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1 Introduction

In the context of a linear regression model with a single break point, we develop a continuous

record asymptotic framework and inference methods for the break date. Our model is specified

in continuous time but estimated with discrete-time observations using a least-squares method.

We have T observations with a sampling frequency h over a fixed time horizon [0, N ] , where
N = Th denotes the time span of the data. We consider a continuous record (or infill) asymptotic

framework whereby T increases by shrinking the time interval h to zero while keeping the time

span N fixed. We impose very mild conditions on an underlying continuous-time model assumed

to generate the data, basically continuous Itô semimartingales.

An extensive amount of research addressed change-point problems under the classical large-N

asymptotics. Early contributions are Hinkley (1971), Bhattacharya (1987), and Yao (1987), who

adopted a Maximum Likelihood (ML) approach, and for linear regression models, Bai (1997) and

Bai and Perron (1998). See the reviews of Perron (2006), Aue and Hórvath (2013), Casini and

Perron (2019) and references therein. In this literature, the resulting large-N limit theory for the

estimate of the break date depends on the exact distributions of the regressors and disturbances.

Therefore, a so-called shrinkage asymptotic theory was adopted whereby the magnitude of the

shift, say δT , converges to zero which leads to a pivotal limit distribution.

We study a general change-point problem under a continuous record asymptotic framework

and develop inference procedures based on the derived asymptotic distribution. We establish

consistency at rate-T convergence for the least-squares estimate of the break date, assumed to

occur at time N0
b . Given the fast rate of convergence, we introduce a limit theory with shrinking

magnitudes of shifts and increasing variance of the residual process local to the change-point. The

asymptotic distribution corresponds to the location of the extremum of a function of the (quadratic)

variation of the regressors and of a Gaussian centered martingale process over some time interval.

It is characterized by some notable aspects. With the time horizon [0, N ] fixed, we can account

for the asymmetric informational content provided by the pre- and post-break observations, i.e.,

the time span and the position of the break date N0
b convey useful information about the finite-

sample distribution. In contrast, this is not achievable under the large-N shrinkage asymptotic

framework because both pre- and post-break segments expand proportionately as T increases and,

given the mixing assumptions imposed, only the neighborhood around the break date remains

relevant. Further, the domain of the extremum depends on the position of the break N0
b relative

to N , or total span, and thus the distribution is asymmetric, in general. The degree of asymmetry

increases as the true break point moves away from mid-sample. This holds unless the magnitude

of the break is large, in which case the density is symmetric irrespective of the location of the

break. This accords with simulation evidence which documents that the break point estimate is

less precise and the coverage rates of the confidence intervals less reliable when the break is not at
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mid-sample [see, e.g., Chang and Perron (2018)]. When the shift magnitude is small, the density

displays three modes. As the shift magnitude increases, this tri-modality vanishes. We show via

simulations that all of these features are shared by the finite-sample distribution of the least-squares

estimator of the break date. Hence, the continuous record asymptotics theory provides an accurate

approximation to the finite-sample distribution of the break date estimator. In contrast, we show

that the large-N shrinkage asymptotic distribution of Yao (1987) and Bai (1997) provides a poor

approximation to the finite-sample distribution and does not share any of those features.

Our asymptotics can be seen as intermediate between the shrinkage asymptotics and more

recent approaches relying on weak identification [see e.g., Elliott and Müller (2007) and Elliott,

Müller and Watson (2015)]. On the one hand, using the usual shrinking condition of Yao (1987)

and Bai (1997) for which the break magnitude δT goes to zero at a rate slower than O(T−1/2)
leads to underestimation of the uncertainty about the break date. On the other hand, the weak

identification condition of Elliott and Müller (2007) for which δT goes to zero at a fast rate (i.e.,

δT = O(T−1/2), so that the change-point cannot be consistently estimated) leads to overstating

the uncertainty. This has opposite consequences for the confidence intervals of the break date.

Confidence sets have poor coverage probabilities when the break is small under Bai’s framework

while they can be too wide under that of Elliott and Müller (2007). In this paper, the key is not

to focus our asymptotic experiment on shrinking condition on δT but to make assumptions on the

signal-to-noise ratio δT/σt instead, where σt is the volatility of the errors. We require δT to go to

zero at a slower rate than that of Elliott and Müller (2007)—to guarantee strong identification—

and require σt to increase without bound when t approaches the break date T 0
b . This offers a new

characterization of the uncertainty without compromising strong identification and consistency of

the model parameters needed to conduct inference.

Despite the effort devoted to the construction of confidence intervals for the break date [see

e.g., Bai and Perron (1998), Elliott and Müller (2007) and Eo and Morley (2015)], what is still

missing is a method that, for both large and small breaks, achieves both accurate coverage rates

and satisfactory average lengths. The most popular method is that of Bai and Perron (1998)

which yields confidence intervals that are relatively short but have good coverage only when the

magnitude of the break is not small. However, both small and large breaks are relevant for empirical

work; breaks that are statistically small can still be practically relevant.

Given the peculiar properties (e.g., multi-modality and asymmetry) of the continuous record

asymptotic distribution, we propose a non-standard inference procedure related to Bayesian anal-

yses. We use the concept of Highest Density Region to construct confidence sets for the break

date. Our method has good coverage and length across all break magnitudes. This has important

implications for empirical work because the user can be confident that our confidence interval in-

cludes the true value across all break sizes. For small breaks, the length of the confidence intervals

from any method can be quite large for some models. However, our confidence interval is still
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informative because it reveals that there is high uncertainty about the change-point. The same

information cannot be provided by existing methods either because they do not have good coverage

unless the break is not small [e.g., Bai and Perron (1998)] or because they have a large length even

when the break is not small [e.g., Elliott and Müller (2007)].

We use the continuous record asymptotics to provide an alternative approximation to the

finite-sample distribution of the least-squares estimator of the break date based on discrete-time

data. This creates no contradiction since asymptotic theory is intended as a thought experiment

used to obtain approximations to the distribution of estimators or test statistics. The continuous

record asymptotics has proven to be useful in other discrete-time settings such as in the context of

unit roots [cf. Phillips (1987b) and Perron (1991b)] and nonparametric regression [cf. Brown and

Low (1996)]. Phillips (1987b) showed that the continuous record asymptotics has the advantage

to bring into prominence the role of the initial condition for the statistical behavior of certain

estimators and tests in regression models with unit roots. Perron (1991a, 1991b) showed the

equivalence of the continuous record asymptotic distribution of the least-squares estimator of the

autoregressive coefficient and the exact distribution of the maximum likelihood estimator of the

drift coefficient in the continuous-time Ornstein-Uhlenbeck process, and used the latter to study the

effect of the initial condition. Finally, Brown and Low (1996) showed the asymptotic equivalence

between a nonparametric regression problem and a white noise with drift problem.

In terms of the asymptotic analysis, our local increasing volatility condition implies that the

volatility of the errors depends on h. Thus, for the derivations that involve the errors we do not

rely on the framework of Jacod and Protter (2012) since the latter assumes that the underlying

continuous-time process is fixed as the sampling h changes. Rather, we work directly with the

discretized process and use the results in Hansen (1992) and Kurtz and Protter (1991) that allow

for arrays of martingale differences that may depend on h. The latter setting is used in the

contexts of unit roots and nonstationary volatility. For example, in the local-to-unity framework

under continuous record asymptotics the autoregressive parameter of the discrete-time first-order

autoregressive process depends on h [cf. Perron (1991a, 1991b) and Phillips (1987a)]. A second

example is Hansen (1995) who studied regression models with volatilities that are local-to-unity.

Our empirical applications of interest involve regression models using time series data sampled

at, say, annual, quarterly, monthly and daily frequency (i.e., the same empirical settings considered

in the long-span structural break literature). For ultra high-frequency data (i.e., intra-daily data)

one would need to account for features such as jumps, market microstructure noise, etc. This

would require some extension/modification of our method. For example, one should apply some

techniques to remove the jumps and consider coefficient estimators that are built on spot volatility

estimators rather than on integrated volatility. To show the empirical usefulness of our approach,

we apply our inference methods to construct the confidence sets about the break dates in monthly

U.S. industrial production growth. The results show that the proposed confidence set works well
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and have better properties than existing methods.

Recent work in change-point analysis has focused on estimation when the number of change-

points is allowed to increase with the sample size [e.g., Fryzlewicz (2014)] and when the change-

point is allowed to approach the start and end sample point. A growing literature has also con-

sidered change-points in a high-dimensional setting [e.g., Lee, Seo and Shin (2016), Leonardi and

Bühlmann (2016) and Wang, Lin and Willett (2021)]. This work is mainly concerned with consis-

tent estimation of the change-point dates and development of corresponding computational algo-

rithms. Our focus is on asymptotic theory and inference within the classical change-point model

with a single break. Our results can also have useful implications for the growing literature on

inference in high-dimensional change-point analysis and for the literature on threshold regression

[see, e.g., Hansen (2000) and Hidalgo, Lee and Seo (2019)].

This paper relates to other work by the authors. Casini and Perron (2021) used the asymptotic

results developed in this paper and proposed a new Generalized Laplace estimator of the break date.

Casini and Perron (2022) analyzed the Generalized Laplace method under classical asymptotics

and focused on the theoretical relationship between the asymptotic distribution of frequentist and

Bayesian estimators of the break point. Finally, Chambers and Taylor (2019) considered both

deterministic one-time change and continuous stochastic parameter change in a continuous-time

autoregressive model. Casini and Perron (2023) considered testing for and estimating change-points

in a locally stationary process using frequency-domain methods.

The paper is organized as follows. Section 2 introduces the model and the estimation method.

Section 3 contains results about the consistency and rate of convergence for fixed shifts. Section 4

develops the asymptotic theory. We compare our limit theory with the finite-sample distribution

in Section 5. Section 6 describes how to construct the confidence sets, with simulation results

reported in Section 7. An empirical application is presented in Section 8. Section 9 provides brief

concluding remarks. The Supplement [Casini and Perron (2024)] contains the proofs as well as

additional material.

2 Model and Assumptions

We denote the transpose of a matrix A by A′ and the (i, j) elements of A by A(i,j). We use

∥·∥ to denote the Euclidean norm of a linear space, i.e., ∥x∥ = (∑p
i=1 x

2
i )

1/2
for x ∈ Rp. We use

⌊·⌋ to denote the largest smaller integer function. A sequence {ukh}Tk=1 is i.i.d. (resp., i.n.d) if

the ukh are independent and identically (resp., non-identically) distributed. We use
P→ and ⇒ to

denote convergence in probability and weak convergence, respectively. For semimartingales {St}t≥0

and {Rt}t≥0, we denote their covariation process by [S, R]t and their predictable counterpart by

⟨S, R⟩t. The symbol “≜” denotes definitional equivalence.
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Consider a classical partial change-point model with a single break point:

Yt = D′
tν

0 + Z ′
tδ

0
Z,1 + et, (t = 0, 1, . . . , T 0

b ) (2.1)

Yt = D′
tν

0 + Z ′
tδ

0
Z,2 + et, (t = T 0

b + 1, . . . , T ),

where Yt is the dependent variable, Dt and Zt are, respectively, q × 1 and p × 1 vectors of re-

gressors and et is an unobservable disturbance. The vector-valued parameters ν0, δ0
Z,1 and δ0

Z,2 are

unknown with δ0
Z,1 ̸= δ0

Z,2. Our main purpose is to develop inference methods for the unknown

change-point date T 0
b when T + 1 observations on (Yt, Dt, Zt) are available. Before moving to the

re-parametrization of the model, we discuss the underlying continuous-time model assumed to gen-

erate the data. The discrete-time variables are assumed to be generated from the continuous-time

processes {Ds, Zs, es}s≥0 defined on a filtered probability space (Ω, F , (Fs)s≥0, P ).
The sampling occurs at regularly spaced time intervals of length h within a fixed time horizon

[0, N ] where N denotes the span of the data. We observe {Ykh, Dkh, Zkh; k = 0, 1, . . . , T = N/h},
with Dkh ∈ Rq and Zkh ∈ Rp are random vector step functions which jump only at times

0, h, . . . , Th. We shall allow Dkh and Zkh to include both predictable processes and locally-

integrable semimartingles, though the case with predictable regressors is more delicate and dis-

cussed in the supplement. The discretized processes Dkh and Zkh are adapted to {Ft}t≥0. As

a matter of notation, hereafter we use t, s ∈ [0, N ] as indices of continuous time while we use

k = 0, 1, . . . , T = N/h as the index of discrete-time. For any process X we denote its “in-

crements” by ∆hXk = Xkh − X(k−1)h. For k = 1, . . . , T , let ∆hDk ≜ µD,kh + ∆hMD,k and

∆hZk ≜ µZ,kh + ∆hMZ,k where the “drifts” µD,t ∈ Rq, µZ,t ∈ Rp are Ft−h-measurable, and

MD,k ∈ Rq, MZ,k ∈ Rp are continuous local martingales with finite conditional covariance ma-

trix P -a.s., E(∆hMD,t∆hM
′
D,t| Ft−h) = ΣD,t−h∆t and E(∆hMZ,t∆hM

′
Z,t| Ft−h) = ΣZ,t−h∆t (∆t

and h are used interchangeably). Our statistical setup is thus similar to that of Foster and Nelson

(1996). We could allow E (Σ·,s| Ft−h) to vary for s ∈ [t− h, t] but this would make our proofs

longer without providing any more insight given the empirical applications we have in mind. Let

λ0 ∈ (0, 1) denote the fractional break date (i.e., T 0
b = ⌊Tλ0⌋). Via the Doob-Meyer Decomposi-

tion, we can write the model as

∆hYk ≜

(∆hDk)′ ν0 + (∆hZk)′ δ0
Z,1 + ∆he

∗
k, (k = 1, . . . , ⌊Tλ0⌋) ,

(∆hDk)′ ν0 + (∆hZk)′ δ0
Z,2 + ∆he

∗
k, (k = ⌊Tλ0⌋ + 1, . . . , T ) ,

(2.2)

where the error process {∆he
∗
t , Ft} is a continuous local martingale difference sequence with

conditional variance E[(∆he
∗
t )

2 | Ft−h] = σ2
e,t−h∆t P -a.s. finite.1 The underlying continuous-time

1In Section 4 we shall make more specific assumptions about |δ0
Z,1 − δ0

Z,2|, ∆he
∗
t and σ2

e,t−h.
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data-generating process can thus be represented (up to P -null sets) in integral equation form as

Dt = D0 +
� t

0
µD,sds+

� t

0
σD,sdWD,s, Zt = Z0 +

� t

0
µZ,sds+

� t

0
σZ,sdWZ,s, (2.3)

where σD,t and σZ,t are the instantaneous covariance processes taking values in Mcàdlàg
q and Mcàdlàg

p

[the space of p × p positive definite real-valued matrices whose elements are càdlàg]; WD (resp.,

WZ) is a q (resp., p)-dimensional standard Wiener process; e∗ = {e∗
t}t≥0 is orthogonal (in a

martingale sense) to {Dt}t≥0 and {Zt}t≥0; and D0 and Z0 are F0-measurable random vectors.

In (2.3),
� t

0 µD,sds is a continuous adapted process with finite variation paths and
� t

0 σD,sdWD,s

corresponds to a continuous local martingale. Thus, (2.3) implies that Dt and Zt are continuous

semimartingales.

Assumption 2.1. (i) µD,t, µZ,t, σD,t and σZ,t satisfy P -a.s., supω∈Ω, 0<t≤τT
∥µD,t (ω)∥ < ∞, supω∈Ω,

0<t≤τT
∥µZ,t (ω)∥ < ∞, supω∈Ω, 0<t≤τT

∥σD,t (ω)∥ < ∞ and supω∈Ω, 0<t≤τT
∥σZ,t (ω)∥ < ∞ for some

localizing sequence {τT} of stopping times. Also, σD, s and σZ,s are càdlàg; (ii)
� t

0 µD,sds and� t
0 µZ,sds belong to the class of continuous adapted finite variation processes; (iii)

� t
0 σD,sdWD,s

and
� t

0 σZ,sdWZ,s are continuous local martingales with P -a.s. finite positive definite conditional

variances (or spot covariances) defined by ΣD,t = σD,tσ
′
D,t and ΣZ,t,= σZ,tσ

′
Z,t, which for all t <

∞ satisfy
� t

0 Σ(j,j)
D,s ds < ∞ (j = 1, . . . , q) and

� t
0 Σ(j,j)

Z,s ds < ∞ (j = 1, . . . , p). Furthermore, for

every j = 1, . . . , q, r = 1, . . . , p, and k = 1, . . . , T , h−1 � kh
(k−1)h Σ(j,j)

D,s ds and h−1 � kh
(k−1)h Σ(r,r)

Z,s ds are

bounded away from zero and infinity, uniformly in k and h.

Part (i) restricts the processes to be locally bounded and part (ii) requires the drifts to be

adapted finite variation processes. These are standard regularity conditions in the high-frequency

statistics literature [cf. Barndorff-Nielsen and Shephard (2004), Li, Todorov and Tauchen (2016),

Li, Todorov and Tauchen (2017) and Li and Xiu (2016)]. Part (iii) requires the regressors to have

finite integrated covariance.

Assumption 2.2. e∗
t ≜

� t
0 σe,sdWe,s with 0 < σ2

e,t < ∞, where We is a one-dimensional stan-

dard Wiener process and {σe,t}t≥0 has a P -a.s. continuous sample path. Furthermore, ⟨e, D⟩t =
⟨e, Z⟩t = 0 identically for all t ≥ 0.

Assumption 2.2 presents the continuous time representation of the error process and states

that the error process is uncorrelated with the regressors. GARCH models are allowed by Assump-

tion 2.2. For example, if

dσ2
e,t = θ

(
ω − σ2

e,t

)
dt+

√
2λθσ2

e,tdWσ,t,

where Wσ,t is a standard Wiener process independent from We,s, ω > 0, θ > 0 and λ ∈ (0, 1),
then the results in Nelson (1990) and Drost and Werker (1996) imply that ∆e∗

t = e∗
t − e∗

t−h is a
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GARCH(1,1) process with parameters (ψh, αh, βh), i.e., its volatility process σ2
h,t satisfies

σ2
h,t = ψh + αh

(
e∗
t−h

)2
+ βhσ

2
h,t−h,

where the relationships between the parameters ω, θ and λ and the coefficients ψh, αh and βh can

be found in Proposition 3.1 in Drost and Werker (1996). For the relation to more general GARCH

models we refer to the above-mentioned papers.

We rule out jump processes; hence, our results are not expected to provide good approxi-

mations for high-frequency data but for data sampled at lower frequencies. The use of ultra high

frequency data involves a host of issues that we cannot handle (e.g., market-microstructure, bid-ask

spread, volatility jumps, non-continuous sampling, etc.). However, our methods and results could

be extended. Although the raw least-squares method is not robust to jumps, it can be augmented

with thresholding techniques that detect the jumps. Further, since ultra high-frequency data imply

larger sample sizes one should modify the raw least-squares method for the regression coefficients

so that the estimation is based on the integrated spot covariation (constructed over blocks of ul-

tra high-frequency observations) rather than just the full-sample covariation. The integrated spot

estimator was considered by Li et al. (2017) who proposed an optimal weighted average of local

nonparametric co-volatility estimates. Our main theoretical results should continue to hold under

this more general setting, though the proofs would be substantially more involved. We leave these

extensions for future research.

Assumption 2.3. Σ0 ≜ {ΣD,t, ΣZ,t}t≥0 has P -a.s. continuous sample paths.

An interesting issue is whether the theoretical results to be derived for model (2.2) are ap-

plicable to classical structural change models for which an increasing span of data is assumed.

This requires establishing a connection between the assumptions imposed on the stochastic pro-

cesses in both settings. Roughly, the classical long-span setting uses approximation results valid

for weakly dependent data; e.g., ergodic and mixing procesess. Such assumptions are not needed

under our fixed-span asymptotics. Nonetheless, we can impose restrictions on the probabilistic

properties of the latent volatility processes in our model and thereby guarantee that ergodic and

mixing properties are inherited by the corresponding observed processes. This follows from Theo-

rem 3.1 in Genon-Catalot, Jeantheau and Laredo (2000) together with Proposition 4 in Carrasco

and Chen (2002). For example, these results imply that the observations {Zkh}k≥1 (with fixed h)

can be viewed (under certain conditions) as a hidden Markov model which inherits the ergodic and

mixing properties of {σZ,t}t≥0. Hence, our model encompasses those considered in the structural

change literature that uses a long-span asymptotic setting. For example, our framework about

the regressors Dt and Zt allows for Gaussian continuous time ARMA (CARMA) processes. The

latter were discussed by Brockwell and Davis (1996) and Brockwell (2001, 2004). One would need
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to specify µ·,s and σ·,s in terms of the autoregressive and moving-average coefficients and of the

vector of initial conditions of the CARMA process. On the other hand, the stochastic integral

representation for the error process e∗
t does not allow in general for CARMA processes except

when the vector of initial conditions is equal to zero.

In the context of predictive regression analyzed under long-span asymptotics, recent work

by Georgiev, Harvey, Leybourne and Taylor (2020) and Andersen and Varneskov (2022b, 2022a)

proposed tests for structural breaks and parameter instability that are robust to (near) unit roots

or nonstationary fractional integration. The new tests are constructed by modifying popular

structural break tests [e.g., the sup-Wald test of Andrews (1993)] to allow for such features. In

contrast, in our work we consider the original least-squares estimator of the break point but we

analyze its limiting distribution under a continuous record. We extend model (2.2) to allow for

predictable processes (e.g., a constant and/or lagged dependent variable) in the supplement.

Assumption 2.4. N0
b = Nλ0 for some λ0 ∈ (0, 1).

Assumption 2.4 defines the break date in the continuous-time interval [0, N ] and requires it

to be away from the boundaries of the interval [0, N ].
It is useful to re-parametrize model (2.2). Let ykh = ∆hYk, xkh = (∆hD

′
k, ∆hZ

′
k)′, zkh = ∆hZk,

ekh = ∆he
∗
k, β

0 = ((ν0), (δ0
Z,1)′)′ and δ0

Z = δ0
Z,2 − δ0

Z,1. (2.2) can be expressed as:

ykh = x′
khβ

0 + ekh, (k = 1, . . . , T 0
b ), (2.4)

ykh = x′
khβ

0 + z′
khδ

0
Z + ekh, (k = T 0

b + 1, . . . , T ),

where the true parameter θ0 = ((β0)′, (δ0
Z)′)′ takes value in a compact space Θ ⊂ Rdim(θ). Also,

define zkh = R′xkh, where R is a (q + p) × p known matrix with full column rank. We consider a

partial structural change model for which R = (0, I)′ with I an identity matrix.

Finally, we write the model in matrix format which will be useful for the derivations. Let

Y = (yh, . . . , yTh)′, X = (xh, . . . , xTh)′, e = (eh, . . . , eTh)′, X1 = (xh, . . . , xTbh, 0, . . . , 0)′, X2 =
(0, . . . , 0, x(Tb+1)h, . . . , xTh)′ and X0 = (0, . . . , 0, x(T 0

b
+1)h, . . . , xTh)

′. Note that the difference

between X0 and X2 is that the latter uses Tb rather than T 0
b . Define Z1 = X1R, Z2 = X2R

and Z0 = X0R. (2.4) in matrix format is: Y = Xβ0 + Z0δ
0
Z + e. We consider the least-squares

estimator of Tb, i.e., the minimizer of ST (Tb), the sum of squared residuals when regressing Y on

X and Z2 over all possible partitions, namely: T̂ LS
b = argminp+q≤Tb≤TST (Tb). It is straightforward

to show that T̂ LS
b = argminp+q≤Tb≤TQT (Tb) where QT (Tb) ≜ δ̂′

Tb
(Z ′

2MZ2) δ̂Tb
, δ̂Tb

is the least-

squares estimator of δ0
Z when regressing Y on X and Z2, and M = I − X (X ′X)−1 X ′. For

brevity, we will write T̂b for T̂ LS
b with the understanding that T̂b is a sequence indexed by T .

Let δ̂ = δ̂
T̂b
. The estimate of the break fraction is then λ̂b = T̂b/T . Both in practice and for

theoretical analyses, a trimming parameter π ∈ (0, 1/2) is applied to restrict the minimization
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over the interval [Tπ, (1 − π)T ].

3 Consistency and Convergence Rate under Fixed Shifts

We now establish the consistency and convergence rate of the least-squares estimator under fixed

shifts. Under the classical large-N asymptotics, related results have been established by Bai (1997)

and Bai and Perron (1998). Early important results for a mean-shift appeared in Yao (1987) and

Bhattacharya (1987) for an i.i.d. series, Bai (1994) for linear processes and Picard (1985) for a

Gaussian autoregressive model.

Assumption 3.1. There exists an l0 such that for all l > l0, the matrices (lh)−1∑l
k=1 xkhx

′
kh,

(lh)−1∑T
k=T−l+1 xkhx

′
kh, (lh)−1∑T 0

b

k=T 0
b

−l+1 xkhx
′
kh, and (lh)−1∑T 0

b +l
k=T 0

b
+1 xkhx

′
kh, have minimum eigen-

values bounded away from zero in probability uniformly in h.

Assumption 3.2. Let Q0 (Tb, θ0) ≜ E [QT (Tb, θ0) −QT (T 0
b , θ

0)]. There exists a T 0
b such that

Q0 (T 0
b , θ

0) > sup(Tb, θ0)/∈B Q0 (Tb, θ0) , for every open set B that contains (T 0
b , θ

0).

Assumption 3.1 is similar to A2 in Bai and Perron (1998) and requires enough variation

around the break point and at the beginning and end of the sample. The factor h−1 normalizes

the observations so that the assumption is implied by a weak law of large numbers. Assumption

3.2 is a standard uniqueness identification condition. We then have the following results derived

under fixed N .

Proposition 3.1. Under Assumption 2.1-2.4 and 3.1-3.2, λ̂b
P→ λ0.

Proposition 3.2. Under Assumption 2.1-2.4 and 3.1-3.2 for any ε > 0, there exists a K > 0 such

that for all large T , P (T
∣∣∣λ̂b − λ0

∣∣∣ > K) < ε.

We have the same T -convergence rate as under large-N asymptotics. Let θ0 = ((β0)′, (δ0
1)′,

(δ0
2)′)′. The fast T -rate of convergence implies that the least-squares estimate of θ0 is the same as

when λ0 is known. A natural estimator for θ0 is argminβ∈Rp+q ,δ∈Rp ||Y −Xβ− Ẑ2δ||2, where we use
T̂b instead of Tb in the construction of Ẑ2. Then we have the following result, akin to an extension

of the results in Barndorff-Nielsen and Shephard (2004) and Li et al. (2017).

Proposition 3.3. Under Assumption 2.1-2.4 and 3.1-3.2, we have as T → ∞ (N fixed), (
√
T/N(β̂−

β0),
√
T/N(δ̂ − δ0

Z))′ d→ MN (0, V ) where MN denotes a mixed Gaussian distribution and V

is a positive definite F -conditional asymptotic variance. If Σ·,t is independent of σe,t, then

V = V
−1
 � N

0 ΣX,sσ
2
e,sds

� N
N0

b
ΣXZ,sσ

2
e,sds� N

N0
b

ΣZX,sσ
2
e,sds

� N
N0

b
ΣZ,sσ

2
e,sds

V −1
,
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and

V =
 � N

0 ΣX,sds
� N
N0

b
ΣXZ,sds� N

N0
b

ΣZX,sds
� N
N0

b
ΣZ,sds

 , with ΣXZ,s = σX,sσ
′
Z,s.

V can be random because Σ·,t and σe,t can be stochastic. Under fixed shifts, Proposition

3.1-3.3 shows the asymptotic equivalence of discrete and continuous-time regression models with

a change-point, a result corresponding to Brown and Low (1996) for nonparametric regression.

Given λ̂b
P→ λ0 the slope parameters θ0 can be consistently estimated since the regression model

involves increments of semimartingales, i.e., a regression of ∆hYk on ∆hDk and ∆hZk. This does

not require consistent estimation of the drift parameters of the semimartingales and so it is not

subject to issues related to the non-identifiability of the drift parameter under fixed-N asymptotics.

4 Asymptotic Distribution under a Continuous Record

We now present results about the limiting distribution of the least-squares estimate of the break

date under a continuous record framework. As in the classical large-N asymptotics, it depends on

the exact distribution of the data and the errors for fixed break sizes [c.f., Hinkley (1971)]. This

has forced researchers to consider a shrinkage asymptotic theory where the size of the shift is made

local to zero as T increases, an approach developed by Picard (1985) and Yao (1987). We continue

with this avenue. Given the consistency result, we know that there exists some h∗ such that for

all h < h∗ with high probability ηTh ≤ N̂b ≤ (1 − η)Th, for η > 0 such that λ0 ∈ (η, 1 − η). By

Proposition 3.2, N̂b−N0
b = Op (T−1), i.e., N̂b is in a shrinking neighborhood of N0

b . With a certain

rescaling of the objective function one can first obtain the shrinkage asymptotic distribution of Bai

(1997). However, this is unsatisfactory for two reasons. First, as we show below [see also Casini

and Perron (2022; 2021)], the shrinkage asymptotic distribution provides a poor approximation to

the finite-sample distribution of the least-squares estimator. Second, the latter point also explains

the poor coverage properties of the confidence intervals derived from the shrinkage asymptotic

distribution when the magnitude of the break is not large. Some related results were obtained by

Jiang et al. (2018) for a simple location model. Their approach is, however, quite restrictive and

no feasible inference procedure suggested. See the supplement for a more complete discussion.

