serially correlated up to lag k�1 and OLS remains consistent but appropriate
modi�cations in the estimation of the asymptotic covariance matrix are needed. However,

if the REH is rejected and the forecast error is serially correlated beyond lag k � 1, OLS is
not longer consistent when the regressors are not exogenous; see Perron and González-Coya

(2024). Contrary to what is asserted in Hansen and Hodrick (1980), GLS is consistent when

the regressors are pre-determined provided the roots of the MA polynomial are inside the

unit circle, i.e., MA process is invertible, as shown in Perron and González-Coya (2024).

Moreover, GLS remains consistent when the forecast error follows a linear invertible process.

The �rst contribution of this paper is to provide a consistent and e¢ cient framework to

estimate and perform tests of the parameters of a k-step-ahead linear forecasting equation

that remains valid whether the REH holds or not. We apply the FGLS procedure developed

in Perron and González-Coya (2024) which is consistent using non-exogenous regressors, pro-

vided the errors follows an stationary invertible linear process. The second contribution is

to extend their FGLS procedure to cases with lagged dependent variables included as regres-

sors. Following the work of Olivari and Perron (2024), we introduce an instrumental variable

1



(IV)-based approach for this problem that requires pre-determined but not necessarily ex-

ogenous IVs for consistency. The third contribution is to apply our FGLS procedures to the

two main regressions suggested in the literature to test the UIP. We use 30 years of data for

three currencies and we reconsider the framework and regressions used by Fama (1984) and

Hansen and Hodrick (1980). We provide extensive simulation experiments to assess the �nite

sample performance of our FGLS procedure relative to OLS. We show that FGLS achieves

important reductions in mean-squared error (MSE) and allow tests with much greater power.

The Fama regression assesses whether the current forward-spot di¤erential, ft;h � st, is

a good predictor of the future change in the spot rate, st+h � st. Most results available in

the literature suggest a negative estimate of the relevant parameter, which instead should

take value one if the UIP holds. This is often referred to as the �forward discount anomaly�,

wich refers to the widespread empirical �nding that the returns on nominal exchange rates is

negatively correlated with the lagged forward premium. It implies an appreciating currency

for the high interest rate country. It is an �anomaly�as rational expectations would imply

the opposite; if all currencies are equally risky, investors would demand higher interest rates

on currencies expected to fall in value. Our results, in contrast, indicate positive values,

sometimes not signi�cantly di¤erent from one. This �nding suggests that the �forward

discount anomaly�might be a consequence of OLS providing an inconsistent estimate and our

FGLS procedure being consistent and e¢ cient under a broader range of possible scenarios.

The regression adopted by Hansen and Hodrick (1980) is to test whether past values of

the forward-spot di¤erential help predict the current value ft;h � st, conditioning on some

covariates involving the past forward-spot di¤erentials from some other countries. Under

the UIP and EMH, there should be no predictive power as all information contained in the

information set at time t should already have been accounted for by the market in setting

the forward rates. Here, contrary to most empirical results available in the literature, in

particular those based on some OLS regression or GMM, our robust and e¢ cient procedure

cannot reject the null hypothesis that the UIP holds. Hence, overall, our results can be

viewed as overturning the so-called �forward discount anomaly�.

The remainder of this paper is as follows. Section 2 describes the formulations of the UIP

hypothesis and reviews previous econometric tests. Section 3 describes the FGLS procedures

and Section 4 introduces two instrumental variable (IV) based approaches for a setting in

which lagged dependent variables are included as regressors. Section 5 studies the Fama

(1984) regression and Section 6 is focused on the Hansen and Hodrick (1980) regression. For

both speci�cations, we provide extensive Monte Carlo experiments to asses the �nite sample
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performance of our FGLS procedures relative to OLS. We also provide empirical results for

the sample period 01/1993 to 01/2023. In Section 7 we present a test for the hypothesis

that the OLS residuals exhibits serial correlation of order greater than k � 1 and discuss
its empirical implications to understand the various con�icting results. We provide brief

concluding remarks in Section 8. A supplement provide additional details.

2 UIP and the E¢ cient Market Hypothesis

Let st = ln(St) and ft;k = ln(Ft;k), where St and Ft;k are the levels of the spot exchange rate

and the k-period forward exchange rate at time t. With it, the domestic nominal interest

rate and i�t the corresponding foreign interest rate, the theory of Uncovered Interest Parity

(UIP) implies that E (st+k � stj�t) = (it � i�t ). Hence, UIP requires the twin assumptions of

rational expectations and a constant or zero risk premium. Given the no arbitrage condition,

the Covered Interest Parity (CIP) condition implies that (it � i�t ) = (ft;k � st) holds as

an identity. Hence, the UIP condition is also frequently expressed as E (st+k � stj�t) =
(ft;k � st). Since st+k � ft;k is an approximate measure of the rate of return to speculation,

we can express the e¢ cient-markets hypothesis as ft;k = E (st+kj�t). This implies forecast
errors st+k � ft;k uncorrelated with information available at time t, �t.

2.1 Econometric Tests

As in Hansen and Hodrick (1980) we consider the general problem of estimating the para-

meters of a k-step-ahead linear forecasting equation, E (yt+kj�t) = x0t�. Then,

yt+k = �+ x0t� + ut+k; (1)

where rational expectations impose a speci�c structure on the forecast error ut+k = yt+k �
E (yt+kj�t). Due to the k � 1 period overlap in the sequential k-step-ahead forecasts, ut+k
has an MA(k � 1) representation. Thus

E (xtut+k) = E
�
xt
Pk�1

j=0 �j"t+k�j

�
= 0

and the OLS estimates of �; � are consistent since the regressors are pre-determined via the

rational expectations hypothesis. We shall label this as the �RE case�. Note, however, that

we could well be faced with a model of the form

yt+k = x0t� + (ut+k + �t);
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where �t is some serially correlated process involving innovations dated before period t;

e.g., an AR(1) process of the form �t = ��t�1 + et for some sequence of i.i.d. innovations

(e1; :::; eT ). In this case, if the regressors are non-exogenous with respect to past values of �t,

OLS is not longer consistent since E (xt�t) 6= 0. We shall label this as the �general case�, as
it encompasses the �RE case�. This motivates the necessity of an estimate that is consistent

under the both the �RE case�and the �general case�, i.e., allowing the errors to be serially

correlated beyond lag k � 1. Contrary to what is asserted in Hansen and Hodrick (1980),
GLS is consistent in both cases, provided the errors (ut+k + �t) can be represented as some

invertible linear process, as shown in Perron and González-Coya (2024).

Example 1. A k-step ahead forecast error process can be serially correlated beyond lags

k � 1 under, e.g., Adaptive Expectations (AE) (see Muth, 1960). An exponentially weighted
moving average forecast arises from the following model of expectations adapting to changing

conditions. Under AE, it is assumed that the forecast is changed from one period to the next

by an amount proportional to the latest observed error,

yet = yet�1 + �
�
yt�1 � yet�1

�
:

As shown in Muth (1960), the solution of this di¤erence equation is an exponentially weighted

forecast yet = �
P1

i=1(1� �)i�1yt�i. The forecast error is thus,

ut = yt � yet = yt � �
P1

i=1(1� �)i�1yt�i:

In order to characterize the process of the forecast error ut, we shall impose a functional form

on yt. It is standard in the AE literature, to assume that yt has a permanent and a transitory

component, yt = �yt+!t;where the permanent component is de�ned by �yt = �yt�1+"t =
Pt

i=1 "i

with "t � i:i:d(0; �2"), !t � i:i:d(0; �2�) and "t; �t independent. In this case, the forecast error

ut follows an AR(1) process. The details of this derivation are spelled in the Appendix A.1.

Several tests of the UIP hypothesis have been proposed in the literature. Bilson (1981)

and Fama (1984) analyzed regression (1) with yt = st+k�st and xt = ft;k�st with k = 1. In
this setting a test of UIP is thatH0 : � = 0 and � = 1. It has been noted by Fama (1984) and

many subsequent studies that the estimated slope coe¢ cient � is frequently negative. This

is known as the Forward Premium Anomaly: the country with the higher rate of interest has

an appreciating currency rather than a depreciating currency; a violation of UIP. Hansen

and Hodrick (1980) estimate the model (1) with yt = st+k � ft;k, the forecast error, and

uses lagged dependent variables as regressors; xt = (yt�k; yt�(k+1)) with k = 13. The test is
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H0 : � = 0 and �1 = �2 = 0. A simpli�ed version of this regression, with xt = yt�k and test

H0 : � = 0 and �1 = 0, has been studied by Baillie et al. (2023). Hansen and Hodrick (1980)

also proposed a test that includes the lagged forecast errors of four other currencies,

sit+k � f it;k = �i + �
�
sit+k � f it;k

�
+
P

j 6=i �ij(s
j
t+k � f jt;k) + uit+k; (2)

where sit+k � f it;k is the forecast error for country i and s
j
t+k � f jt;k is the forecast error for

country j 6= i. We focus on regression (2) as Hansen and Hodrick (1980) concludes that the

multicountry test appears to be more powerful.

