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Abstract

This paper studies robust counterfactual identification in a wide variety of nonlinear panel

data models. We impose only mild assumptions, including time homogeneity on the distribution

of unobserved heterogeneity and index separability on the structural function. We derive the

sharp identified set for the distribution of the counterfactual outcome, noting that point iden-

tification is impossible in general. We also provide tractable implementation procedures that

circumvent the need to directly search over latent distributions. We propose estimating sharp

bounds on counterfactual probabilities based on aggregate intersection bounds and conducting

inference using Bonferroni confidence intervals. We apply our approach to empirical data to

predict female labor force participation rates under counterfactual values of husband’s income,

as well as market shares of different saltine cracker brands under counterfactual pricing schemes.

Keywords: Nonlinear panel, discrete choice, counterfactual analysis, sharp partial identification

1 Introduction

A frequent goal in empirical research is to predict the counterfactual behavior of an outcome

variable under ceteris paribus manipulations of endogenous explanatory variables. Panel data offers

the possibility of dealing with endogeneity due to individual-specific unobserved heterogeneity (or

∗This paper supersedes my earlier paper “Counterfactual Analysis for Semiparametric Panel Multinomial Choice

Models”. I am indebted to Hiroaki Kaido for his guidance and encouragement throughout this project. For helpful

comments and discussions, I thank Rubaiyat Alam, Eli Ben-Michael, Xu Cheng, Iván Fernández-Val, Jean-Jacques

Forneron, Shakeeb Khan, Aureo de Paula, Kirill Ponomarev, Marc Rysman, Davide Viviano, and participants at the

BU Econometric Seminar, Greenline Workshop in Econometrics 2023, and AMES2024-China. All errors are my own.
†Department of Economics, Boston University. Email: yanliu@bu.edu.

1



fixed effects) by utilizing multiple observations for a single economic unit over time. In nonlinear

models that naturally arise in the context of discrete outcomes, unobserved heterogeneity enters

in a nonadditive manner. As a result, counterfactual predictions involve information about the

distribution of unobserved heterogeneity. It is desirable to extract this information from data rather

than rely on parametric distributional assumptions, but the method for doing so with panel data

is not yet fully established.

In this paper, we develop a robust method of counterfactual identification in nonlinear panel

data models with minimal assumptions on the distribution of unobserved heterogeneity. The only

restriction we impose on the distribution of unobserved heterogeneity is time homogeneity, which

can be interpreted as “time is randomly assigned” or “time is an instrument” (Chernozhukov,

Fernández-Val, Hahn, and Newey, 2013). We note that when the outcome distribution exhibits

mass points (e.g., discrete or mixed), it is generally impossible to point identify both structural

parameters and the distribution of the counterfactual outcome. Instead, we derive sharp identified

sets for the latter. A crucial tool for this purpose is the set of unobserved heterogeneity that produces

the same outcome value, which we refer to as the “U -level set”. Time homogeneity simplifies the

sharp identified set by allowing us to take intersections of restrictions from observed marginal

distributions of the outcome variable across time periods. When it comes to implementation, we

further exploit the index separability of the structural function and focus on two important classes

of models: monotone transformation models (e.g., binary choice, ordered choice, censored regression,

etc.) and multinomial choice models. We provide tractable implementation procedures based on set

inclusion relationships of U -level sets and bypass the need to directly search over latent distributions.

We investigate how identifying power varies with the length of time periods and the cardi-

nality of outcome support through numerical experiments. We propose estimating sharp bounds

on counterfactual probabilities based on aggregate intersection bounds and performing inference

using Bonferroni confidence intervals. We apply our approach to empirical data to predict female

labor force participation rates under counterfactual values of husband’s income, as well as market

shares of different saltine cracker brands under counterfactual pricing schemes. We also consider

an extension of our identification strategy to dynamic binary choice models.

This paper is related to three strands of literature. First, there is a growing literature on semi-

parametric identification of nonlinear panel data models, including Manski (1987), Khan, Pono-

mareva, and Tamer (2016, 2023), Shi, Shum, and Song (2018), Gao and Li (2020), Khan, Ouyang,
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and Tamer (2021), Botosaru, Muris, and Pendakur (2023), Gao and Wang (2024), Pakes and

Porter (2024). Nonetheless, these works exclusively focus on learning the finite-dimensional struc-

tural parameters. We take a step forward to facilitate counterfactual analysis. Second, this paper

complements the literature on counterfactual identification in discrete outcome models, including

Manski (2007), Chiong, Hsieh, and Shum (2021), Gu, Russell, and Stringham (2024), Tebaldi, Tor-

govitsky, and Yang (2023). Manski (2007) focused on counterfactual scenarios concerning unrealized

choice sets. Chiong et al. (2021) assumed exogeneity of product-specific attributes and proposed

using cyclic monotonicity to bound counterfactual market shares under changes in these attributes.

Tebaldi et al. (2023) and Gu et al. (2024) also consider counterfactuals that manipulate explana-

tory variables. Tebaldi et al. (2023) restricted explanatory variables to be finitely supported. In this

case, searching over latent distributions reduces to a finite-dimensional problem characterized by a

finite partition of the space of unobserved heterogeneity, termed the minimal relevant partition. Gu

et al. (2024) extended this insight to account for model misspecification and model incompleteness.

An obvious feature of our approach is that we exploit the panel data structure. Moreover, we al-

low explanatory variables to be both endogenous and continuous. Third, this paper contributes to

the literature on counterfactual identification in nonlinear panel data models, including Hoderlein

and White (2012), Chernozhukov et al. (2013), Chernozhukov, Fernández-Val, and Newey (2019),

Liu, Poirier, and Shiu (2021), Botosaru and Muris (2024). The identification results of Hoderlein

and White (2012) and Chernozhukov et al. (2019) are confined to the subpopulation of “stayer”,

i.e., the population for which explanatory variables do not change over time. Chernozhukov et al.

(2013) only considered finitely supported explanatory variables. Liu et al. (2021) restricted atten-

tion to binary choice models and achieved point identification of average partial effects by imposing

index sufficiency on the distribution of fixed effects. Botosaru and Muris (2024) derived bounds

on counterfactual survival probabilities in monotone transformation models. Our results differ in

that we handle continuous explanatory variables and deliver sharp identified sets of counterfactual

distributions for a relatively wide variety of nonlinear models.

The remainder of this paper is organized as follows. Section 2 outlines the setup and specifies

the type of counterfactuals under our consideration. Section 3 presents the sharp identified set for

the distribution of the counterfactual outcome. Section 4 discusses tractable implementation of the

sharp identified set. Section 5 documents the results of numerical experiments. Section 6 addresses

estimation and inference. Section 7 contains empirical illustrations using data on female labor force
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participation and purchases of saltine crackers. Section 8 explores the extension to dynamic binary

choice models. Section 9 concludes. All the proofs are collected in Appendix A.

2 Setup

Consider panel data structures of the form

Yt = g(Xt, Ut; θ0), t = 1, . . . , T,

where, for i = 1, . . . , N , Yt = Yit ∈ Y ⊆ R denotes an observed scalar outcome, Xt = Xit ∈ X ⊆ Rdx

denotes explanatory variables, Ut = Uit ∈ Rdu denotes unobserved heterogeneity, and g is a function

known up to a finite-dimensional parameter θ0. Write X = (X1, . . . , XT ).

Example 1 (Monotone Transformation Models). Consider the model

Yt = h(X⊤
t β0 + Ut; γ0),

where β0 ∈ Rdx is a vector of unknown coefficients, and h is a transformation function that is

weakly increasing, right-continuous, and known up to a finite-dimensional parameter γ0. Here θ0 =

(β0, γ0). For binary response models, Y = {0, 1} and h(v; γ) = 1{v ≥ 0}. For ordered choice

models, Y = {0, 1, . . . , J}, γ0 = (γ00 , γ
1
0 , . . . , γ

J
0 )

⊤, and h(v; γ) =
∑J

j=0 1{v ≥ γj}, where γj0 are

unknown thresholds satisfying γj0 > γj−1
0 and γ00 = −∞. For censored regression, Y = [0,∞) and

h(v; γ) = max{0, v}.

Example 2 (Multinomial choice models). Suppose that Y = {0, 1, . . . , J}, and Xt and Ut consist

of alternative-specific components:

Xt = (X0t, X1t, . . . , XJt), Ut = (U0t, U1t, . . . , UJt),

where for each j, Xjt ∈ Rk and Ujt ∈ R. Consider the model

Yt = max argmax
j

X⊤
jtβ0 + Ujt,

where β0 ∈ Rk is a vector of unknown coefficients. Here θ0 = β0. Note that the normalization

X̃jt = Xjt −X0t, Ũjt = Ujt − U0t ∀j leads to the same choice.
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Assumption 1. Ut
d
= U1|X for all t.