We begin with the following assumption which specifies that i) we use a shrinking condition

on δ0
Z ; ii) we introduce a locally increasing variance condition on the residual process. The first

is similarly used under classical large-N asymptotics, while the second is new and useful in our

context in order to accurately capture the relevant uncertainty in the change-point problem. We

do not impose restrictions only on δ0
Z but also on the ratio δ0

Z/σt when t is close to T 0
b . We

refer to δ0
Z/σt as the signal-to-noise ratio. Controlling this ratio rather than just δ0

Z allows for an

10



alternative characterization of the uncertainty about the change-point date in order to obtain an

asymptotic distribution which provides a better approximation of the finite-sample distribution of

the estimator. To emphasize that δ0
Z depends on the sample-size we denote it by δh.

Let Fh,t denote a filtration, which may depend on h, on (Ω, F , (Fh,t)t≥0 P ) where now

F = ∪h>0 (Fh,t)t≥0.
2

Assumption 4.1. Let δh = δ0h1/4, δ0 ∈ Rp and assume that for all t ∈ (N0
b − ϵ, N0

b + ϵ) , with ϵ ↓ 0
and T 1−κϵ → B < ∞, 0 < κ < 1/2, E[(∆he

∗
t )

2 | Fh,t−h] = σ2
h,t−h∆t P -a.s., where σh,t ≜ σhσe,t,

σh ≜ σh−1/4 and 0 < σ < ∞.

Note that the localization parameter δ0 in the definition of δh is different from the fixed

parameter δ0
Z since h → 0. The rate 1/4 in the conditions δh = O(h1/4) and σh = O(h−1/4) is for

tractability. One can show that consistency also holds for a rate faster than 1/4, though slower

than κ. However, for the derivation of the limiting distribution one needs δh/σh = O(h1/2) and

O(δh) = O(σ−1
h ) with κ < 1/2. Christensen, Oomen and Renò (2022) also used an increasing local

volatility condition, though their condition takes a different form. They assumed that σt = b|τ−t|−γ

where b > 0, τ ∈ (0, N) and γ > 0 are constants and so σt does not depend on h. They named

it volatility burst and they used it along with a drift bust condition to model the existence of

short-lived locally explosive trends in stock prices (i.e., flash crashes). Although that is a different

context from ours, it is the deviation from the standard diffusion setting that allows the authors

to account for flash crashes and that allows us to provide a more accurate asymptotic theory for

change-point estimation. However, since in our setting σh,t depends on h we cannot use the infill

asymptotic framework of Jacod and Protter (2012) as the latter requires the underlying continuous-

time process to be fixed as the sampling h changes. We deal with the factor σh in the proofs and

use the asymptotic results in Hansen (1992) and Kurtz and Protter (1991) that allow for arrays

of martingale differences that may depend on h. The latter setting is popular in the contexts of

unit roots and nonstationary volatility [cf. Hansen (1995) and Phillips (1987b)]. For example,

in the local-to-unity framework under continuous record asymptotics the AR parameter of the

discrete-time AR(1) process depends on h [cf. Perron (1991a, 1991b) and Phillips (1987a)].

The vector of scaled true parameters is θh ≜ ((β0)′, δ′
h)′. Under Assumption 4.1 the error

process has the following representation.

Assumption 4.2. e∗
t =

� t
0 σe,s,∆dWe,s where We is a one-dimensional standard Wiener process,

σe,s,∆ =

σe,s s /∈ (N0
b − ϵ, N0

b + ϵ)

σh−1/4σe,s s ∈ (N0
b − ϵ, N0

b + ϵ)
,

2Technically, (Ω, F , (Fh,t)t≥0 P ) is an extension of the original probability space introduced in Section 2 where
Fh,t = Ft ⊗ Gh,t, Ft is defined in Section 2 and Gh,t is the filtration generated by e∗

t in Assumption 4.2. To save
on notation, we do not introduce the notation (Ω′, F ′, (Fh,t)t≥0 P

′) for the extension of the probability space.
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with 0 < σ2
e,s < ∞. Furthermore, ⟨e, D⟩t = ⟨e, Z⟩t = 0 identically for all t ≥ 0.

Define

∆hẽt ≜

∆he
∗
t , t /∈ (N0

b − ϵ, N0
b + ϵ)

h1/4∆he
∗
t , t ∈ (N0

b − ϵ, N0
b + ϵ)

.

We shall refer to {∆hẽt, Fh,t} as the normalized residual process. Under this framework, we will

show that the rate of convergence of N̂b is now T 1−κ with 0 < κ < 1/2. Due to the fast rate of

convergence of N̂b, the objective function oscillates rapidly as h ↓ 0. However, the local increasing
volatility of the errors around the change-point makes the objective function behave as if it were

a function of a standard diffusion process. The neighborhood in which the errors have relatively

higher variance is shrinking at rate 1/T 1−κ, the rate of convergence of N̂b. Hence, in a neighborhood

of N0
b in which we study the limiting behavior of the break point estimator, the rescaled criterion

function is regular enough so that a feasible limit theory can be developed. The rate of convergence

T 1−κ is still sufficiently fast to guarantee a
√
T -consistent estimation of the slope parameters, as

stated in the following proposition. Let ⟨Z∆, Z∆⟩ (v) be the predictable quadratic variation process

of Z∆. The process W (v) is, conditionally on F , a two-sided centered Gaussian martingale with

independent increments and variances given in Section S.B of the supplement.

Proposition 4.1. Under Assumption 2.1, 2.3-2.4, 3.1-3.2 and 4.1-4.2, (i) λ̂b
P→ λ0; (ii) for every

ε > 0 there exists a K > 0 such that for all large T, P (T 1−κ|λ̂b − λ0| > K||δ0||−2σ2) < ε; and (iii)

for κ ∈ (0, 1/4], (
√
T/N(β̂ − β0),

√
T/N(δ̂ − δh))′ d→ MN (0, V ) as T → ∞, with V given in

Proposition 3.3.

We first present a general result which shows that under Assumption 4.1 one can obtain a

shrinkage asymptotic distribution similar to Bai (1997). The latter exploits the consistency of

λ̂b and the fact that mixing conditions implies that the regimes before and after λ0 are asymp-

totically independent. Let Z∆ ≜ (0, . . . , 0, z(Tb+1)h, . . . , zT 0
b
h, 0, . . . , 0) if Tb < T 0

b and Z∆ ≜

(0, . . . , 0, z(T 0
b

+1)h, . . . , zTbh, 0, . . . , 0) if Tb > T 0
b .

Proposition 4.2. Under Assumption 2.1, 2.3-2.4, 3.1-3.2 and 4.1-4.2, we have for 0 < κ < 1/2

T 1−κ(λ̂b − λ0) ⇒ argmax
v∈(−∞,∞)

2(δ0)′W (v) . (4.1)

The distribution in Proposition 4.2 is different from Bai (1997). One can show that his

distribution can be obtained under a continuous record if Assumption 4.1 is modified as follows:

δh = δ0hκ/2, T 1−κϵ → B < ∞, 0 < κ ≤ 1/2 and σh ≜ σh−κ/2. This would result in,

T 1−κ
(
λ̂b − λ0

) L−s⇒ (4.2)
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argmax
v∈(−∞,∞)

{
−
(
δ0
)′

⟨Z∆, Z∆⟩ (v) δ0 + 2
(
δ0
)′

W (v)
}
.

The difference between (4.1) and (4.2) is the presence of the drift (or deterministic) part (δ0)′

⟨Z∆, Z∆⟩ (v) δ0. Without relating the magnitude of the break to the local variance condition, the

order of the stochastic part dominates that of the deterministic part and so the latter vanishes

asymptotically. The distributions in (4.1)-(4.2) share the same issues as Bai’s and so they do not

add any particular insight. We therefore move to discuss how to obtain a more useful continuous

record asymptotic distribution.

Consider the set D (C) ≜ {Nb : Nb ∈ {N0
b + Ch1−κ}, |C| < ∞}, on the original time scale.

Let ψh ≜ h1−κ. Here we use the same device as in Foster and Nelson (1994; 1996). Different

scaling factors applied to an objective function can lead to different asymptotic distributions. We

normalize QT (Tb) by ψh, where ψh corresponds to the rate of convergence in Proposition 4.1. The

rate of convergence implicitly describes the order of the terms in the expansion of QT (Tb)−QT (T 0
b ).

Lemma 4.1. Under Assumption 2.1, 2.3-2.4, 3.1-3.2 and 4.1-4.2,

(QT (Tb) −QT

(
T 0
b

)
)/ψh (4.3)

= −δ′
h (Z ′

∆Z∆/ψh) δh + 2δ′
h (Z ′

∆e/ψh) sgn
(
T 0
b − Tb

)
+ op

(
h1/2

)
.

For brevity, we use the notation ± in place of sgn (T 0
b − Tb), henceforth. The conditional first

moment of the centered criterion function QT (Tb)−QT (T 0
b ) is of order O (h1−κ), i.e., it “oscillates”

rapidly as h ↓ 0. Hence, in order to approximate the behavior of {T̂b − T 0
b }, we proceed as in

Section 3 in Nelson and Foster (1994) and rescale “time”. For any C > 0, let LC ≜ N0
b − Ch1−κ

and RC ≜ N0
b + Ch1−κ, where LC and RC are the left and right boundary points of D (C),

respectively. We then have |RC − LC | = O (Ch1−κ). Now, take the vanishingly small interval

[LC , RC ] on the original time scale, and stretch it into a time interval [T 1−κLC , T
1−κRC ] on a

new “fast time scale”. Changing time scale simply means that we rescale the objective function in

such a way that it is of higher order as h ↓ 0, i.e., it fluctuates less. This leads to an asymptotic

distribution that accounts for higher uncertainty. Yet, under our framework it is still possible to

consistently estimate the break fraction and the regression coefficients so that inference is feasible.

This may not be a standard approach to derive asymptotic distribution results. But, as always, any

asymptotic device can only be judged by how well it provides an accurate approximation in finite

samples. Our simulations will show that this framework is indeed very useful for that purpose.

Since the criterion function is scaled by ψ−1
h , all scaled processes are Op (1). Now, let Nb (v) =

N0
b − vh1−κ, v ∈ [−C, C]. Using Lemma 4.1 and Assumption 4.1 (see the appendix),

ψ−1
h

(
QT (Tb (v)) −QT

(
T 0
b

))
=
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− δ′
h

 T 0
b∑

k=Tb(v)+1

zkh√
ψh

z′
kh√
ψh

 δh ± 2
(
δ0
)′

T 0
b∑

k=Tb(v)+1

zkh√
ψh

ẽkh√
ψh

+ op
(
h1/2

)
,

where ẽkh ≜ h1/4ekh. In addition, in view of (2.3), we let dZψ,s = ψ
−1/2
h σZ,sdWZ,s for s ∈

[N0
b − vh1−κ, N0

b + vh1−κ]. Applying the time scale change s → t ≜ ψ−1
h s to all processes including

Σ0, we have dZψ,t = σZ,tdWZ,t with t ∈ T (C), where T (C) ≜ {t : t ∈
[
N0
b + v ∥δ0∥2

/σ2
]
, |v| ≤

C}. Therefore,

ψ−1
h

(
QT (Tb (v)) −QT

(
T 0
b

))
= −δ′

h

 T 0
b∑

k=Tb(v)+1
zψ,khz

′
ψ,kh

 δh ± 2
(
δ0
)′

T 0
b∑

k=Tb(v)+1
zψ,khẽψ,kh + op

(
h1/2

)
,

with NTb (v) /T = Nb (v) = N0
b + v, where zψ,kh ≜ zkh/

√
ψh and ẽψ,kh ≜ ẽkh/

√
ψh. Because of the

change of time scale, all processes in the last display are scaled up to be Op (1) and thus behave

as diffusion-like processes. On this new “fast time scale”, we have T 1−κRC − T 1−κLC = O (1) and

QT (Tb (v)) − QT (T 0
b ) is restored to be Op (1). Observe that changing the time scale does not

affect any statistic which depends on observations from k = 1 to k = ⌊LC/h⌋ or from k = ⌊RC/h⌋
to k = T (since these involve a positive fraction of data). However, it does affect quantities

which include observations that fall in [Tbh, T 0
b h] (assuming Tb < T 0

b ). In particular, on the

original time scale, {Dt} and {Zt} are well-defined and scaled to be Op (1) while QT (Tb)−QT (T 0
b )

(asymptotically) oscillates more rapidly than a simple diffusion-type process. On the new “fast

time scale”, {Dt} and {Zt} are not affected since they have the same order in [T 1−κLC , T
1−κRC ]

as h ↓ 0. That is, the first conditional moments are O (h) while the corresponding moments for

QT (Tb) − QT (T 0
b ) on T (C) are restored to be O (h). As h ↓ 0, the rescaled criterion function

(QT (Tb (v)) −QT (T 0
b )) /h1/2 operates on a “fast time scale” on T (C).

Our analysis is local; we examine the limiting behavior of the centered and rescaled criterion

function process in a neighborhood T (C) of the true break date N0
b defined on a new time scale.

We first obtain the weak convergence results for the statistic (QT (Tb (v)) −QT (T 0
b )) /h1/2 and

then apply a continuous mapping theorem for the argmax functional. However, it is convenient to

work with a re-parametrized objective function. Proposition 4.1 allows us to use

QT (θ∗) =
(
QT (θh, Tb (v)) −QT

(
θ0, T 0

b

))
/h1/2,

where θ∗ ≜ (θ′
h, v)′ with Tb (v) ≜ T 0

b + ⌊v/h⌋ and Tb (v) is the time index on the “fast time

scale”. The normalizing factor ψhh
1/2 allows us to change the time scale and obtain an alternative

asymptotic distribution. When v varies, Tb (v) potentially visits all integers between 1 and T .

Thus, on the new time scale, we need to introduce the trimming parameter π ∈ (0, 1) which
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determines the region where Tb (v) can vary. We have the normalizations Tb (v) = Tπ if Tb (v) ≤ Tπ

and Tb (v) = T (1 − π) if Tb (v) ≥ T (1 − π). On the old time scale, Nb (u) = N0
b + u with

v → ψ−1
h u, so that Nb (u) is in a vanishing neighborhood of N0

b . On T (C), we index the process

QT (θh, Tb (v)) − QT (θ0, T 0
b ) by two time subscripts: one referring to the time Tb on the original

time scale and one referring to the time elapsed since Tbh on the “fast time scale”. For simplicity,

we omit the former; since the limiting distribution of the least-squares estimator will now depend

on the trimming we use the notation T̂b,π = T λ̂b,π where λ̂b,π is the least-squares estimator of the

fractional break date associated to the fast time scale (i.e., associated to the factor ψhh
1/2).

The optimization problem is not affected by the change of time scale. In fact, by Proposition

4.1, u = Th(λ̂b − λ0) = KOp (h1−κ) on the old time scale; whereas on the new “fast time scale”,

v = Th(λ̂b,π − λ0) = Op (1). The maximization problem is not changed because v/h can take any

value in R. The process QT (θh, Tb (v)) − QT (θ0, T 0
b ) is thus analyzed on a fixed horizon since v

now varies over [(Nπ − N0
b )/(||δ0||−2σ2), (N (1 − π) − N0

b )/(∥δ0∥−2
σ2)]. Define the modification

to the set D (C) applicable to the new time scale by

D∗ (C) =
{(
β0, δh, v

)
:
∥∥∥θ0

∥∥∥ ≤ C; Tb (v) = T 0
b + vN−1

∥∥∥δ0
∥∥∥−2

σ2;

(Nπ −N0
b )

∥δ0∥−2 σ2 ≤ v ≤ N (1 − π) −N0
b

∥δ0∥−2 σ2

}
.

Let D (D∗ (C) , R) denote the space of all càdlàg functions from D∗ (C) into R. Endow this space

with the Skorokhod topology. Under a continuous record, we can apply limit theorems for statistics

involving (co)variation between regressors and errors. This enables us to deduce the limiting

process for QT (θ∗), using results from Kurtz and Protter (1991) and Hansen (1992).

To guide intuition, note that under the new re-parametrization, the limit law of QT (θ∗) is,

according to Lemma 4.1, the same as the limit law of

−h−1/2δ′
h (Z ′

∆Z∆) δh ± 2h−1/2δ′
h (Z ′

∆e)
d≡ −

(
δ0
)′

(Z ′
∆Z∆) δ0 ± 2h−1/2

(
δ0
)′
h1/4

(
Z ′

∆h
−1/4ẽ

)
,

where
d≡ denotes (first order) equivalence in law, and since (approximately) ekh ∼ i.n.d.N (0,

σ2
h,k−1h), σh,k = σhσe,k then ẽkh ∼ i.n.d.N (0, σ2

e,k−1h). Hence, the limit law of QT (θ∗) is, to

first-order, equivalent to the law of

−
(
δ0
)′

(Z ′
∆Z∆) δ0 ± 2

(
δ0
)′ (

h−1/2Z ′
∆ẽ
)
. (4.4)

We apply a law of large numbers to the first term and weak convergence with respect to the

Skorokhod metric to the second. Assumption 4.1 combined with the normalizing factor h−1/2 in
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QT (θ∗) account for the discrepancy between the deterministic and stochastic component in (4.4).

Having outlined the main steps in the arguments used to derive the continuous records limit

distribution of the break date estimate, we now state the main result of this section. The limiting

process is realized on a extension of the original probability space and we relegate this description

to Section S.B in the supplement.

Theorem 4.1. Under Assumption 2.1, 2.3-2.4, 3.1-3.2 and 4.1-4.2,

N
(
λ̂b,π − λ0

)
⇒ argmax

v∈A

{
−
(
δ0
)′

⟨Z∆, Z∆⟩ (v) δ0 + 2
(
δ0
)′

W (v)
}
, (4.5)

where

A ≜

[
Nπ −N0

b

∥δ0∥−2 σ2 ,
N (1 − π) −N0

b

∥δ0∥−2 σ2

]
.

Theorem 4.1 shows the asymptotic distribution for fixed N . Note the differences between

the results in Theorem 4.1 and in Proposition 4.2. First, on the fast time scale, λ̂b,π behaves

as an inconsistent estimator for λ0 for N fixed, but can be shown to be consistent as N → ∞.

On the original time scale λ̂b is not only consistent for λ0 but it also enjoys a similar asymptotic

distribution as in Bai (1997). Second, the asymptotic distribution of λ̂b,π depends on the span

of the data and consequently on the trimming π. Proposition 4.2, in contrast, suggests that the

span, the trimming and the location of the break are irrelevant for the limiting behavior of the

estimator. This intuitively follows from the fact that under the original time scale the break date

estimator is consistent. We will show that indeed the span of the data and the location of the break

influence the finite-sample properties of the least-squares estimator, and that Theorem 4.1 provides

a more useful approximation. An important implication of Theorem 4.1 is that the precision of

the estimator depends more on the span N than to the number of observations T .

Unlike Bai’s distribution, the distribution in Theorem 4.1 involves the location of the maxi-

mum of a function of the (quadratic) variation of the regressors and of a two-sided centered Gaus-

sian martingale process over the interval [(Nπ − N0
b )/(∥δ0∥−2

σ2), (N (1 − π) − N0
b )/(||δ0||−2σ2)].

Notably, this domain depends on the true value of N0
b and therefore the limit distribution is asym-

metric, in general. The degree of asymmetry increases as the true break point moves away from

mid-sample. This holds even when the distributions of the errors and regressors are the same

in the pre- and post-break regimes. The presence of the trimming confirms that the span of the

(trimmed) data affects the limit distribution. It is well-known that the least-squares estimator of

the break date can be sensitive to trimming [see Bai and Perron (2003) for some recommendations

on the trimming choice]. Our asymptotic theory accommodates this property of the least-squares

estimator while others do not.

Additional relevant remarks follow; more details are provided in the supplement. The magni-
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tude of the break plays a key role in determining the density of the asymptotic distribution. More

precisely, the density displays interesting properties which change when the signal-to-noise ratio as

well as other parameters of the model change. Moreover, the distribution in Theorem 4.1 is able

to reproduce important features of the small-sample results obtained via simulations [e.g., Bai and

Perron (2006)]. First, the second moments of the regressors impact the asymptotic mean as well

as the second-order behavior of the break point estimator (e.g., the persistence of the regressors

influences the finite-sample performance of the estimator). Second, the continuous record setting

manages to preserve information about the time span N of the data, a clear advantage since the

location of the true break point matters for the small-sample distribution of the estimator. It has

been shown via simulations that in small-samples the break point estimator tends to be imprecise

if the break size is small, and some bias arises if the break point is not at mid-sample. In our

framework, the (trimmed) time horizon [Nπ, N (1 − π)] is fixed and thus we can distinguish be-

tween the statistical content of the segments [Nπ, N0
b ] and [N0

b , N (1 − π)]. In contrast, this is not

feasible under the classical shrinkage large-N asymptotics because both the pre- and post-break

segments increase proportionately and mixing conditions are imposed so that the only relevant

information is a neighborhood around the true break date. Details on how to simulate the limiting

distribution in Theorem 4.1 are given in Section S.A of the supplement.

We further characterize the asymptotic distribution by exploiting the (F -conditionally) Gaus-

sian property of the limit process. The analysis also holds unconditionally if we assume that the

volatility processes are non-stochastic. Thus, as in the classical setting, we begin with a second-

order stationarity assumption within each regime. The following assumption guarantees that the

results below remain valid without the need to condition on F .

Assumption 4.3. The process Σ0 is (possibly time-varying) deterministic; {zkh, ekh} is second-order

stationary within each regime. For k = 1, . . . , T 0
b , E(zkhz′

kh| F(k−1)h) = ΣZ,1h, E(ẽ2
kh| F(k−1)h) =

σ2
e,1h and E(zkhz′

khẽ
2
kh| F(k−1)h) = ΩW ,1h

2 while for k = T 0
b + 1, . . . , T , E(zkhz′

kh| F(k−1)h) = ΣZ,2h,

E(ẽ2
kh| F(k−1)h) = σ2

e,2h and E(zkhz′
khẽ

2
kh| F(k−1)h) = ΩW ,2h

2.

Let W ∗
i , i = 1, 2, be two independent standard Wiener processes defined on [0, ∞), starting

at the origin when s = 0. Let

V (s) =


− |s|

2 +W ∗
1 (s) , if s < 0

−(δ0)′
ΣZ,2δ

0

(δ0)′ΣZ,1δ0
|s|
2 +

(
(δ0)′

ΩW ,2(δ0)
(δ0)′ΩW ,1(δ0)

)1/2

W ∗
2 (s) , if s ≥ 0.

Theorem 4.2. Under Assumption 2.1, 2.3-2.4, 3.1-3.2 and 4.1-4.3,

(
(δ0)′ ⟨Z, Z⟩1 δ

0
)2

(δ0)′ ΩW ,1δ0 N
(
λ̂b,π − λ0

)
⇒ argmax

s∈A∗
V (s) , (4.6)
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where

A∗ ≜

Nπ −N0
b

∥δ0∥−2 σ2

(
(δ0)′ ⟨Z, Z⟩1 δ

0
)2

(δ0)′ ΩW ,1 (δ0)
,
N (1 − π) −N0

b

∥δ0∥−2 σ2

(
(δ0)′ ⟨Z, Z⟩1 δ

0
)2

(δ0)′ ΩW ,1δ0

 .
Unlike the asymptotic distribution derived under classical large-N asymptotics, the probabil-

ity density in (4.6) is not available in closed form. Furthermore, the limiting distribution depends

on unknown quantities. In the next section we explain how one can derive a feasible counterpart.

This will be useful to characterize the main features of interest that will guide us in devising

methods to construct confidence sets for T 0
b .

The result in Theorem 4.2 is related to the argmax theorem which is often invoked in the

literature to derive the limiting distribution of the break point estimator. The argmax theorem

states that the argmax of a sequence of stochastic processes over (−∞, ∞) converges in distribu-

tion to the argmax of a limiting stochastic process over (−∞, ∞). Recent work by Cox (2022)

generalized the argmax theorem to the case where the maximization takes place over a sequence

of subsets of the domain. He showed that if the sequence of subsets converges to a limiting subset,

then the conclusion of the argmax theorem continues to hold. This relates to the result of Theorem

4.2 since the argmax is over the interval A∗ which is a subset of (−∞, ∞).

5 Feasible Approximations to the Finite-Sample Distributions

In Section 5.1 we propose a feasible version of our limit theory and compare it with the finite-

sample distribution. In Section 5.2 we discuss some differences between our approach and others.

Let

ρ =

(
(δ0)′ ⟨Z, Z⟩1 δ

0
)2(

(δ0)′ ΩW ,1δ0
) , ξ1 = (δ0)′ ⟨Z, Z⟩2 δ

0

(δ0)′ ⟨Z, Z⟩1 δ
0 , ξ2 = (δ0)′ ΩW ,2δ

0

(δ0)′ ΩW ,1δ0 .

5.1 A Feasible Version of the Limit Distribution

In order to use the continuous record asymptotic distribution in practice one needs consistent

estimates of the unknown quantities. In this section, we compare the finite-sample distribution of

the least-squares estimator of the change-point date with a feasible version of the continuous record

asymptotic distribution obtained with plug-in estimates. We obtain the finite-sample distribution

of ρ(T̂b,π − T 0
b ) based on 100,000 simulations from the following model:

Yt = D′
tν

0 + Z ′
tβ

0 + Z ′
tδ

0
Z1{t>T 0

b } + et, t = 1, . . . , T, (5.1)
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where Zt = 0.5Zt−1 + ut with ut ∼ i.i.d.N (0, 1) independent of et ∼ i.i.d.N (0, σ2
e), σ2

e = 1,
ν0 = 1, Z0 = 0, Dt = 1 for all t, and T = 100. We set π = 0.05, T 0

b = ⌊Tλ0⌋ with λ0 = 0.3, 0.5, 0.7
and consider different break sizes δ0

Z = 0.2, 0.3, 0.5, 1. The infeasible continuous record asymptotic

distribution is computed assuming knowledge of the data generating process (DGP) as well as of

the model parameters, i.e., using Theorem 4.2 where we set N0
b equal to its true value, ||δ0||−2σ2 =

||δ0
Z ||−2σ2

e , and ξ1, ξ2 and ρ equal to their true values, respectively, with δ0
Z in place of δ0. Note

that the scaling hκ/2 and h−1/4 in the definition of δh and σh respectively, cancel using the fact

that they appear in both numerator and denominator and applying a change in variables. The

feasible counterparts are constructed with plug-in estimates of ξ1, ξ2, ρ and (N0
b ∥δ0∥2

/σ2)ρ. In

practice we need to use a normalization for N . A common choice is N = 1. An alternative choice

is to set N = ρ̂||δ̂||/σ̂ where σ̂2 = T−1∑T
k=1 ê

2
kh and ρ̂ and δ̂ are defined below. Note that under

the latter choice N depends on the break magnitude, variance of residuals and of the regressors

associated to the break. Then λ̂b = T̂b/T is a natural estimate of λ0, using the consistency result

of λ̂b that holds in the setting of Theorem 4.1 which can also be rationalized for large N under the

conditions of Theorem 4.1. The large-N asymptotic result is shown here. In practice this means

that we approximate the distribution of the estimator λ̂b,π where π is chosen by the researcher

and we plug-in the estimator λ̂b which can be based on any trimming because of the consistency

property. Here, we set λ̂b equal to the least-squares estimator based on a trimming 0.15, which is

also used for the other plug-in estimates. The estimates of ξ1 and ξ2 are given, respectively, by

ξ̂1 =
δ̂′
(
T − T̂b

)−1∑T
k=T̂

b
+1 zkhz

′
khδ̂

δ̂′
(
T̂b
)−1∑T̂

b
k=1 zkhz

′
khδ̂

, ξ̂2 =
δ̂′
(
T − T̂b

)−1∑T
k=T̂

b
+1 ê

2
khzkhz

′
khδ̂

δ̂′
(
T̂b
)−1∑T̂

b
k=1 ê

2
khzkhz

′
khδ̂

,

where δ̂ is the least-squares estimator of δh and êkh are the least-squares residuals. Note that in

ξ̂1 and ξ̂2, the estimate δ̂ appears in both numerator and denominator so that the scaling hκ/2

in the definition of δh cancels. Use is made of the fact that ⟨Z, Z⟩1 is consistently estimated

by
∑T̂b
k=1 zkhz

′
kh/λ̂b while ΩW ,1 is consistently estimated by T

∑T̂b
k=1 ê

2
khzkhz

′
kh/λ̂b. The method to

estimate λ0 ∥δ0∥2
σ−2ρ is less immediate because it involves manipulating the scaling of each of the

three estimates. Let ϑ = ∥δ0∥2
σ−2ρ. We use the following estimates for ϑ and ρ, respectively,

ϑ̂ =ρ̂
∥∥∥δ̂∥∥∥2

(
T−1

T∑
k=1

ê2
kh

)−1

, ρ̂ =

(
δ̂′
(
T̂b
)−1∑T̂b

k=1 zkhz
′
khδ̂
)2

δ̂′
(
T̂b
)−1∑T̂

b
k=1 ê

2
khzkhz

′
khδ̂

,

Whereas we have ξ̂i
p→ ξi (i = 1, 2), the corresponding approximations for ρ̂ and ϑ̂ are given by

ρ̂/hκ
p→ ρ and ϑ̂/h2κ p→ ϑ. However, before letting T → ∞ we can apply a change in variable

using the fact that λ̂b − λ0 = O (h1−κ) which result in the extra factor h2κ canceling.
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Proposition 5.1. Under the conditions of Theorem 4.2, (4.6) holds when using ξ̂1, ξ̂2, ρ̂ and ϑ̂ in

place of ξ1, ξ2, ρ and ϑ, respectively.