3 Feasible GLS

We consider the linear regression

yt+k = x0t� + ut+k; (3)

where the error term follows a short-memory linear process

ut+k = C(L)"t+k =
P1

j=0 �j"t+k�j; (4)

where "t � i:i:d:(0; �2). The polynomial C(L) =
P1

j=0 cjL
j is assumed to satisfy c0 = 1 (a

normalization),
P1

j=0 jjcjj <1 so that the process is short-memory and C(L) is invertible,

i.e., we can write A(L)�1ut+k = "t+k. We use the FGLS procedure developed in Perron and

González-Coya (2024) to estimate regression (3). The idea is to consistently approximate

ut+k using an autoregression of order kT ,

ut+k =
PkT

j=1 �jut+k�j + "t+k;kT ;

with kT ! 1 and k3T=T ! 0 as T ! 1, to ensure consistent estimates; see Berk (1974).
Replacing equation (3) and re-arranging terms we have,

yt+k =
PkT

j=1 �jyt+k�j + x0t� �
PkT

j=1 x
0
t�j�j + "t+k;kT ; (5)

with �j = ��j for j = 1; : : : ; kT . Equation (5) is often called the Durbin regression (see

Durbin, 1970). The order of the autoregression, k�T , is determined via the minimization of

the BIC suggested by Schwarz (1978) for kT 2 [0; kmax] where kmax is such that k3max=T ! 0

as T ! 1. We use the method suggested by Ng and Perron (2005) to ensure a proper
comparison across models with di¤erent values of kT , i.e., using the same e¤ective number
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of observations. We estimate the Durbin equation (5) via OLS with kt = k�T . Using the OLS

estimates of �j, �̂
D
j , we construct the quasi-di¤erenced variables

y�t =
�
yt �

Pk�T
j=1 �̂

D
j yt�j

�
; x�t =

�
xt �

Pk�T
j=1 �̂

D
j xt�j

�
: (6)

The FGLS estimate of � is the OLS estimate of the quasi-di¤erenced regression,

y�t = x�0t � + "t;k�T ; (t = k�T ; : : : ; T ): (7)

The resulting estimate �̂FGLS will be consistent provided the regressors xt are pre-determined

with respect to values "t prior to period t+ k; see Perron and González-Coya (2024).

3.1 Feasible GLS with Lagged Dependent Variables

Consider regression (3) with x0t = (yt�h; w
0
t) for some h > 0, where wt is a vector of n + 1

pre-determined regressors that includes a constant term. For simplicity we omit the constant

term without loss of generality. Write the regression as

yt = �yt�h + �0wt + ut: (8)

If ut is autocorrelated beyond lags i � h�1, OLS applied to regression (8) is not consistent as
yt�h and ut are not independent. Wallis (1967) and Malinvaud (1966) studied regression (8)

with h = 1 where the error terms follows an AR(1) process. Expression for the asymptotic

bias of the OLS estimates of � and � are given by Malinvaud (1966) and Griliches (1961).

We can write the Durbin regression as follows:

yt =
Ph�1

j=1 �jyt�j + 
hyt�h +
Pk�T

j=h+1 �jyt�j

�
�Pk�T�h

j=1 �j+hyt�h�j +
Pk�T

j=k�T�h+1
�j+hyt�h�j

�
+�0wt �

Pk�T
j=1 �j�

0wt�j + "t;k�T

=
Ph�1

j=1 �jyt�j + 
hyt�h +
Pk�T�h

j=1 
j+hyt�h�j +
Pk�T

j=k�T�h+1
�j+hyt�h�j

+�0wt �
Pk�T

j=1  
0
jwt�j + "t;k�T (9)

where 
h = �h + �, 
j+h = �j+h � �j+h, for j = 1; : : : ; k�T � h; �j+h = �j+h�, for j =

k�T � h + 1; : : : ; k�T ; and  ij = �i�j for j = 1; : : : ; k
�
T , i 2 1; : : : ; n. For the case h = k�T = 1

and wt a scalar (i.e., n = 1), Wallis (1967) and Malinvaud (1966) (p. 469) propose to estimate

regression (9) using OLS and then estimate �1 using � j=�. For the general case k > 1

and k�T > h, the same approach can be applied. Note that we need k�T � h, otherwise the
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estimates are not consistent. But this condition will be satis�ed, at least in large samples,

when using the BIC to select the lag order. However, note that when n > 1, �j cannot

be uniquely identi�ed. We shall propose two estimation methods; one based on the Durbin

regression (9) and one based on a �rst-stage instrumental variable (IV) estimate. These

follow similar steps as in the feasible GLS procedure discussed above.

Remark 1. Estimating the autoregressive coe¢ cients, �j for j = 1; : : : ; k�T , from regression

(9) using the Wallis (1967) and Malinvaud (1966) method does not allow us to uniquely

identify �j in the general case with k > 1, k�T > kt and n > 1. However, we can obtain

e¢ cient estimates e��j , j = 1; : : : ; k�T by using a convex combination of the estimates e�ij =
�e ij=e�i (j = 1; : : : ; k�T ) for i 2 1; : : : ; n. For ease of the exposition, suppose that n = 2.

Then, we can construct e¢ cient estimates e��j = �e�1j + (1� �)e�2j, where the optimal � that
minimize Var(e��j) is (the details are in the Appendix A.2):

� =
V ar

�e�2j�� Cov
�e�1j;e�2j�

V ar
�e�1j�+ V ar

�e�2j�� 2Cov �e�1j;e�2j� :
In practice, we can estimate V ar

�e�ij� using a �rst order Taylor expansion,
V ar

�e�ij� = V arVar
�e ij=e�i� = e 2ije�2i

24V ar
�e ij�e 2ij � 2

Cov
�e ij; e�i�e ije�i +

V ar (e�i)e�2i
35 :

The �rst order Taylor expansions of Cov
�e�1j;e�2j� are cumbersome. Note that if the in-

struments wjt are independent of each other, Cov
�e�1j;e�2j� will be arbitrarily small in large

samples. Hence, we set Cov
�e�1j;e�2j� = 0.

4 Instrumental Variables

An alternative to estimate regression (8) with n � 1 is to use an instrumental variable

procedure. If the regressors wt are exogenous, then wt�h are valid instruments for yt�h and

the two-stage least squares (2SLS) estimates will be consistent. Liviatan (1963) propose to

use wt�h as instruments for yt�h and wt as an instrument for itself, so that the instrument set

is Zt = fwt�h; wtg. We can potentially select a larger set of instrumental variables for yt�h.
e.g., lags or order i � h of wt. In this case zt = fwt; wt�i; p > i � hg, for some p > h. Note

that p can be adaptively selected using appropriate tests for over-identifying restrictions (see

Small, 2007). However, if the regressors wt are not exogenous and ut is autocorrelated beyond

lags i � h � 1, wt�h are no longer valid instruments. Hence, the IV estimate of regression
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(8) using the instrument set zt will not be consistent. This motivates the use of the GLS-IV

procedure suggested by Olivari and Perron (2024). The idea is simple: �rst transform the

model to have serially uncorrelated errors and then estimate the transformed model via IV

using the set of transformed instruments. The resulting estimate will be consistent as the

instrument set and regressors are pre-determined in the transformed model.

4.1 Estimator Valid with Exogenous Instruments

We �rst discuss two methods that are valid with exogenous instruments if ut is autocorrelated

beyond lags h�1. One is the widely used so-called �optimal GMM�procedure. The other is
akin to the GLS procedure discussed above but with the �rst-step using the GMM estimate

to obtain estimate of the residuals and construct the autoregressive �ltering.

4.1.1 GMM

Using the set of n(p�h) exogenous instruments zt, then, as shown in Hansen (1982), the best
estimator of �� = (�; �) based on the instruments and the moment condition E(Zu) = 0 is:

�̂
�
GMM = (X 0Z
�1Z 0X)�1X 0Z
�1Z 0y; (10)

where the n(p�h)�n(p�h) matrix 
 is given by 
 = limT!1 T
�1E[Z 0uu0Z]. We can write


 =
P1

s=�1Rv(s), where Rv(s) = E
�
Zh(t)utZ

h0(t� s)ut�s
�
and Zh(t) = fzt; : : : ; zt�hg.

Then 
 can thus be consistently estimated by 
̂ =
PT

s=�T �(s;m)R̂v(s), where R̂v(s) =

T�1
PT�jsj

t=1 v0tvt+jsj, with vt = Zh0(t)ut, �(s;m) is some kernel or weight function and m is

the bandwidth; see, e.g., Andrews (1991).

4.1.2 GMM-GLS-IV

We also consider a FGLS method that does not rely on the Durbin regression (9). Instead, it

uses a �rst-stage GMM estimate to obtain a consistent estimate of the residuals, eut. We can
thus identify the autoregressive parameters when the instruments are exogenous. The GMM-

GLS-IV procedure to estimate regression (8) with exogenous instruments wt is the following:

1) Obtain the GMM estimator of regression (8), given by (10) using the set of instruments

zt = fwt; wt�h; wt�h�j; j = 1; : : : ; hg. Compute the residuals, eut = yt � e�0ivwt � e�ivyt�h; 2)
Select the order k�T of the autoregression

eut+k =PkT
j=1 �jeut+k�j + "t+k;kT ; t = 1; :::; T � kmax; (11)
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via the minimization of the BIC for kT 2 [0; kmax] where kmax is such that k3max=T ! 0 as

T ! 1.; 3) Estimate the autoregression (11) with kT = k�T to obtain consistent estimatese�j (j = 1; : : : ; k�); 4) Use e�j (j = 1 : : : ; k�T ) to construct the quasi-di¤erenced variables

y�t = (yt�
Pk�T

j=1 e�jyt�j), y�t�h = (yt�h�Pk�T
j=1 e�jyt�h�j) and w�t = (wt�Pk�T

j=1 e�jwt�j); 5) The
GMM-GLS-IV estimate of � is the IV estimate of the quasi-di¤erenced regression

y�t = c+ �y�t�h + �0w�t + "t;k�T ; (12)

using the set of quasi-di¤erenced instruments z�t = fw�t ; w�t�hg.