Assumption 1 is a time-homogeneity condition commonly imposed for semiparametric or non-

parametric identification of nonlinear panel data models.1. It requires the conditional distribution

of Ut given X to be the same in each time period. A sufficient condition is that Ut has an error

component structure: Ut = A + Vt, where Vt
d
= V1|X,A for all t. It is worth noting that Assump-

tion 1 excludes lagged Yt from Xt and focuses on static models. On the other hand, Assumption

1 allows Ut to be correlated with X and dependent over time. Moreover, it places no parametric

distributional restriction on Ut.

Assumption 2. θ0 is known or point-identified.

Assumption 2 is satisfied for a broad class of structural functions g under Assumption 1 and

rich support conditions for Ut and X.

Example 1 (continued). Botosaru et al. (2023) converted monotone transformation models into

a collection of binary choice models via time-varying binarization. Then, point identification of θ0

can be shown by invoking Manski (1987).

Example 2 (continued). Point identification of θ0 is established in Shi et al. (2018) and Khan et al.

(2021). Shi et al. (2018) exploited the cyclic monotonicity property of the choice probability vector.

Khan et al. (2021) utilized the subsample of observations in which covariates for all alternatives but

one are fixed over time to construct a localized rank-based objective function analogous to Manski

(1987).

Fixing a counterfactual value x for Xt, we are interested in the distribution of the counterfactual

outcome Yt(x) that satisfies Yt(x) = g(x, Ut; θ0). This can be understood as the result of an inter-

vention that exogenously sets the value of Xt to x, without altering the structural function g(·; θ0)

or the distribution of Ut. We can form summary measures of the distribution of Yt(x) in the spirit of

the average structural function introduced in Blundell and Powell (2003). In Example 1, we consider

the counterfactual survival probability Pr(Yt(x) ≥ y) for y ∈ Y \ inf Y. In Example 2, we consider

the counterfactual choice probability Pr(Yt(x) = y) for y ∈ Y. These counterfactual probabilities

1See, e.g., Manski (1987), Abrevaya (2000), Graham and Powell (2012), Hoderlein and White (2012), Chernozhukov
et al. (2013), Chernozhukov, Fernández-Val, Hoderlein, Holzmann, and Newey (2015), Khan et al. (2016, 2023), Shi
et al. (2018), Gao and Li (2020), Khan et al. (2021), Botosaru et al. (2023), Ouyang and Yang (2023), Wang (2023),
Botosaru and Muris (2024), Gao and Wang (2024), Ouyang and Yang (2024), Pakes and Porter (2024).
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are important parameters per se in evaluating the impact of counterfactual interventions. Moreover,

they can serve as building blocks for various welfare measures. For example, Bhattacharya (2015,

2018) showed that in binary and multinomial choice models, the distribution of compensating and

equivalent variation under a range of economic changes can be expressed as closed-form functionals

of choice probabilities.

Remark 1. The framework of Chesher, Rosen, and Zhang (2024) also permits counterfactual anal-

ysis. They impose a fixed effect structure on unobserved heterogeneity while leaving the distribution

of the fixed effect completely unrestricted. As a result, their approach cannot say much about the

counterfactual probability in a single period, which is our focus, because the fixed effect can be arbi-

trarily moved to justify any outcome. Instead, their approach may potentially bound the probability

of switching across multiple periods.

3 Identification

Notation: For a generic random vector W , let FW |X = {FW |X=x : x ∈ Supp(X)} denote the

collection of conditional distributions of W given X, where for all S ⊆ Supp(W |X = x), FW |X=x =

Pr(W ∈ S|X = x).

It is convenient to define the U -level sets as

U(yt, xt; θ) = {ut : yt = g(xt, ut; θ)}

so that

ut ∈ U(yt, xt; θ) ⇐⇒ yt = g(xt, ut; θ).

In words, U(yt, xt; θ) denotes the set of values of Ut that solves Yt = g(Xt, Ut; θ) with structural

function g(·; θ) when Yt = yt and Xt = xt. Figure 1 contains stylized depictions of U -level sets in

Examples 1 and 2 with Y = {0, 1, 2}. For any closed subset T of Y, let

U(T , xt; θ) =
⋃
yt∈T

U(yt, xt; θ).

6



(a) Example 1: Ordered Choice Model (b) Example 2: Multinomial Choice Model

Figure 1: Stylized Depictions of U -Level Sets

We can characterize the distribution of the counterfactual outcome Yt(x) as

∀T ∈ F(Y), FYt(x)|X=x(T ) = FUt|X=x(U(T , x; θ0)) a.e. x ∈ Supp(X),

where F(Y) denotes the collection of all closed subsets of Y. Therefore, to identify the distribution

of Yt(x), we need to identify θ0 and the distribution of Ut|X = x over U(T , x; θ0) for each T ∈ F(Y).

The former, as discussed in Section 2, has been studied in the literature for a broad class of nonlinear

panel data models. The latter is a new element that emerges in the analysis of counterfactuals.

When the outcome distribution exhibits mass points, such as in discrete or mixed distributions,

point identification of both elements is impossible. We give a heuristic explanation of why in the

binary choice model

Yt = 1{X⊤
t β0 + Ut ≥ 0}. (1)
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(a) U -Level Sets under the Counterfactual (b) U -Level Sets for the Observed Data

Figure 2: Discrepancy of U -Level Sets: Binary Choice Model

As shown in Figure 2, for each x ∈ Supp(X), we want to learn how FUt|X=x allocates probability

across U(1, x; θ0) and U(0, x; θ0). However, what we observe, Pr(Yt = 1|X = x) = FUt|X=x(U(1, xt; θ0)),

only tells us how probability is allocated across U(1, xt; θ0) and U(0, xt; θ0), which differ from

U(1, x; θ0) and U(0, x; θ0) unless x = xt. Assumption 1 allows us to also learn from Pr(Yt′ = 1|X =

x) for t′ ̸= t, but they may still lead to different U -level sets from what we want. This discrepancy

occurs for almost every x ∈ Supp(X) if Xt contains at least one continuous component, which is

typically required for the point identification of θ0. As a result, we cannot uniquely determine the

distribution of Ut across U(1, x; θ0) and U(0, x; θ0)

Given the impossibility of point identification, we provide the sharp identified set of the distri-

bution of Yt(x) in Theorem 1. The proof is in Appendix A. The sharp identified set relies on the

standard definition of observational equivalence, that is, we collect all the distributions of Yt(x) that

can be reproduced by a distribution of Ut consistent with the observed data. A key simplification

afforded by Assumption 1 is that, although we observe joint distributions FY |X , the distribution

of Ut is only required to match the marginals {FYt′ |X}Tt′=1, and we can combine these restrictions

by taking intersection across t′. In this sense, a long panel plays an analogous role to that of an

instrument with rich variation.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then, the sharp identified set for FYt(x)|X ,
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denoted by F∗Yt(x)|X , is given by

F∗Yt(x)|X = {FYt(x)|X : ∃FUt|X ∈ F∗Ut|X

s.t. ∀T ∈ F(Y), FYt(x)|X=x(T ) = FUt|X=x(U(T , x; θ0)) a.e. x ∈ Supp(X)}, (2)

where F∗Ut|X collects the distributions of Ut consistent with the observed data in the sense that

F∗Ut|X =
T⋂

t′=1

{FUt|X : ∀T ∈ F(Y), FYt′ |X=x(T ) = FUt|X=x(U(T , xt′ ; θ0)) a.e. x ∈ Supp(X)}.

Remark 2. Point identification of θ0 (Assumption 2) is imposed to fix ideas and is stronger than

necessary. The identified set defined in (2) is sharp for a given value of θ0. When point identification

of θ0 fails, we can still take the union of (2) over the sharp identified set for θ0 to obtain the sharp

identified set for FYt(x)|X .

4 Implementation

By Theorem 1, the most straightforward way to implement F∗Yt(x)|X is to search over the space of

distributions supported on

U(x) =
{
U(y, x; θ0) ∩

( T⋂
t′=1

U(yt′ , xt′ ; θ0)
)
: (y, y1, . . . , yT ) ∈ YT+1

}

for each x ∈ Supp(X). With discrete outcomes, U(x) is a finite partition of the space of Ut, and

any point within each set in U(x) produces the same outcome under x, x1, . . . , xT . This extends

the concept of the minimal relevant partition of Tebaldi et al. (2023) to general discrete choice

models. Nonetheless, depending on T , the cardinality of Y, and the structural function g, the

cardinality of U(x) can be large, making the search computationally demanding. In this section,

we provide tractable characterizations of F∗Yt(x)|X that avoid directly involving the distribution of

Ut by exploiting the separable index restriction on g, with a focus on Examples 1 and 2. We start

with a heuristic illustration in the binary choice model (1).