The proposition implies that the limiting distribution can be simulated using plug-in estimates.

This allows feasible inference about the break date. The results are presented in Figure 1-4 which

also plot the asymptotic distribution from Bai (1997) and the infeasible distribution from Theorem

4.2. Here by signal-to-noise ratio we mean δ0
Z/σe which, given σ

2
e = 1, equals the break size δ0

Z .

Several interesting observations appear at the outset. The density of the large-N shrinkage

asymptotic distribution does not depend on the location of the break, and thus it is always unimodal

and symmetric about the origin. None of these features are shared by the density derived under

a continuous record. When the true break is at mid-sample (λ0 = 0.5), the density function is

symmetric and centered at zero. However, when the signal-to-noise ratio is low, the density features

three modes. This tri-modality vanishes as the signal-to-noise ratio increases. When δ0
Z is low and

the break is not at mid-sample the density is asymmetric; for values of λ0 less (larger) than 0.5,

the density is right (left) skewed. When the signal is low and λ0 is less (larger) than 0.5, the

density has highest mode at some value near λ̂b being close to the starting (end) sample point than

centered at λ0. However, as in the case of λ0 = 0.5, when the signal-to-noise ratio increases the

highest mode is centered at a value which corresponds to λ̂b being close to λ0. Asymmetry and

multi-modality of the finite-sample distribution of the break point estimator were also found by

Perron and Zhu (2005) and Deng and Perron (2006) in models with a trend.

The interpretation of these features are straightforward. For example, asymmetry reflects the

fact that the span of the data and the actual location of the break play a crucial role on the behavior

of the estimator. If the break occurs early in the sample there is a tendency to overestimate the

break date and vice-versa if the break occurs late in the sample. The marked changes in the shape

of the density as we raise δ0
Z confirms that the magnitude of the shift matters a great deal as well.

The tri-modality of the density when the shift size is small reflects the uncertainty in the data as

to whether a structural change is present at all; i.e., the least-squares estimator finds it easier to

locate the break at either the beginning or the end of the sample. Unlike the large-N shrinkage

asymptotic distribution, the density of the feasible version of the continuous record distribution

provides a remarkably good approximation to the infeasible one and thus also to the finite-sample

distribution. The extended working paper Casini and Perron (2020) shows that the quality of the

approximation is good for a variety of models.

5.2 Comparison with Other Approaches

The figures reported above have shown that there is a high degree of uncertainty when the break

magnitude is not large. The classical shrinkage asymptotics of Bai (1997) with δT required to

convergence to zero at a rate slower thanO(T−1/2) clearly underestimates that degree of uncertainty

20



and, as the figures show, provides a poor approximation to the finite-sample behavior of the least-

squares estimator. In Section 7 we show that this issue is responsible for the poor coverage

probabilities of the confidence intervals introduced in Bai (1997) when the break magnitude is

small. On the other hand, Elliott and Müller (2007) and Elliott et al. (2015) require δT to go to

zero at the fast rate O(T−1/2) leading to weak identification. The latter implies that the relevant

quantities in the model become inconsistent. This can be problematic for inference and indeed,

their inference often suffers from the opposite problem in that confidence intervals for T̂b can be

too large [Casini and Perron (2019; 2021) and Chang and Perron (2018)].

We impose conditions on the signal-to-noise ratio δ/σ rather than just on δ. Consider a simple

location model with a change δ in the mean and independent errors. What describes the uncertainty

about the break in this model is the ratio δ/σ where σ is the volatility of the errors. We let δ go

to zero at a not too fast rate while letting σ increase to infinity in a neighborhood of T 0
b . That is

(δT/σt) → 0 at rate O(T−1/2) in a neighborhood of T 0
b . Interestingly, this is the same rate Elliott

and Müller used for δT → 0. Away from T 0
b , we require (δT/σt) → 0 at slower rate—similar to

Yao (1987) and Bai (1997). The difference now is that we do not lose identification and all the

parameters in the model remain consistent. Under continuous-time, the variance of the processes is

proportional to the sampling interval. This allows us to trade-off the rate of convergence at which

λ̂b approaches λ0 with the variance of the errors in a neighborhood of T 0
b by letting σt become

large when t is close to T 0
b [i.e., a change of time scale as in Foster and Nelson (1994, 1996)]. This

offers a new characterization of higher uncertainty without losing identification.

6 Highest Density Region-based Confidence Sets

The features of the limit and finite-sample distributions suggest that standard methods to construct

confidence intervals may be inappropriate; e.g., two-sided intervals around the estimated break

date based on the standard deviations of the estimate. Our suggested approach is rather non-

standard and relates to Bayesian methods. In our context, the Highest Density Region (HDR)

seems the most appropriate in light of the asymmetry and, especially, the multi-modality of the

distribution for small break sizes. All that is needed to implement the procedure is an estimate of

the density function, using plug-in estimates as explained in Section 5. Choose some significance

level 0 < α < 1 and let P̂Tb
denote the empirical counterpart of the probability distribution of

ρN(λ̂b,π−λ0
b) as defined in Theorem 4.2. Note that although we use the subscript Tb in P̂Tb

, it refers

to the probability distribution of the fractional break date. Further, let p̂Tb
denote the empirical

density function defined by the Radon-Nikodym equation p̂Tb
= dP̂Tb

/dλL, where λL denotes the

Lebesgue measure.

Definition 6.1. Highest Density Region: Assume that the density function fY (y) of some random
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variable Y defined on a probability space (ΩY , FY , PY ) and taking values on the measurable space

(Y , Y ) is continuous and bounded. Then the (1 − α) 100% Highest Density Region is a subset

S(κα) of Y defined as S(κα) = {y : fY (y) > κα} where κα the largest constant that satisfies

PY (Y ∈ S(κα)) ≥ 1 − α.

The concept of HDR and of its estimation has an established literature in statistics. The

definition reported here is from Hyndman (1996); see also Samworth and Wand (2010) and Mason

and Polonik (2008; 2009) for more recent developments.

Definition 6.2. Confidence Sets for T 0
b under a Continuous Record: Under Assumption 2.1, 2.3-

2.4, 3.1-3.2 and 4.1-4.3, a (1 − α) 100% confidence set for T 0
b is a subset of {1, . . . , T} given by

C (cvα) = {Tb ∈ {1, . . . , T} : Tb ∈ S (cvα)} , where S (cvα) = {Tb : p̂Tb
> cvα} and cvα satisfies

supcvα∈R+ P̂Tb
(Tb ∈ S (cvα)) ≥ 1 − α.

Note that cvα in Definition 6.2 corresponds to κα in the definition of HDR. The confidence

set C(cvα) has a frequentist interpretation even though the concept of HDR is often encountered

in Bayesian analyses since it associates naturally to the derived posterior distribution, especially

when the latter is multi-modal. A feature of the confidence set C(cvα) under our context is that,

at least when the size of the shift is small, it consists of the union of several disjoint intervals.

The appeal of using HDR is that one can directly deal with such features. As the break size

increases and the distribution becomes unimodal, the HDR becomes equivalent to the standard

way of constructing confidence sets. In practice, one can proceed as follows.

Algorithm 1. Confidence sets forT 0
b :1) Estimate by least-squares the break point and the regres-

sion coefficients from model (2.4); 2) Replace quantities appearing in (4.6) by consistent estimators

as explained in Section 5; 3) Simulate the limiting distribution P̂Tb
from Theorem 4.2; 4) Compute

the HDR of the empirical distribution P̂Tb
and include the point Tb in the level 1 −α confidence set

C (cvα) if Tb satisfies the conditions in Definition 6.2. d

This procedure will not deliver contiguous confidence sets when the size of the break is small.

Indeed, we find that in such cases, the overall confidence set for T 0
b consists in general of the union

of disjoint intervals if T̂b is not near the tails of the sample. One is located around the estimate of

the break date, while the others are in the pre- and post-break regimes. To provide an illustration,

we consider a simple example involving a single draw from a simulation experiment. Figure 5

reports the HDR of the feasible limiting distribution of ρ(T̂b,π − T 0
b ) for a random draw from the

model in (5.1) with parameters ν0 = 1, β0 = 0, unit variance and autoregressive coefficient 0.6 for

Zt and σ2
e = 1.2. We set λ0 = 0.35, 0.5 and δ0

Z = 0.3, 0.8, 1.5. We use a trimming 0.15 for the

plug-in estimator T̂b and π = 0.05 for T̂b,π. As explained in Section 5.1, we could use any other

trimming in place of 0.15. The results remain unchanged. We set T = 100 and the significance
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level is α = 0.05. Note that the origin is at the estimated break date. The point on the horizontal

axis corresponds to the true break date. The black intervals on the horizontal axis correspond to

regions of high density. The resulting confidence set is their union. Once a confidence region for

ρ(T̂b,π −T 0
b ) is computed, it is straightforward to derive a 95% confidence set for T 0

b . The top panel

(left plot) reports results for the case δ0
Z = 0.3 and λ0 = 0.35 and shows that the HDR is composed

of two disjoint intervals. The estimated break date is T̂b = 70 and the implied 95% confidence set

for T 0
b is given by C(cv0.05) = {1, . . . , 12}∪{18, . . . 100}. This includes T 0

b and the overall length is

95 observations. Table 1 reports for various methods whether T 0
b is covered or not and the length

of the confidence sets for this example. The length of Bai’s (1997) confidence interval is 55 but

does not include T 0
b . Elliott and Müller’s (2007) confidence set, denoted by ÛT .eq in Table 1, also

does not include the true break date at the 90% confidence level, but does so at the 95% and its

length is 95. Our method covers T 0
b and has a relatively shorter length across different δ0

Z .

7 Small-Sample Properties of the HDR Confidence Sets

We now assess via simulations the finite-sample performance of the method proposed to construct

confidence sets for the break date. We also make comparisons with alternative methods in the

literature: Bai’s (1997) approach based on the large-N shrinkage asymptotics; Elliott and Müller’s

(2007), hereafter EM, method on inverting Nyblom’s (1989) statistic; the Inverted Likelihood

Ratio (ILR) approach of Eo and Morley (2015). We omit the technical details of these methods

and refer to the original sources or Chang and Perron (2018) for a review and comparisons. We

consider two DGPs: M1 is yt = β0 + δ0
Z1{t>T 0

b } + et with β
0 = 1 and et ∼ i.i.d.N (0, 1); M2 is

yt = δ0
Z (1 − ν0) 1{t>T 0

b } + ν0yt−1 + et with ν
0 = 0.8 and et ∼ i.i.d.N (0, 0.04). Our companion

paper Casini and Perron (2020) includes extensive simulation results. We set the significance level

at α = 0.05, and the break occurs at date ⌊Tλ0⌋, where λ0 = 0.2, 0.35, 0.5 and T = 200 for M1

and T = 100 for M2. The results are presented in Table 2-3. The last row in each table includes

the rejection probability of a 5%-level sup-Wald test using the asymptotic critical value in Andrews

(1993), which provides a measure of the magnitude of the break relative to the noise. For models

with predictable processes we use the two-step procedure described in Section S.C.2.

Overall, the simulation results confirm previous findings about the performance of existing

methods. Bai’s (1997) method has a coverage rate below the nominal level when the size of the

break is small. Overall, our HDR method and that of EM show accurate empirical coverage rates

for all DGP considered. However, EM’s method almost always displays confidence sets which are

larger than those from the other approaches.3 Over all DGPs considered, the average length of the

3This problem is more severe when the errors are serially correlated or the model includes lagged dependent
variables (see also the supplement). Regarding the former, this in part may be due to issues with Newey and West
HAC-type estimators when there are breaks [see, e.g., Casini (2023) and Casini, Deng and Perron (2024)].
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HDR confidence sets are 40% to 70% shorter than those obtained with EM’s approach when the

size of the shift is moderate to high. The results for M2, a change in mean with a lagged dependent

variable and strong correlation, are quite revealing. EM’s method yields confidence intervals that

are very wide, increasing with the size of the break and for large breaks covering nearly the entire

sample. This does not occur with the other methods. For instance, when λ0 = 0.5 and δ0
Z = 2, the

average length from the HDR method is 8.34 compared to 93.71 with EM’s. This concurs with the

results in Chang and Perron (2018).

In summary, the small-sample simulation results suggest that our continuous record HDR-

based inference provides accurate coverage probabilities close to the nominal level and average

lengths of the confidence sets shorter relative to existing methods. It is also valid and reliable

under a wider range of DGPs including long-memory processes. Specifically noteworthy is the fact

that it performs well for all break sizes, whether small or large.

8 Empirical Application

We apply the HDR method of constructing confidence sets about the break dates in monthly

U.S. industrial production growth. The data were obtained from the Federal Reserve Economic

Data website for the period 1990:01–2020:01. Annualized monthly growth rates are calculated as

1, 200 × ∆yt where ∆yt is the first difference of the natural logarithms of the levels data. We

assume that the log industrial production follows a trend plus a potentially autocorrelated noise,

∆yt = βt + ut, t = 1, . . . , T,

where βt has a finite number of breaks and {ut} is a zero-mean potentially serially correlated series

with a bounded spectral density at frequency zero. Figure 6 plots ∆yt. The series resembles the

realization of a low-order autoregressive process with low persistence where the mean may change

over time. During the time period corresponding to the 2008-2009 financial crisis the series exhibits

a large drop of several standard deviations. Applying Bai and Perron’s (1998) testing procedure

with 15% trimming at the beginning and the end of the sample period and between break dates

except for the period 2008-2009 where a trimming of 2.5% is used, we find evidence of five breaks.

The estimates of the break dates and of the β in each regime are reported in Table 4. The results

from the testing procedure (not reported) suggest that all breaks are significant at 1% significant

level except the first break for which the statistical evidence is weaker. Indeed, the sup-F test for

no break versus two breaks in the sub-sample [1990:01, 2008:05] (i.e., [1, T̂3] using the time index)

rejects the null at 1% significant level. In this sub-sample the least-squares method first detects

T̂2 = 2000:04 and then T̂1 = 1992:01. However, in the sub-sample [1990:01, 2000:04] (i.e., [1, T̂2])

the evidence for an additional break is weak. Thus, while the break date estimates T̂2, T̂3, T̂4, T̂5
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are associated to breaks of large magnitudes, the estimate of the first break date T̂1 is associated

to a small break. The first and the fourth regimes (resp., [1990:01, 1992:01] and [2008:06, 2009:03])

are short-lasting. Further, the first regime is close to the start of the sample. The first break

suggests a higher growth rate from 1992 to early 2000 relative to the period 1990-1992. This

period also corresponds to the well-known above-average growth in labor productivity in the late

1990s. The fourth regime lasts for ten months and corresponds to the 2008-2009 financial crisis.

To detect this regime a trimming of 2.5% is needed.

We now move to the confidence sets about the break dates. Even though our theoretical

results are established for a single break date, we can apply it to each individual estimated break

date.4 We consider the HDR method, Bai’s (1997) and Elliott and Müller’s (2007) method. We

do not consider the ILR method since it is based on a testing procedure that detects a different

number of breaks from the Bai and Perron’s (1998) procedure and so this affects the number of

confidence sets and their length making the comparison hard. For the Elliott and Müller’s (2007)

method we report only the length of the confidence set.5 We begin with considering the confidence

set for the first break date. The length of Bai’s (1997) confidence set is shorter than that from

the HDR confidence set. However, the tests for an additional break in [1990:01, 2000:04] provides

weak evidence against the null of no break. In this case, a larger length of a confidence set should

provide a better representation of the uncertainty about the break. Thus, the short length of Bai’s

(1997) method raises concerns that this confidence interval may underestimate the uncertainty

about the break and following the simulation analysis of Section 7 it should leave us with concerns

about its finite-sample coverage properties. The HDR method yields a larger confidence set and

in addition we note that the start date of the confidence set corresponds to the start date of the

sample. This is consistent with the weak evidence about this break.

The HDR method results in shorter confidence sets than Bai’s (1997) for the remaining break

dates except for the fourth break where the two methods yields the same length. However, for the

latter case Bai’s (1997) confidence set constructed using 5% trimming does not include the break

date estimate obtained with 2.5% trimming (i.e., T̂4 = 2009:03) whereas the HDR confidence set

does. This feature suggests that the HDR confidence set is less sensitive to the trimming choice

and that it likely has better coverage properties. This is consistent with our theoretical results.

The HDR confidence set for the second break date is less than a half that from Bai’s. Elliott and

Müller’s (2007) confidence set is in general much larger than those from the other methods. This

often holds even when the break magnitude is large. Thus, Elliott and Müller’s (2007) confidence

sets are often less informative than the other confidence sets, consistent with the simulation results

4The HDR method and the corresponding theoretical results carry over to the multiple break case as long as
the break fractions satisfy λ0

1 < . . . < λ0
m with m > 1 a finite integer, so that the break points T 0

1 , . . . , T
0
m are

asymptotically distinct. This assumption is ubiquitous in the literature.
5This method is based on test inversion and so one would need to report each date that enters the confidence

set but this takes too much space in our table. They are available upon request.
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discussed in Section 7. Overall, these results suggest that the improvement in inferences using the

HDR method can be substantial.

9 Conclusions

We examined a change-point model under a continuous record asymptotics. With the time horizon

[0, N ] fixed, we can account for the asymmetric informational content provided by the pre- and

post-break samples. We derived a feasible counterpart of the continuous record asymptotic distri-

bution of the change-point estimator using consistent plug-in estimates and showed that it provides

accurate approximations to the finite-sample distributions. We used our limit theory to construct

confidence sets for the change-point date based on the concept of Highest Density Region. Overall,

it delivers accurate coverage probabilities and relatively short average lengths of the confidence

sets. Importantly, it does so irrespective of the magnitude of the break, whether large or small, a

notoriously difficult problem in the literature.
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Figure 1: The probability density of ρ(T̂b,π −T 0
b ) for model (5.1) with break magnitude δ0

Z = 0.2 and true break fraction λ0 = 0.3, 0.5

and 0.7 (the left, middle and right panel, respectively). The signal-to-noise ratio is δ0
Z/σe = δ0

Z since σ2
e = 1. The blue solid (green

broken) line is the density of the infeasible (reps. feasible) asymptotic distribution derived under a continuous record, the black broken

line is the density of the asymptotic distribution from Bai (1997) and the red broken line is the density of the finite-sample distribution.
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Figure 2: The probability density of ρ(T̂b,π −T 0
b ) for model (5.1) with break magnitude δ0

Z = 0.3 and true break fraction λ0 = 0.3, 0.5

and 0.7 (the left, middle and right panel, respectively). The signal-to-noise ratio is δ0
Z/σe = δ0

Z since σ2
e = 1. The blue solid (green

broken) line is the density of the infeasible (reps. feasible) asymptotic distribution derived under a continuous record, the black broken

line is the density of the asymptotic distribution from Bai (1997) and the red broken line is the density of the finite-sample distribution.
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Figure 3: The probability density of ρ(T̂b,π −T 0
b ) for model (5.1) with break magnitude δ0

Z = 0.5 and true break fraction λ0 = 0.3, 0.5

and 0.7 (the left, middle and right panel, respectively). The signal-to-noise ratio is δ0
Z/σe = δ0

Z since σ2
e = 1. The blue solid (green

broken) line is the density of the infeasible (reps. feasible) asymptotic distribution derived under a continuous record, the black broken

line is the density of the asymptotic distribution from Bai (1997) and the red broken line is the density of the finite-sample distribution.
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Figure 4: The probability density of ρ(T̂b,π −T 0
b ) for model (5.1) with break magnitude δ0

Z = 1 and true break fraction λ0 = 0.3, 0.5

and 0.7 (the left, middle and right panel, respectively). The signal-to-noise ratio is δ0
Z/σe = δ0

Z since σ2
e = 1. The blue solid (green

broken) line is the density of the infeasible (reps. feasible) asymptotic distribution derived under a continuous record, the black broken

line is the density of the asymptotic distribution from Bai (1997) and the red broken line is the density of the finite-sample distribution.
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Figure 5: Highest Density Regions (HDRs) of the feasible probability density of ρ(T̂b,π − T 0
b ) as described in Section 6. The

significance level is α = 0.05, the true break point is λ0 = 0.3 and 0.5 (the left and right panels, respectively) and the break magnitude

is δ0
Z = 0.3, 0.8 and 1.5 (the top, middle and bottom panels, respectively). The horizontal axis is the support of ρ

(
T̂b,π − T 0

b

)
. The

red dot is the true value of the break point. The union of the black lines below the horizontal axis is the 95% HDR confidence region.
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Table 1: Coverage rate and length of the confidence set for the example of Section 6
δ0

Z = 0.3 δ0
Z = 0.8 δ0

Z = 1.5
Cov. Lgth. Cov. Lgth. Cov. Lgth.

λ0 = 0.35
HDR 1 94 1 27 1 10

Bai (1997) 0 55 0 13 1 8

ÛT .neq 1 95 1 37 1 24

λ0 = 0.5
HDR 1 82 1 14 1 4

Bai (1997) 1 67 1 18 1 5

ÛT .neq 1 95 1 35 1 14
Coverage rate and length of the confidence sets corresponding to the example from

Section 6. See also Figure 5. The significance level is α = 0.05. Cov. and Lgth.

refer to the coverage rate and average size of the confidence sets (i.e. average

number of dates in the confidence sets), respectively. Cov=1 if the confidence set

includes T 0
b and Cov=0 otherwise. The sample size is T = 100.
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Table 2: Small-sample coverage rate and length of the confidence set for model M1
δ0

Z = 0.3 δ0
Z = 0.6 δ0

Z = 1 δ0
Z = 2

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
λ0 = 0.5 HDR 0.938 131.35 0.941 69.05 0.943 24.02 0.962 6.89

Bai (1997) 0.842 114.24 0.855 51.58 0.911 19.75 0.964 5.70

ÛT .eq 0.946 146.23 0.943 76.13 0.948 33.45 0.930 14.59
ILR 0.954 147.25 0.956 78.17 0.965 23.87 0.973 5.25

λ0 = 0.35 HDR 0.939 129.02 0.934 63.70 0.939 24.23 0.951 5.78
Bai (1997) 0.855 111.45 0.855 49.52 0.914 19.39 0.956 5.62

ÛT .eq 0.933 148.74 0.933 75.94 0.933 33.08 0.933 14.43
ILR 0.946 149.81 0.960 77.54 0.964 25.63 0.982 5.42

λ0 = 0.2 HDR 0.941 127.29 0.940 62.13 0.942 22.06 0.946 5.73
Bai (1997) 0.863 110.12 0.911 53.14 0.931 20.20 0.967 5.67

ÛT .eq 0.950 158.98 0.951 97.12 0.950 35.26 0.950 13.99
ILR 0.956 162.32 0.956 96.45 0.965 33.31 0.976 5.96

The model is yt = β0 + δ0
Z1{t>⌊T λ0⌋} + et, et ∼ i.i.d.N (0, 1) , T = 200. Cov. and Lgth. refer to the coverage probability and the

average length of the confidence set (i.e., the average number of dates in the confidence set). HDR corresponds to the proposed HDR

method, Bai (1997) corresponds to the confidence interval from Bai (1997), ÛT .eq corresponds to the method proposed by Elliott and

Müller (2007) and ILR corresponds to the Inverted Likelihood Ratio method of Eo and Morley (2015). The number of simulations is

5,000.

Table 3: Small-sample coverage rate and length of the confidence sets for model M2
δ0

Z = 1 δ0
Z = 1.5 δ0

Z = 2 δ0
Z = 3

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
λ0 = 0.5 HDR 0.916 30.68 0.944 14.77 0.969 8.34 0.995 4.55

Bai (1997) 0.793 12.87 0.877 7.11 0.929 4.78 0.973 2.957

ÛT .eq 0.951 91.64 0.955 93.94 0.959 93.71 0.961 90.34
ILR 0.951 46.31 0.967 34.19 0.977 26.48 0.991 16.49

λ0 = 0.35 HDR 0.925 33.02 0.933 16.67 0.971 9.40 0.994 4.33
Bai (1997) 0.804 13.00 0.876 7.11 0.923 4.94 0.974 2.93

ÛT .eq 0.952 91.22 0.945 92.61 0.957 92.48 0.964 93.08
ILR 0.949 47.54 0.967 34.18 0.982 25.84 0.984 16.76

λ0 = 0.2 HDR 0.937 34.66 0.953 19.24 0.954 11.42 0.994 5.36
Bai (1997) 0.832 13.64 0.885 7.19 0.931 4.92 0.971 2.91

ÛT .eq 0.944 89.64 0.951 89.58 0.956 88.22 0.961 85.95
ILR 0.946 49.13 0.970 33.54 0.980 24.48 0.989 12.51

The model is yt = δ0
Z

(
1 − ν0

)
1{t>⌊T λ0⌋} + ν0yt−1 + et, et ∼ i.i.d.N (0, 0.04) , ν0 = 0.8, T = 100. The notes of Table 2 apply.
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Table 4: Break dates in monthly U.S. industrial production: 1990:01–2020:01
Regime Break date T̂b β̂ SD(β̂)

[1990:01, 1992:01] 1992:1 -0.08 2.24
[1992:02, 2000:04] 2000:04 4.97 0.46
[2000:05, 2008:05] 2008:05 0.82 0.60
[2008:06, 2009:03] 2009:03 -18.63 4.74
[2009:04, 2015:12] 2015:12 4.94 1.03
[2016:01, 2020:01] 2020:01 -0.33 0.76

Confidence set Lgth.
T 0

1
Bai (1997) [1990:10, 1992:12] 25

HDR [1990:01, 1992:10] 32

ÛT .eq 55
T 0

2
Bai (1997) [1998:09, 2001:06] 33

HDR [1999:11, 2001:2] 14

ÛT .eq 48
T 0

3
Bai (1997) [2008:01, 2008:10] 9

HDR [2008:05, 2008:12] 7

ÛT .eq 7
T 0

4
Bai (1997) [2009:05, 2009:11] 6

HDR [2008:12, 2009:06] 6

ÛT .eq 10
T 0

5
Bai (1997) [2013:03, 2016:03] 37

HDR [2013:12, 2016:03] 28

ÛT .eq 47

Regime indicates the start and end date of the regime. Break date T̂b indicates the

least-squares estimate of the break date where b = 1, 2, 3, 4, 5. β̂ is the estimate

of β in a given regime. SD(β̂) is the standard deviation of β̂.
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A Supplemental Materials

The supplement for online publication [cf. Casini and Perron (2024)] includes the followings: (i) it
describes how to simulate the continuous record limiting distribution; (ii) it describes the limiting
process in Theorem 4.1; (iii) it extends the benchmark model in Section 2 to include predictable
processes; (iv) it includes all proofs of the results in the paper; (v) it presents additional small-
sample evaluations of the HDR confidence sets.
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Abstract

This supplemental material is structured as follows. Section S.A describes how to simulate the

continuous record limiting distribution. Section S.B describes the limiting process in Theorem 4.1 of

the main text. Section S.C extends the benchmark model in Section 2 of the main text to include

predictable processes. Section S.D includes all proofs of the results in the paper. Section S.E presents

additional small-sample evaluations of the HDR confidence sets.



S.A Simulation of the Limiting Distribution in Theorem 4.1

We discuss how to simulate the limiting distribution in Theorem 4.1 which is slightly different from

simulating the limiting distribution in Theorem 4.2. However, the idea is similar in that we replace

unknown quantities by consistent estimates. First, we replace N0
b by N̂b = T̂b/T . The ratio ||δ0||2/σ2 is

consistently estimated by ||δ̂||2/(T−1∑T
k=1 ê

2
kh) because under the “fast time scale” h1/2∑T

k=1 ê
2
kh

p→ σ2

(cf. Assumption 4.1). Now consider the term {−(δ0)′ ⟨Z∆, Z∆⟩ (v) δ0 + 2(δ0)′W (v)}. For v ≤ 0, this can
be consistently estimated by

−T 1/2
[(
δ̂
)′
(∑ T̂b

k=T̂
b
+⌊v/h⌋

zkhz
′
kh

)
δ̂ − 2δ̂′Ŵh (v)

]
, (S.1)

where Ŵh is a simple-size dependent sequence of Gaussian processes whose marginal distribution is char-

acterized by h1/2T
∑T̂b

k=T̂b+⌊v/h⌋
ê2
khzkhz

′
kh which is a consistent estimate of

� 0
v ΩZe,sds. Thus, in the limit

Ŵh (v) has the same marginal distribution as W (v), and it follows that the limiting distribution from

Theorem 4.1 can be simulated. The proposed method is valid under a continuous-record asymptotic (i.e.,

under Assumption 4.1 and the adoption of the “fast time scale”). It can also be shown to be valid under

a fixed-shifts framework.