4.2 Non-Exogenous Instruments: GLS-IV

We next describe the GLS-IV procedure to estimate regression (8), which is valid with non-

exogenous instruments, provided they are pre-determined. The steps are the following: 1)

Select the order of the Durbin regression (9), k�T via the minimization of BIC for kT 2 [0; kmax]
where where kmax is such that k3max=T ! 0 as T ! 1; 2) Estimate the Durbin regression
(9) with the selected value k�T using OLS. The estimates the autoregressive coe¢ cients, e��j ,
j = 1; : : : ; k�T are obtained using the e¢ cient method described in Remark 1; 3) Use e�j,
j = 1 : : : ; k�T to construct the quasi-di¤erenced variables y

�
t , y

�
t�k and w

�
t , as in Step 4 for

GMM-GLS-IV; 4) The GLS-IV estimate of � is the IV estimate of the quasi-di¤erenced

regression (12) using the set of quasi-di¤erenced instruments z�t = fw�t ; w�t�hg.
Given that the OLS estimates from the Durbin regression (9) are consistent and that the

transformed model (12) has serially uncorrelated errors, the GLS-IV estimates are consistent

under the stated conditions. To the best of our knowledge, there is no other consistent

estimation method requiring only pre-determined regressors for the general linear regression

(8) without restricting the error process ut. Maximum Likelihood and Non-Linear Least

Squares require an a priori known error process. In the simulation experiments reported in

Section 6.1.2, we show that the fact that e�j is not uniquely identi�ed when we have more
than one regressor (n > 1), does not a¤ect the e¢ ciency of GLS-IV.

5 Fama Regression and the Forward Discount Anomaly

The Fama (1984) regression is

st+h � st = �+ �(ft;h � st) + ut+h; (13)

with h = 4 for 1-month forward rates and h = 12 for 3-month forward rates, when using

weekly data. Estimates of (13) tell us whether the current forward-spot di¤erential, ft;h�st,
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has power to predict the future change in the spot rate, st+h � st. Evidence that � is

signi�cantly di¤erent from zero means that the forward rate observed at t has information

about the spot rate to be observed at t+ h. Under the e¢ cient-market hypothesis, we have

H0 : � = 0; � = 1. Under the null hypothesis, the log of the forward rate provides an

unbiased forecast of the log of the future spot exchange rate. Derivations from � = 1 are

sometimes interpreted as a measure of the variation of the premium in the forward rate.

Let �� be the OLS estimate of � in regression (13). If the estimator is consistent, we have

plim(��) = � =
Cov (ft;h � st; st+1 � st)

Var (ft;h � st)
: (14)

If expectations are rational, then st+1�st = Et (st+1)�st+"t+1, where "t+1 = st+1�Et (st+1)
is the forecast error. In this case, Cov (ft;h � st; st+1 � st) = Cov (ft;h � st; Et (st+1)� st).

The foreign exchange risk premium when expectations are rational is de�ned as rpret = ft;h�
Et (st+1). Under risk neutrality, expected pro�ts from forward market speculation would be

zero as agents would drive ft;h into equality withEt (st+1). WriteEt (st+1)�st = ft;h�st�rpret
and replace into equation (14), so that plimT!1(

��) = 1� �rp, where

�rp =
Cov (Et (st+1)� st; rp

re
t ) + Var (rp

re
t )

Var (ft;h � st)
:

A negative estimate of � in regression (13) is a robust �nding in the literature (see Engel,

1996). This is known as the �forward discount anomaly�; it is a widespread empirical �nding

that the returns on nominal exchange rates appear to be negatively correlated with the lagged

forward premium. Bilson (1981) and Fama (1984) provide evidence that the estimates of �

are less than zero. Many subsequent studies have con�rmed that �nding, for dollar exchange

rates and a large number of exchange rates and time periods (see, for example, Bekaert and

Hodrick, 1993; Backus et al., 1993; Hai et al., 1997). Froot (1990) notes that the average

value of �� over 75 published estimates is -0.88. Only a few of the estimates are greater than

zero, and none is greater than 1. The forward discount anomaly implies an appreciating

currency for the high interest rate country. It is an �anomaly� as rational expectations

would imply the opposite; if all currencies are equally risky, investors would demand higher

interest rates on currencies expected to fall in value. The survey by Engel (1996) focuses on

the the possibility that ��rp 6= 0 among the possible explanations for �nding �� < 0. Other

possible interpretations are that the forward rate is a biased predictor of the future spot rate,

and/or that it is evidence of a time-varying risk premium. In this paper, we provide a novel

insight on this empirical regularity. We argue that the OLS and GMM estimates of � are
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not consistent, as the error term in regression (13) is serially correlated beyond lags k � 1.
We �nd that the FGLS estimates, which are consistent under a broader range of conditions,

are signi�cantly non negative but in general smaller than 1.

5.1 Data Set

Daily data were obtained for the spot exchange rates for the U.K. pound (US-UK), Canadian

dollar (US-CAD) and Japanese yen (US-JP) as well as the 1-month and 3-month forward

exchange rates data for the three currencies. As in Hansen and Hodrick (1980), the data were

sampled to form a weekly series constructed by taking observation on Tuesday of each week.

If no Tuesday observation was available, we used the Wednesday observations. The source

of the forward exchange data for US-UK and US-CAD is Barclays Bank PLC; the source

for US-JP is the Bank of Tokyo Mitsubishi. For all the data sets, we use all the information

available until 01/17/2023 but the starting date of the time series di¤er: a) US-UK: starting

date of 10/11/1983, 2,050 observations; b) US-CAD: starting date of 12/14/1984, 1,989

observations; c) US-JP: starting date of 09/01/1993, 1,535 observations.

5.2 Simulation Design

In this section, we provide simulation results related to the Fama (1984) regression (13) under

the �RE case�or e¢ cient market hypothesis (EMH) , H0 : � = 0; � = 1. We consider h = 4

for 1-month forward rates and h = 12 for 3-month forward rate. As discussed in Section 2,

the EMH implies that ut+h has an MA(h � 1) representation. We simulate an MA(h � 1)
process with parameters calibrated to replicate the observed autocorrelation function up to

lag h�1 of the FGLS residuals of equation (13) using US-UK data. The details are presented
in the Appendix A.3. For h = 4 we have an MA(3) representation with

�(L) =
�
1 + 0:59L+ 0:82L2 + 0:61L3

�
: (15)

For h = 12 we have an MA(11) representation with coe¢ cients

(0:76; 0:63; 0:54; 0:66; 0:49; 0:33; 0:24; 0:57; 0:41; 0:12; 0:39):

We simulate an error process based on equation (15), i.e., vt+h = �(L)"t, where "t � i:i:d:

N(0; �2") and �
2
" is estimated using the residuals of an initial Fama FGLS regression (13)

for US-UK. The data generating process (DGP) uses xt = ft;h � st observed in the data

for US-UK, and the stated simulated error process. We arti�cially generate yt+4 in order to
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satisfy the null hypothesis H0 : � = 1. Thus, the DGP is

st+h � st = (ft;h � st) + vt+h: (16)

We also consider a departure from the �RE case�with errors vt+h following the �gneral case�

with serial correlation at lags i � h. We assume that vt+h follows an ARMA(1; h) process

with MA coe¢ cients given by (15) and AR coe¢ cient � = 0:6. We consider two sampling

periods; the complete sample from 10/11/1983 to 01/17/2023 with 2,050 observations and the

one spanning 11/01/1989 to 04/01/2021, as considered in Baillie et al. (2023). We perform

5,000 replications. We consider the following estimators of �; �, from regression (13): a)

The OLS estimate with HAC standard errors based on the weighting scheme suggested by

Andrews (1991) with automatic bandwidth selection using an ARMA(1; 1) approximation;

b) The Durbin estimate based on the regression (5) with yt = st+h�st and xt = f1; ft;h�stg
and k�T selected using the BIC. For the complete sample, we consider kmax = 40 and for the

sub-sample we set kmax = 30; c) The FGLS estimate based on regression (7) with yt = st+h�
st, xt = f1; ft;h � stg and k�T selected using the BIC. The same values of kmax are used. We
estimate the sample variance of the FGLS estimator using V ar (
̂FGLS) = (X

�0X�)�1�̂2FGLS,

where X� is the T � 2 matrix of quasi-di¤erenced regressors (including a constant term)
and �̂2FGLS is the sample variance of the FGLS residuals, ûFGLS = yt � 
̂0FGLSxt. The

con�dence intervals at the � nominal level for the jth coe¢ cient are obtained using 
̂j �
z1��=2V ar(
̂j;FGLS)

1=2, where z1��=2 is the 1� �=2 quantile of the normal distribution. We

set � = 0:05 so that 95% nominal level con�dence intervals are applied.

The simulation results are presented in Table 1 for h = 4 and Table 2 for h = 12. In

line with the theory, the mean squared error (MSE) of OLS is small when the error term

follows anMA(h) process and deteriorates when the error is serially correlated at lags i � h.

Clearly, FGLS outperforms OLS and Durbin in all cases. Even under the �RE case�, the

MSE of OLS is on average 3.4 times larger than of FGLS, while the MSE of Durbin is close

to that of OLS case. When the errors follow an ARMA(1; h) process, OLS is not longer

e¢ cient and its MSE is on average 27 times that of FGLS. As expected, the Durbin estimate

remains consistent in this case, but its MSE is on average 3 times that of FGLS. FGLS also

has the smallest variance. The variance of Durbin is on average 3 times the variance of

FGLS for h = 4 and 2 times the variance of FGLS for h = 12. The coverage rates of the

con�dence interval for FGLS are near the nominal 90% and have shortest lengths. OLS with

HAC standard errors exhibits substantial size distortions with ARMA(1; h) errors, especially

when h = 12 case. The OLS based HAC standard errors provides con�dence intervals close to
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the nominal level in some cases, at the expense of a very large variance. For the ARMA(1; h)

case with k = 4 (12) the variance of OLS is 30 (25) times the variance of FGLS. This results

are in line with those from Perron and González-Coya (2024).