As shown in Figure 2, because of the separable index restriction, U -level sets are half inter-

vals: U(1, xt; θ0) = [−x⊤t β0,∞). Hence, when we change the value of explanatory variables from

observed to counterfactual ones, we see a set inclusion relationship between the corresponding U -
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level sets, which can be translated into a comparison between the distributions of the observed and

counterfactual outcomes:

−x⊤β0 ≤ (≥)−x⊤t β0 ⇐⇒ U(1, x; θ0) ⊆ (⊇) U(1, xt; θ0) ⇐⇒ FYt(x)|X=x({1}) ≤ (≥)FYt|X=x({1}).

In this way, we generate identifying restrictions on FYt(x)|X directly from FYt|X . Under Assumption

1, we can repeat this procedure using observed data from any period. The resulting identifying

restrictions turn out to be sharp.

When we go beyond binary choice models, set inclusion relationships generally takes the form

U(T , x; θ0) ⊆ (⊇) U(T ′, xt; θ0)

for some T , T ′ ∈ F(Y), implying that

FYt(x)|X=x(T ) ≤ (≥)FYt|X=x(T ′).

Given the separable index restriction on g, which is satisfied in Examples 1 and 2, the set inclusion

relationships can be easily determined by examining the indices, and these set inclusion relationships

can be shown to exhaust all the information on the distribution of Yt(x).

Example 1 (continued). Define the generalized inverse of h as

h−(y; γ) = inf{y∗ : h(y∗; γ) ≥ y}, y ∈ Y.

Then, U -level sets satisfy

U([y,∞), xt; θ) = [−x⊤t β + h−(y; γ),∞). (3)

Also define

Y(xt; θ) = {([y,∞), [y′,∞)) : (y, y′) ∈ Y,−x⊤β + h−(y; γ) ≥ −x⊤t β + h−(y′; γ)},

Y(xt; θ) = {([y,∞), [y′,∞)) : (y, y′) ∈ Y,−x⊤β + h−(y; γ) ≤ −x⊤t β + h−(y′; γ)}.

10



We can predict the following set inclusion relationships:

(T , T ′) ∈ Y(xt; θ) ⇐⇒ U(T , x; θ) ⊆ U(T ′, xt; θ),

(T , T ′) ∈ Y(xt; θ) ⇐⇒ U(T , x; θ) ⊇ U(T ′, xt; θ).

Example 2 (continued). Note that for any T ⊊ {0, 1, . . . , J} such that T ≠ ∅,

U(T , xt; θ) =
{
Ut : max

j∈T
x⊤jtβ + Ujt ≥ max

k/∈T
x⊤ktβ + Ukt

}
.

Define

Y(xt; θ) =
{
T ⊊ {0, 1, . . . , J} : T ̸= ∅,min

j∈T
(xjt − xj)

⊤β ≥ max
k/∈T

(xkt − xk)
⊤β

}
. (4)

We can predict the following set inclusion relationships:

T ∈ Y(xt; θ) ⇒ U(T , x; θ) ⊆ U(T , xt; θ). (5)

A proof of (5) is provided in Appendix A. It is helpful to understand (5) graphically. Consider the

case of J = 2 and suppose that (x2t − x2)
⊤β > (x1t − x1)

⊤β > 0. Then, Y(xt; θ) = {{2}, {2, 1}}.

As shown in Figure 3, there are two set inclusion relationships:

U(2, x; θ) ⊆ U(2, xt; θ),

U(2, x; θ) ∪ U(1, x; θ) ⊆ U(2, xt; θ) ∪ U(1, xt; θ).
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(a) U -Level Sets under the Counterfactual (b) U -Level Sets for the Observed Data

Figure 3: Set Inclusion Relationships of U -Level Sets: Multinomial Choice Model

In general, to construct Y(xt; θ), one can simply rank the J + 1 index function differences

{(xjt − xj)
⊤β}Jj=0 and collect the T ’s that contain the top j alternatives for j = 1, . . . J .

With the set inclusion relationships of U -level sets discussed above, we are ready to present

tractable characterizations of F∗Yt(x)|X for Examples 1 and 2 in Theorems 2 and 3, respectively. The

proofs are in Appendix A.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Let g be specified as in Example 1. Then,

F∗Yt(x)|X =

T⋂
t′=1

{
FYt(x)|X : ∀(T , T ′) ∈ Y(xt; θ0), FYt(x)|X=x(T ) ≤ FYt|X=x(T ′),

∀(T , T ′) ∈ Y(xt; θ0), FYt(x)|X=x(T ) ≥ FYt|X=x(T ′) a.e. x ∈ Supp(X)
}

(6)

By Theorem 2, the sharp bounds on the counterfactual survival probability FYt(x)|X=x([y,∞))

are given by

T⋂
t′=1

[
sup

y′:−x⊤β0+h−(y;γ0)

≥−x⊤
t′β0+h−(y′;γ0)

FYt′ |X=x([y
′,∞)), inf

y′:−x⊤β0+h−(y;γ0)

≤−x⊤
t′β0+h−(y′;γ0)

FYt′ |X=x([y
′,∞))

]

with the convention that sup ∅ = 0 and inf ∅ = 1. This result is similar to Theorem 2 of Botosaru

and Muris (2024), where they allow the transformation function h to vary over time. Our framework
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can also accommodate time-varying h as long as it is point-identified. The key difference is that we

establish the sharpness of their bounds.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Let g be specified as in Example 2. Then,

F∗Yt(x)|X =
T⋂

t′=1

{FYt(x)|X : ∀T ∈ Y(xt′ ; θ0), FYt(x)|X=x(T ) ≤ FYt′ |X=x(T ) a.e. x ∈ Supp(X)}. (7)

A collection of choice sets similar to (4) appears in Pakes and Porter (2024). They used the

set inclusion relationship of U -level sets for the observed data between two time periods to derive

identifying restrictions on the structural parameter θ0. They also showed that when T = 2, these

identifying restrictions are sharp and yield point identification under the additional conditions given

in Shi et al. (2018). Our results further open up the possibility of counterfactual analysis built upon

the knowledge of θ0.

Remark 3. The sharpness results in Theorems 2 and 7 are shown conditionally on each value of

X. Therefore, the same conclusions hold if we allow the counterfactual evaluation point x to depend

on X. For example, x can be the time average of X shifted by a small amount.

5 Numerical Experiments

For Example 1, we consider the following data generating process:

Yt =
J∑

j=0

1{β(1)0 X
(1)
t + β

(2)
0 X

(2)
t + Ut ≥ γj0}, t = 1, . . . , T,

where X
(1)
t ∼ N(0, 0.5) and Ut = A + Vt with Vt ∼ N(0, 0.5). We generate correlation between

X
(2)
t and A as follows. We define two equally sized latent populations of cross-sectional units. In

the first population, X
(2)
t ∼ Bernoulli(0.5) and A ∼ N(1, 0.5). In the second population, X

(2)
t = 0

and A ∼ N(0, 0.5). We set β
(1)
0 = β

(2)
0 = 1. We consider three different numbers of categories:

J ∈ {1, 2, 3}. We set (γ10 , γ
2
0 , γ

3
0) = (0, 1, 2). When J = 1, the model reduces to a binary response

model.

Fixing a counterfactual value x = (−0.5, 1) for Xt, we are interested in the counterfactual

survival probability Pr(Yt(x) ≥ 1). We compute the sharp bounds on Pr(Yt(x) ≥ 1) using Theorem
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2 and noting that

Pr(Yt(x) ≥ 1) =

∫
FYt(x)|X=x([1,∞))dFX(x),

where the integral is approximated by 5,000 random draws. Figure 4 shows the sharp bounds on

E[Yt(x)] re-centered by the true value and divided by the scale of Yt(x) for J ∈ {1, 2, 3} and

T ∈ {1, 2, . . . , 20}. We can see that the bounds tighten as T increases. There are substantial gains

in identifying power when T increases from 1 to 10, but the incremental gains are less pronounced

when T further increases from 10 to 20. The width of the (normalized) bounds do not differ much

across J , especially when T is relatively large.

Figure 4: Sharp Bounds on Pr(Yt(x) ≥ 1) in Ordered Choice Models

For Example 2, we consider the following data generating process:

Yt = max argmax
j

Y ∗
jt, t = 1, . . . , T,

where the indirect utilities are given by

Y ∗
0t = 0,

Y ∗
jt = β

(1)
0 X

(1)
jt + β

(2)
0 X

(2)
jt + Ujt, j = 1, . . . , J.

Similar to Example 1, X
(1)
jt ∼ N(0, 0.5) ∀j and Ujt = Aj + Vjt ∀j, where (V1t, . . . , VJt) follows

a zero mean multivariate normal distribution with a variance matrix that has 0.5 on the di-

agonal and 0.25 in all off-diagonal elements. To generate correlation between X
(2)
jt and Aj , we
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again define two equally sized latent populations of cross-sectional units. In the first population,

X
(2)
jt ∼ Bernoulli(0.5) ∀j and Aj ∼ N(1, 0.5) ∀j. In the second population, X

(2)
jt = 0 ∀j and

Aj ∼ N(0, 0.5) ∀j. We set β
(1)
0 = β

(2)
0 = 1. We consider three different numbers of alternatives:

J ∈ {1, 2, 3}. When J = 1, the model also reduces to a binary response model.