S.B Description of the Limiting Process in Theorem 4.1

We describe the probability setup underlying the limit process of Theorem 4.1. Note that Z ′
∆e/h

1/2 =
h−1/2∑T 0

b
k=Tb+1 zkhekh if Tb ≤ T 0

b . Consider an additional measurable space (Ω∗, F ∗) and a transition

probability H (ω, dω∗) from (Ω, Fh) into (Ω∗, F ∗). Next, we can define the products Ω̃ = Ω × Ω∗, F̃h =
Fh⊗F ∗, P̃ (dω, dω∗) = P (dω)H (ω, dω∗). This defines an extension (Ω̃, F̃ , P̃ ) of the original space

(Ω, F , {Fh,t}t≥0, P ). We also consider another filtration {F̃h,t}t≥0 which takes the following product

form F̃h,t = ∩s>tFh,s ⊗ F ∗
s where {F ∗

t }t≥0 is a filtration on (Ω∗, F ∗). For the transition probability H,

we consider the simple form H (ω, dω∗) = P ∗ (dω∗) for some probability measure P ∗ on (Ω∗, F ∗). This

constitutes a “very good” product filtered extension. Next, assume that (Ω∗, F ∗, (F ∗
t )t≥0, P

∗) supports

p-dimensional {F ∗
t }-standard independent Wiener processes W i∗ (v) (i = 1, 2). Finally, we postulate the

process ΩZe,t with entries Σ(i, j)
Z σ2

e to admit a progressively measurable p×p matrix-valued process (i.e., a

symmetric“square-root”process) σZe, satisfying ΩZe = σZeσ
′
Ze, with the property that ||σZe||2 ≤ K||ΩZe||

for some K < ∞. Define the process W (v) = W1 (v) if v ≤ 0, and W (v) = W2 (v) if v > 0, where W1 (v) =� N0
b

N0
b

+v σZe,sdW
1∗
s and W2 (v) =

� N0
b +v

N0
b

σZe,sdW
2∗
s with components W (j) (v) =

∑p
r=1

� N0
b

N0
b

+v σ
(jr)
Ze,sdW

1∗(r)
s

if v ≤ 0 and W (j) (v) =
∑p
r=1

� N0
b +v

N0
b

σ
(jr)
Ze,sdW

2∗(r)
s if v > 0. The process W (v) is well defined on the

product extension (Ω̃, F̃ ,
{
F̃h,t

}
t≥0

, P̃ ), and furthermore, conditionally on F , is a two-sided centered

continuous Gaussian process with independent increments and (conditional) covariance

Ẽ
(
W (u) (v) W (j) (v)

)
= Ω(u,j)

W (v) =

Ω(u,j)
W ,1 (v) , if v ≤ 0

Ω(u,j)
W ,2 (v) , if v > 0

, (S.1)
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where Ω(u,j)
W ,1 (v) =

� N0
b

N0
b

+v Ω(u,j)
Ze,s ds and Ω(u,j)

W ,2 (v) =
� N0

b +v
N0

b
Ω(u,j)
Ze,s ds. Therefore, W (v) is conditionally on

F , a continuous martingale with “deterministic” quadratic covariation process ΩW . The continuity of ΩW

signifies that W (v) is not only conditionally Gaussian but also a.s. continuous.

S.C The Extended Model with Predictable Processes

S.C.1 The Extended Model

The assumptions on Dt and Zt specify that they are continuous semimartingale of the form (2.3). This

precludes predictable processes, which are often of interest in applications; e.g., a constant and/or a lagged

dependent variable. Technically, these require a separate treatment since the coefficients associated with

predictable processes are not identified under a fixed-span asymptotic setting. Let

τ1,k = µ1,hh+ α1,hY(k−1)h, (k ≤ ⌊Tλ0⌋) ,

and

τ2,k = µ2,hh+ α2,hY(k−1)h, (k > ⌊Tλ0⌋ + 1) .

We consider the following extended model:

∆hYk ≜

{
τ1,k + (∆hDk)′ ν0 + (∆hZk)′ δ0

Z,1 + ∆he
∗
k,

(
k = 1, . . . , T 0

b

)
τ2,k + (∆hDk)′ ν0 + (∆hZk)′ δ0

Z,2 + ∆he
∗
k,

(
k = T 0

b + 1, . . . , T
) (S.1)

for some given initial value Y0. We specify the parameters associated with the constant and the lagged

dependent variable as being of higher order in h, or lower in T , as h ↓ 0 so that some fixed true parameter

values can be identified, i.e., µ1,h ≜ µ0
1h

−1/2, µ2,h ≜ µ0
2h

−1/2, µδ,h ≜ µ2,h − µ1,h, α1,h ≜ α0
1h

−1/2,

α2,h ≜ α0
2h

−1/2 and αδ,h ≜ α2,h − α1,h. Our framework is then similar to the small-diffusion setting

studied previously [cf. Ibragimov and Has’minskǐı (1980), Galtchouk and Konev (2001), Laredo (1990)

and Sørensen and Uchida (2003)]. With µ·,h and α·,h independent of h and fixed, respectively, at the true

values µ0
· and α0

· , the continuous-time model is then equivalent to

Yt = Y0 +
� t

0

(
µ0

1 + µ0
δ1{s>N0

b }
)
ds+

� t

0

(
α0

1 + α0
δ1{s>N0

b }
)
Ysds (S.2)

+D′
tν

0 +
� t

0

(
δ0
Z,1 + δ0

Z1{s>N0
b }
)′
dZs + e∗

t ,

for t ∈ [0, N ] , where Yt =
∑⌊t/h⌋
k=1 ∆hYk, Dt =

∑⌊t/h⌋
k=1 ∆hDk, Zt =

∑⌊t/h⌋
k=1 ∆hZk and e

∗
t =

∑⌊t/h⌋
k=1 ∆he

∗
k. The

results to be discussed below go through in this extended framework. However, some additional technical

details are needed. Hence, we treat both cases with and without predictable components separately.

Note that the model and results can be trivially extended to allow for more general forms of predictable

processes (e.g., more lagged values), at the expense of additional technical details of no substance.
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S.C.2 Asymptotic Results for the Model with Predictable Processes

In this section, we present asymptotic results allowing for predictable processes that include a constant and

a lagged dependent variable among the regressors. Recall model (S.1). Let β0 = (µ0
1, α

0
1, (ν0)′, (δ0

Z,1)′)′,

δ0
Z = (µ0

δ , α
0
δ , (δ0

Z,2−δ0
Z,1)′)′, ((β0)′, ((δ0

Z)′))′ ∈ Θ0, and xkh = ((µ1,h/µ
0
1)h, (α1,h/α

0
1)Y(k−1)hh, ∆hD

′
k, ∆hZ

′
k).

In matrix format, the model is Y = Xβ0 + Z0δ
0
Z + e, where now X is T × (p+ q + 2) and Z0 = XR,

R ≜ [(I2, 02×p)′, (0′
(p+q)×2, R)]′, with R as defined in Section 2. Natural estimates of β0 and δ0

Z minimize

the following criterion function,

h−1
T∑
k=1

(
∆hY k − β′

� kh

(k−1)h
Xsds− δ′

� kh

(k−1)h
Zsds

)2

= h−1
T∑
k=1

(
∆hY k − µh1h− αh1

� kh

(k−1)h
Ysds− π′∆hDk (S.3)

− δ′
Z,1∆hZk1 {k ≤ Tb} − δ′

Z,2∆hZk1 {k > Tb}
)2
.

Hence, we define our least-squares estimator as the minimizer of the following approximation to (S.3):

h−1
T∑
k=1

(
∆hY k − µh1h− αh1Y(k−1)hh− ν ′∆hDk

− δ′
Z,1∆hZk1 {k ≤ Tb} − δ′

Z,2∆hZk1 {k > Tb}
)2
.

Such approximations are common [cf. Christopeit (1986), Lai and Wei (1983), Mel’nikov and Novikov

(1988) and Galtchouk and Konev (2001)]. Define ∆hỸk ≜ h1/2∆hYk and ∆hṼk = h1/2∆hVk(ν0, δ0
Z,1, δ

0
Z,2),

where

∆hVk
(
ν0, δ0

Z,1, δ
0
Z,2

)
≜


(
ν0)′ ∆hDk +

(
δ0
Z,1

)′
∆hZk + ∆he

∗
k, if k ≤ T 0

b(
ν0)′ ∆hDk +

(
δ0
Z,2

)′
∆hZk + ∆he

∗
k, if k > T 0

b

.

The small-dispersion format of our model is then

∆hỸk =
(
µ0

1h+ α0
1Ỹ(k−1)hh

)
1
{
k ≤ T 0

b

}
(S.4)

+
(
µ0

2h+ α0
2Ỹ(k−1)hh

)
1
{
k > T 0

b

}
+ ∆hṼk

(
ν0, δ0

Z,1, δ
0
Z,2

)
.

This re-parametrization emphasizes that asymptotically our model describes small disturbances to the

approximate dynamical system

dỸ 0
t /dt =

(
µ0

1 + α0
1Ỹ

0
t

)
1
{
t ≤ N0

b

}
+
(
µ0

2 + α0
2Ỹ

0
t

)
1
{
t > N0

b

}
. (S.5)
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The process {Ỹ 0
t }t≥0 is the solution to the underlying ordinary differential equation. The least-squares

estimate of the break point is then defined as T̂b ≜ arg maxTb
QT (Tb) , where

QT (Tb) ≜ QT
(
β̂ (Tb) , δ̂ (Tb) , Tb

)
= δ̂′ (Z ′

2MZ2
)
δ̂,

and the least-squares estimates of the regression parameters are

θ̂ ≜ arg min
θ∈Θ0

h
(
ST
(
β, δ, T̂b

)
− ST

(
β0, δ0

Z , T
0
b

))
,

where ST is the sum of square residuals. With the exception of our small-dispersion assumption and

consequent more lengthy derivations, our analysis remains the same as in the model without predictable

processes. Hence, the asymptotic distribution of the break point estimator is derived under the same

setting as in Section 4. We show that the limiting distribution is qualitatively equivalent to that in

Theorem 4.1.

Assumption S.C.1. Assumption 2.4 and 3.2 hold. Assumption 2.1 and 3.1 now apply to the last p (resp.

q) elements of the process {Zt}t≥0 (resp. {Dt}t≥0).

Proposition S.C.1. Consider model (S.1). Under Assumption 2.2 and S.C.1: (i) λ̂b
P→ λ0; (ii) for every

ε > 0 there exists a K > 0 such that for all large T, P (T |λ̂b − λ0| > K||δ0||−2σ2) < ε.

Assumption S.C.2. Let δh = h1/4δ0 and for i = 1, 2 µhi = h1/4µ0
i and αhi = h1/4α0

i , and assume that for

all t ∈ (N0
b − ϵ, N0

b + ϵ), with ϵ ↓ 0 and T 1−κϵ → B < ∞, 0 < κ < 1/2, E[(∆he
∗
t )

2 | Ft−h] = σ2
h,t∆t P -a.s,

where σh,t ≜ σhσe,t with σh ≜ h−1/4σ.

Furthermore, define the normalized residual ∆hẽt as in Section 4. We shall derive a weak convergence

result for QT (·, ·) as defined in Section 4. The description of the limiting process is similar to the one

presented in the previous section. However, here we shall condition on the σ-field G generated by all

latent processes appearing in the model. In view of its properties, the σ-field F admits a regular version

of the Gh-conditional probability, denoted H (ω, dω∗). The limit process is then realized on the extension

(Ω̃, F̃ , {F̃h,t}t≥0, P̃ ) of the original filtered probability space as explained in Section S.B. We again

introduce a two-sided Gaussian process WZe (·) with a different dimension in order to accommodate for

the presence of the predictable regressors in the first two columns of both X and Z. That is, WZe (·) is

a p-dimensional process which is Gh-conditionally Gaussian and has P -a.s. continuous sample paths. We

then have the following theorem.

Theorem S.C.1. Consider model (S.4). Under Assumption 4.2, S.C.1-S.C.2: (i) λ̂b
P→ λ0; (ii) for every

ε > 0 there exists a K > 0 such that for all large T, P (T 1−κ|λ̂b − λ0| > K||δ0||−2σ2) < ε; (iii)

N
(
λ̂b,π − λ0

)
⇒ argmax

v∈
[

Nπ−N0
b

∥δ0∥−2
σ2 ,

N(1−π)−N0
b

∥δ0∥−2
σ2

]{−
(
δ0
)′

Λ (v) δ0 + 2
(
δ0
)′

W (v)
}
, (S.6)

where Λ (v) is a process given by

Λ (v) ≜
{

Λ1 (v) , if v ≤ 0
Λ2 (v) , if v > 0

, with
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Λ1 (v) ≜


� N0

b

N0
b

+v ds
� N0

b

N0
b

+v Ỹsds 01×p� N0
b

N0
b

+v Ỹsds
� N0

b

N0
b

+v Ỹ
2
s ds 01×p

0p×1 0p×1 ⟨Z, Z⟩1 (v)

 ,
and Λ2 (v) is defined analogously, where ⟨Z, Z⟩1 (v) is the p× p predictable quadratic covariation process

of the pair (Z(u)
∆ , Z

(j)
∆ ), 3 ≤ u, j ≤ p and v ≤ 0. The process W (v) is, conditionally on Gh, a two-sided

centered Gaussian martingale with independent increments.

When v ≤ 0, the limit process W (v) is defined as follows,

W (j) (v) =


� N0

b

N0
b

+v dWe,s, j = 1,� N0
b

N0
b

+v ỸsdWe,s, j = 2,

W
(j−2)
Ze (v) , j = 3, . . . , p+ 2,

where W
(i)
Ze (v) ≜

∑p
r=1

� N0
b

N0
b

+v σ
(i,r)
Ze,sdW

1∗(r)
s (i = 1, . . . , p) and analogously when v > 0. That is, WZe (v)

corresponds to the process W (v) used for the benchmark model (and so are W 1∗
s , W 2∗

s and ΩZe,s below).

Its conditional covariance is given by

Ẽ
(
W (u) (v) W (j) (v)

)
= Ω(u,j)

W (v) =

Ω(u,j)
W ,1 (v) , if v ≤ 0

Ω(u,j)
W ,2 (v) , if v > 0

, (S.7)

where Ω(u,j)
W ,1 (v) =

� N0
b

N0
b

+v σ
2
e,sds, if u, j = 1; Ω(u,j)

W ,1 (v) =
� N0

b

N0
b

+v Ỹ
2
s σ

2
e,sds, if u, j = 2; Ω(u,j)

W ,1 (v) =
� N0

b

N0
b

+v Ỹ
2
s σ

2
e,sds, if 1 ≤ u, j ≤ 2, u ̸= j; Ω(u,j)

W ,1 (v) = 0, if u = 1, 2, j = 3, . . . , p; Ω(u,j)
W ,1 (v) =

� N0
b

N0
b

+v Ω(u−2,j−2)
Ze,s

ds if 3 ≤ u, j ≤ p + 2; and similarly for Ω(u,j)
W ,2 (v). The asymptotic distribution is qualitatively the same

as in Theorem 4.1. When the volatility processes are deterministic, we have convergence in law under the

Skorhokod topology to the same limit process W (·) with a Gaussian unconditional law. The case with

stationary regimes is described as follows.

Assumption S.C.3. Σ∗ = {µ·,t, Σ·,t, σe,t}t≥0 is deterministic and the regimes are stationary.

Let W ∗
i , i = 1, 2, be two independent standard Wiener processes defined on [0, ∞), starting at the

origin when s = 0. Let

V (s) =


− |s|

2 +W ∗
1 (s) , if s < 0

−(δ0)′Λ2δ0

(δ0)′Λ1δ0
|s|
2 +

(
(δ0)′ΩW ,2δ

0

(δ0)′ΩW ,1δ0

)1/2
W ∗

2 (s) , if s ≥ 0.

Corollary S.C.1. Under Assumption 4.2, S.C.1-S.C.3,((
δ0)′ Λ1δ

0
)2

(δ0)′ ΩW ,1δ0 N
(
λ̂b,π − λ0

)
⇒ argmax

s∈A1

V (s) , (S.8)

where

A1 =

Nπ −N0
b

∥δ0∥−2 σ2

((
δ0)′ Λ1δ

0
)2

(δ0)′ ΩW ,1δ0 ,
N (1 − π) −N0

b

∥δ0∥−2 σ2

((
δ0)′ Λ1δ

0
)2

(δ0)′ ΩW ,1δ0

 .
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In the next two corollaries, we assume stationary errors across regimes. Corollary S.C.3 considers

the basic case of a change in the mean of a sequence of i.i.d. random variables. Let

Vsta (s) =


− |s|

2 +W ∗
1 (s) , if s < 0

−(δ0)′Λ2δ0

(δ0)′Λ1δ0
|s|
2 +

(
(δ0)′Λ2δ0

(δ0)′Λ1δ0

)1/2
W ∗

2 (s) , if s ≥ 0
,

Vµ,sta (s) =
{

− |s|
2 +W ∗

1 (s) , if s < 0
− |s|

2 +W ∗
2 (s) , if s ≥ 0

.

Corollary S.C.2. Under Assumption 4.2, S.C.1-S.C.3 and assuming that the second moments of the resid-

ual process are stationary across regimes, σe,s = σ for all 0 ≤ s ≤ N ,(
δ0)′ Λ1δ

0

σ2 N
(
λ̂b,π − λ0

)
⇒ argmax

s∈A2

Vsta (s) ,

where

A2 =
[
Nπ −N0

b

∥δ0∥−2 σ2

(
δ0)′ Λ1δ

0

σ2 ,
N (1 − π) −N0

b

∥δ0∥−2 σ2

(
δ0)′ Λ1δ

0

σ2

]
.

Corollary S.C.3. Under Assumption 4.2, S.C.1-S.C.3, with ν0 = 0, δ0
Z,i = 0, and α0

i = 0 for i = 1, 2:

(
δ0/σ

)2
N
(
λ̂b,π − λ0

)
⇒ argmax

s∈[(Nπ−N0
b )(δ0/σ)2, (N(1−π)−N0

b )(δ0/σ)2]
Vµ,sta (s) .

Remark S.C.1. The last corollary reports the result for the simple case of a shift in the mean of an i.i.d.

process. This case was recently considered by Jiang et al. (2018) under a continuous-time setting in their

Theorem 4.2-(b) which is similar to our Corollary S.C.3. Our limit theory differs in many respects, besides

being obviously more general. Jiang et al. (2018) only develop an infeasible distribution theory for the

break date estimator whereas we also derive a feasible version. This is because we introduce an assumption

about the drift in order to “keep” it in the asymptotics. The limiting distribution is also derived under a

different asymptotic experiment (cf. Assumption S.C.2 above and the change of time scale as discussed

in Section 4). A direct consequence is that the estimate of the break fraction is shown to be consistent as

h ↓ 0 whereas Jiang et al. (2018) do not have such a result.

The results are similar to those in the benchmark model. However, the estimation of the regression

parameters is more complicated because of the identification issues about the parameters associated with

predictable processes. Nonetheless, our model specification allows us to construct feasible estimators.

Given the small-dispersion specification in (S.4), we propose a two-step estimator. In fact, (S.5) essentially

implies that asymptotically the evolution of the dependent variable is governed by a deterministic drift

function given by µ0
1 +α0

1Ỹ
0
t (resp., µ0

2 +α0
2Ỹ

0
t ) if t ≤ N0

b (resp., t > N0
b ). Thus, in a first step we construct

least-squares estimates of µ0
i and α0

i (i = 1, 2). Next, we subtract the estimate of the deterministic drift

from the dependent variable so as to generate a residual component that will be used (after rescaling)

as a new dependent variable in the second step where we construct the least-squares estimates of the

parameters associated with the stochastic semimartigale regressors.

Proposition S.C.2. Under Assumption 4.2, S.C.1-S.C.2, as h ↓ 0, θ̂ P→ θ0.

The consistency of the estimate θ̂ is all that is needed to carry out our inference procedures about

the break point T 0
b presented in Section 6. The relevance of the result is that even though the drifts
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cannot in general be consistently estimated, we can, under our setting, estimate the parameters entering

the limiting distribution; i.e., µ0
i and α0

i .

S.D Mathematical Proofs

S.D.1 Additional Notations

For a matrix A, the orthogonal projection matrices PA, MA are defined as PA = A (A′A)−1A′ and MA =
I − PA, respectively. For a matrix A, we use the vector-induced norm, i.e., ∥A∥ = supx ̸=0 ∥Ax∥ / ∥x∥ .
Also, for a projection matrix P , ∥PA∥ ≤ ∥A∥ . We denote the d-dimensional identity matrix by Id. When

the context is clear we omit the subscript notation in the projection matrices. We denote the (i, j)-th
element of the outer product matrix A′A as (A′A)i,j and the i × j upper-left (resp., lower-right) sub-

block of A′A as [A′A]{i×j,·} (resp., [A′A]{·,i×j}). For a random variable ξ and a number r ≥ 1, we write

∥ξ∥r = (E ∥ξ∥r)1/r. B and C are generic constants that may vary from line to line; we may sometime write

Cr to emphasize the dependence of C on a number r. For two scalars a and b the symbol a∧ b means the

infimum of {a, b}. The symbol “
u.c.p.⇒ ” signifies uniform locally in time convergence under the Skorokhod

topology and recall that it implies convergence in probability. The symbol “
d≡” signifies equivalence in

distribution. We also use the same notations as detailed in Section 2.

S.D.2 Preliminary Lemmas

Lemma S.D.1 is Lemma A.1 in Bai (1997). Let X∆ be defined as in the display equation after (S.11).

Lemma S.D.1. The following inequalities hold P -a.s.:(
Z ′

0MZ0
)

−
(
Z ′

0MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ0

)
(S.1)

≥ R′ (X ′
∆X∆

) (
X ′

2X2
)−1 (

X ′
0X0

)
R, Tb < T 0

b(
Z ′

0MZ0
)

−
(
Z ′

0MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ0

)
(S.2)

≥ R′ (X ′
∆X∆

) (
X ′X −X ′

2X2
)−1 (

X ′X −X ′
0X0

)
R, Tb ≥ T 0

b .

The following lemma presents the uniform approximation to the instantaneous covariation between

continuous semimartingales. This will be useful in the proof of the convergence rate of our estimator.

Below, the time window in which we study certain estimates is shrinking at a rate no faster than h1−ϵ for

some 0 < ϵ < 1/2.

Lemma S.D.2. Let Xt (resp., X̃t) be a q (resp., p)-dimensional Itô continuous semimartingale defined on

[0, N ]. Let Σt denote the time t instantaneous covariation between Xt and X̃t. Choose a fixed number

ϵ > 0 and ϖ satisfying 1/2 − ϵ ≥ ϖ ≥ ϵ > 0. Further, let BT ≜ ⌊N/h− Tϖ⌋ . Define the moving

average of Σt as Σkh ≜ (Tϖh)−1 � kh+Tϖh
kh Σsds, and let Σ̂kh ≜ (Tϖh)−1∑⌊Tϖ⌋

i=1 ∆hXk+i∆hX̃
′
k+i.Then,

sup1≤k≤BT
||Σ̂kh − Σkh|| = op (1) . Furthermore, for each k and some K > 0 with N − K > kh > K,

supT ϵ≤Tϖ≤T 1−ϵ ||Σ̂kh − Σkh|| = op (1).

Proof. By a polarization argument, we can assume thatXt and X̃t are univariate without loss of generality,

and by standard localization arguments, we can assume that the drift and diffusion coefficients of Xt and

X̃t are bounded. Then, by Itô Lemma,

Σ̂kh − Σkh ≜
1

Tϖh

⌊Tϖ⌋∑
i=1

� (k+i)h

(k+i−1)h

(
Xs −X(k+i−1)h

)
dX̃s
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+ 1
Tϖh

⌊Tϖ⌋∑
i=1

� (k+i)h

(k+i−1)h

(
X̃s − X̃(k+i−1)h

)
dXs.

For any l ≥ 1, ||Σ̂kh − Σkh||l ≤ KlT
−ϖ/2, which follows from standard estimates for continuous Itô

semimartignales. By a maximal inequality,∥∥∥∥∥ sup
1≤k≤BT

∣∣∣Σ̂kh − Σkh

∣∣∣∥∥∥∥∥
l

≤ KlT
1/lT−ϖ/2,

which goes to zero choosing l > 2/ϖ. This proves the first claim. For the second, note that for l ≥ 1,∥∥∥∥∥ sup
T ϵ≤Tϖ≤T 1−ϵ

∣∣∣Σ̂kh − Σkh

∣∣∣∥∥∥∥∥
l

=
∥∥∥∥∥ sup

1≤Tϖ−ϵ≤T 1−2ϵ

∣∣∣Σ̂kh − Σkh

∣∣∣∥∥∥∥∥
l

≤ KlT
(1−2ϵ)/lT−ϵ/2,

and choose l > (2 − 4ϵ) /ϵ to verify the claim. □

S.D.3 Preliminary Results

As it is customary in related contexts, we use a standard localization argument as explained in Section

1.d in Jacod and Shiryaev (2003) and thus we can replace Assumption 2.1-2.3 with the following stronger

assumption.

Assumption S.D.1. Let Assumption 2.1-2.3 hold. The process {Yt, Dt, Zt}t≥0 takes value in some compact

set, {σ·,t}t≥0 is bounded càdlàg and the process {µ·,t} is bounded càdlàg or càglàd.

The localization technique basically translates all the local conditions into global ones. Note that

Assumption S.D.1 holds under the setting of Section 2-3. Under the setting of Section 4, Assumption

S.D.1 holds only when restricted to {Dt, Zt}t≥0 instead of {Yt, Dt, Zt}t≥0 since the volatility of et is

locally unbounded close to T 0
b . We next introduce concepts and results which will be useful in some of

the proofs below.

S.D.3.1 Approximate Variation, LLNs and CLTs

We review some basic definitions about approximate covariation and more general high-frequency statis-

tics. Given a continuous-time semimartingales X =
(
Xi
)

1≤i≤d ∈ Rd with zero initial value over the time

horizon [0, N ] , with P -a.s. continuous paths, the covariation of X over [0, t] is denoted [X, X]t . The
(i, j)-element of the quadratic covariation process [X, X]t is defined as6

[
Xi, Xj

]
t

= plim
T→∞

T∑
k=1

(
Xi
kh −Xi

(k−1)h

) (
Xj
kh −Xj

(k−1)h

)
,

where plim denotes the probability limit of the sum. [X, X]t takes values in the cone of all positive

semidefinite symmetric d × d matrices and is continuous in t, adapted and of locally finite variation.

Associated with this, we can define the (i, j)-element of the approximate covariation matrix as∑
k≥1

(
hX

i
kh − hX

i
(k−1)h

) (
hX

j
kh − hX

j
(k−1)h

)
,

6The reader may refer to Jacod and Protter (2012) or Jacod and Shiryaev (2003) for a complete introduction
to the material of this section.
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which consistently estimates the increments of the quadratic covariation
[
Xi, Xj

]
. It is an ex-post esti-

mator of the covariability between the components of X over the time interval [0, t]. More precisely, as

h ↓ 0:

⌊t/h⌋∑
k≥1

(
Xi
kh −Xi

(k−1)h

) (
Xj
kh −Xj

(k−1)h

)
P→

� t

0
Σ(i,j)
XX,sds,

where Σ(i,j)
XX,s is referred to as the spot (not integrated) volatility.

After this brief review, we turn to the statement of the asymptotic results for some statistics to be

encountered in the proofs below. We simply refer to Jacod and Protter (2012). More specifically, Lemma

S.D.3-S.D.4 follow from their Theorem 3.3.1-(b), while Lemma S.D.5 follows from their Theorem 5.4.2.

Lemma S.D.3. Under Assumption S.D.1, we have as h ↓ 0, T → ∞ with N fixed and for any 1 ≤ i, j ≤ p,

(i)
∣∣∣(Z ′

2e)i,1
∣∣∣ P→ 0 where (Z ′

2e)i,1 =
∑T
k=Tb+1 z

(i)
khekh;

(ii)
∣∣∣(Z ′

0e)i,1
∣∣∣ P→ 0 where (Z ′

0e)i,1 =
∑T
k=T 0

b
+1 z

(i)
khekh;

(iii)
∣∣∣(Z ′

2Z2)i,j −
� N

(Tb+1)h Σ(i,j)
ZZ,sds

∣∣∣ P→ 0 where (Z ′
2Z2)i,j =

∑T
k=Tb+1 z

(i)
khz

(j)
kh ;

(iv)

∣∣∣∣(Z ′
0Z0)i,j −

� N
(T 0

b
+1)h Σ(i,j)

ZZ,sds
P→
∣∣∣∣ 0 where (Z ′

0Z0)i,j =
∑T
k=T 0

b
+1 z

(i)
khz

(j)
kh .

For the following estimates involving X, we have, for any 1 ≤ r ≤ p and 1 ≤ l ≤ q + p,

(v)
∣∣∣(Xe)l,1∣∣∣ P→ 0 where (Xe)l,1 =

∑T
k=1 x

(l)
khekh;

(vi)
∣∣∣(Z ′

2X)r,l −
� N

(Tb+1)h Σ(r,l)
ZX,sds

∣∣∣ P→ 0 where (Z ′
2X)r,l =

∑T
k=Tb+1 z

(r)
kh x

(l)
kh;

(vii)

∣∣∣∣(Z ′
0X)r,l −

� N
(T 0

b
+1)h Σ(r,l)

ZX,sds

∣∣∣∣ P→ 0 where (Z ′
0X)r,l =

∑T
k=T 0

b
+1 z

(r)
kh x

(l)
kh.

Further, for 1 ≤ u, d ≤ q + p,

(viii)
∣∣∣(X ′X)u,d −

� N
0 Σ(u,d)

XX,sds
∣∣∣ P→ 0 where (X ′X)u,d =

∑T
k=1 x

(u)
kh x

(d)
kh .