For the simulations related to power, we use US-UK observed data xt = ft;h � st for the

period 11/01/1989-04/01/2021 with 1-month forward rates, h = 4. The DGP is

st+4 � st = �(ft;4 � st) + vt+4; (17)

where � 2 f0; 0:25; 0:5; 0:75; 1; 1:25; 1:5; 1:75; 2g. The error process vt+4 is simulated as be-
fore; under the �RE case� vt+4 follows an MA(3) process, and under the �general case�

vt+4 follows an ARMA(1; 3) process. Figures 1 and 2 present plots of the empirical rejec-

tion frequencies for t-test of H0 : � = 1 with nominal size 0:05 for the OLS estimates with

HAC-ARMA(1; 1) standard errors, the FGLS estimates based on regression (7) and the

Durbin estimates based on the regression (5). For the latter two, k�T is selected via BIC with

kmax = 30. Figure 1 pertains to �RE case�with the errors an MA(3) process, while Figure

2 pertains to the �general case�with errors following an ARMA(1; 3) process.

Note that in Figure 1, �RE case�with MA(3) errors, OLS and Durbin has very small

rejection frequencies even when � is far from the null value 0, even though they are consistent,

which can be attributed to their lack of e¢ ciency in �nite samples. As shown in Figure 2,

the power functions are similar in the case with ARMA(1; 3) errors, with the exception that

the power function of OLS decreases and �attens with an almost constant 10% rejection

frequency for all values, despite having a more liberal size.

5.3 Empirical Results

We present the estimation results of regression (13) using the three estimates considered

before: OLS, Durbin estimates based on the regression (5) and FGLS based on regression (7).

We use data for three currencies, US-UK, US-CAD and US-JP and we consider two sampling

periods; the �rst one is the complete sample and the second one spans from 11/01/1989 to

04/01/2021, the sampling period considered in Baillie et al. (2023). For the Durbin and

FGLS estimates we set kmax = 40 for the full sample and kmax = 30 for the sub-sample

period. Tables 3 and 4 present the estimation results using 1-month forward rates (h = 4)

and the 3-month forward rates (h = 12), respectively. In line with the empirical regularity in

the literature, the OLS estimates of � are not signi�cantly positive in all cases. In contrast,

the Durbin and FGLS estimates are positive in most cases and signi�cantly non negative in

some. In some cases, such as the US-JP exchange rate for 3-month forward rates, we observe
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a negative signi�cant OLS estimate and a positive signi�cant FGLS estimate. Recall that

the Durbin and FGLS estimates are consistent even when the error follows a general linear

process. We thus interpret the large di¤erences between the OLS and the FGLS estimates as

evidence of OLS being inconsistent. This �nding suggests that the forward discount anomaly

might be a consequence of OLS providing an inconsistent estimate of �.

6 Hansen and Hodrick Regression

We now turn to an estimation problem that shares some of the main features, though with

added complexities. Our aim is to e¢ ciently estimate Hansen and Hodrick (1980) regression,

yt+h = �+ �yt +
P

j 6=i �jw
j
t + ut+h; (18)

where yt+h = sit+h � f it;h and w
j
t = sjt � f jt�h;h for j 6= i. Note that if �j is signi�cantly

di¤erent from zero, then wjt�h is correlated with the regression variable yt and can be po-

tentially used as an instrument. If the lagged forecast error of country j 6= i, wjt�h, is

exogenous i.e., uncorrelated with the residuals us for all t and s then GMM and GMM-

GLS-IV are consistent. If wjt�h is only pre-determined, the OLS and GMM (and thereby

GMM-GLS-IV) estimates are not consistent in general, but GLS-IV will remain consistent.

For GMM and the �rst-step for GMM-GLS-IV we consider the set of instrumental variables

Z = fwjt ; wjt�h; w
j
t�h�l; j 6= i; l = 1; : : : ; hg. We use weekly data for 1-month forward rates

and 3-month forward rates. In the former case, h = 4 whereas in the second h = 12. We

consider the same data set as in Section 5.1. We �rst present simulations tailored to this

problem to shed light on the properties of the various estimators under a range of plausible

scenarios.

6.1 Simulation Results

We present two sets of Monte Carlo experiments. The DGP is inspired by the Hansen and

Hodrick (1980) regression. We consider 1-month forward rates so that h = 4,

yt+4 = �0 + �yt +
P

j 6=i �jw
j
t + ut+4; (19)

where yt+4 = sit+4 � f it;4, i = UK and wjt = sjt � f jt�4;4, j = fCAD; JPg. In the �rst
set of Monte Carlo experiments, the simulation design is based on observed weekly spot and

forward exchange rates for US-UK, US-CAD and US-JP. We use actual forecast errors wjt for

US-CAD and US-JP. By construction, the regressors wjt will be exogenous. In Section 6.1.2
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we present the second set of Monte Carlo experiments, where the regressors wjt are jointly

simulated with the error process ut, so they are serially correlated and non-exogenous.

We start with the case of exogenous instruments. We consider the DGP (19) under the

null hypothesis H0 : �0 = 0; � = 0. We set �1 = �2 = 1, so that w
j
t , j = fCAD; JPg can be

used as instruments. We use actual observed data for wjt , j = fCAD; JPg and we generate
yt+4 according with the DGP (19) imposing the null hypothesis. As discussed in Section

2, the �RE case� implies that ut+4 has an MA(3) representation. We simulate an MA(3)

process with parameters calibrated to replicate the observed autocorrelation function up to

lag 3 of the GLS-IV residuals from equation (18) using the real data set, following the same

procedure as described in Appendix A.3. The resulting parameters are,

�(L) =
�
1 + 0:82L+ 0:74L2 + 0:47L3

�
: (20)

We simulate an error process based on equation (20), ut+h = �(L)"t, where "t � i:i:dN(0; �2")

and �2" is estimated using the GLS-IV residuals from the initial regression (19). We use

the weekly spot exchange rates for US-UK, US-CAD, US-JP for the period between period

November 2010 to April 2020 (492 observations). We perform 5,000 replications. We consider

the following estimates: a) OLS applied to regression (19). We use HAC standard errors

with the Quadratic Spectral weighting scheme of Andrews (1991) with automatic bandwidth

selection using an ARMA(1; 1) approximation; b) GMM: the estimate e
 (10) from regression
(19) using the optimal weighting matrix as described in Section 4.1.1. We use the set of

instruments zt = fwjt ; wjt�h; w
j
t�h�l; j = fCAD; JPg; l = 1; : : : ; hg; c) GLS-IV: the estimate

from the procedure described in Section 4.2. For the Durbin regression (9), we set kmax =

30. The autoregressive coe¢ cients �j are estimated using the e¢ cient method described

in Remark 1. For the IV estimates, we use the set of quasi-di¤erenced instruments z�t =

fw�jt ; w�jt�h; j = fCAD; JPgg. The variance estimate is:

Avar
�

̂GLS�IV

�
= (X�0Z�(Z�0Z�)�1Z�0X�)�1�̂2GLS�IV ;

where X� is the T � 4 matrix of quasi-di¤erenced regressors (including a constant term)
and �̂2GLS�IV is the sample variance of the GLS-IV residuals ûGLS�IV = yt � �̂GLS�IV yt�1 �
�̂0GLS�IVwt; d) GMM-GLS-IV: the estimate from the procedure described in Section 4.1.2.

Step 1 uses the GMM estimate e
 described above. For the autoregression (11), we set

kmax = 30. For the IV estimate, we use the set of quasi-di¤erenced instruments z�t =

fw�jt ; w�jt�h; j = fCAD; JPgg. The variance estimate is computed as,

Avar
�

̂GMM�GLS�IV

�
= (X�0Z�(Z�0Z�)�1Z�0X�)�1�̂2GMM�GLS�IV :
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where X� is the T � 4 matrix of quasi-di¤erenced regressors (including a constant term) and
�̂2GMM�GLS�IV is the variance of the GMM-GLS-IV residuals,

ûGMM�GLS�IV = yt � �̂GMM�GLS�IV yt�1 � �̂0GMM�GLS�IVwt:

6.1.1 The Case with Exogenous Instruments

We start with the case with exogenous instruments and �rst assess the �nite sample size

of the estimators. The simulation results are presented in the �rst panel of Table 5, which

report the MSE, bias, variance, coverage rate and average length of con�dence intervals

for the parameter �. Under the �RE case�, the error term follows an MA(3) process so

that the OLS estimates are consistent. The GMM estimate has a variance that is half of

the OLS variance but with a coverage rate below the nominal level. The GMM-GLS-IV

procedure using the GMM as a �rst step estimate achieves an important reduction in MSE

while maintaining coverage rates near the nominal level. The �nite sample performance of

GLS-IV and GMM-GLS-IV are similar. Both have the smallest MSE and yield con�dence

intervals with coverage rates near the nominal level and the shortest length, unlike GMM.

We now consider simulations under the �general case�. We use the DGP (19). However,

we consider a departure of the e¢ cient market hypothesis in which the error term ut+4 is

serially correlated at lags i � 4. In particular, we assume that ut+4 follows an ARMA(1; 3)

process with MA coe¢ cients given by (20) and AR coe¢ cient � = 0:6. The forward rate is

generated in the same way as before. We consider the same family of estimators. The results

are presented in the second panel of Table 5. In this case, as the error process is correlated

beyond lag 3, OLS is not longer consistent. This translates in an important increase in MSE

and bias. The con�dence intervals are meaningless, in that they have huge size distortions,

with a coverage rate smaller than 20%. Since the instruments are exogenous, the GMM

estimate remains consistent in this case but is not e¢ cient. The MSE of GMM is 8 times

that of FGLS. The GMM-GLS-IV estimate provides marked improvements over GMM and

achieves important reduction in MSE along with con�dence intervals having coverage rates

near the nominal level. The �nite sample performance of the GLS-IV estimate is similar to

GMM-GLS-IV. Both estimates have the smallest MSE and variance with con�dence intervals

coverage rates near the nominal level and the shortest length.