Fixing counterfactual values x1 = (−0.5, 1) for X1t and xj = (0, 0) for Xjt ∀j > 1, we are

interested in the probability of alternative 1 being chosen: Pr(Yt(x) = 1). We compute the sharp

bounds on Pr(Yt(x) = 1) using Theorem 3 and noting that

Pr(Yt(x) = 1) =

∫
FYt(x)|X=x({1})dFX(x),

where the integral is approximated by 5,000 random draws. Figure 5 shows the sharp bounds on

Pr(Yt(x) = 1) re-centered by the true value for J ∈ {1, 2, 3} and T ∈ {1, 2, . . . , 20}. The trend in

identifying power as T increases aligns with the pattern observed in Figure 4. Unlike in Figure 4,

the bounds become wider when J increases.

Figure 5: Sharp Bounds on Pr(Yt(x) = 1) in Multinomial Choice Models

6 Estimation and Inference

In this section, we focus on discrete outcomes. Let

τ0(x) = {FYt|X=x({y}) : y ∈ Y, t ∈ {1, . . . , T}}
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denote the vector of observed conditional choice probabilities. We consider estimation and inference

of aggregated intersection bounds that can be written as

Ψ(θ0) = E
[

min
λ∈Λ(X;θ0)

λ⊤τ0(X)
]
, (8)

where Λ(x; θ) is a known finite set.

Example 1 (continued). We focus on ordered choice models. Fixing a counterfactual value x for

Xt, the sharp bounds on counterfactual survival probabilities Pr(Yt(x) ≥ j) take the form of (8). To

see this, note that by Theorem 2, the bounds are given by [E[maxt ψt
(X; θ0)], E[mint ψt(X; θ0)]],

where

ψ
t
(x; θ) = FYt|X=x({k : k ≥ min{y ∈ Y : −x⊤β + h−(j; γ) ≤ −x⊤t β + h−(y; γ)}}),

ψt(x; θ) = FYt|X=x({k : k ≥ max{y ∈ Y : −x⊤β + h−(j; γ) ≥ −x⊤t β + h−(y; γ)}})

with the convention that min ∅ = ∞. Since ψ
t
(x; θ) and ψt(x; θ) are linear combinations of τ0(x),

we can write

ψ
t
(x; θ) = λt(x; θ)

⊤τ0(x),

ψt(x; θ) = λt(x; θ)
⊤τ0(x),

and define

Λ(x; θ) = {λt(x; θ) : t ∈ {1, . . . , T}},

Λ(x; θ) = {λt(x; θ) : t ∈ {1, . . . , T}}.

Then,

E[max
t
ψ
t
(X; θ0)] = −E

[
min

λ∈Λ(x;θ0)
−λ⊤τ0(X)

]
,

E[min
t
ψt(X; θ0)]] = E

[
min

λ∈Λ(x;θ0)
λ⊤τ0(X)

]
.

Example 2 (continued). Fixing a counterfactual value x forXt, the sharp bounds on counterfactual

choice probabilities Pr(Yt(x) = j) take the form of (8). To see this, note that by Theorem 3, the
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bounds are given by [E[maxt ψt
(X; θ0)], E[mint ψt(X; θ0)]], where ψt

(x; θ)/ψt(x; θ) is the solution

to the linear program

max /minq⃗∈∆J+1 qj

s.t.
∑
j∈T

qj ≤ FYt|X=x(T ) ∀T ∈ Y(xt; θ).

It turns out that ψ
t
(x; θ) and ψt(x; θ) have closed forms:

ψ
t
(x; θ) =

FYt|X=x({j}) if (xjt − xj)
⊤β ≤ (xkt − xk)

⊤β, ∀k

0 otherwise

,

ψt(x; θ) =

FYt|X=x({j}) if (xjt − xj)
⊤β ≥ (xkt − xk)

⊤β, ∀k

FYt|X=x({j} ∪ {k : (xkt − xk)
⊤β > (xjt − xj)

⊤β}) otherwise

.

We can again see that ψ
t
(x; θ) and ψt(x; θ) are linear combinations of τ0(x).

To construct an estimator of Ψ(θ0), we use cross-fitting to estimate τ0.

Definition 1 (Cross-fitting). Divide the data into K evenly-sized folds. For each fold k = 1, . . . ,K,

use the other K − 1 data folds to estimate τ0; denote the resulting estimates by τ̂ (−k). For each

i = 1, . . . , N , take τ̂(Xi) = τ̂ (−ki)(Xi), where ki denotes the fold containing the ith observation.

We impose the following assumptions.

Assumption 3. For all x and θ, maxλ∈Λ(x;θ) ∥λ∥ ≤M for some M > 0.

Assumption 4. For all x, θ, and τ , argminλ∈Λ(x;θ) λ
⊤τ(x) is a singleton.

Assumption 5. The distribution of τ0(X) is absolutely continuous with density bounded above.

Assumption 6. ∥τ̂ − τ0∥∞ = op(N
−1/4), where ∥τ∥∞ = supx ∥τ(x)∥.

Assumption 3 imposes boundedness on the objective function of the minimization problem and

is satisfied in Examples 1 and 2. Assumption 4 requires the solution of the minimization problem to

be unique. Assumption 5 is a sufficient condition for the margin condition (Lemma 1) that controls

the concentration of the objective function in the neighborhood of the minimum. In other words, it

ensures the minimum is separated from non-minimal values with high probability. The uniqueness
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of the optimal solution and the margin condition are also imposed in Semenova (2024) to derive

inference for a general class of aggregated intersection bounds. We retain Assumption 5 because it

is low-level and compatible with the sufficient conditions for Assumption 2. Assumption 6 requires

the estimation error of τ̂ to vanish fast enough.

Let

I(Y ) = {1{Yt = y} : y ∈ Y, t ∈ {1, . . . , T}}

be a vector of binary indicators that is conformable with τ0(x). Define

λ∗(x; θ, τ) = argmin
λ∈Λ(x;θ)

λ⊤τ(x).

Given the first-step cross-fitted estimator τ̂ of τ0, define

Ψ̂(θ) =
1

N

n∑
i=1

∑
λ∈Λ(Xi;θ)

1{λ∗(Xi; θ, τ̂) = λ}λ⊤I(Yi).

Theorem 4. Suppose that Assumptions 3-6 hold. Then, for a given θ,

√
N(Ψ̂(θ)−Ψ(θ))

d→ N(0, V (θ)),

where V (θ) = E[
∑

λ∈Λ(X;θ) 1{λ∗(X; θ, τ0) = λ}(λ⊤I(Y ))2]−Ψ2(θ).

In view of Theorem 4, a natural idea is to plug in a first-step estimate θ̂ of θ0 to obtain the final

estimator Ψ̂(θ̂). However, the asymptotic distribution Ψ̂(θ̂) is complicated by the estimation error

of θ̂. We give a heuristic explanation in the binary choice model (1). Note that θ enters Ψ(θ) only

through Λ so that

|Ψ(θ̂)−Ψ(θ0)| = O(Pr(Λ(X; θ̂) ̸= Λ(X; θ0))).

For θ ̸= θ0, Λ(x; θ) ̸= Λ(x; θ0) if for some t, sgn((xt − x)⊤β) ̸= sgn((xt − x)⊤β0), which occurs with

probability of order O(∥θ − θ0∥). Therefore, the estimation error of θ̂ becomes dominating in the

expansion of Ψ̂(θ̂) if θ̂ converges at a slower rate than N−1/2, as is the case with the maximum

estimator proposed by Manski (1987) and its smoothed version.

To utilize the asymptotic normality result in Theorem 4, we consider Bonferroni-type confidence
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intervals. To this end, define

V̂ (θ) =
1

N

N∑
i=1

∑
λ∈Λ(Xi;θ)

1{λ∗(Xi; θ, τ̂) = λ}(λ⊤I(Yi))2,

which is a consistent estimator of V (θ) for a given θ under Assumption 6. Also, suppose that we

can construct a (1− α)-confidence region for θ0:

lim
N→∞

Pr(θ0 ∈ CRN (α)) = 1− α. (9)

For 0 ≤ δ ≤ α, the Bonferroni confidence interval for Ψ(θ0) is given by

CIN (α, δ) =
[

inf
θ∈CRN (δ)

Ψ̂(θ)− z1−(α−δ)/2

√
V̂ (θ)/N, sup

θ∈CRN (δ)
Ψ̂(θ) + z1−(α−δ)/2

√
V̂ (θ)/N

]
Proposition 1. Suppose that Assumptions 3-6 and (9) hold. Then, for any 0 ≤ δ ≤ α,

lim
N→∞

Pr(Ψ(θ0) ∈ CIN (α, δ)) = 1− α.