Lemma S.D.4. Under Assumption S.D.1, we have as h ↓ 0, T → ∞ with N fixed,
∣∣N0

b −Nb

∣∣ > γ > 0 and

for any 1 ≤ i, j ≤ p,

(i) with (Z ′
∆Z∆)i,j =

∑Tb

k=T 0
b

+1 z
(i)
khz

(j)
kh , we have

| (Z ′
∆Z∆)i,j −

� T 0
b h

(Tb+1)h Σ(i,j)
ZZ,sds|

P→ 0, if Tb < T 0
b

| (Z ′
∆Z∆)i,j −

� (Tb+1)h
T 0

b
h

Σ(i,j)
ZZ,sds|

P→ 0, if Tb > T 0
b

;

and for 1 ≤ r ≤ p+ q,

(ii) with (Z ′
∆X∆)i,r =

∑Tb

k=T 0
b

+1 z
(i)
khx

(r)
kh , we have

| (Z ′
∆X∆)i,r −

� T 0
b h

(Tb+1)h Σ(i,r)
ZX,sds|

P→ 0, if Tb < T 0
b

| (Z ′
∆X∆)i,r −

� (Tb+1)h
T 0

b
h

Σ(i,r)
ZX,sds|

P→ 0, if Tb > T 0
b

.

Next, we turn to the central limit theorems, they all feature a limiting process defined on an extension

of the original probability space (Ω, F , P ) . In order to avoid non-useful repetitions, under Assumption

S.D.1 we present a general framework that we will use in the proofs of the results in Section 3. The

first step is to carry out an extension of the original probability space (Ω, F , P ) . We accomplish this

in the usual way. We first fix the original probability space (Ω, F , {Ft}t≥0, P ). Consider an additional

measurable space (Ω∗, F ∗) and a transition probability Q (ω, dω∗) from (Ω, F ) into (Ω∗, F ∗). Next, we
can define the products Ω̃ = Ω × Ω∗, F̃ = F ⊗ F ∗ and P̃ (dω, dω∗) = P (dω)Q (ω, dω∗). This defines
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the extension (Ω̃, F̃ , P̃ ) of the original space (Ω, F , {Ft}t≥0, P ). Any variable or process defined on

either Ω or Ω∗ is extended in the usual to Ω̃ as follows: for example, let Yt be defined on Ω. Then we

say that Yt is extended in the usual way to Ω̃ by writing Yt (ω, ω∗) = Yt (ω). Further, we identify Ft

with Ft ⊗ {∅, Ω∗}, so that we have a filtered space (Ω̃, F̃ , {Ft}t≥0, P̃ ). Finally, as for the filtration, we

can consider another filtration {F̃t}t≥0 taking the product form F̃t = ∩s>tFs ⊗ F ∗
s, where {F ∗

t }t≥0 is a

filtration on (Ω∗, F ∗). As for the transition probability Q we can consider the simple form Q (ω, dω∗) =
P ∗ (dω∗) for some probability measure on (Ω∗, F ∗). This defines the way a product filtered extension

(Ω̃, F̃ , {F̃t}t≥0, P̃ ) of the original filtered space (Ω, F , {Ft}t≥0, P ) is constructed in this paper. Assume

that the auxiliary probability space (Ω∗, F ∗, {F ∗
t }t≥0, P

∗) supports a p2-dimensional standard Wiener

processW †
s which is adapted to {F̃t}. We need some additional ingredients in order to describe the limiting

process. We choose a progressively measurable “square-root” process σ∗
Z of the M+

p2×p2-valued process

Σ̂Z,s, whose elements are given by Σ̂(ij,kl)
Z,s = Σ(ik)

Z,s Σ(jl)
Z,s . Due to the symmetry of ΣZ,s, the matrix with

entries (σ∗,(ij,kl)
Z,s +σ∗,(ji,kl)

Z,s )/
√

2 is a square-root of the matrix with entries Σ̂(ij,kl)
Z,s +Σ̂(il,jk)

Z,s . Then the process

Ut with components U
(r,j)
t = 2−1/2∑p

k,l=1
� t

0 (σ(rj,kl)
Z,s +σ(jr,kl)

Z,s )dW †(kl)
s is, conditionally on F , a continuous

Gaussian process with independent increments and (conditional) covariance Ẽ(U (r,j) (v) U (k,l) (v) | F ) =� T 0
b h

T 0
b
h+v(Σ

(rk)
Z,s Σ(jl)

Z,s + Σ(rl)
Z,sΣ(jk)

Z,s )ds, where v ≤ 0. The CLT of interest is as follows.

Lemma S.D.5. Let Z be a continuous Itô semimartingale satisfying Assumption S.D.1. Then, (Nh)−1/2

(Z ′
2Z2 − ([Z, Z]Th − [Z, Z](Tb+1)h)) L−s⇒ U , where

L−s⇒ denotes stable convergence in law.

S.D.4 Proofs of the Results in Section 3

S.D.4.1 Additional Notation

In some of the proofs we face a setting in which Nb is allowed to vary within a shrinking neighborhood

of N0
b . Some estimates only depend on observations in this window. For example, assume Tb < T 0

b and

consider
∑T 0

b
k=Tb+1 xkhx

′
kh. When Nb is allowed to vary within a shrinking neighborhood of N0

b , this sum

approximates a local window of asymptotically shrinking size. Introduce a sequence of integers {lT } that

satisfies lT → ∞ and lTh → 0. Below we shall establish a T 1−κ-rate of convergence of λ̂b toward λ0,

considering the case where Nb −N0
b = T−(1−κ) for some κ ∈ (0, 1/2). Hence, define

Σ̂X

(
Tb, T

0
b

)
≜

T 0
b∑

k=Tb+1
xkhx

′
kh =

T 0
b∑

k=T 0
b

+1−lT

xkhx
′
kh, (S.3)

where now lT = ⌊T κ⌋ → ∞ and lTh = h1−κ → 0. Note that 1/h1−κ is the rate of convergence and the

interpretation for Σ̂X

(
Tb, T

0
b

)
is that it involves asymptotically an infinite number of observations falling

in the shrinking (at rate h1−κ) block ((Tb − 1)h, T 0
b h]. Other statistics involving the regressors and errors

are defined similarly:

Σ̂Xe

(
Tb, T

0
b

)
≜

T 0
b∑

k=Tb+1
xkhekh =

T 0
b∑

k=T 0
b

+1−lT

xkhekh, (S.4)

and

Σ̂Ze

(
Tb, T

0
b

)
≜

T 0
b∑

k=T 0
b

+1−lT

zkhekh. (S.5)
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Further, we let ΣXe

(
Tb, T

0
b

)
≜ h−(1−κ) � N0

b
Nb

ΣXe,sds and analogously when Z replaces X. We also define

Σ̂h,X

(
Tb, T

0
b

)
≜ h−(1−κ)

T 0
b∑

k=T 0
b

+1−lT

xkhx
′
kh. (S.6)

The proofs of Section 4 are first given for the case where µ·,t from equation (2.3) are identically zero. In the

last step, this is relaxed. Furthermore, throughout the proofs we proceed conditionally on the processes

µ·,t and
{

Σ0
t , σ

2
e,t

}
(defined in Assumption 2.3) so that they are treated as if they were deterministic.

This is a natural strategy since the processes µ·,t are of higher order in h and they do not play any role

for the asymptotic results [cf. Barndorff-Nielsen and Shephard (2004)].

S.D.4.2 Proof of Proposition 3.1

Proof. The concentrated sample objective function evaluated at T̂b is QT (T̂b) = δ̂′
Tb

(Z ′
2MZ2) δ̂Tb

.We have

δ̂Tb
=
(
Z ′

2MZ2
)−1 (

Z ′
2MY

)
=
(
Z ′

2MZ2
)−1 (

Z ′
2MZ0

)
δ0
Z +

(
Z ′

2MZ2
)−1

Z2Me,

and δ̂T 0
b

= (Z ′
0MZ0)−1 (Z ′

0MY ) = δ0
Z + (Z ′

0MZ0)−1 (Z ′
0Me). Therefore,

QT (Tb) −QT
(
T 0
b

)
= δ̂′

Tb

(
Z ′

2MZ2
)
δ̂Tb

− δ̂′
T 0

b

(
Z ′

0MZ0
)
δ̂T 0

b
(S.7)

=
(
δ0
Z

)′ {(
Z ′

0MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ0

)
− Z ′

0MZ0
}
δ0
Z (S.8)

+ ge (Tb) , (S.9)

where

ge (Tb) = 2
(
δ0
Z

)′ (
Z ′

0MZ2
) (
Z ′

2MZ2
)−1

Z2Me− 2
(
δ0
Z

)′ (
Z ′

0Me
)

(S.10)

+ e′MZ2
(
Z ′

2MZ2
)−1

Z2Me− e′MZ0
(
Z ′

0MZ0
)−1

Z ′
0Me. (S.11)

Denote

X∆ ≜ X2 −X0 =
(
0, . . . , 0, x(Tb+1)h, . . . , xT 0

b
h, 0, . . . ,

)′
, for Tb < T 0

b

X∆ ≜ − (X2 −X0) =
(
0, . . . , 0, x(T 0

b
+1)h, . . . , xTbh, 0, . . . ,

)′
, for Tb > T 0

b

X∆ ≜ 0, for Tb = T 0
b .

Observe that when T 0
b ̸= Tb we have X2 = X0 + X∆sign

(
T 0
b − Tb

)
. When the sign is immaterial, we

simply write X2 = X0 +X∆. Next, let Z∆ = X∆R, and define

r (Tb) ≜
(
δ0
Z

)′ {(Z ′
0MZ0) − (Z ′

0MZ2) (Z ′
2MZ2)−1 (Z ′

2MZ0)
}
δ0
Z∣∣Tb − T 0

b

∣∣ . (S.12)

We arbitrarily define r (Tb) =
(
δ0
Z

)′
δ0
Z when Tb = T 0

b . We write (S.7) as

QT (Tb) −QT (T0) = −
∣∣∣Tb − T 0

b

∣∣∣ r (Tb) + ge (Tb) , for all Tb. (S.13)
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By definition, T̂b is an extremum estimator and thus satisfies ge(T̂b) ≥ |T̂b − T 0
b |r(T̂b). Therefore,

P
(∣∣∣λ̂b − λ0

∣∣∣ > K
)

= P
(∣∣∣T̂b − T 0

b

∣∣∣ > TK
)

≤ P

 sup
|Tb−T 0

b |>TK
|ge (Tb)| ≥ inf

|Tb−T 0
b |>TK

∣∣∣Tb − T 0
b

∣∣∣ r (Tb)


≤ P

(
sup

p≤Tb≤T−p
|ge (Tb)| ≥ TK inf

|Tb−T 0
b |>TK

r (Tb)
)

(S.14)

= P

(
r−1
T sup

p≤Tb≤T−p
|ge (Tb)| ≥ K

)
,

where we recall that p ≤ Tb ≤ T − p is needed for identification, and rT ≜ T inf|Tb−T 0
b |>TK r (Tb) . Lemma

S.D.6 below shows that rT is positive and bounded away from zero. Thus, it is sufficient to verify that

the stochastic component is negligible as h ↓ 0, i.e.,

sup
p≤Tb≤T−p

|ge (Tb)| = op (1) . (S.15)

The first term of ge (Tb) is

2
(
δ0
Z

)′ (
Z ′

0MZ2
) (
Z ′

2MZ2
)−1/2 (

Z ′
2MZ2

)−1/2
Z2Me. (S.16)

Lemma S.D.5 implies that for any 1 ≤ j ≤ p, (Z2e)j,1 /
√
h = Op (1) and for any 1 ≤ i ≤ q + p,

(Xe)i,1 /
√
h = Op (1). These hold because they both involve a positive fraction of the data. Furthermore,

from Lemma S.D.3, we also have that Z ′
2MZ2 and Z ′

0MZ2 are Op (1) . Therefore, the supremum of

(Z ′
0MZ2) (Z ′

2MZ2)−1/2 over all Tb is

sup
Tb

(
Z ′

0MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ0

)
≤ Z ′

0MZ0 = Op (1) ,

by Lemma S.D.3. By Assumption (2.1)-(iii), (Z ′
2MZ2)−1/2 Z ′

2Me is Op (1)Op(
√
h) uniformly, which

implies that (S.16) is Op(
√
h) uniformly over p ≤ Tb ≤ T − p. As for the second term of (S.10), Z ′

0Me =
Op(

√
h). The first term in (S.11) is uniformly op (1) and the same holds for the last term. Therefore,

combining these results, supTb
|ge (Tb)| = Op(

√
h) uniformly when |λ̂b−λ0| > K. Therefore for someB > 0,

these arguments combined with Lemma S.D.6 below result in P (r−1
B supp≤Tb≤T−p |ge (Tb)| ≥ K) ≤ ε, from

which it follows that the right-hand side of (S.14) is weakly smaller than ε. This concludes the proof since

ε > 0 was arbitrary. □

Lemma S.D.6. For B > 0, let rB = inf|Tb−T 0
b |>TB Tr (Tb) . There exists a κ > 0 such that for every ε > 0,

there exists a B < ∞ such that P (rB ≥ κ) ≤ 1 − ε, i.e., rB is positive and bounded away from zero with

high probability.

Proof. Assume Tb ≤ T 0
b and observe that rT ≥ rB for an appropriately chosen B. From the first inequality

result in Lemma S.D.1,

r (Tb) ≥
(
δ0
Z

)′
R′
(
X ′

∆X∆/
(
T 0
b − Tb

)) (
X ′

2X2
)−1 (

X ′
0X0

)
Rδ0

Z .
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When multiplied by T, we have

Tr (Tb) ≥ T
(
δ0
Z

)′
R′ X

′
∆X∆

T 0
b − Tb

(
X ′

2X2
)−1 (

X ′
0X0

)
Rδ0

Z

=
(
δ0
Z

)′
R′ X

′
∆X∆

N0
b −Nb

(
X ′

2X2
)−1 (

X ′
0X0

)
Rδ0

Z .

Note that 0 < K < B < h
(
T 0
b − Tb

)
< N . Then,

Tr (Tb) ≥
(
δ0
Z

)′
R′ (X ′

∆X∆/N
) (
X ′

2X2
)−1 (

X ′
0X0

)
Rδ0

Z ,

and by standard estimates for Itô semimartingales, X ′
∆X∆ = Op (1) (i.e., use the Burkhölder-Davis-Gundy

inequality, recalling that |N̂b−N0
b | > BN). Hence, we conclude that Tr (Tb) ≥

(
δ0
Z

)′
R′Op (1/N)Op (1)Rδ0

Z

≥ κ > 0, where κ is some positive constant. The last inequality follows whenever X ′
∆X∆ is positive defi-

nite since R′X ′
∆X∆ (X ′

2X2)−1 (X ′
0X0)R can be rewritten as R′[(X ′

0X0)−1 + (X ′
∆X∆)−1]R. According to

Lemma S.D.3, X ′
2X2 is Op (1). The same argument applies to X ′

0X0, which together with the the fact that

R has full common rank in turn implies that we can choose a B > 0 such that rB = inf|Tb−T 0
b |>TB Tr (Tb)

satisfies P (rB ≥ κ) ≤ 1 − ε. The case with Tb > T 0
b is similar and omitted. □

S.D.4.3 Proof of Proposition 3.2

Proof. Given the consistency result, one can restrict attention to the local behavior of the objective

function for those values of Tb in BT ≜ {Tb : Tη ≤ Tb ≤ T (1 − η)} , where η > 0 satisfies η ≤ λ0 ≤ 1 − η.

By Proposition 3.1, the estimator T̂b will visit the set BT with large probability as T → ∞. That is, for

any ε > 0, P
(
T̂b /∈ BT

)
< ε for sufficiently large T. We show that for large T, T̂b eventually falls in the

set BK,T ≜
{
Tb :

∣∣Nb −N0
b

∣∣ ≤ KT−1} , for some K > 0. For any K > 0, define the intersection of BT

and the complement of BK,T by

DK,T ≜
{
Tb : Nη ≤ Nb ≤ N (1 − η) ,

∣∣∣Nb −N0
b

∣∣∣ > KT−1
}
.

Notice that {∣∣∣λ̂b − λ0
∣∣∣ > KT−1

}
={∣∣∣λ̂b − λ0

∣∣∣ > KT−1 ∩ λ̂b ∈ (η, 1 − η)
}

∪
{∣∣∣λ̂b − λ0

∣∣∣ > KT−1 ∩ λ̂b /∈ (η, 1 − η)
}

⊆
{∣∣∣λ̂b − λ0

∣∣∣ > K
(
T−1

)
∩ λ̂b ∈ (η, 1 − η)

}
∪
{
λ̂b /∈ (η, 1 − η)

}
,

and so

P
(∣∣∣λ̂b − λ0

∣∣∣ > KT−1
)

≤ P
(
λ̂b /∈ (η, 1 − η)

)
+ P

(∣∣∣T̂b − T 0
b

∣∣∣ > K ∩ λ̂b ∈ (η, 1 − η)
)
,

and for large T ,

P
(∣∣∣λ̂b − λ0

∣∣∣ > KT−1
)

≤ ε+ P
(∣∣∣λ̂b − λ0

∣∣∣ > KT−1 ∩ λ̂b ∈ (η, 1 − η)
)

≤ ε+ P

(
sup

Tb∈DK,T

QT (Tb) ≥ QT
(
T 0
b

))
.

S-13



Therefore it is enough to show that the second term above is negligible as h ↓ 0. Suppose Tb < T 0
b .

Since T̂b = arg maxQT (Tb) , it is enough to show that P (supTb∈DK,T
QT (Tb) ≥ QT

(
T 0
b

)
) < ε. Note that

this implies
∣∣Tb − T 0

b

∣∣ > KN−1. Therefore, we have to deal with a setting where the time span in DK,T

between Nb and N0
b is actually shrinking. The difficulty arises from the quantities depending on the

difference
∣∣Nb −N0

b

∣∣. We can rewrite QT (Tb) ≥ QT
(
T 0
b

)
as ge (Tb) /

∣∣Tb − T 0
b

∣∣ ≥ r (Tb) , with ge (Tb) and

r (Tb) as defined above. Thus, we need to show,

P

(
sup

Tb∈DK,T

h−1 ge (Tb)∣∣Tb − T 0
b

∣∣ ≥ inf
Tb∈DK,T

h−1r (Tb)
)
< ε.

By Lemma S.D.1,

inf
Tb∈DK,T

r (Tb) ≥ inf
Tb∈DK,T

(
δ0
Z

)′
R′ X

′
∆X∆∣∣Tb − T 0

b

∣∣ (X ′
2X2

)−1 (
X ′

0X0
)
Rδ0

Z .

The asymptotic results used so far rely on statistics involving integrated covariation between continuous

semimartingales. However, since
∣∣Tb − T 0

b

∣∣ > K/N, the context is different and the same results do

not apply because the time horizon is decreasing as the sample size increases for quantities depending on∣∣Nb −N0
b

∣∣ . Thus, we shall apply asymptotic results for the local approximation of the covariation between

processes. Moreover, when
∣∣Tb − T 0

b

∣∣ > K/N , there are at least K terms in this sum with asymptotically

vanishing moments. That is, for any 1 ≤ i, j ≤ q+ p, we have E[x(i)
khx

(j)
kh | F(k−1)h] = Σ(i,j)

X,(k−1)hh, and note

that xkh/
√
h is i.n.d. with finite variance and thus by Assumption 3.1 we can always choose a K large

enough such that
(
h
∣∣Tb − T 0

b

∣∣)−1
X ′

∆X∆ =
(
h
∣∣Tb − T 0

b

∣∣)−1∑T 0
b
k=Tb+1 xkhx

′
kh = A > 0 for all Tb ∈ DK,T .

This shows that infTb∈DK,T
h−1r (Tb) is bounded away from zero. Note that for the other terms in r (Tb)

we can use the same arguments since they do not depend on
∣∣Nb −N0

b

∣∣. Hence,
P

(
sup

Tb∈DK,T

h−1
(
T 0
b − Tb

)−1
ge (Tb) ≥ B/N

)
< ε, (S.17)

for some B > 0. Consider the terms of ge (Tb) in (S.10). When Tb ∈ DK,T , Z2 involves at least a positive

fraction Nη of the data. From Lemma S.D.3, as h ↓ 0, it follows that

h−1
(
T 0
b − Tb

)−1
e′MZ2

(
Z ′

2MZ2
)−1

Z2Me

=
(
T 0
b − Tb

)−1
h−1Op

(
h1/2

)
Op (1)Op

(
h1/2

)
= Op (1)
T 0
b − Tb

,

uniformly in Tb. Choose K large enough so that the probability that the right-hand size is larger than

B/N is less than ε/4. A similar argument holds for the second term in (S.11). Next consider the first

term of ge (Tb) in (S.10). Using Z2 = Z0 ± Z∆ we can deduce that(
δ0
Z

)′ (
Z ′

0MZ2
) (
Z ′

2MZ2
)−1

Z2Me

=
(
δ0
Z

)′ ((
Z ′

2 ± Z ′
∆
)
MZ2

) (
Z ′

2MZ2
)−1

Z2Me

=
(
δ0
Z

)′
Z ′

0Me±
(
δ0
Z

)′
Z ′

∆Me (S.18)

±
(
δ0
Z

)′ (
Z ′

∆MZ2
) (
Z ′

2MZ2
)−1

Z2Me,
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from which it follows that∣∣∣∣2 (δ0
Z

)′ (
Z ′

0MZ2
) (
Z ′

2MZ2
)−1

Z2Me− 2
(
δ0
Z

)′ (
Z ′

0Me
)∣∣∣∣

=
∣∣∣∣(δ0

Z

)′
Z ′

∆Me

∣∣∣∣+ ∣∣∣∣(δ0
Z

)′ (
Z ′

∆MZ2
) (
Z ′

2MZ2
)−1 (Z2Me)

∣∣∣∣ . (S.19)

First, we can apply Lemma S.D.3 [(vi) and (viii)], and Lemma S.D.4 [(i)-(ii)], together with Assumption

2.1-(iii), to terms that do not involve
∣∣Nb −N0

b

∣∣, i.e.,
h−1

(
δ0
Z

)′ (
Z ′

∆MZ2
)

= h−1
(
δ0
Z

)′ (
Z ′

∆Z2
)

− h−1
(
δ0
Z

)′ (
Z ′

∆X∆
(
X ′X

)−1
X ′Z2

)
=
(
δ0
Z

)′ (Z ′
∆Z∆)

h
−
(
δ0
Z

)′
(
Z ′

∆X∆
h

(
X ′X

)−1
X ′Z2

)
.

Consider Z ′
∆Z∆. By the same reasoning as above, whenever Tb ∈ DK,T , (Z ′

∆Z∆) /h
(
T 0
b − Tb

)
= Op (1)

for K large enough. The term Z ′
∆X∆/h

(
T 0
b − Tb

)
is also Op (1) uniformly. Thus, it follows from Lemma

S.D.5 that the second term of (S.19) is Op(h1/2). Next, note that Z ′
∆Me = Z ′

∆e − Z ′
∆X (X ′X)−1X ′e.

We can write

Z ′
∆Me(

T 0
b − Tb

)
h

= 1(
T 0
b − Tb

)
h

T 0
b∑

k=Tb+1
zkhekh

− 1(
T 0
b − Tb

)
h

 T 0
b∑

k=Tb+1
zkhx

′
kh

(X ′X
)−1 (

X ′e
)
.

Note that the sequence {h−1/2zkhh
−1/2xkh} is i.n.d. with finite mean identically in k. There are at least K

terms in this sum, so (
∑T 0

b
k=Tb+1 zkhx

′
kh)/

(
T 0
b − Tb

)
h is Op (1) for a large enough K in view of Assumption

3.1. Then,

1(
T 0
b − Tb

)
h

 T 0
b∑

k=Tb+1
zkhx

′
kh

(X ′X
)−1 (

X ′e
)

= Op (1)Op (1)Op
(
h1/2

)
, (S.20)

when K is large. Thus,

1(
T 0
b − Tb

)
h
ge (Tb) = 1(

T 0
b − Tb

)
h

(
δ0
)′

2Z ′
∆e+ Op (1)

T 0
b − Tb

+Op
(
h1/2

)
. (S.21)

We can now prove (S.17) using (S.21). To this end, we need a K > 0, such that

P

 sup
Tb∈DK,T

∥∥∥∥∥∥
(
δ0
Z

)′ 2
h

1
T 0
b − Tb

T 0
b∑

k=Tb+1
zkhekh

∥∥∥∥∥∥ > B

4N

 (S.22)

≤ P

 sup
Tb≤T 0

b
−KN−1

∥∥∥∥∥∥1
h

1
T 0
b − Tb

T 0
b∑

k=Tb+1
zkhekh

∥∥∥∥∥∥ > B

8N
∥∥δ0
Z

∥∥
 < ε.

Note that
∣∣Tb − T 0

b

∣∣ is bounded away from zero in DK,T . Observe that (zkh/
√
h)(ekh/

√
h) are independent

in k and have zero mean and finite second moments. Hence, by the Hájek-Réiny inequality [see Lemma
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A.6 in Bai and Perron (1998)],

P

 sup
Tb≤T 0

b
−KN−1

∥∥∥∥∥∥ 1
T 0
b − Tb

T 0
b∑

k=Tb+1

zkh√
h

ekh√
h

∥∥∥∥∥∥ > B

8
∥∥δ0
Z

∥∥N


≤ A
64
∥∥δ0
Z

∥∥2
N2

B2
1

KN−1 ,

where A > 0. We can choose K large enough such that the right-hand side is less than ε/4. Combining

the above arguments, we deduce the claim in (S.17) which then concludes the proof of Proposition 3.2. □

S.D.4.4 Proof of Proposition 3.3

We focus on the case with Tb ≤ T0. The arguments for the other case are similar and omitted. From

Proposition 3.1 the distance |λ̂b − λ0| can be made arbitrary small. Proposition 3.2 gives the associated

rate of convergence: T (λ̂b − λ0) = Op (1) . Given the consistency result for λ̂b, we can apply a restricted

search. In particular, by Proposition 3.2, for large T > T , we know that {Tb /∈ DK,T }, or equivalently

|Tb − T 0
b | ≤ K, with high probability for some K. Essentially, what we shall show is that from the results

of Proposition 3.1-3.2 the error in replacing T 0
b with T̂b is stochastically small and thus it does not affect

the estimation of the parameters β0, δ0
Z,1 and δ0

Z,2. Toward this end, we first find a lower bound on the

convergence rate for λ̂b that guarantees its estimation to be asymptotically independent from that of

the regression parameters. This result will also be used in later proofs. We shall see that the rate of

convergence established in Proposition 3.2 is strictly faster than the lower bound. Below, we use T̂b in

order to construct Z2 and define Ẑ0 ≜ Z2.

Lemma S.D.7. Fix γ ∈ (0, 1/2) and some constant A > 0. For all large T > T , if |N̂b−N0
b | ≤ AOp

(
h1−γ),

then X ′(Z0 − Ẑ0) = Op(h1−γ) and Z ′
0(Z0 − Ẑ0) = Op(h1−γ).

Proof. Note that the setting of Proposition 3.2 satisfies the conditions of this lemma because N̂b −
N0
b = Op (h) ≤ AOp

(
h1−γ) as h ↓ 0. By assumption, there exists some constant C > 0 such that

P (hγ |T̂b − T 0
b | > C) < ε. We have to show that although we only know |T̂b − T 0

b | ≤ Ch−γ , the error

when replacing T 0
b by T̂b in the construction of Z2 goes to zero fast enough. This is achieved because

|N̂b − N0
b | → 0 at least at rate h1−γ , which is faster than the standard convergence rate for regression

parameters (i.e.,
√
T -rate). Without loss of generality we take C = 1. We have

h−1/2X ′
(
Z0 − Ẑ0

)
= h1/2−γ 1

h1−γ

T 0
b∑

T 0
b

−⌊T γ⌋
xkhzkh.

Notice that, as h ↓ 0, the number of terms in the sum on the right-hand side, for all T > T , increases

to infinity at rate 1/hγ . Since N̂b approaches N0
b at rate T−(1−γ), the quantity X ′(Z0 − Ẑ0)/h1−γ is

a consistent estimate of the so-called instantaneous or spot covariation between X and Z at time N0
b .

Theorem 9.3.2 part (i) in Jacod and Protter (2012) can be applied since the “window” is decreasing at

rate h1−γ and the same factor h1−γ is in the denominator. Thus, we have as h ↓ 0,

X ′
∆Z∆/h

1−γ P→ ΣXX,N0
b
, (S.23)

which implies that h−1/2X ′
(
Z0 − Ẑ0

)
= Op(h1/2−γ). This shows that the order of the error in replacing
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Z0 by Z2 = Ẑ0 goes to zero at a fast enough rate. That is, by definition we can write

Y = Xβ0 + Ẑ0δ
0
Z +

(
Z0 − Ẑ0

)
δ0
Z + e,

from which it follows that

X ′Ẑ0 = X ′Z0 + op (1) , X ′
(
Z0 − Ẑ0

)
δ0
Z = op (1) ,

and Z ′
0(Z0 − Ẑ0)δ0

Z = op (1) . To see this, consider for example

X ′
(
Ẑ0 − Z0

)
=

T 0
b∑

T 0
b

−⌊T γ⌋
xkhzkh = h1−γ

h1−γ

T 0
b∑

T 0
b

−⌊T γ⌋
xkhzkh = h1−γOp (1) ,

which clearly implies that X ′Ẑ0 = X ′Z0 + op (1). The other case can be proved similarly. This concludes

the proof of the Lemma. □

Using Lemma S.D.7, the proof of the proposition becomes simple.