We next consider the power of the various tests. We consider the DGP (19) for a

grid values of � around the null hypothesis H0 : � = 0. In particular, we consider

� 2 f�0:3;�0:2;�0:1; 0; 0:1; 0:2; 0:3g. We set � = (0; 1; 1), so that wjt , j = fCAD; JPg
can be used as instruments. We use the actual observed data for wjt , j = fCAD; JPg and
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we generate yt+4 according with the DGP (19). The error process ut+4 is simulated as be-

fore: under the �RE case�, ut+4 follows an MA(3) process, and under the �general case�

ut+4 follows an ARMA(1; 3) process with the same parameter con�gurations used earlier.

In Figures 3 and 4, we plot the empirical rejection frequencies of nominal � = 0:05 t-test

of H0 : � = 0, for the same set of estimates considered in the previous section. Figure 3

pertains to the �RE case�, while Figure 4 present results for the �general case�. Note that

for the �RE case�withMA(3) errors case, OLS has good power but is slightly outperformed

by the FGLS-based estimates. Remarkably, GMM presents power distortions as it rejects

the null hypothesis over 20%. In the �general case�with ARMA(1; 3) errors, Figure 4 shows

that the power of GMM-GLS-IV and GLS-IV remains the same while that of OLS exhibits

huge power distortions skewed at negative values of �. The GMM estimate also has large

size distortions and skewed power functions.

In summary, for the case with exogenous instruments, GMM-GLS-IV and GLS-IV clearly

have better properties. The performance of OLS is nearly as good in the �RE case� but

completely breaks down in the �general case�. Hence, GMM-GLS-IV and GLS-IV are clearly

the more robust method of estimation and testing.

6.1.2 Simulations with Non-exogenous Instruments

We now consider the case with non-exogenous instruments and �rst assess the �nite sample

size of the estimators followed by some power comparisons. The DGP is based on regression

of Hansen and Hodrick (1980), considering 1-month forward rates (h = 4),

yt+4 = �0 + �yt +
P

j 6=i �jw
j
t + ut+4; (21)

where yt+4 = sit+4 � f it;4 and w
j
t = sjt � f jt�4;4, j 6= i. In this case, the set of instruments is

simulated so that they are serially correlated and non exogenous. Accordingly, we set

wjt = �ww
j
t�1 + vjt + 
"t�1;

for j = 1; 2, with vjt � i:i:d:N(0; 1) independent of "t � i:i:d:N(0; 1). Note that "t is shock

a¤ecting ut and thus, the instrument w
j
t is not exogenous whenever 
 6= 0. We set 
 = 0:3

and �w = 0:5. The process yt+4 is generated according to the DGP (21) under the null

hypothesis �0 = 0; � = 0. We set �1 = �2 = 1 so that wjt (j = 1; 2) can be used as

instruments. Under the �RE case�, the error ut+4 follows a MA(3) process. Under the

�general case�, ut+4 follows the same ARMA(1; 3) process as in Section 6.1. We consider
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the same set of estimates: OLS+HAC, GMM, GLS-IV and GMM-GLS-IV. The sample size

is T = 300 and 5,000 replications are used.

The simulation results for the �RE case� are presented in the �rst panel of Table 6.

In this case, the OLS estimates are consistent requiring only pre-determined regressors. It

is, however, the less e¢ cient estimate and the coverage rates of the associated con�dence

intervals are below the nominal level. The bad performance of GMM is again corrected

when using the GMM-GLS-IV estimate; it achieves the smallest MSE and the coverage rate

is better than that of the GLS-IV estimate. The GMM-GLS-IV and GLS-IV estimates have

con�dence intervals with coverage rates slightly below to the nominal level (92% and 87%,

respectively). This results are in line with the Monte Carlo simulation results for the non

exogenous regressors and/or instruments cases in Perron and González-Coya (2024) and

Olivari and Perron (2024).

The simulation results for the �general case�with ARMA(1; 3) errors are presented in

the second panel of Table 6. Since the serial correlation in the errors extends beyond lag 3,

OLS and GMM are not longer consistent. This is re�ected in large MSE, bias and variance.

The size distortions are exacerbated with coverage rates of the con�dence intervals below

65% (26% for OLS). The �nite sample performance of the GLS-IV estimate is in line with the

fact that it is consistent. Surprisingly, despite the fact that the �rst step GMM estimates

of the GMM-GLS-IV procedure are not consistent, the resulting GMM-GLS-IV estimate

has smaller MSE than the GLS-IV estimate. These results suggest that the FGLS-based

procedures are very robust to the �rst-stage estimates of the autocorrelation coe¢ cients.

The MSE of GLS-IV is almost 12 times smaller than the MSE of OLS and it achieves with

a variance that is on average 5 times smaller than the variance of the other estimates. The

coverage rates of the con�dence intervals of the GMM-GLS-IV and GLS-IV estimates are

near the nominal level with the smallest length.

We now consider the power analysis. We consider the DGP (21) for a grid values of �

around the null hypothesisH0 : � = 0. In particular, we consider � 2 f�0:3;�0:2;�0:1; 0; 0:1,
0:2; 0:3g. We set � = (0; 1; 1), so that wjt , j = 1; 2 can be used as instruments. We generate
yt+4 according with the DGP (21). Under the �RE case�, ut+4 follows an MA(3) process,

and under the �general case�with ut+4 an ARMA(1; 3) process. In Figures 5 and 6, we plot

the empirical rejection frequencies of nominal � = 0:05 t-test of H0 : � = 0, for the same set

of estimates considered in the previous section. Figure 5 pertains to the �RE case�, while

Figure 6 pertains to the �general case with ARMA(1; 3) errors.

From the results in Figure 5 forMA(3) errors, all the tests have similar power functions,
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though somewhat lower for OLS and GMM when � is positive. The FGLS-based procedures

exhibit the same power function, with a rejection frequency of the null hypothesis that is

slightly higher than the 5% nominal level. For GMM the null rejection frequency is higher

than 15%. The results in Figure 6 pertaining to the ARMA(1; 3) errors case show that the

power functions of the FGLS-based procedures exhibit the same behavior as in the MA(3)

errors case. On the other hand, OLS and GMM are now subject to important size distortions.

The power function of those estimates is biased towards negative values of �. Note that OLS

rejects the null hypothesis H0 : � = 0 almost 10% of the times when � = �0:2, while it
rejects H0 with a frequency higher than 75% when � = 0. Hence, the only reliable test are

those obtained using the FGLS-based procedures.

6.2 Empirical Results

We now report estimates of the model (18) using weekly spot exchange rates for the U.K.

pound (US-UK), Canadian dollar (US-CAD) and Japanese yen (US-JP). We use the complete

US-JP sample that spans from June 1995 to January 2023, with 1,442 observations. We

consider the OLS+HAC, GMM, GMM-GLS-IV and GLS-IV estimates. For the FGLS-based

methods we set kmax = 40. The estimation results for 1-month forward rates (h = 4) are

presented in Table 7, while those for 3-month forward rates (h = 12) are in Table 8.

In Section 6.1.2 we provided evidence that the GMM-GLS-IV and GLS-IV estimates are

consistent requiring only pre-determined instruments wt. We shall thus focus on the FGLS-

based estimates. First note that both estimates are similar across all currencies and forecast

horizons. For 1-month and 3-month forward rates, the FGLS-based estimates cannot reject

the null hypothesis H0 : �0 = � = �1 = �2 = 0 for any of the currencies. In contrast, OLS

rejects H0 for US-JP, for 1-month and 3-month forward rates. There is no consensus in the

literature about the rejection of this null hypothesis. For 3-month forward rates (h = 12),

Hansen and Hodrick (1980) using OLS rejects the null hypothesis for US-CAD and two other

currencies (Deutsche mark and Swiss franc) for data between 1975 and 1979.

Note the relatively high standard errors of the GMM estimates for all the currencies. This

suggests that the instruments wjt may be non exogenous. On the other hand, despite the fact

that the �rst stage GMM estimate in the GMM-GLS-IV procedure is very noisy, the resulting

GMM-GLS-IV estimate is much more e¢ cient, and close to the GLS-IV estimate. It can

be argued that while the GLS-IV estimate is valid with only pre-determined instruments, it

might still be subject to a �weak instrument�problem; see, e.g., Andrews et al., 2019. We

provide statistical evidence to argue that this is not the case. In particular, we consider the
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test of Staiger and Stock (1997) for weak instruments and the Wu-Hausman exogeneity test

(Hausman, 1978 and Wu, 1973). The detailed implementation for the GLS-IV estimate are

outlined in Appendix A.4. Note that standard weak instruments tests are valid for GLS-IV as

the 2SLS regression (12) has uncorrelated errors. Table 9 reports the weak instruments test,

the FSS test statistic, see Section A.4.1, and the exogeneity test FWH , see (A.5), together

with the corresponding p-values. The null hypothesis for weak instruments is rejected for

all currencies and h = 4; 12 at the 1% level of signi�cance. The Wu-Hausman rejects the

null hypothesis of exogeneity for US-UK and US-JP at least at the 5% level of signi�cance

for h = 4; 12 in all cases. Overall, these results indicate that we can be con�dent about the

estimates and tests obtained using the GLS-IV procedure when applied to the Hansen and

Hodrick (1980) regression (18).