The literature on semiparametric inference for θ0 has not yet converged on a single procedure.

For panel data binary choice models, the asymptotic distribution of the maximum score estimator

is that of the maximizer of a Gaussian process, which is hard to use for inference. One solution

is to switch to the smoothed maximum score estimator proposed by Charlier, Melenberg, and

van Soest (1995), but this requires selecting additional kernel functions and tuning parameters.

An alternative is to use bootstrap-based methods. Abrevaya and Huang (2005) have shown that

the classic bootstrap is inconsistent for the maximum score estimators. Valid inference may be

conducted using subsampling (Delgado, Rodŕıguez-Poo, and Wolf, 2001), m-out-of-n bootstrap

(Lee and Pun, 2006), the numerical bootstrap (Hong and Li, 2020), and a model-based bootstrap

procedure that analytically modifies the criterion function (Cattaneo, Jansson, and Nagasawa,

2020). For panel data multinomial choice models, Khan et al. (2021) proposed a localized maximum

score estimator, whose asymptotic distribution is also that of the maximizer of a Gaussian process.

Khan et al. (2021) conjectured that both a smoothed maximum score approach and bootstrap-based

procedures may be used for inference.
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7 Empirical Illustration

7.1 Binary Choice Model: Female Labor Force Participation

In the first empirical illustration, we study women’s labor force participation using data from the

US Panel Study of Income Dynamics (PSID) and the British Household Panel Survey (BHPS).

For the PSID, we use a sample from Fernández-Val (2009), which consists of N = 1461 women

over T = 9 years between 1980-1988. Only married women aged 18-64 with husbands in the labor

force in each sample period are included. For the BHPS, we construct a similar sample from all

1991-2008 waves, which consists of N = 4602 women. The sample is an unbalanced panel, in which

any woman observed in at least two waves is included.

For illustrative purposes, we focus on the static binary choice model:

Yit = 1{X⊤
it β0 + Uit ≥ 0},

where Yt is the labor force participation indicator, and Xt includes the natural logarithm of the

husband’s income, the number of children in three age categories, and a quadratic function of age.

Note that the husband’s income and fertility may be jointly determined with the wife’s labor force

participation by unobserved factors such as the wife’s household productivity. We assume that these

factors are time-invariant so that Assumption 1 holds. Age categories in each sample differ slightly,

with the PSID dividing children into 0-2, 3-5, and 6-17 years, and the BHPS into 0-2, 3-4, and 5-18

years. Descriptive statistics for both samples are given in Table 1.

The continuous variation in the husband’s income enables the point identification of β0. We

estimate β0 using the maximum-score-type objective function:

∑
i

∑
t>s

(Yit − Yis) · sgn((Xit −Xis)
⊤β).

Table 2 reports the point estimates of β0. We see that the coefficients on the number of children

in all three age categories are consistent across samples, exhibiting the same sign and similar

magnitudes. While the coefficients on log husband’s income also have the same sign in both samples,

the magnitude is notably smaller in the BHPS sample. The coefficients on age and age squared

indicate a concave relationship.

We are interested in counterfactual probabilities of labor force participation under various levels
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Table 1: Descriptive Statistics

Mean Std. dev.

Panel A: PSID sample, 1980-1988
Participation 0.72 0.45
Age 37.3 9.22
Kids 0-2 0.23 0.47
Kids 3-5 0.29 0.51
Kids 6-17 1.05 1.10
Husband’s income (1995 $1000) 42.29 40.01
No. observations 13149

Panel B: BHPS sample, 1991-2008
Participation 0.78 0.41
Age 41.9 10.02
Kids 0-2 0.12 0.34
Kids 3-4 0.12 0.34
Kids 5-18 0.74 0.98
Husband income (1995 £1000) 20.02 15.46
No. observations 35608

of husband’s income, which reflects the wife’s reservation wage. We select counterfactual values x

such that the log husband’s income ranges from its 10th to 90th quantiles, and other explanatory

variables are set to their medians. In the PSID sample, these choices correspond to hypothetical

women who are 35 years old, have no children aged 0-2 or 3-5, and have one child between 6 and

17, and whose husband’s income ranges from $15K to $68K. In the BHPS sample, these choices

correspond to hypothetical women who are 41 years old, have no children aged 0-2 or 3-4, and have

one child between 5 and 18, and whose husband’s income ranges from £8K to £32K.

We calculate the sharp bounds on counterfactual probabilities of labor force participation using

the estimator developed in Section 6 and plot them in Figure 6. To do this, we plug in the maximum-

score estimates of β0 in Table 2 and the estimates of observed conditional choice probabilities, τ0(x),

from the logistic regression of observed choices on Xit and
1
Ti

∑Ti
t=1Xit.

2 We see that for the PSID

sample, the bounds are downward sloping with respect to the log husband’s income with the lower

bound steeper than the upper bound. In contrast, the bounds in the BHPS sample remain nearly

flat. This pattern aligns with the coefficient estimates in Table 2 and suggests that the effect of the

husband’s income on women’s labor force participation is more pronounced in the PSID sample.

2Note that each element of τ0(x) can be written as FYt|X=x({y}) = FUt|X=x(U(y, xt; θ0)) = G(xt, x). Hence,
the logistic regression of observed choices on some function of Xit and lower-dimensional statistics of Xi, such as
1
Ti

∑Ti
t=1 Xit, can be viewed as a series logit approximation to τ0(x).
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Table 2: Estimated β0

PSID BHPS
Max. Score Pooled Probit Max. Score Pooled Probit

Kids 0-2 -1 -1 -1 -1
Kids 3-5 -0.565 -0.601
Kids 3-4 -0.602 -0.686
Kids 6-17 -0.006 -0.166
Kids 5-18 -0.014 -0.267
Log husband’s income -0.098 -0.351 -0.007 -0.050
Age/10 1.142 1.700 1.024 2.090
(Age/10)2 -0.126 -0.266 -0.109 -0.275

Figure 6: Counterfactual Probabilities of Labor Force Participation

Notes: Black dashed lines, with the grey shaded area in between, represent the sharp bounds
on counterfactual probabilities of labor force participation. Red solid/blue dotted lines represent
probit/kernel predictions assuming exogeneity of Xit.

For comparison, we also plot the predictions assuming exogeneity of Xit with a probit specification

(predictions based on a logit specification are quite similar and thus omitted). The associated

coefficient estimates are reported in Table 2 under the column “Pooled Probit”. We see that probit

predictions tend to lie close to the upper bounds. In addition, we plot predictions under exogeneity

of Xit based on the Nadaraya–Watson kernel regression.3 The kernel predictions differ from probit

predictions and exhibit a nonmonotonic relationship with the husband’s income.

3We use Gaussian kernel and select the bandwidth using Silverman’s rule of thumb.
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7.2 Multinomial Choice Model: Saltine Cracker Purchases

In the second empirical illustration, we apply our approach to the optical-scanner panel data set

on purchases of saltine crackers in the Rome (Georgia) market, collected by Information Resources

Incorporated. The data set contains information on 3292 purchases of crackers by 136 households

over a period of 2 years. There are three major national brands in the database: Nabisco, Sunshine,

Keebler. Local brands are aggregated under the “Private” label. The data set also includes three

explanatory variables, two of which are binary, and the other one is continuous. The first binary

explanatory variable, “display”, denotes whether or not a brand was on special display at the store

at the time of purchase. The second binary explanatory variable, “feature”, denotes whether or not

a brand was featured in a newspaper advertisement at the time of purchase. The third explanatory

variable is the “price”, which corresponds to the actual price (in dollars) for the brand purchased

and the shelf price for all other brands. Table 3 reports the descriptive statistics for each brand.

Table 3: Data Characteristics of Saltine Crackers

Nabisco Sunshine Keebler Private

Market Share 0.54 0.07 0.07 0.32

Display 0.34 0.13 0.11 0.10

Feature 0.09 0.04 0.04 0.05

Average Price 1.08 0.96 1.13 0.68

The dataset is an unbalanced panel data with the number of purchases varying across households

i (≡ Ti, 14 ≤ Ti ≤ 77). Write J̄ = {1 = Nabisco, 2 = Sunshine, 3 = Keebler, 4 = Private} for the

choice set. For each household i, brand j, and purchase t, we use X
(1)
ijt , X

(2)
ijt , and X

(3)
ijt to denote

the three explanatory variables: the logarithm of “price”, “display”, and “feature”, respectively.

There are unobserved confounders, such as quality and intrinsic brand preferences, which are likely

to remain invariant during the sample period. Hence, Assumption 1 is plausibly valid.