Proof of Proposition 3.3. By standard arguments,

√
T

[
β̂ − β0

δ̂ − δ0
Z

]
=
[
X ′X X ′Ẑ0
Ẑ ′

0X Ẑ ′
0Ẑ0

]−1 √
T

X ′e+X ′
(
Z0 − Ẑ0

)
δ0
Z

Ẑ ′
0e+ Ẑ ′

0

(
Z0 − Ẑ0

)
δ0
Z

 ,
from which it follows that[

X ′X X ′Ẑ0
Ẑ ′

0X Ẑ ′
0Ẑ0

]−1 1
h1/2X

′
(
Z0 − Ẑ0

)
δ0
Z = Op (1) op (1) = op (1) ,

and a similar reasoning applies to Ẑ ′
0(Z0 −Ẑ0)δ0

Z . All other terms involving Ẑ0 can be treated in analogous

fashion. In particular, the Op (1) result above follows from Lemma S.D.3-S.D.4. The rest of the arguments

(including mixed normality) follows from Barndorff-Nielsen and Shephard (2004) and Li et al. (2017) and

are omitted. □

S.D.5 Proofs of the Results in Section 4

S.D.5.1 Proof of Proposition 4.1

Proof of part (i) of Proposition 4.1. Below C is a generic positive constant which may change from

line to line. Let ẽkh = ∆hẽk. Recall that T̂b = arg maxTb
QT (Tb), QT (T̂b) = δ̂′

Tb
(Z ′

2MZ2) δ̂Tb
, and the

decomposition

QT (Tb) −QT
(
T 0
b

)
= δ̂′

Tb

(
Z ′

2MZ2
)
δ̂Tb

− δ̂′
T 0

b

(
Z ′

0MZ0
)
δ̂T 0

b
(S.24)

= δ′
h

{(
Z ′

0MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ0

)
− Z ′

0MZ0
}
δh (S.25)

+ ge (Tb) , (S.26)

where

ge (Tb) = 2δ′
h

(
Z ′

0MZ2
) (
Z ′

2MZ2
)−1

Z2Me− 2δ′
h

(
Z ′

0Me
)

(S.27)

+ e′MZ2
(
Z ′

2MZ2
)−1

Z2Me− e′MZ0
(
Z ′

0MZ0
)−1

Z ′
0Me. (S.28)
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Since ge(T̂b) ≥ |T̂b − T 0
b |r(T̂b), we have

P
(∣∣∣λ̂b − λ0

∣∣∣ > K
)

= P
(∣∣∣T̂b − T 0

b

∣∣∣ > TK
)

≤ P

 sup
|Tb−T 0

b |>TK
h−1/2 |ge (Tb)| ≥ inf

|Tb−T 0
b |>TK

h−1/2
∣∣∣Tb − T 0

b

∣∣∣ r (Tb)


≤ P

(
sup

p≤Tb≤T−p
h−1/2 |ge (Tb)| ≥ TK inf

|Tb−T 0
b |>TK

h−1/2r (Tb)
)

= P

(
r−1
T sup

p≤Tb≤T−p
h−1/2 |ge (Tb)| ≥ K

)
, (S.29)

where rT = T inf|Tb−T 0
b |>TK h

−1/2r (Tb), which is positive and bounded away from zero by Lemma S.D.8.

Thus, it is sufficient to verify that

sup
p≤Tb≤T−p

h−1/2 |ge (Tb)| = op (1) . (S.30)

Consider the first term of ge (Tb):

2δ′
h

(
Z ′

0MZ2
) (
Z ′

2MZ2
)−1/2 (

Z ′
2MZ2

)−1/2
Z ′

2Me (S.31)

≤ 2h1/4
(
δ0
)′ (

Z ′
0MZ2

) (
Z ′

2MZ2
)−1/2 (

Z ′
2MZ2

)−1/2
Z ′

2Me.

Note that

Z ′
2e =

T 0
b −⌊Tκ⌋∑
k=Tb+1

xkhẽkh + h−1/4
T 0

b +⌊Tκ⌋∑
k=T 0

b
−⌊Tκ⌋+1

xkhẽkh +
T∑

k=T 0
b

+⌊Tκ⌋+1
xkhẽkh (S.32)

= Op
(
h1/2

)
+ h−1/4Op

(
h1−κ+1/2

)
+Op

(
h1/2

)
= Op

(
h1/2

)
.

Thus, for any 1 ≤ j ≤ p, δhZ
′
2e/

√
h = δ0h

1/4Z ′
2e/

√
h = Op

(
h1/4

)
, and similarly, for any 1 ≤ i ≤ q + p,

(Xẽ)i /
√
h = Op (1). Furthermore, from Lemma S.D.3 we also have that Z ′

2MZ2 and Z ′
0MZ2 are Op (1) .

Therefore, the supremum of (Z ′
0MZ2) (Z ′

2MZ2)−1/2 over all Tb is such that

sup
Tb

(
Z ′

0MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ0

)
≤ Z ′

0MZ0 = Op (1) ,

by Lemma S.D.3. By Assumption 2.1-(iii), (Z ′
2MZ2)−1/2 Z2Me is Op (1)Op(

√
h) uniformly, which implies

that (S.31) is Op(h3/4) uniformly over p ≤ Tb ≤ T − p. In view of Assumption 4.1, we need to study the

behavior of (X ′e)j,1 for 1 ≤ j ≤ p+ q. Note first that |λ̂b − λ0| > K or N > |N̂b −N0
b | > KN . Then, by

Itô formula, proceeding as in the proof of Lemma S.D.2, we have a standard result for the local volatility

of a continuous Itô semimartingale; namely that for some A > 0 (recall the condition T 1−κϵ → B > 0),∥∥∥∥∥∥∥E
1
ϵ

T 0
b∑

T 0
b

−⌊Tκ⌋
xkhẽkh − 1

ϵ

� N0
b

N0
b

−ϵ
ΣXe,sds| Fh,(T 0

b
−1)h


∥∥∥∥∥∥∥ ≤ Ah1/2.
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From Assumption 4.2, since ΣXe,t = 0 for all t ≥ 0, we have

X ′e =
T 0

b −⌊Tκ⌋∑
k=1

xkhẽkh + h−1/4
T 0

b +⌊Tκ⌋∑
k=T 0

b
−⌊Tκ⌋+1

xkhẽkh +
T∑

k=T 0
b

+⌊Tκ⌋+1
xkhẽkh

= Op
(
h1/2

)
+ h−1/4Op

(
h1−κ+1/2

)
+Op

(
h1/2

)
= Op

(
h1/2

)
. (S.33)

The same bound applies to Z ′
2e and Z ′

0e. Thus, (S.31) is such that

2h−1/2h1/4
(
δ0
)′ (

Z ′
0MZ2

) (
Z ′

2MZ2
)−1/2 (

Z ′
2MZ2

)−1/2
Z2Me

= 2h−1/2h1/4
∥∥∥δ0
∥∥∥Op (1)Op

(
h1/2

)
= Op (1)Op

(
h1/4

)
.

As for the second term of (S.27),

h−1/2δ′
h

(
Z ′

0Me
)

= 2h−1/4
(
δ0
)′ (

Z ′
0Me

)
= Ch−1/4Op

(
h1/2

)
= COp

(
h1/4

)
,

using (S.33). Again using (S.33), the first term in (S.28) is such that, uniformly in Tb,

h−1/2e′MZ2
(
Z ′

2MZ2
)−1

Z2Me (S.34)

= h−1/2BOp
(
h1/2

)
Op (1)Op

(
h1/2

)
= Op

(
h1/2

)
.

Similarly, the last term in (S.28) isOp(
√
h). Therefore, combining these results, we have h−1/2 supTb

|ge (Tb) |
= BOp(h1/4), from which it follows that the right-hand side of (S.29) is weakly smaller than ε.

Lemma S.D.8. For B > 0, let rB,h = inf|Tb−T 0
b |>TB Th

−1/2r (Tb) . There exists an A > 0 such that for

every ε > 0, there exists a B < ∞ such that P (rB,h ≥ A) ≤ 1 − ε.

Proof. Assume Nb ≤ N0
b , and observe that rT ≥ rB,h for an appropriately chosen B. From the first

inequality result in Lemma S.D.1,

Th−1/2r (Tb) ≥ Th−1/2h1/2
(
δ0
)′
R′ X

′
∆X∆

T 0
b − Tb

(
X ′

2X2
)−1 (

X ′
0X0

)
Rδ0

=
(
δ0
)′
R′
(
X ′

∆X∆/
(
N0
b −Nb

)) (
X ′

2X2
)−1 (

X ′
0X0

)
Rδ0.

Note that B < h
(
T 0
b − Tb

)
< N . Then

Th−1/2r (Tb) ≥
(
δ0
)′
R′ (X ′

∆X∆/N
) (
X ′

2X2
)−1 (

X ′
0X0

)
Rδ0 > A,

by the same argument as in Lemma S.D.6. Following the same reasoning as in the proof of Lemma S.D.6,

we can choose a B > 0 such that rB,h = inf|Tb−T 0
b |>TB Th

−1/2r (Tb) satisfies P (rB,h ≥ A) ≤ 1 − ε. □

Proof of part (ii) of Proposition 4.1. Suppose Tb < T 0
b . Let

DK,T =
{
Tb : Nη ≤ Nb ≤ N (1 − η) ,

∣∣∣Nb −N0
b

∣∣∣ > K
(
T 1−κ

)−1
}
.

It is enough to show that P (supTb∈DK,T
QT (Tb) ≥ QT (T 0

b )) < ε. The difficulty is again to control the
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estimates that depend on
∣∣Nb −N0

b

∣∣. We shall show that

P

(
sup

Tb∈DK,T

h−3/2 ge (Tb, δh)∣∣Tb − T 0
b

∣∣ ≥ inf
Tb∈DK,T

h−3/2r (Tb)
)
< ε.

By Lemma S.D.1,

inf
Tb∈DK,T

r (Tb) ≥ inf
Tb∈DK,T

δ′
hR

′ X
′
∆X∆

T 0
b − Tb

(
X ′

2X2
)−1 (

X ′
0X0

)
Rδh,

and, since
∣∣Tb − T 0

b

∣∣ > KT κ, it is important to consider X ′
∆X∆ =

∑T 0
b
k=Tb+1 xkhx

′
kh. We shall apply

asymptotic results for the local approximation of the covariation between processes. Consider

X ′
∆X∆

h
(
T 0
b − Tb

) = 1
h
(
T 0
b − Tb

) T 0
b∑

k=Tb+1
xkhx

′
kh.

By Theorem 9.3.2-(i) in Jacod and Protter (2012), as h ↓ 0

1
h
(
T 0
b − Tb

) T 0
b∑

k=Tb+1
xkhx

′
kh

P→ ΣXX,N0
b
, (S.35)

since
∣∣Nb −N0

b

∣∣ shrinks at a rate no faster than Kh1−κ and 1/Kh1−κ → ∞. By Lemma S.D.2 this

approximation is uniform, establishing that

h−3/2 inf
Tb∈DK,T

(δh)′R′ X
′
∆X∆

T 0
b − Tb

(
X ′

2X2
)−1 (

X ′
0X0

)
Rδh

= inf
Tb∈DK,T

(
δ0
)′
R′ X ′

∆X∆
h
(
T 0
b − Tb

) (X ′
2X2

)−1 (
X ′

0X0
)
Rδ0,

is bounded away from zero. Thus, it is sufficient to show that

P

(
sup

Tb∈DK,T

h−3/2 ge (Tb, δh)∣∣Tb − T 0
b

∣∣ ≥ B

)
< ε, (S.36)

for some B > 0. Consider the terms of ge (Tb) in (S.28). Using Z2 = Z0 ±Z∆, we deduce for the first term

that

δ′
h

(
Z ′

0MZ2
) (
Z ′

2MZ2
)−1

Z2Me

= δ′
h

((
Z ′

2 ± Z∆
)
MZ2

) (
Z ′

2MZ2
)−1

Z2Me

= δ′
hZ

′
0Me± δ′

hZ
′
∆Me± δ′

h

(
Z ′

∆MZ2
) (
Z ′

2MZ2
)−1

Z2Me. (S.37)

First, we can apply Lemma S.D.3 [(vi)-(viii)], together with Assumption 2.1-(iii), to terms not involving∣∣Nb −N0
b

∣∣. The third term is such that

K−1h−(1−κ) (Z ′
∆MZ2

)
= Z ′

∆Z2
Kh1−κ − Z ′

∆X∆
Kh1−κ

(
X ′X

)−1
X ′Z2. (S.38)

Consider Z ′
∆Z∆ (the argument for Z ′

∆X∆ is analogous). By Lemma S.D.2, Z ′
∆Z∆/Kh

1−κ uniformly
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approximates the moving average of ΣZZ,t over (N0
b −KT κh, N0

b ]. Hence, as h ↓ 0,

Z ′
∆Z∆/Kh

1−κ = BOp (1) , (S.39)

for some B > 0, uniformly in Tb. The second term in (S.38) is thus also Op (1) uniformly, using Lemma

S.D.3. Then, using (S.33) and (S.38) into the third term of (S.37), we have

1
K
h−(1−κ)−1/2 (δh)′ (Z ′

∆MZ2
) (
Z ′

2MZ2
)−1

Z2Me (S.40)

≤ 1
K
h−1/4

(
δ0
)′
(
Z ′

∆MZ2
h1−κ

) (
Z ′

2MZ2
)−1

Z2Me

≤ h−1/4Z
′
∆MZ2
Kh1−κ Op (1)Op

(
h1/2

)
≤ Op

(
h1/4

)
,

where (Z ′
2MZ2)−1 = Op (1). So the right-and side of (S.40) is less than ε/4 in probability. Therefore, for

the second term of (S.37),

K−1h−(1−κ)−1/2δ′
hZ

′
∆Me

= h−1/2

Kh1−κ δ
′
h

T 0
b∑

k=Tb+1
zkhekh − h−1/2

h1−κ δ
′
h

 T 0
b∑

k=Tb+1
zkhx

′
kh

(X ′X
)−1 (

X ′e
)

≤ h−1/2

Kh1−κ δ
′
h

T 0
b∑

k=Tb+1
zkhekh −B

1
K

h−1/4

h1−κ

(
δ0
) T 0

b∑
k=Tb+1

zkhx
′
kh

(X ′X
)−1 (

X ′e
)

≤ h−1/2

Kh1−κ δ
′
h

T 0
b∑

k=Tb+1
zkhekh − h−1/4Op (1)Op

(
h1/2

)
. (S.41)

Thus, using (S.37), (S.27) is such that

2δ′
hZ

′
0Me± 2δ′

hZ
′
∆Me± 2δ′

h

(
Z ′

∆MZ2
) (
Z ′

2MZ2
)−1

Z2Me− 2δ′
h

(
Z ′

0Me
)

= 2δ′
hZ

′
∆Me± 2δ′

h

(
Z ′

∆MZ2
) (
Z ′

2MZ2
)−1

Z2Me

≤ h−1/2

Kh1−κ

(
δ0
)′

T 0
b∑

k=Tb+1
zkhẽkh − h−1/4Op (1)Op

(
h1/2

)
+Op

(
h1/4

)
,

in view of (S.40) and (S.41). Next, consider (S.28). We can use the decomposition Z2 = Z0 ± Z∆ and

show that all terms involving the matrix Z∆ are negligible. To see this, consider the first term when

multiplied by K−1h−(3/2−κ), then

K−1h−(3/2−κ)e′MZ2
(
Z ′

2MZ2
)−1

Z2Me (S.42)

= K−1h−(3/2−κ)e′MZ0
(
Z ′

2MZ2
)−1

Z2Me

±K−1h−(3/2−κ)e′MZ∆
(
Z ′

2MZ2
)−1

Z2Me.

By the same argument as in (S.33), Z ′
2Me = Op(h1/2). Using the Burkhölder-Davis-Gundy inequality,

the estimates for the local volatility of continuous Itô semimartingales yield

ẽ′MZ∆ = ẽ′Z∆ − ẽ′X
(
X ′X

)−1
X ′Z∆

= Op
(
Kh1/2+1−κ

)
−Op

(
h1/2

)
Op (1)Op

(
Kh1−κ

)
.
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Thus, the second term in (S.42) is such that

K−1h−(3/2−κ)ẽ′MZ∆
(
Z ′

2MZ2
)−1

Z2Me (S.43)

= B
(
K−1h−(3/2−κ)

)
Op
(
Kh1−κ+1/2

)
Op (1)Op

(
h1/2

)
= BOp

(
h1/2

)
.

For the remaining terms in (S.28), the key here is to recognize that on DK,T , Tb and T
0
b lies on the same

window with right-hand point N0
b . Thus the difference between the two terms in (S.28) is asymptotically

negligible. First, note that using (S.33),

ẽ′MZ0
(
Z ′

0MZ0
)−1

Z0Mẽ = Op
(
h1/2

)
Op (1)Op

(
h1/2

)
= Op (h) .

Applying Z0 = Z2 ± Z∆ repeatedly in (S.42), and noting that the cross-product terms involving Z∆ are

op (1) by the same reasoning as in (S.43), we obtain that the difference between the first and second term

of (S.28) is negligible. The more intricate step is the one arising from

e′MZ0
(
Z ′

0MZ2 ± Z ′
∆MZ2

)−1
Z ′

0Me− e′MZ0
(
Z ′

0MZ0
)−1

Z ′
0Me

= e′MZ0
[(
Z ′

0MZ2 ± Z ′
∆MZ2

)−1 −
(
Z ′

0MZ0
)−1

]
Z ′

0Me.

On DK,T ,
∣∣Nb −N0

b

∣∣ = Op(Kh1−κ), and so each term involving Z∆ is of higher order. By using the

continuity of probability limits, the matrix in square brackets goes to zero at rate h1−κ. Then, this

expression when multiplied by h−(3/2−κ)K−1, and after using the same rearrangements as above, can be

shown to satisfy [recall also (S.33)]

h−(3/2−κ)K−1e′MZ0
[(
Z ′

0MZ2 ± Z ′
∆MZ2

)−1 −
(
Z ′

0MZ0
)−1

]
Z ′

0Me

= h−(3/2−κ)K−1Op (h)
[(
Z ′

0MZ2 ± Z ′
∆MZ2

)−1 −
(
Z ′

0MZ0
)−1

]
= h−(3/2−κ)K−1Op (h)

×
[(
Z ′

0MZ0 ± Z ′
0MZ ′

∆ ± Z ′
∆MZ2

)−1 −
(
Z ′

0MZ0
)−1

]
= h−(3/2−κ)K−1Op (h) op

(
h1−κ

)
= Op

(
h1/2

)
op (1) .

Therefore, (S.28) is stochastically small uniformly in Tb ∈ DK,T when T is large. Altogether, we have

h−1/2 ge (Tb)∣∣Tb − T 0
b

∣∣ ≤ 2 h−1/2

Kh1−κ δ
′
h

T 0
b∑

k=Tb+1
zkhekh

− h−1/4Op (1)Op
(
h1/2

)
+Op

(
h1/4

)
.

Thus, it remains to find a bound for the first term above. By Itô’s formula, standard estimates for the

local volatility of continuous Itô semimartingales yield for every Tb,

E
(∥∥∥Σ̂Ze

(
T2, T

0
b

)
− ΣZe

(
T2, T

0
b

)∥∥∥ | FTbh

)
≤ Bh1/2, (S.44)

for some B > 0. Let M1,h =
∑T 0

b

k=T 0
b

−(B+1)⌊Tκ⌋+1 zkhẽkh, M2,h (Tb) =
∑T 0

b −(B+1)⌊Tκ⌋
k=Tb+1 zkhekh and note that
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∑T 0
b
k=Tb+1 zkhẽkh = M1,h +M2,h (Tb). Then, for any C > 0,

P

 sup
Tb<T

0
b

−KTκ

2 h−1/2

Kh1−κ δ
′
h

∥∥∥∥∥∥
T 0

b∑
k=Tb+1

zkhekh

∥∥∥∥∥∥ ≥ C

 (S.45)

= P

 sup
Tb<T

0
b

−KTκ

h−1/2

Kh1−κ δ
′
0

∥∥∥M1,h + h1/4M2,h (Tb)
∥∥∥ ≥ 2−1C


≤ P

( 1
Kh1−κ ∥M1,h∥ > 4−1C

∥∥∥δ0
∥∥∥−1

h1/2
)

+ P

 sup
Tb<T

0
b

−KTκ

K−1

h1−κ ∥M2,h (Tb)∥ > 4−1C
∥∥∥δ0
∥∥∥−1

h1/4

 .
Consider first the second probability. By Markov’s inequality,

P

 sup
Tb<T

0
b

−KTκ

1
Kh1−κ ∥M2,h (Tb)∥ > 4−1C

∥∥∥δ0
∥∥∥−1

h1/4


≤ P

 sup
Tb<T

0
b

−KTκ

∥∥∥∥ 1
Kh1−κM2,h (Tb)

∥∥∥∥ > 4−1C
∥∥∥δ0
∥∥∥−1

h1/4


≤ (K/B)T κP

(∥∥∥∥ 1
Kh1−κM2,h (Tb)

∥∥∥∥ > 4−1C
∥∥∥δ0
∥∥∥−1

h1/4
)

≤
(
4 (B + 1)

∥∥δ0∥∥)r
Cr

h−r/4K

B
T κE

(∣∣∣∣ 1
(B + 1)Kh1−κ ∥M2,h (Tb)∥

∣∣∣∣r)
≤ Cr (B + 1)B−1

∥∥∥δ0
∥∥∥r h−r/4T κhr/2 ≤ Cr

∥∥∥δ0
∥∥∥r hr/2−κ−r/4 → 0,

for a sufficiently large r > 0. We now turn to M1,h. We have,

P

( 1
Kh1−κ ∥M1,h∥ > 2−1C

∥∥∥δ0
∥∥∥−1

h1/2
)

≤ P

((B + 1)
K

∥∥∥∥∥∥∥(B + 1)−1 h−(1−κ)
T 0

b∑
k=T 0

b
−(B+1)⌊Tκ⌋+1

zkhẽkh

∥∥∥∥∥∥∥
>
C

4

∥∥∥δ0
∥∥∥−1

h1/2
)

≤ P

(
(B + 1)K−1OP (1) > 4−1C

∥∥∥δ0
∥∥∥−1

)
→ 0,

by choosing K large enough where we have used (S.44). Altogether, the right-hand side of (S.45) is less

than ε, which concludes the proof. □

Proof of part (iii) of Proposition 4.1. Observe that Lemma S.D.7 applies under this setting. Then, we

have,

√
T

[
β̂ − β0
δ̂ − δh

]
=
[
X ′X X ′Ẑ0
Ẑ ′

0X Ẑ ′
0Ẑ0

]−1 √
T

X ′e+X ′
(
Z0 − Ẑ0

)
δh

Ẑ ′
0e+ Ẑ ′

0

(
Z0 − Ẑ0

)
δh

 ,
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so that we need to show that [
X ′X X ′Ẑ0
Ẑ ′

0X Ẑ ′
0Ẑ0

]−1 1
h1/2X

′
(
Z0 − Ẑ0

)
δh

P→ 0,

and the limiting distribution of X ′e/h1/2 is Gaussian. The first claim can be proved in a manner analogous

to that in the proof of Proposition 3.3. For the second claim, we have the following decomposition from

(S.33),

X ′e =
T 0

b −⌊Tκ⌋∑
k=1

xkhẽkh + h−1/4
T 0

b +⌊Tκ⌋∑
T 0

b
−⌊Tκ⌋+1

xkhẽkh +
T∑

k=T 0
b

+⌊Tκ⌋+1
xkhẽkh

≜ R1,h +R2,h +R3,h.

By Theorem S.D.5, h−1/2R1,h
d→ MN (0, V1) , where V1 ≜ lim

T→∞
T
∑T 0

b −⌊Tκ⌋
k=1 E(xkhx′

khẽ
2
kh). Similarly,

h−1/2R3,h
d→ MN (0, V3) , where V3 ≜ lim

T→∞
T
∑T
k=T 0

b
+⌊Tκ⌋+1 E(xkhx′

khẽ
2
kh). If κ ∈ (0, 1/4) , h−(1−κ)

∑T 0
b +⌊Tκ⌋
T 0

b
−⌊Tκ⌋+1 xkhẽkh

P→ ΣXe,N0
b
since by a law of large numbers for a i.n.d. sequences,

h−(1−κ)
T 0

b +⌊Tκ⌋∑
T 0

b
−⌊Tκ⌋+1

xkhẽkh = T−κ
T 0

b +⌊Tκ⌋∑
T 0

b
−⌊Tκ⌋+1

xkh
h1/2

ẽkh
h1/2

P→ ΣXe,N0
b
,

and so h−1/2R2,h = h−3/4∑T 0
b +⌊Tκ⌋
T 0

b
−⌊Tκ⌋ xkhẽkh

P→ 0. If κ = 1/4, then h−1/2R2,h
P→ ΣXe,N0

b
in probability

again by the same argument. Since by Assumption 4.2 ΣXe,t = 0 for all t ≥ 0, whenever κ ∈ (0, 1/4],
X ′e/h1/2 is asymptotically normally distributed. The rest of the proof is simple and follows the same

steps as in the proof of Proposition 3.3. □

S.D.5.2 Proof of Proposition 4.2

Proof. By Lemma 4.1,

QT (Tb) −QT
(
T 0
b

)
= −δ′

h

(
Z ′

∆Z∆
)
δh ± 2δ′

h

(
Z ′

∆e
)

+ op
(
h3/2−κ

)
.

Divide both sides by h to yield,

h−1
(
QT (Tb) −QT

(
T 0
b

))
= −h1/2

(
δ0
)′
(
Z ′

∆√
h

Z∆√
h

)
δ0

± 2
(
δ0
)′
(
Z ′

∆√
h

ẽ√
h

)
+ op

(
h1/2−κ

)
.

Note that zkh/
√
h ∼ i.n.d.N (0, Σkh) and ẽkh/

√
h ∼ i.n.d.N (0, σ2

e,kh). Thus,

h−1+κ/2
(
QT (Tb) −QT

(
T 0
b

))
= − h1/2

√
T κ

(
δ0
)′
(
Z ′

∆√
h

Z∆√
h

)
δ0

± 2√
T κ

(
δ0
)′
(
Z ′

∆√
h

ẽ√
h

)
+ op

(
h1/2−κ/2

)
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= Op
(
h1/2

)
± 2√

T κ

(
δ0
)′
(
Z ′

∆√
h

ẽ√
h

)
+ op

(
h1/2−κ

)
.

Also Tb = T 0
b + ⌊vT κ⌋, and by Theorem 2.1 in Hansen (1992)

h−1+κ/2
(
QT (Tb) −QT

(
T 0
b

))
⇒ 2

(
δ0
)′

W (v) .

The continuous mapping theorem then yields the desired result. □

S.D.5.3 Proof of Lemma 4.1

First, we begin with the following simple identity. Throughout the proof, B is a generic constant which

may change from line to line.

Lemma S.D.9. The following identity holds

(δh)′
{
Z ′

0MZ0 −
(
Z ′

0MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ0

)}
δh

= (δh)′
{
Z ′

∆MZ∆ −
(
Z ′

∆MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ∆

)}
δh.