7 Uncovering the OLS Bias

As shown in Section 2.1, if the error term in regression (1) is serially correlated at lags

q > k � 1, the OLS estimator is not longer consistent. In this section we brie�y present the
results from applying the Cumby and Huizinga (1992) test (CH-test) for autocorrelation at

lags q > h� 1 to both the Fama (1984) regression (13) and the Hansen and Hodrick (1980)
regression (18). This test is well suited for our purpose since the null hypothesis is that the

error process is a moving average of known order q = h�1 > 0 against the general alternative
that the autocorrelations are nonzero at lags greater than q. The CH-Test is a Wald test of

the null hypothesis that the regression error is uncorrelated with itself at lags q+ 1 through

q+ s. A general formulation for two-stage least squares and two-step two-stage least squares

is presented in Cumby and Huizinga (1992). We require the errors ut to be unconditionally

homoskedastic. We refer to the paper by Cumby and Huizinga (1992) for the details about

the implementation of the test, which require the estimate of several quantities. We simply

note that for the Fama regression (13) we use FGLS residuals,

ût+h;FLGS = yt+h � �̂FGLS � �̂FGLSxt;

where yt+h = st+h � st and xt = ft;h � st, whereas for the Hansen and Hodrick (1980)

regression (18) we use GLS-IV residuals,

ût+h;GLS�IV = yt+h � �̂0GLS�IV � �̂GLS�IV yt � �̂1GLS�IVw
1
t � �̂2GLS�IVw

2
t ;

where yt+h = sit+h�f it and w
j
t = sjt�f jt�h for j 6= i. In Table 10, we provide the results of the

CH-Test statistics, labelled lq;s, of the null hypothesis that the regression error in the Fama
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regression (13) with 3-month forward rates is uncorrelated with itself at lags q + 1 to q + s

with q = h� 1 = 11 and s = f12; 15; 20g. For both sample periods, we obtain a rejection of
the null hypothesis for every s and conclude that the error term in regression (13) is serially

correlated at lags q > 11. Table 11 provide similar results for the Hansen and Hodrick (1980)

regression (18). The speci�cations are similar except that we set s = f5; 10; 50g. Again, for
both sample periods, we have statistical evidence to reject the null hypothesis for every s.

Hence, again here the error term in regression (18) is also serially correlated at lags q > 11.

8 Concluding Remarks

We re-examined the statistical evidence about the hypothesis of Uncovered Interest Parity,

which is a joint hypothesis of e¢ ciency in the forward foreign exchange markets and rational

expectations. Testing rationality hypothesis and exchange market e¢ ciency is embedded

in the general problem of estimating the parameters of a h-step-ahead linear forecasting

equation. Under the null hypothesis, the forecast errors are serially correlated up to lags

h� 1 and OLS is consistent. However, if the errors are serially correlated beyond lags h� 1,
OLS is not longer consistent. This observation motivates using FGLS-based methods that

are robust to the structure of the error process. We apply the FGLS procedure developed

in Perron and González-Coya (2024) and we extend it to a setting with lagged dependent

variables included as regressors. The resulting instrumental variables-based procedure, GLS-

IV, is consistent requiring only pre-determined IVs. Using these FGLS methods, we study

the main two UIP speci�cations in the literature: the Fama (1984) and Hansen and Hodrick

(1980) regressions. We provide novel insights about the forward premium anomaly. Applying

the consistent FGLS method we show that the estimates of � for three currencies are always

non negative at the 1% signi�cance level. A result that is contrary to the general �nding

that the OLS estimates are negative. Hence, the so-called �forward discount anomaly�is not

as severe as previously thought. We also show statistically signi�cant discrepancies between

the OLS and GLS-IV estimates in the Hansen and Hodrick (1980) regression. We rationalize

these discrepancies by showing that the regression residuals are in fact serially correlated

beyond lags k, and thus OLS is not consistent, while the FGLS methods remain consistent.

This point to the usefulness of adopting our more robust FGLS procedure. Not only is

consistent and e¢ cient under a wider range of contexts but, as we have shown, can deliver

estimates that are di¤erent and point to a di¤erent assessment of the empirical facts.
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Table 1: Simulation results under EMH, 1-month forward rate. RE implies MA(3) errors; General implies
ARMA(1,3) errors.

MSE Bias Variance Coverage Length

11
/8

3-
01

/2
3 R
E

OLS 0.8152 0.7304 0.7598 0.94 3.3952

FGLS 0.1801 0.3388 0.1919 0.96 1.7167

Durbin 0.4950 0.5553 0.5057 0.95 2.7888
G

en
er

al OLS 4.9239 1.7974 4.4738 0.93 8.2112

FGLS 0.1445 0.3068 0.1525 0.96 1.5311

Durbin 0.4927 0.0035 0.4955 0.95 2.7607

01
/8

9-
04

/2
1 R
E

OLS 1.0063 0.7929 1.0019 0.94 3.8879

FGLS 0.3108 0.4422 0.3347 0.95 2.2667

Durbin 0.9838 0.7883 1.0471 0.96 4.0135

G
en

er
al OLS 6.2271 1.9730 5.8364 0.92 9.3351

FGLS 0.2736 0.4212 0.2926 0.96 2.1200

Durbin 0.9924 0.7929 1.0502 0.95 4.0196

We use US-UK observed data xt = ft,k − st, T1 = 2, 050, T2 = 1, 600.

For OLS we use HAC standard errors as described in the text.

Table 2: Simulation results under EMH, 3-month forward rate. RE implies MA(11) errors; General
implies ARMA(1,11) errors.

MSE Bias Variance Coverage Length

11
/8

3-
01

/2
3 R
E

OLS 1.6898 1.0541 1.5036 0.92 4.7404

FGLS 0.7098 0.6761 0.7261 0.95 3.3387

Durbin 1.3941 0.9358 1.4148 0.95 4.6647

G
en

er
al OLS 18.5744 3.4972 15.3260 0.91 15.0322

FGLS 0.6019 0.6283 0.6332 0.96 3.1202

Durbin 1.3964 0.9370 1.4193 0.95 4.6720

01
/8

9-
04

/2
1 R
E

OLS 1.8895 1.0869 1.6558 0.91 4.9454

FGLS 0.9995 0.7817 0.9834 0.94 3.8838

Durbin 1.9843 1.1502 2.0973 0.96 5.6801

G
en

er
al OLS 20.6180 3.5933 16.2122 0.88 15.3295

FGLS 0.8825 0.7451 0.9027 0.95 3.7256

Durbin 1.9782 1.1467 2.0995 0.96 5.6832

We use US-UK observed data xt = ft,k − st, T1 = 2, 050, T2 = 1, 600.

For OLS we use HAC standard errors as described in the text.
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Table 3: Fama (1984) model estimation results, 1-month forward rate (SE in parenthesis).

α β

OLS Durbin FGLS OLS Durbin FGLS

U
S-

U
K 11/1983-01/2023

-0.00167 -0.00031 -0.00006 -1.08291 -0.09390 0.08457

(0.001) (4.1E-04) (3.3E-04) (0.316) (0.380) (0.191)

10/1989-04/2021
-0.00241 -0.00067 -0.00027 -1.32248 0.44659 -0.28232

(0.002) (0.001) (0.001) (0.359) (0.781) (0.464)

U
S-

C
A 12/1984-01/2023

-0.00015 -0.00000 0.00004 -0.24314 0.14125 0.20060

(0.001) (2.5E-04) (2.1E-04) (0.333) (0.376) (0.212)

10/1989-04/2021
-0.00005 0.00000 0.00005 0.04296 0.49843 0.19765

(0.002) (0.001) (0.001) (0.384) (0.652) (0.375)

U
S-

JP

09/1993-01/2023
-0.00165 -0.00018 0.00005 -0.08744 0.26966 0.17845

(0.002) (0.001) (3.3E-04) (0.110) (0.145) (0.081)

09/1993-04/2021
-0.00101 -0.00027 0.00011 -0.13273 0.14601 0.31225

(0.003) (0.001) (0.001) (0.110) (0.282) (0.152)

Table 4: Fama (1984) model estimation results, 3-month forward rate (SE in parenthesis).

α β

OLS Durbin FGLS OLS Durbin FGLS

U
S-

U
K 11/1983-01/2023

-0.00439 -0.00035 0.00001 -0.98614 0.64187 0.29696

(0.004) (4.1E-04) (3.3E-04) (0.218) (0.382) (0.278)

10/1989-04/2021
-0.00011 -0.00011 0.00018 0.34508 1.25038 1.15847

(0.004) (0.001) (0.001) (0.238) (0.474) (0.332)

U
S-

C
A 12/1984-01/2023

-0.00036 0.00004 0.00006 -0.21093 0.51211 0.31376

(0.003) (2.5E-04) (2.1E-04) (0.218) (0.343) (0.261)

10/1989-04/2021
-0.00040 0.00002 -0.00002 0.19149 0.55918 0.31524

(0.003) (0.001) (0.001) (0.252) (0.399) (0.301)

U
S-

JP

09/1993-01/2023
-0.00355 -0.00017 -0.00015 -0.10423 0.45446 0.30124

(0.005) (0.001) (3.3E-04) (0.138) (0.152) (0.099)

09/1993-04/2021
-0.00158 -0.00003 -0.00002 -0.26883 0.49440 0.32649

(0.005) (0.001) (0.001) (0.139) (0.157) (0.101)
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Table 5: Simulation results with exogenous instruments. RE implies MA(3) errors; General implies
ARMA(1,3) errors.

MSE Bias Variance Coverage Length

R
E

OLS 0.19 3.43 0.17 0.93 0.16

GMM 0.21 3.66 0.08 0.77 0.11

GMM-GLS-IV 0.14 2.96 0.13 0.94 0.14

GLS-IV 0.15 2.99 0.12 0.93 0.13

G
en

er
al

OLS 3.66 18.05 0.37 0.19 0.24

GMM 0.79 6.98 0.31 0.75 0.22

GMM-GLS-IV 0.09 2.39 0.11 0.96 0.12

GLS-IV 0.10 2.42 0.11 0.95 0.12

Weekly data for US-CAD, US-JP for the period November 2010 to April

2020 (T = 492). For OLS we use HAC standard errors as described in the text.