We follow Khan et al. (2021) to model the observed choice as

Yijt = 1{Y ∗
ijt > Y ∗

ikt, ∀k ̸= j},
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where the indirect utilities are given by

Y ∗
ijt = −X(1)

ijt + β
(1)
0 X

(2)
ijt + β

(2)
0 X

(3)
ijt + Uijt, j ∈ J̄ , t = 1, . . . , Ti,

where the coefficient on X
(1)
ijt is normalized to be −1. (β

(1)
0 , β

(2)
0 ) is point-identified because of rich

variation in prices and can be estimated by minimizing a localized rank-based objective function

∑
i

∑
t>s

Khn(X
(1)
i(−1)s −X

(1)
i(−1)t)1{X̃i(−1)s = X̃i(−1)t}(Yi1s − Yi1t) · sgn((Xi1s −Xi1t)

⊤β),

where β = (−1, β(1), β(2))⊤, X̃ijt = (X
(2)
ijt , X

(3)
ijt )

′, and X
(1)
i(−1)t (X̃i(−1)t) denotes the vector collecting

X
(1)
ijt (X̃ijt) for all j ∈ J̄ \{1}. Following Khan et al. (2021), we choose the Gaussian kernel function

and hn = 3σ̂n−1/6/ 3
√
log n, where σ̂ is the standard deviation of the matching variable.

No other methods in the literature deliver counterfactual predictions for panel multinomial

choice models. For comparison, we consider two parametric models, pooled multinomial logit and

pooled multinomial probit, based on the indirect utility specification

Y ∗
ijt = −β(0)0 X

(1)
ijt + β

(1)
0 X

(2)
ijt + β

(2)
0 X

(3)
ijt + αj + Vijt, j ∈ J̄ , t = 1, . . . , Ti,

where Vijt is independent of Xijt, and (β
(0)
0 , β

(1)
0 , β

(2)
0 ) and alternative-specific intercepts αj are

parameters to be estimated.4 Table 4 reports the point estimates of coefficients. For the pooled

multinomial logit and probit models, we report the ratios of the coefficients on X
(2)
ijt and X

(3)
ijt to

the absolute value of the coefficient on X
(1)
ijt .

Table 4: Parametric and Semiparametric Estimations of Coefficients

β̂(1) β̂(2)

Semiparametric panel 0.0804 0.0859

Pooled multinomial logit 0.0330 0.1573

Pooled multinomial probit 0.0155 0.1108

We consider the counterfactual choice probabilities under two counterfactual values x and x for

explanatory variables. The price vector for x is p = (1.09, 1.05, 1.05, 0.78) and the price vector for

x is p = (1.09, 0.89, 1.21, 0.59). The display and feature statuses are fixed at zero for all brands for

4The parameter estimation of these models is conducted using Stata packages “cmclogit” and “cmcmmprobit”.

24



both x and x. Moving from x to x corresponds to a simultaneous price change of multiple brands,

which consists of a rise from the 25th percentile to the 75th percentile of the price for brand 3

(Keebler), and a fall from the 75th percentile to the 25th percentile of the price for brands 2 and

4 (Sunshine and Private), with the price of brand 1 (Nabisco) fixed at the median.

We calculate the sharp bounds on counterfactual choice probabilities using the estimator de-

veloped in Section 6. To do this, we plug in the semiparametric estimates of (β
(1)
0 , β

(2)
0 ) in Table 4

and the estimates of observed conditional choice probabilities, τ0(x), from multinomial logistic re-

gression of observed choices on {(Xijt, (X
(1)
ijt )

2), 1
Ti

∑Ti
t=1Xijt,

1
Ti

∑Ti
t=1(X

(1)
ijt )

2)}j∈J̄ . Panels (a) and

(b) of Figure 7 display the bounds under x and x, respectively. For comparison, we also plot the

predictions from pooled multinomial logit and probit models. We observe a market share decrease

for brands 1 and 3 (Nabisco and Keebler) and a market share increase for brand 4 (Private), while

the direction of the market share change for brand 2 (Sunshine) is ambiguous. Parametric predic-

tions lie within semiparametric bounds, with some close to upper or lower limits. Consequently,

parametric models might underestimate the market share change of brand 3 (Keebler).

(a) Under Price Vector p = (1.09, 1.05, 1.05, 0.78) (b) Under Price Vector p = (1.09, 0.89, 1.21, 0.59)

Figure 7: Counterfactual Choice Probabilities

8 Extension: Dynamic Binary Choice Models

Although the main framework of this paper focuses on static models, the identification strategy

based on the set inclusion relationship of U -level sets can be applied to dynamic models to de-

rive (non-sharp) identifying restrictions on counterfactual distributions. To demonstrate this, we
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consider the dynamic panel data binary choice model:

Yt = 1{ρ0Yt−1 +X⊤
t β0 + Ut ≥ 0}.

Let θ0 = (ρ0, β0). We maintain Assumption 1, which is termed partial stationarity in Gao and Wang

(2024) because the conditioning set only contains part of the explanatory variables. Identification

of θ0 under Assumption 1 is discussed in Khan et al. (2023) and Gao and Wang (2024). Fixing a

counterfactual value (y, x) for (Yt−1, Xt), we are interested in the distribution of the counterfactual

outcome Yt(y, x) that satisfies Yt(y, x) = 1{ρ0y + x⊤β0 + Ut ≥ 0}. This is in line with the dynamic

potential outcome model of Torgovitsky (2019).

We slightly modify the definition of U -level sets as

U(yt, yt−1, xt; θ) = {ut : yt = 1{ρyt−1 + x⊤t β + ut ≥ 0}}.

The key observation is that for y ∈ {0, 1},

Ut ∈ U(y, Yt−1, Xt; θ0) and U(y, Yt−1, Xt; θ0) ⊆ U(y, y, x; θ0) ⇒ Ut ∈ U(y, y, x; θ0). (10)

Note that

1{U(1, Yt−1, Xt; θ0) ⊆ U(1, y, x; θ0)}

= 1− 1{U(0, Yt−1, Xt; θ0) ⊆ U(0, y, x; θ0)}

= 1{Yt−1 = 1} · 1{ρ0y + x⊤β0 ≥ ρ0 +X⊤
t β0}+ 1{Yt−1 = 0} · 1{ρ0y + x⊤β0 ≥ X⊤

t β0}.

Taking the conditional expectation of (10) given X = x yields

Bℓ
t (x; θ0) ≤ Pr(Yt(y, x) = 1|X = x) ≤ Bu

t (x; θ0),
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where

Bℓ
t (x; θ) =



Pr(Yt = 1|X = x) if ρy + x⊤β ≥ max{ρ+ x⊤t β, x
⊤
t β}

Pr(Yt = 1, Yt−1 = 0|X = x) if x⊤t β ≤ ρy + x⊤β < ρ+ x⊤t β

Pr(Yt = 1, Yt−1 = 1|X = x) if ρ+ x⊤t β ≤ ρy + x⊤β < x⊤t β

0 otherwise

,

Bu
t (x; θ) =



1 if ρy + x⊤β ≥ max{ρ+ x⊤t β, x
⊤
t β}

1− Pr(Yt = 0, Yt−1 = 1|X = x) if x⊤t β ≤ ρy + x⊤β < ρ+ x⊤t β

1− Pr(Yt = 0, Yt−1 = 0|X = x) if ρ+ x⊤t β ≤ ρy + x⊤β < x⊤t β

Pr(Yt = 1|X = x) otherwise

.

The intuition is that when the counterfactual index is large or small enough to eliminate uncertainty

in the set inclusion relationship of U -level sets, the bounds align with those in the static case.

Otherwise, the bounds will depend on the distribution of the lagged outcome.

Assumption 1 allows us to use information across all periods to obtain tighter bounds. Eventu-

ally, the counterfactual probability Pr(Yt(y, x) = 1) can be bounded as

E
[
max

t
Bℓ

t (X; θ0)
]
≤ Pr(Yt(y, x) = 1) ≤ E

[
min
t
Bu

t (X; θ0)
]
.

9 Conclusion

This paper establishes sharp identified sets of counterfactual distributions in semiparametric non-

linear panel data models, relying on mild assumptions such as time homogeneity on the distribution

of unobserved heterogeneity and index separability on the structural function. We provide tractable

implementation procedures for monotone transformation models and multinomial choice models.

We examine factors affecting the informativeness of identified sets through numerical experiments.

We also derive theoretical results for estimation and inference. Our approach is applied to empirical

data on female labor force participation and purchases of saltine crackers. Finally, we discuss the

potential extension of our identification strategy to dynamic settings.
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Appendix A Proofs

Proof of Theorem 1. Following Chesher and Rosen (2017), we adopt the notion of structures. In

our case, a structure is a pair m = (θ,FU |X). Each structure m delivers a conditional distribution

PY |X(·|x;m) for each x ∈ Supp(X). Let PY |X(m) = {PY |X(·|x;m) : x ∈ Supp(X)}. Let M be the

set of structures that satisfy Assumption 1. Let I(M,FY |X) denote the set of structures identified

by M and FY |X , that is, m ∈ M if m is admitted by M and FY |X and PY |X(m) agree. Then, the

sharp identified set for FYt(x)|X is defined as

F∗Yt(x)|X = {FYt(x)|X : ∃(θ,FU |X) ∈ I(M,FY |X)

s.t. ∀T ∈ F(Y), FYt(x)|X=x(T ) = FUt|X=x(U(T , x; θ)) a.e. x ∈ Supp(X)}.