Proof. The proof follows simply from the fact that Z ′
0MZ2 = Z ′

2MZ2 ± Z ′
∆MZ2 and so

(δh)′
{
Z ′

0MZ0 −
(
Z ′

2MZ2 ± Z ′
∆MZ2

) (
Z ′

2MZ2
)−1 (

Z ′
2MZ0

)}
δh

= (δh)′ {Z ′
∆MZ0 −

(
Z ′

∆MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ2

)
−
(
Z ′

∆MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ∆

)
}δh

= (δh)′
{
Z ′

∆MZ∆ −
(
Z ′

∆MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ∆

)}
δh.□

Proof of Lemma 4.1. By the definition of QT (Tb) −QT (T0) and Lemma S.D.9,

QT (Tb) −QT (T0)

= −δ′
h

{
Z ′

∆MZ∆ −
(
Z ′

∆MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ∆

)}
δh + ge (Tb, δh) , (S.46)

where

ge (Tb, δh) = 2δ′
h

(
Z ′

0MZ2
) (
Z ′

2MZ2
)−1

Z2Me− 2δ′
h

(
Z ′

0Me
)

(S.47)

+ e′MZ2
(
Z ′

2MZ2
)−1

Z2Me− e′MZ0
(
Z ′

0MZ0
)−1

Z ′
0Me. (S.48)

Recall that Nb (u) ∈ D (C) implies Tb (u) = T 0
b + uT κ, u ∈ [−C, C]. We consider the case u ≤ 0. By

Theorem 9.3.2-(i) in Jacod and Protter (2012) combined with Lemma S.D.2, we have uniformly in u as

h ↓ 0

1
h1−κ

T 0
b∑

k=T 0
b

+uTκ

xkhx
′
kh

P→ ΣXX,N0
b
. (S.49)

Since Z ′
∆X = Z ′

∆X∆, we will use this result also for Z ′
∆X/h

1−κ. With the notation of Section S.D.4.1

[recall (S.6)], by the Burkhölder-Davis-Gundy inequality, we have that standard estimates for the local

volatility, is such that ∥∥∥E (Σ̂ZX

(
Tb, T

0
b

)
− ΣZX,(T 0

b
−1)h| F(T 0

b
−1)h

)∥∥∥ ≤ Bh1/2. (S.50)
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Equation (S.49)-(S.50) can be used to yield, uniformly in Tb,

ψ−1
h Z ′

∆X
(
X ′X

)−1
X ′Z∆ = Op (1)X ′Z∆, (S.51)

and

Z ′
∆MZ2 = Z ′

∆Z∆ − Z ′
∆X

(
X ′X

)−1
X ′Z2 = Op (ψh) −Op (ψh)Op (1)Op (1) . (S.52)

Now, expand the first term of (S.46),

δ′
hZ

′
∆MZ∆δh = δ′

hZ
′
∆Z∆δh − δ′

hZ
′
∆X

(
X ′X

)−1
X ′Z∆δh. (S.53)

By Lemma S.D.3, (X ′X)−1 = Op (1) and recall that δh = h1/4δ0. Then,

ψ−1
h δ′

hZ
′
∆MZ∆δh = ψ−1

h δ′
hZ

′
∆Z∆δh − ψ−1

h δ′
hZ

′
∆X

(
X ′X

)−1
X ′Z∆δh. (S.54)

By (S.51), the second term above is such that

∥∥∥δ0
∥∥∥2
h1/2Z

′
∆X

ψh

(
X ′X

)−1
X ′Z∆ =

∥∥∥δ0
∥∥∥2
h1/2Op (1)X ′Z∆, (S.55)

uniformly in Tb (u). Therefore,

ψ−1
h δ′

hZ
′
∆MZ∆δh = ψ−1

h δ′
hZ

′
∆Z∆δh −

∥∥∥δ0
∥∥∥2
h1/2Op (1)Op (ψh) . (S.56)

In the last equality the second term of δ′
hZ

′
∆MZ∆δh is always of higher order. This suggests that the

term involving regressors whose parameters are allowed to shift plays a primary role in the asymptotic

analysis. The second term is a complicated function of cross products of all regressors around the time of

the change. Because of the fast rate of convergence, these high order product estimates around the break

date will be negligible. We use this result repeatedly in the derivations that follow. The second term of

(S.46) when multiplied by ψ−1
h is, uniformly in Tb (u),

ψ−1
h δ′

h

(
Z ′

∆MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ∆

)
δh =

∥∥∥δ0
∥∥∥2
h1/2Op (1)Op (1)Op (ψh) ,

where we have used the fact that Z ′
∆MZ2/ψh = Op (1) [cf. (S.52)]. Hence, the second term of (S.46),

when multiplied by ψ−1
h , is Op

(
h3/2−κ

)
uniformly in Tb. Finally, let us consider ge (Tb, δh) . Recall that

ẽkh is i.n.d. with zero mean and conditional variance σ2
e,k−1h. Upon applying the continuity of probability

limits repeatedly, one first obtains that the difference between the two terms in (S.48) goes to zero at a

fast enough rate as in the last step of the proof of Proposition 4.1-(ii). That is, for T large enough, we

can find a cT sufficiently small such that,

ψ−1
h

[
e′MZ2

(
Z ′

2MZ2
)−1

Z2Me− e′MZ0
(
Z ′

0MZ0
)−1

Z ′
0Me

]
= op (cTh) .

Next, consider the first two terms of ge (Tb, δh) . Using Z ′
0MZ2 = Z ′

2MZ2 ± Z ′
∆MZ2, it is easy to show

that

2h1/4
(
δ0
)′ (

Z ′
0MZ2

) (
Z ′

2MZ2
)−1

Z2Me− 2h1/4
(
δ0
)′ (

Z ′
0Me

)
= 2h1/4

(
δ0
)′
Z ′

∆Me± 2h1/4
(
δ0
)′
Z ′

∆MZ2
(
Z ′

2MZ2
)−1

Z ′
2Me. (S.57)
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Note that, uniformly in Tb (u),

ψ−1
h h1/4

(
δ0
)′
Z ′

∆MZ2

= ψ−1
h h1/4

(
δ0
)′
Z ′

∆Z∆ +
(
δ0
)′
h1/4Z

′
∆X

ψh

(
X ′X

)−1
X ′Z2

= h1/4
(
δ0
)′ Z ′

∆Z∆
ψh

+
(
δ0
)′
h1/4Op (1)

= h1/4
∥∥∥δ0
∥∥∥Op (1) +

∥∥∥δ0
∥∥∥h1/4Op (1) ,

where we have used (S.49) and the fact that (X ′X)−1 and X ′Z2 are each Op (1). Recall the decomposition

in (S.33):

X ′e = Op
(
h1−κ+1/4

)
+Op

(
h1/2

)
. (S.58)

Thus, the last term in (S.57) multiplied by ψ−1
h is such that

ψ−1
h 2h1/4

(
δ0
)′
Z ′

∆MZ2
(
Z ′

2MZ2
)−1

Z ′
2Me

= h1/4
∥∥∥δ0
∥∥∥Op (1)Op (1)

[
Op
(
h1−κ+1/4

)
+Op

(
h1/2

)]
=
∥∥∥δ0
∥∥∥h1/4Op (1)Op

(
h1/2

)
=
∥∥∥δ0
∥∥∥Op (h3/4

)
.

The first term of (S.57) can be decomposed further as follows

2h1/4
(
δ0
)′
Z ′

∆Me = 2h1/4
(
δ0
)′
Z ′

∆e− 2h1/4
(
δ0
)
Z ′

∆X
(
X ′X

)−1
X ′e.

Then, when multiplied by ψ−1
h , the second term above is such that, uniformly in Tb,

h1/4
(
δ0
)′ (

Z ′
∆X/ψh

) (
X ′X

)−1
X ′e

= h1/4
(
δ0
)′
Op (1)Op (1)

[
Op
(
h1−κ+1/4

)
+Op

(
h1/2

)]
= Op

(
h3/4

)
,

where we have used (S.49) and (S.58). Combining the last results, we have uniformly in Tb,

ψ−1
h ge (Tb, δh) = 2h1/4

(
δ0
)′ (

Z ′
∆e/ψh

)
+Op

(
h3/4

)
+
∥∥∥δ0
∥∥∥Op (h3/4

)
+ op (cTh) ,

when T is large and cT is a sufficiently small number. Then,

ψ−1
h

(
QT (Tb) −QT

(
T 0
b

))
= −δh

(
Z ′

∆Z∆/ψh
)
δh ± 2δ′

h

(
Z ′

∆e/ψh
)

+Op
(
h3/2−κ

)
+Op

(
h3/4

)
+
∥∥∥δ0
∥∥∥Op (h3/4

)
+ op (cTh) .

Therefore, for T large enough,

ψ−1
h

(
QT (Tb) −QT

(
T 0
b

))
= −δh

(
Z ′

∆Z∆/ψh
)
δh ± 2δ′

h

(
Z ′

∆e/ψh
)

+ op
(
h1/2

)
.

This concludes the proof of Lemma 4.1. □
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S.D.5.4 Proof of Theorem 4.1

Proof. Let us focus on the case Tb (v) ≤ T 0
b (i.e., v ≤ 0). The change of time scale is obtained by

a change in variable. On the old time scale, by Proposition 4.1, Nb (v) varies on the time interval

[N0
b − |v|h1−κ, N0

b + |v|h1−κ] with v ∈ [−C, C]. Lemma 4.1 shows that the conditional first moment of

QT (Tb (v)) − QT
(
T 0
b

)
is determined by that of −δ′

h (Z ′
∆Z∆) δh ± 2δ′

h (Z ′
∆e) . Next, we rescale time with

s 7→ t ≜ ψ−1
h s on D (C). This is achieved by rescaling the criterion function QT (Tb (u)) −QT

(
T 0
b

)
by the

factor ψ−1
h . First, note that the processes Zt and e

∗
t are rescaled as follows on D (C). Let Zψ,s ≜ ψ

−1/2
h Zs,

Wψ,e,s ≜ ψ
−1/2
h We,s and note that

dZψ,s = ψ
−1/2
h σZ,sdWZ,s, dWψ,e,s = ψ

−1/2
h σe,sdWe,s, with s ∈ D (C) . (S.59)

For s ∈
[
N0
b − Ch1−κ, N0

b + Ch1−κ], let v = ψ−1
h

(
N0
b − s

)
and, by using the properties of W.,s and the

fact that σZ,s, σe,s are Fs-measurable, we have

dZψ,t = σZ,tdWZ,t, dWψ,e,t = σe,tdWe,t, with t ∈ T (C) . (S.60)

This can be used into the following quantities for Nb (v) ∈ D (C). First,

ψ−1
h Z ′

∆Z∆ =
T 0

b∑
k=Tb(v)+1

zψ,khzψ,kh,

which by (S.59)-(S.60) is such that

ψ−1
h Z ′

∆Z∆ =
T 0

b∑
k=T 0

b
+⌊v/h⌋

zkhz
′
kh, v ∈ D∗ (C) . (S.61)

Using the same argument:

ψ−1
h Z ′

∆ẽ =
T 0

b∑
k=T 0

b
+⌊v/h⌋

zkhẽkh, v ∈ D∗ (C) . (S.62)

Now Nb (v) varies on D∗ (C). Furthermore, for sufficiently large T , Lemma 4.1 gives

QT (Tb) −QT
(
T 0
b

)
= −δh

(
Z ′

∆Z∆
)
δh ± 2δ′

h

(
Z ′

∆e
)

+ op
(
h1/2

)
,

and thus, when multiplying by h−1/2, we have

QT (Tb) = −
(
δ0
)′
Z ′

∆Z∆
(
δ0
)

± 2
(
δ0
)′ (

h−1/2Z ′
∆ẽ
)

+ op (1) ,

since on D∗ (C), ekh ∼ i.n.d.N (0, σ2
h,k−1h), σh,k = O(h−1/4)σe,k and ẽkh is the normalized error [i.e.,

ẽkh ∼ i.n.d.N (0, σ2
e,k−1h)]. Hence, according to the re-parametrization introduced in the main text, we

examine the behavior of

QT (θ∗) = −
(
δ0
)′
 T 0

b∑
k=Tb+1

zkhz
′
kh

 δ0 + 2
(
δ0
)′
h−1/2

T 0
b∑

k=Tb+1
zkhẽkh

 . (S.63)
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For the first term, a law of large numbers will be applied which yields convergence in probability toward

some quadratic covariation process. For the second term, we observe that the finite-dimensional conver-

gence follows essentially from results in Hansen (1992) after some adaptation to our context. Hence, we

shall then verify the asymptotic stochastic equicontinuity of the sequence of processes {QT (·) , T ≥ 1}. Let
us associate to the continuous-time index t a corresponding D∗ (C)-specific index tv. This means that each

tv identifies a distinct t in D∗ (C) through v as defined above. More specifically, for each (·, v) ∈ D∗ (C),
define the new functions

JZ,h (v) ≜
T 0

b∑
k=Tb(v)+1

zkhz
′
kh, Je,h (v) ≜

T 0
b∑

k=Tb(v)+1
zkhẽ,

for (Tb (v) + 1)h ≤ tv < (Tb (v) + 2)h. For v ≤ 0, the lower limit of the summation is Tb (v) + 1 =
T 0
b +⌊v/h⌋ and thus the number of observations in each sum increases at rate 1/h. The functions {JZ,h (v)}

and {Je,h (v)} have discontinuous, although càdlàg, paths and thus they belong to D (D∗ (C) , R) . Since
Z

(j)
t (j = 1, . . . , p) is a continuous Itô semimartingale, we have by Theorem 3.3.1 in Jacod and Protter

(2012) that JZ,h (v) u.c.p.⇒ [Z, Z]1 (v) , where [Z, Z]1 (v) ≜ [Z, Z]h⌊N0
b
/h⌋ − [Z, Z]h⌊tv/h⌋ , and recall by

Assumption 2.3 that [Z, Z]1 (v) is equivalent to ⟨Z, Z⟩1 (v) where ⟨Z, Z⟩1 (v) = ⟨Z, Z⟩h⌊tv/h⌋ (v). Next,

let Wh (v) = h−1/2Je,h (v) and W1 (v) =
� N0

b

N0
b

+v σZe,sdW
1∗
s whereW 1∗

s is defined in Section S.B. By Theorem

2.1 in Hansen (1992) we have Wh (v) ⇒ W1 (v) under the Skorokhod topology. Note the that both limit

processes [Z, Z]1 (v) and W1 (v) are continuous. This restores the compatibility of the Skorokhod topology

with the natural linear structure of D(D∗ (C) , R). For v ≤ 0, the finite-dimensional weak convergence for

QT (·) then follows:

QT (θ∗) d→ −
(
δ0
)′

⟨Z, Z⟩1 (v) δ0 + 2
(
δ0
)′

W1 (v) .

Similarly, for v > 0,
QT (θ∗) d→ −

(
δ0
)′

⟨Z, Z⟩2 (v) δ0 + 2
(
δ0
)′

W2 (v) .

Next, we verify the asymptotic stochastic equicontinuity of the sequence of processes {QT (·) , T ≥ 1}.7

For 1 ≤ i ≤ p, let ζ
(i)
h,k ≜ z

(i)
kh ẽkh, ζ

∗(i)
h,k ≜ E[z(i)

kh ẽkh| F(k−1)h], and ζ∗∗(i)
h,k ≜ ζ

(i)
h,k − ζ

∗(i)
h,k . For 1 ≤ i, j ≤ p, let

ζ
(i,j)
Z,h,k ≜ z

(i)
khz

(j)
kh − Σ(i,j)

Z,(k−1)hh,

ζ
∗(i,j)
Z,h,k ≜ E

[
z

(i)
khz

(j)
kh − Σ(i,j)

Z,(k−1)hh| F(k−1)h
]
,

and ζ
∗∗(ij)
Z,h,k ≜ ζ

(ij)
Z,h,k−ζ

∗(ij)
Z,h,k. Then, we have the following decomposition forQ

c
T (θ∗) ≜ QT (θ∗)+

(
δ0)′ ⟨Z, Z⟩1 (v) δ0

(if v ≤ 0, and defined analogously for v > 0),

Q
c
T (θ∗) =

4∑
r=1

Qr,T (θ∗) , (S.64)

where

Q1,T (θ∗) ≜ −
(
δ0
)′
(∑

k

ζ∗
Z,h,k

)
δ0, Q2,T (θ∗) ≜ −

(
δ0
)′
(∑

k

ζ∗∗
Z,h,k

)
δ0,

7Although in this proof it is not necessary to consider a neighborhood about δ0 while proving stochastic equicon-
tinuity, this step will be needed to justify our inference methods later. Thus, this proof is more general and may be
useful in other contexts.
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Q3,T (θ∗) ≜
(
δ0
)′

(
h−1/2∑

k

ζ∗
h,k

)
, and Q3,T (θ∗) ≜

(
δ0
)′

(
h−1/2∑

k

ζ∗
h,k

)
;

where
∑
k stands for

∑T 0
b

k=T 0
b

+⌊v/h⌋. Then,

sup
(θ, v)∈D∗(C)

∥∥∥Q3,T (θ∗)
∥∥∥ ≤ K

∥∥∥δ0
∥∥∥h−1/2∑

k

∥∥∥ζ∗
h,k

∥∥∥ P→ 0, (S.65)

given that {zkhẽkh} is a martingale difference and ΣZe,k = 0 identically by Assumption 4.2. As for

Q1,T (θ, v), we prove stochastic equicontinuity directly, using the definition in Andrews (1994). Choose

any ε > 0 and η > 0. Consider any (θ, v) , (θ̄, v̄) with v < 0 < v̄ (the other cases can be proven similarly)

and δ̄ = δ+ cp×1, where cp×1 is a p× 1 vector with each entry equals to c ∈ R, with 0 < c ≤ τ < ∞, then

|Q1,T (θ∗) −Q1,T

(
θ̄∗
)

|

=

∣∣∣∣∣∣∣δ̄′

 Tb(v̄)∑
k=T 0

b
+1
ζ∗
Z,h,k

 δ̄ − δ′

 T 0
b∑

k=Tb(v)+1
ζ∗
Z,h,k

 δ
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣c′
p×1

T 0
b +⌊v/h⌋∑
k=T 0

b
+1

ζ∗
Z,h,k

 cp×1 + δ′

 Tb(v̄)∑
k=T 0

b
+1
ζ∗
Z,h,k −

T 0
b∑

k=T 0
b

+⌊v/h⌋
ζ∗
Z,h,k

 δ
∣∣∣∣∣∣∣

≤ K(
Tb(v̄)∑

k=T 0
b

+1

∥∥∥ζ∗
Z,h,k

∥∥∥ ∥cp×1∥2 +

∥∥∥∥∥∥∥
T 0

b +⌊v/h⌋∑
k=T 0

b
+1

ζ∗
Z,h,k −

T 0
b∑

k=T 0
b

+⌊v/h⌋
ζ∗
Z,h,k

∥∥∥∥∥∥∥ ∥δ∥2

≤ K

(pc2
) T 0

b +⌊v/h⌋∑
k=T 0

b
+1

∥∥∥ζ∗
Z,h,k

∥∥∥+
Tb(v̄)∑

k=T 0
b

+⌊v/h⌋

∥∥∥ζ∗
Z,h,k

∥∥∥ ∥δ∥2

 .
By Itô’s formula ||ζ∗

Z,h,k|| = O(h3/2), and so∣∣∣Q1,T (θ∗) −Q1,T

(
θ̄∗
)∣∣∣ ≤ K

(
c2h−1Op

(
h3/2

)
O (τ) + ∥δ∥2 h−1Op

(
h3/2

)
O (τ)

)
≤ K

(
c2Op

(
h1/2

)
O (τ) + ∥δ∥2Op

(
h1/2

)
O (τ)

)
,

which goes to zero uniformly in θ∗ ∈ Θ as τ → 0. Next, consider Q2,T (θ∗) and observe that for any

r ≥ 1, standard estimates for Itô semimartingales yields E(||ζ∗∗
Z,h,k||r| F(k−1)h) ≤ Krh

r. Then, by using a

maximal inequality and choosing r > 2,(
E
[

sup
(θ, v)∈D∗(C)

∣∣∣Q2,T (θ∗)
∣∣∣]r)1/r

≤ Kr

∥∥∥δ0
∥∥∥2
h−2/rh ≤ Krh

1−2/r → 0, (S.66)

and thus we can use Markov’s inequality together with the latter result to verify that Q2,T (θ∗) is stochas-
tically equicontinuous. Turning to Q4,T (θ∗),∣∣∣Q4,T

(
θ̄∗
)

−Q4,T (θ∗)
∣∣∣

=

∣∣∣∣∣∣∣δ̄′

h−1/2
T 0

b +⌊v/h⌋∑
k=T 0

b
+1

ζ∗
e,h,k

− δ′

h−1/2
T 0

b∑
k=T 0

b
+⌊v/h⌋

ζ∗
e,h,k


∣∣∣∣∣∣∣
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=
∣∣∣∣∣c′
p×1

h−1/2
T 0

b +⌊v/h⌋∑
k=T 0

b
+1

ζ∗
e,h,k


+ δ′

h−1/2
T 0

b +⌊v/h⌋∑
k=T 0

b
+1

ζ∗
e,h,k − h−1/2

T 0
b∑

k=T 0
b

+⌊v/h⌋
ζ∗
e,h,k

∣∣∣∣∣
≤ K(h−1/2

T 0
b +⌊v/h⌋∑
k=T 0

b
+1

∥∥∥ζ∗
e,h,k

∥∥∥ ∥cp×1∥

+

∥∥∥∥∥∥∥h−1/2
T 0

b +⌊v/h⌋∑
k=T 0

b
+1

ζ∗
e,h,k − h−1/2

T 0
b∑

k=T 0
b

+⌊v/h⌋
ζ∗
e,h,k

∥∥∥∥∥∥∥ ∥δ∥)

≤ K

pch−1/2
T 0

b +⌊v/h⌋∑
k=T 0

b
+1

∥∥∥ζ∗
e,h,k

∥∥∥+ h−1/2
T 0

b +⌊v/h⌋∑
k=T 0

b
+⌊v/h⌋

∥∥∥ζ∗
e,h,k

∥∥∥ ∥δ∥

 .
By the Burkhölder-Davis-Gundy inequality, ||ζ∗

e,h,k|| ≤ Kh3/2 (recall ΣZe,t = 0 for all t ≥ 0), so that∣∣∣Q4,T (θ∗) −Q4,T

(
θ̄∗
)∣∣∣ ≤ K(c2h−1/2h−1h3/2O (τ)

+ ∥δ∥2 h−1/2h−1h3/2O (τ))

≤ K
(
c2O (τ) + ∥δ∥2O (τ)

)
.

Then for every η > 0, with B (τ, (θ, v)) a closed ball of radius τ > 0 around θ∗, the quantity

lim sup
h↓0

P

[
sup

θ∗∈Θ: θ̄∗∈B(τ, θ∗)

∣∣∣Q4,T (θ∗) −Q4,T

(
θ̄∗
)∣∣∣ > η

]
, (S.67)

can be made arbitrary less than ε > 0 as h ↓ 0, by choosing τ small enough. Combining (S.65), (S.66)

and (S.67), we conclude that the process {QT (θ, v) , T ≥ 1} is asymptotically stochastic equicontinuous.

Since the finite-dimensional convergence was demonstrated above, this suffices to guarantee the weak

convergence of the process {QT (θ, v) , T ≥ 1} toward a two-sided Gaussian limit process with drift

(δ0)′ [Z, Z]· (·) δ0, having P -a.s. continuous sample paths with F -conditional covariance matrix given in

(S.1). Because N(λ̂b,π − λ0) = Op (1) under the new “fast time scale”, and D∗ (C) is compact, then the

main assertion of the theorem follows from the continuous mapping theorem for the argmax functional.

In view of Section S.D.5.6, a result which shows the negligibility of the drift term, the proof of Theorem

4.1 is complete. □

S.D.5.5 Proof of Theorem 4.2

Proof. By Theorem 4.1 and using the property of the Gaussian law of the limiting process,

QT (θ, v) L−s⇒ H (v) =

−
(
δ0)′ ⟨Z, Z⟩1 (v) δ0 + 2

((
δ0)′ ΩW ,1

(
δ0))1/2

W ∗
1 (v) , if v ≤ 0

−
(
δ0)′ ⟨Z, Z⟩2 (v) δ0 + 2

((
δ0)′ ΩW ,2

(
δ0))1/2

W ∗
2 (v) , if v > 0.

By a change in variable v = ϑ−1s with ϑ = ((δ0)′ ⟨Z, Z⟩1 δ
0)2/(δ0)′ΩW ,1(δ0), we can show that

argmax
v∈A

H (v)
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d≡ argmax
s∈A∗

V (s) ,

where

V (s) =


− |s|

2 +W ∗
1 (s) , if s < 0

−(δ0)′⟨Z,Z⟩2δ
0

(δ0)′⟨Z,Z⟩1δ
0

|s|
2 +

(
(δ0)′ΩW ,2(δ0)
(δ0)′ΩW ,1(δ0)

)1/2
W ∗

2 (s) , if s ≥ 0,

and we have used the facts that W (s) d≡ W (−s) , W (cs) d≡ |c|1/2W (s), and for any c > 0 and for any

function f (s), arg maxs cf (s) = arg maxs f (s). Thus,

argmax
v∈A

H (v)

d≡ argmax
s∈A∗
((
δ0)′ ⟨Z, Z⟩1 δ

0
)2

(δ0)′ ΩW ,1 (δ0)


−1

V (s) ,

and finally by the continuous mapping theorem for the argmax functional,((
δ0)′ ⟨Z, Z⟩1 δ

0
)2

(δ0)′ ΩW ,1 (δ0)
N
(
λ̂b,π − λ0

)
⇒ argmax

s∈A∗
V (s) .

This concludes the proof. □

S.D.5.6 Negligibility of the Drift Term

We are in the setting of Section 3-4. In Proposition 3.1-3.3 and 4.1, the drift processes µ·,t from (2.3) are

clearly of higher order in h and so they are negligible. In Theorem 4.1, we first changed the time scale

and then normalized the criterion function by the factor h−1/2. The change of time scale now results in

dZψ,s = ψ
−1/2
h µZ,sds+ ψ

−1/2
h σZ,sdWZ,s, dWψ,e,s = ψ

−1/2
h σe,sdWe,s, (S.68)

with s ∈ D (C) . Given s 7→ t = ψ−1
h s, we have ψ

−1/2
h µZ,sds = ψ

−1/2
h µZ,sψh (ds/ψh) = µZ,sψ

ϑ
hdt with

ϑ = 1/2. Then, as in (S.60), dZψ,t = ψϑhµZ,tdt+σZ,tdWZ,t and dWψ,e,t = σe,tdWe,t with t ∈ D∗ (C). Thus,
the change of time scale effectively makes the drift µZ,sds of even higher order. We show a stronger result

in that we demonstrate its negligibility even in the case ϑ = 0; hence, we show that the limit law of (S.63)

remains the same when µ·,t are nonzero. We set, for any 1 ≤ i ≤ p and 1 ≤ j ≤ q + p,

µ
∗(i)
Z,k ≜

� kh

(k−1)h
µ

(i)
Z,sds, µ

∗(j)
X,k ≜

� kh

(k−1)h
µ

(j)
X,sds,

z
(i)
0,kh ≜

p∑
r=1

� kh

(k−1)h
σ

(i,r)
Z,s dW

(r)
Z , and x

(j)
0,kh ≜

q+p∑
r=1

� kh

(k−1)h
σ

(j,r)
X,s dW

(r)
X .

Note that

z
(i)
khx

(j)
kh = µ

∗(i)
Z,kµ

∗(j)
X,k + µ

∗(i)
Z,kx

(j)
0,kh + z

(i)
0,khµ

∗(j)
X,k + z

(i)
0,khx

(j)
0,kh.
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Recall that µ
∗(·)
·,k is O (h) uniformly in k, and note that µ

∗(i)
Z,kx

(j)
0,kh + µ

∗(i)
Z,k z

(i)
0,kh follows a Gaussian law with

zero mean and variance of order O
(
h3). Also note that on D∗ (C), T 0

b − Tb − 1 ≍ 1/h, where ah ≍ bh if

for some c ≥ 1, bh/c ≤ ah ≤ cbh. Then,

T 0
b∑

k=Tb+1
z

(i)
khx

(j)
kh =

T 0
b∑

k=Tb+1
µ

∗(i)
Z,kµ

∗(j)
X,k +

T 0
b∑

k=Tb+1
µ

∗(i)
Z,kx

(j)
0,kh

+
T 0

b∑
k=Tb+1

z
(i)
0,khµ

∗(j)
X,k +

T 0
b∑

k=Tb+1
z

(i)
0,khx

(j)
0,kh

= o
(
h1/2

)
+ op

(
h1/2

)
+

T 0
b∑

k=Tb+1
z

(i)
0,khx

(j)
0,kh.

Therefore, conditionally on Σ0 = {µ·,t, σ·,t}t≥0, the limit law of

QT (θ∗) = −
(
δ0
)′
 T 0

b∑
k=Tb+1

zkhz
′
kh

 δ0 + 2
(
δ0
)′
h−1/2

T 0
b∑

k=Tb+1
zkhẽkh

 ,
is the same as the limit law of

−
(
δ0
)′
 T 0

b∑
k=Tb+1

z0,khz
′
0,kh

 δ0 + 2
(
δ0
)′
h−1/2

T 0
b∑

k=Tb+1
z0,khẽkh

,
which completes the proof of Theorem 4.1. □

S.D.5.7 Proof of Proposition 5.1

Proof. Replace ξ1, ξ2, ρ and ϑ in (4.6) by their corresponding estimates ξ1, ξ2, ρ and ϑ, respectively.

Multiply both sides of (4.6) by hκ and apply a change in variable v = s/hκ. Consider the case s < 0.
On the “fast time scale”, W ∗

· is replaced by Ŵ1,h (s) = W ∗
1,h(shκ) (s < 0), where W ∗

1,h (s) is a sample-size

dependent Wiener process. It follows that

−h−κ |s|
2 + h−κW ∗

1,h (hκs) = −|v|
2 +W ∗

1 (v) .

A similar argument can be applied when s ≥ 0. Let V̂ (s) denote V (s) constructed with the proposed

estimates in place of the population parameters. Then,

h−κ argmax
s∈
[(
π−λ̂b

)
ϑ̂,
(

1−π−λ̂
b

)
ϑ̂
]V̂ (s) = argmax

v∈
[(
π−λ̂b

)
ϑ̂/h2κ,

(
1−π−λ̂b

)
ϑ̂/h2κ

]V̂ (v)

⇒ argmax
v∈[(π−λ0)ϑ, (1−π−λ0)ϑ]

V (v) ,

which is equal to the right-hand side of (4.6) since

ϑ =
∥∥∥δ0
∥∥∥2
σ−2

((
δ0
)′

⟨Z, Z⟩1 δ
0
)2
/
(
δ0
)′

ΩW ,1
(
δ0
)
.

Therefore, equation (4.6) holds when we use the proposed plug-in estimates. □
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S.D.6 Proofs of the Results in Section S.C.2

The steps are similar to those used for the case when the model does not include predictable processes.