Table 6: Simulation results with non exogenous instruments. RE implies MA(3) errors; General implies
ARMA(1,3) errors.

MSE Bias Variance Coverage Length

R
E

OLS 0.32 4.63 0.25 0.89 0.19

GMM 0.37 4.84 0.19 0.82 0.17

GMM-GLS-IV 0.17 3.28 0.13 0.92 0.14

GLS-IV 0.23 3.74 0.13 0.87 0.14

G
en

er
al

OLS 3.96 18.46 0.47 0.26 0.26

GMM 1.67 10.63 0.56 0.65 0.26

GMM-GLS-IV 0.19 3.47 0.15 0.91 0.15

GLS-IV 0.26 3.71 0.15 0.89 0.14

Weekly data for US-CAD, US-JP for the period November 2010 to April

2020 (T = 492). For OLS we use HAC standard errors as described in the text.
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Table 7: Hansen and Hodrick (1980) 1-month forward model estimation results. (SE in parenthesis).

α0 β

OLS GMM GMM-GLS-IV GLS-IV OLS GMM GMM-GLS-IV GLS-IV

US-UK
-0.000 0.001 0.000 0.000 -0.087 0.044 1.436 0.392

(0.001) (0.002) (0.001) (0.001) (0.040) (3.875) (1.439) (0.278)

US-CAD
-0.000 0.000 -0.000 -0.000 -0.035 0.247 0.040 1.223

(0.001) (0.001) (0.001) (0.001) (0.051) (1.012) (0.631) (0.959)

US-JP
0.003 0.004 0.001 0.007 0.120 0.024 -0.039 -0.534

(0.002) (0.022) (0.001) (0.005) (0.054) (6.181) (0.598) (1.060)

α1 α2

US-UK
0.143 0.029 -0.442 -0.081 0.016 0.025 -0.112 -0.037

(0.059) (1.650) (0.435) (0.135) (0.045) (0.599) (0.133) (0.039)

US-CAD
0.012 -0.096 0.053 -0.455 0.031 0.050 0.023 0.034

(0.046) (0.280) (0.162) (0.358) (0.037) (0.074) (0.024) (0.031)

US-JP
-0.056 -0.042 -0.045 0.050 0.015 0.013 -0.027 0.028

(0.063) (1.262) (0.092) (0.187) (0.058) (0.421) (0.044) (0.045)

For US-UK, α1 is the coefficient for US-CAD and α2 is the coefficient for US-JP;

for US-CAD, α1 is the coefficient for US-UK and α2 is the coefficient for US-JP;

for US-JP, α1 is the coefficient for US-UK and α2 is the coefficient for US-CAD.

Table 8: Hansen and Hodrick (1980) 3-month forward model estimation results. (SE in parenthesis).

α0 β

OLS GMM GMM-GLS-IV GLS-IV OLS GMM GMM-GLS-IV GLS-IV

US-UK
-0.001 0.000 -0.000 -0.001 0.091 0.937 0.536 0.376

(0.004) (0.004) (0.000) (0.001) (0.077) (2.486) (0.424) (0.212)

US-CAD
0.000 0.000 -0.000 -0.000 0.005 0.103 1.063 0.594

(0.003) (0.004) (0.001) (0.001) (0.071) (1.379) (0.604) (0.206)

US-JP
-0.001 -0.002 0.000 0.002 0.104 0.112 1.090 2.349

(0.004) (0.006) (0.001) (0.004) (0.062) (0.703) (0.919) (1.372)

α1 α2

US-UK
0.055 -0.378 -0.102 -0.104 -0.026 -0.146 -0.067 -0.054

(0.090) (1.028) (0.134) (0.123) (0.059) (0.408) (0.043) (0.027)

US-CAD
0.026 -0.044 -0.290 -0.239 0.097 0.088 0.017 0.085

(0.070) (0.420) (0.158) (0.097) (0.046) (0.130) (0.037) (0.023)

US-JP
-0.051 -0.038 -0.193 -0.342 0.064 0.111 -0.074 -0.062

(0.106) (0.254) (0.124) (0.199) (0.108) (0.219) (0.059) (0.128)

For US-UK, α1 is the coefficient for US-CAD and α2 is the coefficient for US-JP;

for US-CAD, α1 is the coefficient for US-UK and α2 is the coefficient for US-JP;

for US-JP, α1 is the coefficient for US-UK and α2 is the coefficient for US-CAD.
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Table 9: Weak instruments (first row) and Wu-Hausman (second row) tests for GLS-IV.

d f1 d f2 Statistic p-value

1-
m

on
th

US-UK
72 1309 13.02 2E-16

1 1379 7.91 0.00499

US-CAD
78 1299 7.785 2E-16

1 1375 4.022 0.044

US-JP
48 1349 17.90 2E-16

1 1395 30.18 4.67E-08
3-

m
on

th

US-UK
75 1288 22.75 2E-16

1 1361 56.27 1.13E-13

US-CAD
75 1288 24.689 2E-16

1 1361 10.67 0.001

US-JP
39 1348 18.745 2E-16

1 1385 9.066 0.00265

Table 10: Cumby and Huizinga (1992) test of the null hypothesis that the Fama regression error is
uncorrelated with itself at lags q + 1 to q + s, q = 11.

US-UK US-CA US-JP

10/1984-01/2023

12 196.499 321.282 223.436

15 70.894 48.850 61.324

20 57.016 47.526 44.952

10/1989-04/2021

12 152.768 280.233 642.996

15 34.919 48.315 29.323

20 29.680 75.373 54.568

Table 11: Cumby and Huizinga (1992) test of the null hypothesis that the Hansen-Hodrick regression
error is uncorrelated with itself at lags q + 1 to q + s, q = 11.

US-UK US-CA US-JP

10/1984-01/2023

5 1087.218 203.5084 646.771

10 1134.685 219.5272 624.1312

50 525.2874 330.3852 1115.21

10/1989-04/2021

5 48811.75 43522.55 61825.54

10 114112.9 424805.4 65447.43

50 93889.12 377855.8 37567.25
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Figure 1: Empirical Rejection Frequencies of Nominal 5% t-Test of H0 : β = 1. Fama regression, RE case
with MA(3) errors.

Figure 2: Empirical Rejection Frequencies of Nominal 5% t-Test of H0 : β = 1. Fama regression, General
case with ARMA(1,3) errors.

1



Figure 3: Empirical Rejection Frequencies of Nominal 5% t-Test of H0 : β = 0. Hansen and Hodrick
regression, RE case with MA(3) errors.
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Figure 4: Empirical Rejection Frequencies of Nominal 5% t-Test of H0 : β = 0. Hansen and Hodrick
regression, General case with ARMA(1,3) errors.
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Figure 5: Empirical Rejection Frequencies of Nominal 5% t-Test of H0 : β = 0. Non-exogenous IVs, RE
case with MA(3) errors.
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Figure 6: Empirical Rejection Frequencies of Nominal 5% t-Test of H0 : β = 0. Non-exogenous IVs,
General case with ARMA(1,3) errors.
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Appendix

A.1 Proof of Remark 2

Assume that yt has a permanent and a transitory component, yt = �yt + �t, where the
permanent component is de�ned by �yt = �yt�1 + �t =

Pt
i=1 "i, where "i � i:i:d(0; �2"), �i �

i:i:d(0; �2�) and "i; �i are assumed to be independent. Then we can write

ut =
�Pt

i=1 "i + �t
�
� �

P1
i=1(1� �)i�1

�Pt�i
j=1 "j + �t�i

�
:

Hence,

ut � (1� �)ut�1 =
�Pt

i=1 "i + �t
�
� (1� �)

�Pt�1
i=1 "i + �t�1

�
� �

�Pt�1
i=1 "i + �t�1

�
= "t + �t � �t�1:

Thus, we can write the forecast error as ut = (1 � �)ut�1 + vt, where vt = "t + �t � �t�1.
Note that "t and �t can be allowed to be correlated, so that vt is invertible in general.

A.2 E¢ cient Estimate of Autoregressive Coe¢ cients for GLS-IV

Suppose that n = 2. The e¢ cient linear combination e��j = �e�1j+(1��)e�2j is obtained when
� minimizes Var(e��j). Hence, the the minimization problem is min�1;�2 Var

�
�1e�1j + �2e�2j�,

subject to �1 + �2 = 1:The �rst-order conditions of this problem are:

2�1Var
�e�1j�+ 2�2Cov �e�1j;e�2j� = 
2�2Var

�e�2j�+ 2�2Cov �e�1j;e�2j� = 
�1 + �2 = 1;

where 
 is the Lagrangian multiplier. The solution is

�1 =
Var

�e�2j�� Cov �e�1j;e�2j�
Var

�e�1j�+Var �e�2j�� 2Cov �e�1j;e�2j� :
A.3 Simulation Design

We simulate an MA(h � 1) process with parameters calibrated to replicate the observed
autocorrelation function up to lag h � 1 of the FGLS residuals of regression (13) using
US-UK data for the Fama regression (Section 5) and using GLS-IV residuals of regression
(18) for the Hansen and Hodrick (1980) regression (Section 6). We obtain the parameters
�1; : : : ; �k�1 by solving the non-linear system of h � 1 equations given by the MA(h � 1)
autocorrelation functions (ACF) for j = 1; : : : ; h � 1. Let vt be an MA(q) process with
q = h� 1, then the variance of vt is


0 =
�
1 + �21 + �21 + � � �+ �2q

�
�2":

The autocovariance function of vt is


j =

(
(�j + �j+1�1 + �j+2�2 + � � �+ �q�q�j)�

2
"; for j = 1; : : : ; q;

0; for j > q:
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Thus, the autocorrelation function of vt is

 j =

(
�j+�j+1�1+�j+2�2+���+�q�q�j

1+�21+�
2
1+���+�2q

; for j = 1; : : : ; q;