Note that F∗Yt(x)|X depends on I(M,FY |X) only through (θ, {FUt|X}Tt=1). Let I∗(M,FY |X) denote

the projection of I(M,FY |X) onto (θ, {FUt|X}Tt=1). Then,

F∗Yt(x)|X = {FYt(x)|X : ∃(θ, {FUt|X}Tt=1) ∈ I∗(M,FY |X)

s.t. ∀T ∈ F(Y), FYt(x)|X=x(T ) = FUt|X=x(U(T , x; θ)) a.e. x ∈ Supp(X)}. (11)

In static models, (θ, {FUt|X}Tt=1) only deliver the marginals of PY |X(·|x;m). By Sklar’s theorem,

there exists a collection of T -variate copula CX = {CX(·|x) : x ∈ Supp(X)} such that CX(·|x)

reproduces the dependence structure of PY |X(·|x;m). In this sense, (θ, {FUt|X}Tt=1, CX) is obser-

vational equivalent to m. Since Assumption 1 only restricts {FUt|X}Tt=1, we can set CX to be the

collection of copulas associated with FY |X and require (θ, {FUt|X}Tt=1) to satisfy Assumption 1 and

be consistent with the marginals of FY |X . Hence,

I∗(M,FY |X) = {(θ, {FUt|X}Tt=1) : Assumption 1 holds and ∀t ∈ {1, . . . , T}, ∀T ∈ F(Y),

FYt|X=x(T ) = FUt|X=x(U(T , xt; θ)) a.e. x ∈ Supp(X)}.

Finally, by Assumption 2, we can further write

I∗(M,FY |X) = {θ0} × {{FUt|X}Tt=1 : Assumption 1 holds and ∀t ∈ {1, . . . , T},∀T ∈ F(Y),

FYt|X=x(T ) = FUt|X=x(U(T , xt; θ0)) a.e. x ∈ Supp(X)}
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= {θ0} ×
T⋂

t′=1

{FUt|X : ∀T ∈ F(Y),

FYt′ |X=x(T ) = FUt|X=x(U(T , xt′ ; θ0)) a.e. x ∈ Supp(X)}. (12)

The result follows by plugging (12) into (11).

Proof of (5). Fix T ∈ Y(xt; θ). For any j ∈ T and k /∈ T , (xjt − xj)
⊤β ≥ (xkt − xk)

⊤β. Re-

arranging, (xjt − xkt)
⊤β ≥ (xj − xk)

⊤β. Take any Ut ∈ U(T , x; θ). Then, there exists j ∈ T such

that for any k /∈ T ,

Ukt − Ujt ≤ (xj − xk)
⊤β ≤ (xjt − xkt)

⊤β.

Hence, Ut ∈ U(T , xt; θ).

Proof of Theorem 2. By definition, FUt|X ∈ F∗Ut|X if and only if ∀y′ ∈ Y, ∀t′ ∈ {1, . . . , T},

FYt′ |X=x([y
′,∞)) = FUt|X=x(U([y′,∞), xt′ ; θ0)) a.e. x ∈ Supp(X).

It follows that

F∗Yt(x)|X = {FYt(x)|X : ∃FUt|X s.t. ∀y ∈ Y,∀t′ ∈ {1, . . . , T},

FYt(x)|X=x([y,∞)) = FUt|X=x(U([y,∞), x; θ0)),

FYt′ |X=x([y,∞)) = FUt|X=x(U([y,∞), xt′ ; θ0)) a.e. x ∈ Supp(X)}

= {FYt(x)|X : ∃FUt|X s.t. ∀y ∈ Y,∀t′ ∈ {1, . . . , T},

FYt(x)|X=x([y,∞)) = FUt|X=x([−x⊤β0 + h−(y, γ0),∞)),

FYt′ |X=x([y,∞)) = FUt|X=x([−x⊤t′β0 + h−(y, γ0),∞)) a.e. x ∈ Supp(X)},

where the second equality follows from (3). Taking FYt(x)|X from the right-hand side of (6), we

want to show that FYt(x)|X ∈ F∗Yt(x)|X , which amounts to for all x ∈ Supp(X) exhibiting FUt|X=x

satisfying ∀y ∈ Y,

FYt(x)|X=x([y,∞)) = FUt|X=x([−x⊤β0 + h−(y, γ0),∞)),

FYt′ |X=x([y,∞)) = FUt|X=x([−x⊤t′β0 + h−(y, γ0),∞)), t′ = 1, . . . , T.
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Fix x ∈ Supp(X). The desired FUt|X=x can be constructed as follows. Define

pt′(y) = FYt′ |X=x([y,∞)), t′ = 1, . . . , T,

pT+1(y) = FYt(x)|X=x([y,∞)),

ut′(y) = −x⊤t′β0 + h−(y, γ0), t
′ = 1, . . . , T,

uT+1(y) = −x⊤β0 + h−(y, γ0).

Then, (6) ensures that for any t′ ∈ {1, . . . , T} and y, y′ ∈ Y,

uT+1(y) ≥ ut′(y
′) ⇐⇒ pT+1(y) ≤ pt′(y

′),

uT+1(y) ≤ ut′(y
′) ⇐⇒ pT+1(y) ≥ pt′(y

′),

Also, by Lemma 1 of Botosaru et al. (2023), Assumption 2 ensures that for any t′, t′′ ∈ {1, . . . , T}

and y, y′ ∈ Y,

ut′(y) ≤ ut′′(y
′) ⇐⇒ pt′(y) ≥ pt′′(y

′).

Put together, we have for any t′, t′′ ∈ {1, . . . , T + 1} and y, y′ ∈ Y,

ut′(y) ≤ ut′′(y
′) ⇐⇒ pt′(y) ≥ pt′′(y

′). (13)

For u ∈ R, define

(t∗(u), y∗(u)) = argmax
(t′,y)∈{1,...,T+1}×Y:ut′ (y)≤u

ut′(y).

We can set

FUt|X=x([u,∞)) = pt∗(u)(y
∗(u)), u ∈ R.

We now show that FUt|X=x satisfies the monotonicity requirement of a CDF, i.e.,

FUt|X=x([u,∞)) ≥ FUt|X=x([u
′,∞)), ∀u ≤ u′.

To see this, note that by definition,

ut∗(u)(y
∗(u)) ≤ ut∗(u′)(y

∗(u′)).
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which implies that

FUt|X=x([u,∞)) = pt∗(u)(y
∗(u)) ≥ pt∗(u′)(y

∗(u′)) = FUt|X=x([u
′,∞)),

where the inequality follows from (13).

Proof of Theorem 3. Taking FYt(x)|X from the right-hand side of (7), we want to show that FYt(x)|X ∈

F∗Yt(x)|X , which amounts to for all x ∈ Supp(X) exhibiting FUt|X=x satisfying

FYt(x)|X=x({j}) = FUt|X=x(U(j, x; θ0)),

FYt′ |X=x({j}) = FUt|X=x(U(j, xt′ ; θ0)),

for all j ∈ {0, 1, . . . , J} and t′ ∈ {1, . . . , T}. Fix x ∈ Supp(X). Define Uj1,...,jT ,j′ = U(j1, x1; θ0) ∩

· · · ∩ U(jT , xT ; θ0) ∩ U(j′, x; θ0) and qj1,...,jT ,j′ = FUt|X=x(Uj1,...,jT ,j′). Note that qj1,...,jT ,j′ = 0 if

Uj1,...,jT ,j′ = ∅. The probabilities q = {qj1,...,jT ,j′ : Uj1,...,jT ,j′ ̸= ∅} are the building blocks for

constructing FUt|X=x. We can rephrase our task as exhibiting qj1,...,jT ,j′ ≥ 0 satisfying

∑
(j1,...,jT ,j′): Uj1,...,jT ,j′ ̸=∅, j′=j

qj1,...,jT ,j′ = FYt(x)|X=x({j}), (14)

∑
(j1,...,jT ,j′): Uj1,...,jT ,j′ ̸=∅, jt′=j

qj1,...,jT ,j′ = FYt′ |X=x({j}), (15)

for all j ∈ {0, 1, . . . , J} and t′ ∈ {1, . . . , T}. Let

pct =


FYt(x)|X=x({0})

FYt(x)|X=x({1})
...

FYt(x)|X=x({J})

 and pobt′ =


FYt′ |X=x({0})

FYt′ |X=x({1})
...

FYt′ |X=x({J})

 , t
′ = 1, . . . , T.