0; for j > q:

Using the observed �rst q autocorrelations of the residuals of the regression, ACFj (j =
1; : : : ; q) we de�ne a system of q non-linear equations with q unknown variables �̂1; : : : ; �̂q:

�̂1 + �̂2�̂1 + �̂3�̂2 + � � �+ �̂q�̂q�1

1 + �̂
2

1 + �̂
2

1 + � � �+ �̂
2

q

= ACF1

�̂2 + �̂3�̂1 + �̂3�̂2 + � � �+ �̂q�̂q�2

1 + �̂
2

1 + �̂
2

1 + � � �+ �̂
2

q

= ACF2

...
�̂q

1 + �̂
2

1 + �̂
2

1 + � � �+ �̂
2

q

= ACFq

A.4 Diagnostic Tests for GLS-IV

Rewrite the model using the quasi-di¤erenced variables y�t , y
�
t�k and w

�
t as

y = Y � +W
 + " (A.1)

Y = Z�+W� + V (A.2)

where (A.1) is the structural equation of interest, y = (y�k+1; : : : ; y
�
T ) is a (T � k)� 1 vector

and Y = [y��k] is a (T�k)�1 vector with the lagged dependent variable (the only endogenous
variable in the model). (A.2) is the reduced form equation for Y , W is the (T � k) � K1

matrix of exogenous regressors with row t, Wt = [1; w
1�
t ; w

2�
t ] and K1 = 3 (i.e. W includes a

constant term). Z is the (T � k) �K2 matrix of quasi-di¤erenced instruments with row t,
Zt = fwj�t ; wj�t�k; j 6= ig and K2 = 4. " and V are, respectively, a (T � k) � 1 vector and a
(T�k)�2 matrix of error terms. Note that the quasi-di¤erenced regression (A.1) has serially
uncorrelated errors, with covariance matrix �. Assume that E["2t ] = �""; E[Vt"t] = �V ", and
E[VtV

0
t ] = �V V . Let �Z = [X;Z], it is assumed throughout that E[ �Zt (utV

0
t )] = 0.

A.4.1 Staiger and Stock (1997) Weak Instruments Test

We are interested in testing � = 0 in the regression (A.2). � shall be modeled as local to
zero, so that the F statistic is Op(1). Staiger and Stock (1997) make the assumption that
� = �T = c=

p
T � k where c is a �xed K2 � 1 vector. Before proceeding we provide some

additional de�nitions and notation. Let Q = E[ �Zt �Z
0
t], partitioned so that E[WtW

0
t ] = QWW ,

E[WtZ
0
t] = QWZ , and E[ZtZ 0t] = QZZ . Also let � = �

�1=20
V V �V "�

�1=2
"" . Let PR = R (R0R)�1R0

and MR = I � PR where R is a general a � b matrix with a � b, and let �?�denote the
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residuals from the projection on W , so Z? =MWZ, Y ? =MWY , etc. Let �W = [Y;W ] and
�Y = [y; Y ] and let Ik denote the k-dimensional identity matrix. Staiger and Stock (1997)
assume that the following limits hold jointly: 1) ("0"=T; V 0"=T; V 0V=T )

p! (�"";�V ";�V V );
2) T�1 �W 0 �W

p! Q; 3)�
T�1=2W 0"; T�1=2Z 0"; T�1=2W 0V; T�1=2Z 0V

�
) (	W";	Z";	WV ;	ZV ) ;

where 	 � 	0W";	
0
Z"; vec (	WV )

0, with 	WV � N(0;�
Q). De�ne � = 
1=2C��1=2V V , where

 = QZZ �QZXQ

�1
XXQXZ ,

zu = 

�1=20 �	Zu �QZXQ

�1
XX	Xu

�
��1=2uu

and zV = 
�1=2 (	ZV� QZXQ
�1
XX	XV

�
�
�1=2
V V . The random variable

�
z0u vec (zV )

0�0 is distrib-
uted N(0; ��
 IK2), where �� is the (n+1)� (n+1) matrix with ��11 = 1; ��22 = In; ��12 = �0,
and ��21 = �, where �� is partitioned conformably with �. Finally, let

�1 = (�+ zV )
0(�+ zV ) (A.3)

and
�1 = (�+ zV )

0zu (A.4)

The 2SLS estimate of (�0; 
0)0 is�
�̂(k)0
̂(k)0

�0
=
�
�X 0 (I �M �Z) �X

��1 � �X 0 (I �M �Z) y
�
:

By standard projection arguments, the 2SLS estimate of � is

�̂(k) =
�
Y ?0 (I �MZ?)Y

?��1 �Y ?0 (I �Mz?) y
?� :

The Wald statistic testing � = 0 is W = tr (GT ) =K2, where GT = �̂
�1=20
V V Y ?0PZ?Y

?�̂
�1=2
V V ,

with �̂V V = Y 0M �ZY= (T �K1 �K2). Staiger and Stock (1997) show that the limit distri-
bution of GT is �1 de�ned in (A.3). As we just have one endogenous variable, yt�k, the
F statistic FSS = GT=K2 converges to a non central �2K2

=k2 with noncentrality parameter
�0�. In the general case, with more than one endogenous variable, �0� is the matrix of
noncentrality parameters of the limiting noncentral Wishart random variable �1.

A.4.2 Wu-Hausman Test of Exogeneity

The Wu-Hausman (WH) test (see Hausman, 1978 and Wu, 1973) examines the null hypoth-
esis that Y is exogenous (i.e., p = 0) by checking for a statistically signi�cant di¤erence
between the OLS and 2SLS estimates of �. The test statistic is

FWH =
�
�̂2SLS � �̂OLS

�0
V �1

�
�̂2SLS � �̂OLS

�
with

V =

��
Y ?0PZ?Y

?��1 � �Y ?0Y ?
��1�

�̂uu;2SLS
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Its limit distribution is

FWH )
[��

0(0)� �]0 �1 [�
�
0(0)� �]

S1 (��
0(0))

where ��
0(0) = ��11 �2 and S1(b) = 1 � 2�0b + b0b. Under the null hypothesis � = 0, FWH

simpli�es to

FWH )
� 0��

1 + � 0��11 �
� (A.5)

where � = �
�1=20
1 (�+ zV )

0 � � N (0; In) with � = (zu � zV �)=
p
1� �0� and � and �1 are

independent. Note that since � 0�=
�
1 + � 0��11 �

�
� � 0� � �2n, applying �

2
n critical values to

FWH results in asymptotically conservative tests. However, as noted by Staiger and Stock
(1997), a size adjustment of FWH is infeasible because the distribution depends on �

0�=K2.

A.4.3 Testing for Serial Correlation at lags q > k � 1

We describe in some details the test of Cumby and Huizinga (1992) for autocorrelation
structure of the OLS residuals (CH-Test). This test is perfectly suited for our purpose as it
allows to have under the null hypothesis a regression error process with a moving average of
known order q = k � 1 > 0 against the general alternative that the autocorrelations of the
regression error are nonzero at lags greater than q. The CH-Test is a Wald test of the null
hypothesis that the regression error is uncorrelated with itself at lags q + 1 through q + s.
Consider the general formulation of the CH-Test for an OLS regression. Here we present
the Cumby and Huizinga (1992) test for autocorrelation structure of the OLS residuals
of equation (1) with no instrumental variables. A general formulation for two-stage least
squares and two-step two-stage least squares is presented in Cumby and Huizinga (1992).
The model is

yt = Xt� + ut (A.6)

where Xt is a vector of the n scalar predetermined regressors. The regression errors, ut are
assumed to be serially correlated up to a known lag q � 0 and their autocorrelations at all
lags greater than q are required to be zero under the null hypothesis. We require the errors
ut to be unconditionally homoskedastic. The CH-Test statistic is

lq;s = T r̂0
h
V̂r + B̂V̂dB̂

0 + ĈD̂0B̂0 + B̂D̂Ĉ 0
i�1

r̂ � �2(s): (A.7)

where V̂r; B̂; V̂d; Ĉ; D̂ are consistent estimates of Vr; B; Vd; C;D. Here, r is a s � 1 vector
r = [rq+1; rq+2; : : : ; rq+s]

0,

rj =

PT
t=j+1 utut�jPT

t=1 u
2
t

:

Vd is the asymptotic covariance matrix of the estimator �̂,

Vd = (X
0X)�1X 0
X(X 0X)�1

with 
 = limT!1 T
�1E[uu0]. Let D be the k� k matrix D = p limT!1 T (X

0X)�1. B is the
s� k matrix with i; jth element

B(i; j) = � [E (ut�q�iXj;t) + E (utXj;t�q�i)] =E
�
u2t
�
:
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Let �i;t = utut�q�i for i = 1; : : : ; s; !j;t = utXj;t for j = 1; : : : ; k, the ijth element of the s� s
matrix Vr be given by Vr(i; j) = ��4u

Pq
n=�q E

�
�i;t�j;t�n

�
, and the ij th element of the s� h

matrix C be given by C(i; j) = ��2u
Pq

n=�q E
�
�i;t!j;t�n

�
. In order to consistently estimate

the test statistic lq;s, we need consistent estimate of the errors ut. For the Fama regression
(13) we use FGLS residuals,

ût+k;FLGS = yt+k � �̂FGLS � �̂FGLSxt

where yt+k = st+k � st and xt = ft;k � st. Whereas for the Hansen and Hodrick (1980)
regression (18) we use GLS-IV residuals,

ût+k;IV�FLGS = yt+k � �̂0GLS�IV � �̂GLS�IV yt � �̂1GLS�IVw
1
t � �̂2GLS�IVw

2
t

where yt+k = sit+k � f it and w
j
t = sjt � f jt�k for j 6= i. We estimate 
 as discussed in Section

4.1.1.
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