Let Qct be the matrix with elements in {0, 1} such that (14) can be restated as Qctq = pct and let

Qob
t′ be the matrix with elements in {0, 1} such that (15) can be restated as Qob

t′ q = pobt′ . Our task

can be summarized as showing that ∃q ≥ 0 such that: (A) Qctq = pct and (B) Qob
t′ q = pobt′ , ∀t′. Let

{zt′ = (zt
′
0 , z

t′
1 , . . . , z

t′
J )

T}Tt′=1 and w = (w0, w1, . . . , wJ)
T be (J + 1)-dimensional constant vectors.
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Farkas’s Lemma states that if

wTQct +
T∑

t′=1

(zt
′
)TQob

t′ ≥ 0 implies wTpct +
T∑

t′=1

(zt
′
)Tpobt′ ≥ 0,

then ∃q ≥ 0 satisfying constraints (A) and (B). For each t′ ∈ {1, . . . , T}, there exists a weak

ordering for {(xjt′ − xj)
⊤β0}Jj=0. Let Mt′(j) denote the rank of alternative j in this ordering and

M−1
t′ denote the inverse mapping. Then, {M−1

t′ (J), . . . ,M−1
t′ (j)} ∈ Y(xt′ ; θ0) for j > 0. For any

{at′j }j=0,1,...,J,t′=1,...,T ∈ R,

wTpct +
T∑

t′=1

(zt
′
)Tpobt′

=
J∑

j=0

wjFYt(x)|X=x({j}) +
T∑

t′=1

J∑
j=0

zt
′
j FYt′ |X=x({j})

=
T∑

t′=1

J∑
j=0

at
′

M−1
t′ (j)

(FYt′ |X=x({M−1
t′ (J), . . . ,M−1

t′ (j)})− FYt(x)|X=x({M−1
t′ (J), . . . ,M−1

t′ (j)})︸ ︷︷ ︸
≥0 by (7)

)

+
J∑

j=0

(
wj +

T∑
t′=1

∑
ℓ:Mt′ (ℓ)≤Mt′ (j)

at
′
ℓ

)
FYt(x)|X=x({j}) +

T∑
t′=1

J∑
j=0

(
zt

′
j −

∑
ℓ:Mt′ (ℓ)≤Mt′ (j)

at
′
ℓ

)
FYt′ |X=x({j}).

Therefore, given wTQct +
∑T

t′=1(z
t′)TQob

t′ ≥ 0, we have wTpct +
∑T

t′=1(z
t′)Tpobt′ ≥ 0 if we can find

{at′j }j=0,1,...,J,t′=1,...,T ∈ R satisfying

wj +
T∑

t′=1

∑
ℓ:Mt′ (ℓ)≤Mt′ (j)

at
′
ℓ ≥ 0, ∀j,

zt
′
j −

∑
ℓ:Mt′ (ℓ)≤Mt′ (j)

at
′
ℓ ≥ 0, ∀j, t′,

at
′
j ≥ 0 if Mt′(j) > 0, ∀t′.

From the examination of matrices Qct and Qob
1 , . . . , Q

ob
T , wTQct +

∑T
t′=1(z

t′)TQob
t′ ≥ 0 yields

wj′ +

T∑
t′=1

zt
′
jt′

≥ 0 if Uj1,...,jT ,j′ ̸= ∅.
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For j = 0, 1, . . . , J , let

a1j = min
ℓ: Uℓ,j2,...,jT ,j ̸=∅

z1ℓ ,

at
′
j = min

ℓ: U...,jt′−1,ℓ,jt′+1,...,j
̸=∅
zt

′
ℓ , 1 < t′ < T,

aTj = min
ℓ: Uj1,...,jT−1,ℓ,j

̸=∅
zTℓ .

Then, wj +
∑T

t′=1 a
t′
j ≥ 0, ∀j. Since Uj1,...,jT ,j′ ̸= ∅ when j1 = · · · = jT = j′, we also have

at
′
j ≤ zt

′
j , ∀j, t′. Moreover, note that Uj1,...,jT ,j′ ̸= ∅ implies that Mt′(jt′) ≥ Mt′(j

′), ∀t′. Hence,

at
′

M−1
t′ (j)

is increasing in j. The desired {at′j }j=0,1,...,J,t′=1,...,T can be constructed as follows:

at
′

M−1
t′ (0)

= at
′

M−1
t′ (0)

,

at
′

M−1
t′ (j)

= at
′

M−1
t′ (j)

− at
′

M−1
t′ (j−1)

, j = 1, . . . , J.

It remains to construct FUt|X=x. For each Uj1,...,jT ,j′ ̸= ∅, choose a point rj1,...,jT ,j′ ∈ Uj1,...,jT ,j′ . Then,

define FUt|X=x to be the discrete distribution on support points rj1,...,jT ,j′ with FUt|X=x({rj1,...,jT ,j′}) =

qj1,...,jT ,j′ . Now we can conclude that (7) holds.

Proof of Theorem 4. For each function f : Y ×X → R, let GN (f(Y,X)) = N−1/2
∑N

i=1(f(Yi, Xi)−

E[f(Yi, Xi)]). By the standard decomposition, we have

√
N(Ψ̂(θ)−Ψ(θ)) = Gn

( ∑
λ∈Λ(X;θ)

1{λ∗(X; θ, τ0) = λ}λ⊤I(Y )
)

(16)

+Gn

( ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ̂) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤I(Y )
)

(17)

+
√
NE

[ ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ̂) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤I(Y )
]
. (18)

To show (17) and (18) are op(1), we will use the following lemma:

Lemma 1. Suppose that Assumptions 3 and 5 hold. Then, for all θ, there exists C > 0 such that

for any δ ≥ 0,

Pr
(
0 < min

λ∈Λ(X;θ):λ ̸=λ∗(X;θ,τ0)
(λ− λ∗(X; θ, τ0))

⊤τ0(X) ≤ δ
)
≤ Cδ.
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First, by Assumption 6, (17) is op(1) if the stochastic equicontinuity property holds: for all

positive values δN = o(1),

sup
∥τ−τ0∥∞≤δN

∣∣∣Gn

( ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤I(Y )
)∣∣∣ = op(1).

To this end, note that by Assumption 3,

∣∣∣ ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤I(Y )
∣∣∣ ≤M · 1{λ∗(X; θ, τ) ̸= λ∗(X; θ, τ0)},

where

1{λ∗(X; θ, τ) ̸= λ∗(X; θ, τ0)}

= 1{0 < (λ∗(X; θ, τ)− λ∗(X; θ, τ0))
⊤τ0(X) < (λ∗(X; θ, τ)− λ∗(X; θ, τ0))

⊤(τ0(X)− τ(X))}

≤ 1
{
0 < min

λ∈Λ(X;θ):λ̸=λ∗(X;θ,τ0)
(λ− λ∗(X; θ, τ0))

⊤τ0(X) ≤M∥τ − τ0∥∞
}

It follows that

E
[

sup
∥τ−τ0∥∞≤δN

∣∣∣ ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤I(Y )
∣∣∣]

≤ Pr
(
0 < min

λ∈Λ(X;θ):λ ̸=λ∗(X;θ,τ0)
(λ− λ∗(X; θ, τ0))

⊤τ0(X) ≤ δN

)
.

By Lemma 1 and Theorem 3 of Chen, Linton, and Van Keilegom (2003), (17) is op(1). Second, for

(18), we observe that

E
[ ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ̂) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤I(Y )
∣∣∣τ̂]

= E
[ ∑
λ∈Λ(X;θ)

(1{λ∗(X; θ, τ̂) = λ} − 1{λ∗(X; θ, τ0) = λ})λ⊤τ0(X)
∣∣∣τ̂]

= E[(λ∗(X; θ, τ̂)− λ∗(X; θ, τ0))
⊤τ0(X)1{(λ∗(X; θ, τ̂)− λ∗(X; θ, τ0))

⊤τ0(X) > 0}|τ̂ ]

≤ E
[
(λ∗(X; θ, τ̂)− λ∗(X; θ, τ0))

⊤(τ0(X)− τ̂(X))

·1{0 < (λ∗(X; θ, τ̂)− λ∗(X; θ, τ0))
⊤τ0(X) < (λ∗(X; θ, τ̂)− λ∗(X; θ, τ0))

⊤(τ0(X)− τ̂(X))}
∣∣∣τ̂]

≤ M∥τ̂ − τ0∥∞ Pr
(
0 < min

λ∈Λ(X;θ):λ ̸=λ∗(X;θ,τ0)
(λ− λ∗(X; θ, τ0))

⊤τ0(X) ≤M∥τ̂ − τ0∥∞
∣∣∣τ̂)

≤ CM2∥τ̂ − τ0∥2∞,
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where the last inequality follows from Lemma 1. Then, by Assumption 6, (18) is op(1). Now we can

apply the central limit theorem to (16) to obtain the desired result.
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