However, we need to rely occasionally on different asymptotic results since the latter processes have

distinct statistical properties. Recall that the dependent variable ∆hYk in model (S.2) is the increment

of a discretized process which cannot be identified as an ordinary diffusion. However, its normalized

version, Ỹ(k−1)h ≜ h1/2Y(k−1)h, is well-defined and we exploit this property in the proof. ∆hYk has first

conditional moment of order O(h−1/2), it has unbounded variation and does not belong to the usual class

of semimartingales.8 The predictable process {Y(k−1)h}Tk=1 derived from it has different properties. Its

“quadratic variation” exists, and thus it is finite in any fixed time interval. That is, the integrated second

moments of the regressor Y(k−1)h are finite, i.e., we have

T∑
k=1

(
Y(k−1)hh

)2
=

T∑
k=1

(
h1/2Y(k−1)hh

1/2
)2

= h
T∑
k=1

(
Ỹ(k−1)h

)2
= Op (1) ,

by a standard approximation for Riemann sums and recalling that Ỹ(k−1)h is scaled to be Op (1) . Then it

is easy to see that {Ỹ(k−1)h}Tk=1 has nice properties. It is left-continuous, adapted, and of finite variation

in any finite time interval. When used as the integrand of a stochastic integral, the integral itself makes

sense. Importantly, its quadratic variation is null and the process is orthogonal to any continuous local

martingale. These properties will be used in the sequel. In analogy to the previous section, we use a

localization procedure and thus we need the following assumption related to Assumption S.D.1.

Assumption S.D.2. Assumption 4.2 and S.C.1 hold, the process {Ỹt, Dt, Zt}t≥0 takes value in some com-

pact set and the processes {µ·,t, σ·,t}t≥0 (except {µh·,t}t≥0) are bounded.

Recall the notation M = I −X (X ′X)−1X ′, where now

X =


h1/2 Y0h ∆hD

′
1 ∆hZ

′
1

h1/2 Y1h ∆hD
′
2 ∆hZ

′
2

...
...

...
...

h1/2 YThh ∆hD
′
T ∆hZ

′
T


T×(q+p+2)

. (S.69)

Thus, X ′X is a (q + p+ 2) × (q + p+ 2) matrix given by
[
a1 a2 a3 a4

]
, where

a1 =


∑T
k=1 h

h1/2∑T
k=1

(
Y(k−1)hh

)
∑T
k=1 h

1/2 (∆hDk)∑T
k=1 h

1/2 (∆hZk)

, a2 =


h1/2∑T

k=1

(
Y(k−1)hh

)
∑T
k=1

(
Y 2

(k−1)h · h2
)

∑T
k=1 (∆hDk)

(
Y(k−1)hh

)
∑T
k=1 (∆hZk)

(
Y(k−1)hh

)

 ,

a3 =


∑T
k=1 h

1/2 (∆hD
′
k)∑T

k=1 (∆hD
′
k)
(
Y(k−1)hh

)
X ′
DXD

X ′
ZXD

, a4 =


∑T
k=1 h

1/2 (∆hZ
′
k)∑T

k=1 (∆hZ
′
k)
(
Y(k−1)hh

)
X ′
DXZ

X ′
ZXZ

 ,

8For an introduction to the terminology used in this sub-section, we refer the reader to first chapters in Jacod
and Shiryaev (2003).
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where X ′
DXD is a q×q matrix whose (j, r)-th component is the approximate covariation between the j-th

and r-th element of D, with X ′
DXZ defined similarly. In view of the properties of Y(k−1)h outlined above

and Assumption S.D.2, X ′X is Op (1) as h ↓ 0. The limit matrix is symmetric positive definite where the

only zero elements are in the 2 × (q + p) upper right sub-block, and by symmetry in the (q + p) × 2 lower

left sub-block. Furthermore, we have

X ′e =


∑T
k=1 h

1/2ekh∑T
k=1

(
Y(k−1)hh

)
ekh∑T

k=1 ∆hDkekh∑T
k=1 ∆hZkekh

 . (S.70)

The other statistics are omitted in order to save space. Again the proofs are first given for the case where

the drift processes µZ,t, µD,t of the semimartingale regressors Z and D are identically zero. In the last

step we extend the results to nonzero µZ,t, µD,t. We also start by conditioning on the processes µZ,t, µD,t
and on all the volatility processes so that they are treated as if they were deterministic. We begin with a

preliminary lemma.

Lemma S.D.10. For 1 ≤ i ≤ 2, 3 ≤ j ≤ p+ 2 and γ > 0,
∑⌊t/h⌋
k=⌊s/h⌋ z

(i)
khz

(j)
kh

u.c.p.⇒ 0, for all N > t > s+ γ >

s > 0.

Proof. Without loss of generality consider any 3 ≤ j ≤ p + 2 and N > t > s > 0. We have∑⌊t/h⌋
k=⌊s/h⌋ z

(1)
kh z

(j)
kh =

∑⌊t/h⌋
k=⌊s/h⌋

√
h(∆hM

(j)
Z,k), with further E[z(1)

kh z
(j)
kh | F(k−1)h] = 0, |z(1)

kh z
(j)
kh | ≤ K for some

K by Assumption S.D.2. Thus {z(i)
khz

(j)
kh , Fkh} is a martingale difference array. Then, for any η > 0,

P

 ⌊t/h⌋∑
k=⌊s/h⌋

∣∣∣z(1)
kh z

(j)
kh

∣∣∣2 > η


≤ K

η
E

 ⌊t/h⌋∑
k=⌊s/h⌋

h2
(
∆hM

(j)
Z,k

)2
 ≤ K

η
hOp (t− s) → 0,

where the second inequality follows from the Burkhölder-Davis-Gundy inequality with parameter r = 2.
This shows that the array {|z(i)

khz
(j)
kh |2} is asymptotically negligible. By Lemma 2.2.11 in the Appendix

of Jacod and Protter (2012), we verify the claim for i = 1. For the case i = 2 note that z
(2)
kh z

(j)
kh =

(Y(k−1)hh)(∆hM
(j)
Z,k), and recall that Ỹ(k−1)h = h1/2Y(k−1)h = Op (1). Thus, the same proof remains valid

for the case i = 2. The assertion of the lemma follows. □

S.D.6.1 Proof of Proposition S.C.1

Proof of part (i) of Proposition S.C.1. Following the same steps that led to (S.12), we can write

QT (Tb) −QT (T0) = −
∣∣∣Tb − T 0

b

∣∣∣ d (Tb) + ge (Tb) , for all Tb, (S.71)

where

d (Tb) ≜
(
δ0
Z

)′ {(Z ′
0MZ0) − (Z ′

0MZ2) (Z ′
2MZ2)−1 (Z ′

2MZ0)
}
δ0
Z∣∣Tb − T 0

b

∣∣ , (S.72)
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and we arbitrarily define d (Tb) =
(
δ0
Z

)′
δ0
Z when Tb = T 0

b . Let dT = T inf|Tb−T 0
b |>TK d (Tb); it is positive

and bounded away from zero by Lemma S.D.11 below. Then

P
(∣∣∣λ̂b − λ0

∣∣∣ > K
)

= P
(∣∣∣T̂b − T 0

b

∣∣∣ > TK
)

≤ P

 sup
|Tb−T 0

b |>TK
|ge (Tb)| ≥ inf

|Tb−T 0
b |>TK

∣∣∣Tb − T 0
b

∣∣∣ d (Tb)


≤ P

(
sup

p+2≤Tb≤T−p−2
|ge (Tb)| ≥ TK inf

|Tb−T 0
b |>TK

d (Tb)
)

= P

(
d−1
T sup

p+2≤Tb≤T−p−2
|ge (Tb)| ≥ K

)
. (S.73)

We can write the first term of ge (Tb) as

2
(
δ0
)′ (

Z ′
0MZ2

) (
Z ′

2MZ2
)−1/2 (

Z ′
2MZ2

)−1/2
Z2Me. (S.74)

For the stochastic regressors, Theorem S.D.5 implies that for any 3 ≤ j ≤ p + 2, (Z2e)j,1 /
√
h = Op (1)

and for any 3 ≤ i ≤ q + p + 2, (Xe)i,1 /
√
h = Op (1) , since these estimates include a positive fraction of

the data. We can use the above expression for X ′X to verify that Z ′
2MZ2 and Z ′

0MZ2 are Op (1). Then,

sup
Tb

(
Z ′

0MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ0

)
≤ Z ′

0MZ0 = Op (1) ,

by Lemma S.D.3. Next, note that the first two elements of the vector X ′e and Z ′
2e are Op

(
h1/2

)
[recall

(S.70)]. By Assumption 2.1-(iii) and the inequality

sup
Tb

∥∥∥(Z ′
2MZ2

)−1/2
Z2Me

∥∥∥ ≤ sup
Tb

∥∥∥(Z ′
2MZ2

)−1/2
∥∥∥ sup

Tb

∥Z2Me∥ ,

we have that (Z ′
2MZ2)−1/2 Z2Me is Op(h1/2) uniformly in Tb since the last q + p (resp., p) elements of

X ′e (resp., Z ′
2e) are op (1) locally uniformly in time. Therefore, uniformly over p + 2 ≤ Tb ≤ T − p − 2,

the overall expression in (S.74) is Op(h1/2). As for the second term of (S.10), Z ′
0Me = Op(h1/2). The first

term in (S.11) is uniformly negligible and so is the last. Therefore, combining these results we can show

that supTb
|ge (Tb) | = Op(

√
h). Using Lemma S.D.11 below, we have P (d−1

T supp+2≤Tb≤T−p−2 |ge (Tb) | ≥
K) ≤ ε, which shows that λ̂b

P→ λ0. □

Lemma S.D.11. Let dB = inf|Tb−T 0
b |>TB Td (Tb) . There exists a κ > 0 and for every ε > 0, there exists a

B < ∞ such that P (dB ≥ κ) ≤ 1 − ε.

Proof. Assuming Nb ≤ N0
b and following the same steps as in Lemma S.D.6 (but replacing R by R)

Td (Tb) ≥ T
(
δ0
Z

)′
R

′ X ′
∆X∆

T 0
b − Tb

(
X ′

2X2
)−1 (

X ′
0X0

)
R
(
δ0
Z

)
=
(
δ0
Z

)′
R

′X ′
∆X∆
B

(
X ′

2X2
)−1 (

X ′
0X0

)
R
(
δ0
Z

)
.

Under Assumption 2.1-(iii) and in view of (S.69), X ′
∆X∆ is positive definite: for the p × p lower-right

sub-block apply Lemma S.D.3 as in the proof of Lemma S.D.6, whereas for the remaining elements of

X ′
∆X∆ the result follows from the convergence of approximations to Riemann sums. Note that X ′

2X2 and
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X ′
0X0 are Op (1). It follows that

Td (Tb) ≥
(
δ0
Z

)′
R

′X ′
∆X∆
N

(
X ′

2X2
)−1 (

X ′
0X0

)
Rδ0

Z ≥ κ > 0.

The result follows choosing B > 0 such that P (dB ≥ κ) is larger than 1 − ε. □

Proof of part (ii) of Proposition S.C.1. We introduce again

DK,T =
{
Tb : Nη ≤ Nb ≤ N (1 − η) ,

∣∣∣N0
b −Nb

∣∣∣ > KT−1
}
,

and observe that it is enough to show that P (supTb∈DK,T
QT (Tb) ≥ QT

(
T 0
b

)
) < ε, or

P

(
sup

Tb∈DK,T

h−1ge (Tb) ≥ inf
Tb∈DK,T

h−1
∣∣∣Tb − T 0

b

∣∣∣ d (Tb)
)
< ε. (S.75)

By Lemma S.D.1,

inf
Tb∈DK,T

d (Tb) ≥ inf
Tb∈DK,T

(
δ0
Z

)′
R

′ X ′
∆X∆

T 0
b − Tb

(
X ′

2X2
)−1 (

X ′
0X0

)
Rδ0

Z .

For the (q + p) × (q + p) lower right sub-block of X ′
∆X∆ the arguments of Proposition 3.2 apply: (h(T 0

b −
Tb))−1 [X ′

∆X∆]{·, (q+p)×(q+p)} is bounded away from zero for all Tb ∈ DK,T by choosing K large enough

(recall |T 0
b − Tb| > K), where [A]{·, i×j} is the i× j lower right sub-block of A. Furthermore, this approx-

imation is uniform in Tb by Assumption 3.1. It remains to deal with the upper left sub-block of X ′
∆X∆.

Consider its (1, 1)-th element. It is given by
∑T 0

b
k=Tb+1(h1/2)2. Thus (h(T 0

b − Tb))−1∑T 0
b
k=Tb+1(h1/2)2 > 0.

The same argument applies to the (2, 2)-th element of the upper left sub-block of X ′
∆X∆. The latter re-

sults imply that infTb∈DK,T
Td (Tb) is bounded away from zero. It remains to show that supTb∈DK,T

(h|Tb−
T 0
b |)−1ge (Tb) is small when T is large. Recall that the terms Z2 and Z0 involve a positive fraction Nη

of the data. We can apply Lemma S.D.3 to those elements which involve the stochastic regressors only,

whereas the other terms are dealt with directly using the definition of X ′e in (S.70). Consider the first

term of ge (Tb). Using the same steps which led to (S.19), we have∣∣∣∣2 (δ0
Z

)′ (
Z ′

0MZ2
) (
Z ′

2MZ2
)−1

Z2Me− 2
(
δ0
Z

)′ (
Z ′

0Me
)∣∣∣∣

=
∣∣∣∣(δ0

Z

)′
Z ′

∆Me

∣∣∣∣+ ∣∣∣∣(δ0
Z

)′ (
Z ′

∆MZ2
) (
Z ′

2MZ2
)−1 (Z2Me)

∣∣∣∣ . (S.76)

We can apply Lemma S.D.3 to the terms that do not involve |Nb − N0
b | but only stochastic regressors.

Next consider the first term of(
h
(
T 0
b − Tb

))−1 (
δ0
Z

)′ (
Z ′

∆MZ2
)

=
(
δ0
Z

)′ (Z ′
∆Z∆)

h
(
T 0
b − Tb

)
−
(
δ0
Z

)′
(

Z ′
∆X∆

h
(
T 0
b − Tb

) (X ′X
)−1

X ′Z2

)
.

Applying the same manipulations as those used above for the p × p lower right sub-block of Z ′
∆Z∆, we

have (h(T 0
b − Tb))−1[Z ′

∆Z∆]{·, p×p} = Op (1) , since there are T 0
b − Tb summands whose conditional first

moments are each O (h). The Op (1) result is uniform by Assumption 3.1. The same argument holds for

the corresponding sub-block of Z ′
∆X∆/(h(T 0

b − Tb)). Hence, as h ↓ 0 the second term above is Op (1) .
Next, consider the upper left 2 × 2 block of Z ′

∆Z∆ (the same argument holds true for Z ′
∆X∆). Note
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that the predictable variable Y(k−1)h in the (2, 2)-th element can be treated as locally constant after

multiplying by h1/2 (recall h1/2Y(k−1)h = Ỹ(k−1)h = Op (1) by Assumption S.D.2),

T 0
b∑

k=Tb+1

(
Y(k−1)hh

)2
=

T 0
b∑

k=Tb+1

(
Ỹ(k−1)hh

1/2
)2

≤ C

T 0
b∑

k=Tb+1
h,

where C = supk |Ỹ 2
(k−1)h| is a fixed constant given the localization in Assumption S.D.2. Thus, when

multiplied by (h(T 0
b − Tb))−1, the (2, 2)-th element of Z ′

∆Z∆ is Op (1) . The same reasoning can be

applied to the corresponding (1, 1)-th element. Next, let us consider the cross-products between the

semimartingale regressors and the predictable regressors. Consider any 3 ≤ j ≤ p+ 2,

1
h
(
T 0
b − Tb

) T 0
b∑

k=Tb+1
z

(2)
kh z

(j)
kh = 1

h
(
T 0
b − Tb

) T 0
b∑

k=Tb+1

(
Ỹ(k−1)hh

1/2
)
z

(j)
kh

= 1
T 0
b − Tb

T 0
b∑

k=Tb+1
Ỹ(k−1)h

z
(j)
kh√
h
.

Since z
(j)
kh /

√
h is i.n.d. with zero mean and finite variance and Ỹ(k−1)h is Op (1) by Assumption S.D.2,

Assumption 3.1 implies that we can find aK large enough such that the right hand side is Op (1) uniformly

in Tb. The same argument applies to (Z ′
∆Z∆)1,j , 3 ≤ j ≤ p+2. This shows that the term (Z ′

∆X∆/(h(T 0
b −

Tb))) (X ′X)−1X ′Z2 is bounded and so is Z ′
∆X∆/(h(T 0

b − Tb)) using the same reasoning. Thus, (h(T 0
b −

Tb))−1 (δ0
Z

)′ (Z ′
∆MZ2) is Op (1) . By the same arguments as before, we can use Theorem S.D.5 to show

that the second term of (S.76) is Op(h1/2) when multiplied by (h(T 0
b −Tb))−1 since the last term involves

a positive fraction of the data. Now, expand the (p+ 2)-dimensional vector Z ′
∆Me as follows

Z ′
∆Me

h
(
T 0
b − Tb

) = 1
h
(
T 0
b − Tb

) T 0
b∑

k=Tb+1
zkhekh

− 1
h
(
T 0
b − Tb

)
 T 0

b∑
k=Tb+1

zkhx
′
kh

(X ′X
)−1 (

X ′e
)
.

The arguments for the last p elements are the same as above and yield [recall (S.20)]

[Z ′
∆Me]{·,p}

h
(
T 0
b − Tb

) = op
(
K−1

)
−Op (1)Op

(
h1/2

)
,

where we recall that by Assumption 2.2 ΣZe,N0
b

= 0. Note that the convergence is uniform over Tb by

Lemma S.D.2. We now consider the first two elements of Z ′
∆e:∣∣∣∣∣∣

T 0
b∑

k=Tb+1
z

(2)
kh ekh

∣∣∣∣∣∣ =

∣∣∣∣∣∣
T 0

b∑
k=Tb+1

h1/2Y(k−1)hh
1/2ekh

∣∣∣∣∣∣ ≤ A

T 0
b∑

k=Tb+1

∣∣∣Ỹ(k−1)hh
1/2ekh

∣∣∣ ,
for some positive A < ∞. Noting that ekh/

√
h ∼ i.n.d.N (0, σ2

e,k−1), we have

(
h
(
T 0
b − Tb

))−1
T 0

b∑
k=Tb+1

z
(2)
kh ekh ≤ C

(T 0
b − Tb

)−1
T 0

b∑
k=Tb+1

∣∣∣ekh/h1/2
∣∣∣


S-38



where C = supk |Ỹ(k−1)h| is finite by Assumption S.D.2. Choose K large enough such that the probability

that the right-hand side is larger than B/3N is less than ε. For the first element of Z ′
∆e the argument is

the same and thus

P

(h (T 0
b − Tb

))−1
T 0

b∑
k=Tb+1

z
(1)
kh ekh >

B

3N

 ≤ ε,

when K is large. For the last product in the second term of Z ′
∆Me/h the argument is easier. This

component includes a positive fraction of data and thus

T∑
k=1

x
(1)
kh ekh =

T∑
k=1

h1/2ekh = h1/2Op (1) , (S.77)

using the result
∑⌊t/h⌋
k=1 ekh

u.c.p.⇒
� t

0 σe,sdWe,s. A similar argument applies to x
(2)
kh ekh by using in addition

the localization Assumption S.D.2. Combining the above derivations, we have

1
h
(
T 0
b − Tb

)ge (Tb) = 1
h
(
T 0
b − Tb

) (δ0
Z

)′
2Z ′

∆e+ op (1) . (S.78)

In order to prove

P

(
sup

Tb∈DK,T

(
h
(
T 0
b − Tb

))−1
ge (Tb) ≥ inf

Tb∈DK,T

h−1d (Tb)
)
< ε,

we can use (S.78). To this end, we shall find a K > 0, such that

P

 sup
Tb≤T 0

b
− K

N

∣∣∣∣∣∣µ0
δ

2
h

(
T 0
b − Tb

)−1
T 0

b∑
k=Tb+1

z
(1)
kh ekh

∣∣∣∣∣∣ > B

3N

 (S.79)

≤ P

 sup
Tb≤T 0

b
− K

N

(
T 0
b − Tb

)−1
∣∣∣∣∣∣

T 0
b∑

k=Tb+1

ekh√
h

∣∣∣∣∣∣ > B

6
∣∣µ0
δ

∣∣N
 <

ε

3 .

Recalling that ekh/h
1/2 ∼ N (0, σ2

e,k−1), the Hájek-Réiny inequality yields

P

 sup
Tb≤T 0

b
− K

N

(
T 0
b − Tb

)−1
∣∣∣∣∣∣

T 0
b∑

k=Tb+1

ekh√
h

∣∣∣∣∣∣ > B

6
∣∣µ0
δ

∣∣N
 ≤ A

36
(
µ0
δ

)2
N2

B2
1

KN−1 .

We can choose K sufficiently large such that the right-hand side is less than ε/3. The same bound holds

for the second element of Z ′
∆e. Next, by equation (S.22),

P

 sup
Tb≤T 0

b
− K

N

1
h
(
T 0
b − Tb

)
∥∥∥∥∥∥2
(
δ0
Z

)′
T 0

b∑
k=Tb+1

[
Z ′

∆e
]
{·,p}

∥∥∥∥∥∥ > B

3N

 <
ε

3 ,

since for each j = 3, . . . , p, {z(j)
kh ekh/h} is i.n.d. with finite variance, and thus the result is implied by the

Hájek-Réiny inequality for large K. Using the latter results into (S.78), we have

P

 sup
Tb≤T 0

b
− K

N

1
h
(
T 0
b − Tb

)
∥∥∥∥∥∥2
(
δ0
Z

)′
T 0

b∑
k=Tb+1

zkhekh

∥∥∥∥∥∥ > B

N

 < ε,
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which verifies (S.75) and thus proves our claim. □

S.D.6.2 Proof of Theorem S.C.1

Part (i)-(ii) follows the same steps as in the proof of Proposition 4.1 part (i)-(ii) but using the results

developed throughout the proof of part (i)-(ii) of Proposition S.C.1. As for part (iii), we begin with the

following lemma, where again ψh = h1−κ. Without loss of generality we set B = 1 in Assumption 4.1.

Lemma S.D.12. Under Assumption 4.2 and S.D.2, uniformly in Tb,(
QT (Tb) −QT

(
T 0
b

))
/ψh = −δh

(
Z ′

∆Z∆/ψh
)
δh ± 2δ′

h

(
Z ′

∆ẽ/ψh
)

+Op
(
h3/4∧1−κ/2

)
.

Proof. By the definition of QT (Tb) −QT
(
T 0
b

)
and Lemma S.D.9,

QT (Tb) −QT
(
T 0
b

)
(S.80)

= −δ′
h

{
Z ′

∆MZ∆ +
(
Z ′

∆MZ2
) (
Z ′

2MZ2
)−1 (

Z ′
2MZ∆

)}
δh

+ ge (Tb, δh) .

We can expand the first term of (S.80) as follows

δ′
hZ

′
∆MZ∆δh = δ′

hZ
′
∆Z∆δh − δ′

hAδh, (S.81)

where A = Z ′
∆X (X ′X)−1X ′Z∆. We show that δ′

hAδh is uniformly of higher order than δ′
hZ

′
∆Z∆δh.

The cross-products between the semimartingale and the predictable regressors (i.e., the p × 2 lower-left

sub-block of Z ′
∆X) are op (1), as can be easily verified. Lemma S.D.10 provides the formal statement of

the result for Z ′
∆Z∆. Hence, the result carries over to Z ′

∆X with no changes and by symmetry also to is

the 2 × p upper-right block. This allows us to treat the 2 × 2 upper-left block and the p × p lower-right

block of elements, such as those in A separately. By Lemma S.D.3, (X ′X)−1 = Op (1). Using Proposition

4.1-(ii), we let Nb −N0
b = Kψh. By the Burkhölder-Davis-Gundy inequality, we have standard estimates

for local volatility so that∥∥∥∥E(Σ̂(i,j)
ZX

(
Tb, T

0
b

)
− Σ(i,j)

ZX,(T 0
b

−1)h| F(T 0
b

−1)h
)∥∥∥∥ ≤ Kh1/2,

with 3 ≤ i ≤ p + 2 and 3 ≤ j ≤ q + p + 2 which in turn implies [Z ′
∆X∆]{·,p×p} = Op(1/(h(T 0

b − Tb))).
The same bound applies to the corresponding blocks of Z ′

∆Z∆ and X ′
∆Z∆. Now we focus on the (2, 2)-th

element of A. First notice that

(
Z ′

∆X
)

2,2 =
T 0

b∑
k=Tb+1

z
(2)
kh x

(2)
kh =

T 0
b∑

k=Tb+1

(
Ỹ(k−1)h

)2
h.

By a localization argument (cf. Assumption S.D.2), Ỹ(k−1)h is bounded. Then, since the number of

summands grows at a rate T κ, we have (Z ′
∆X)2,2 = Op(Kh1−κ). The same proof can be used for (Z ′

∆X)1,1 ,

which gives (Z ′
∆X)1,1 = Op(Kh1−κ). Thus, in view of (S.82), we conclude that (S.81) when divided by

ψh is such that

δ′
hZ

′
∆MZ∆δh/ψh = δ′

hZ
′
∆Z∆δh/ψh − δ′

hZ
′
∆X

(
X ′X

)−1
X ′Z∆δh/ψh
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= ψ−1
h

(
δ0
)′
Z ′

∆Z∆δ
0 − ψ−1

h h1/2Op
(
h2(1−κ)

)
. (S.82)

For the second term of (S.80), we have

ψ−1
h h1/2

(
δ0
)′ {(

Z ′
∆MZ2

) (
Z ′

2MZ2
)−1 (

Z ′
2MZ∆

)}
δ0 (S.83)

= ψ−1
h h1/2 ∥δ0∥2Op (ψh)Op (1)Op (ψh) ≤ Kψ−1

h h1/2Op
(
h2(1−κ)

)
uniformly in Tb, which follows from applying the same reasoning used for Z ′

∆ (I −M)Z∆ above to each

of these three elements. Finally, consider the stochastic term ge (Tb, δh). We have

ge (Tb, δh) = 2δ′
h

(
Z ′

0MZ2
) (
Z ′

2MZ2
)−1

Z2Me− 2δ′
h

(
Z ′

0Me
)

(S.84)

+ e′MZ2
(
Z ′

2MZ2
)−1

Z2Me− e′MZ0
(
Z ′

0MZ0
)−1

Z ′
0Me.

Recall (S.70), and
∑T 0

b
k=Tb+1 xkhekh = h−1/4∑T 0

b
Tb+1 xkhẽkh. Introduce the following decomposition,

(
X ′e

)
2,1 =

T 0
b −⌊Tκ⌋∑
k=1

x
(2)
kh ẽkh + h−1/4

T 0
b +⌊Tκ⌋∑

k=T 0
b

−⌊Tκ⌋+1
x

(2)
kh ẽkh +

T∑
k=T 0

b
+⌊Tκ⌋+1

x
(2)
kh ẽkh,

where ẽkh ∼ i.n.d.N (0, σ2
e,k−1h). The first and third terms are Op(h1/2) in view of (S.77). The term

in the middle is h3/4∑T 0
b +⌊Tκ⌋
k=T 0

b
−⌊Tκ⌋+1 Ỹ(k−1)hh

−1/2ẽkh, which involves approximately 2T κ summands. Since

Ỹ(k−1)h is bounded by the localization procedure,

h3/4T
κ/2

T κ/2

T 0
b +⌊Tκ⌋∑

k=T 0
b

−⌊Tκ⌋
Ỹ(k−1)h

ẽkh√
h

= h3/4T κ/2Op (1),

or

h−1/4
T 0

b +⌊Tκ⌋∑
k=T 0

b
−⌊Tκ⌋

x
(2)
kh ẽkh = h3/4−κ/2Op (1) .

This implies that (X ′e)2,1 is Op(h1/2∧3/4−κ/2). The same observation holds for (X ′e)1,1 . Therefore, one

follows the same steps as in the concluding part of the proof of Lemma 4.1 [cf. equation (S.55) and the

derivations thereafter]. That is, for the first two terms of ge(Tb, δh), using Z ′
0MZ2 = Z ′

2MZ2 ± Z ′
∆MZ2,

we have

2h1/4
(
δ0
)′ (

Z ′
0MZ2

) (
Z ′

2MZ2
)−1

Z2Me− 2h1/4
(
δ0
)′ (

Z ′
0Me

)
= 2h1/4

(
δ0
)′
Z ′

∆Me± 2h1/4
(
δ0
)′
Z ′

∆MZ2
(
Z ′

2MZ2
)−1

Z ′
2Me. (S.85)

The last term above when multiplied by ψ−1
h is such that

ψ−1
h 2h1/4

(
δ0
)′
Z ′

∆MZ2
(
Z ′

2MZ2
)−1

Z ′
2Me =

∥∥∥δ0
∥∥∥Op (1)Op

(
h1∧5/4−κ/2

)
,

where we have used the fact that Z ′
∆MZ2/ψh = Op (1). For the first term of (S.85),

2h1/4
(
δ0
)′
Z ′

∆Me/ψh

= 2h1/4
(
δ0
)′
Z ′

∆e/ψh − 2h1/4
(
δ0
)′
Z ′

∆X
(
X ′X

)−1
X ′e/ψh
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= 2h1/4
(
δ0
)′
Z ′

∆e− 2
(
δ0
)′
Op (1)Op

(
h1∧5/4−κ/2

)
.

As in the proof of Lemma 4.1, we can now use part (i) of the theorem so that the difference between the

terms on the second line of ge (Tb, δh) is negligible. That is, we can find a cT sufficiently small such that,

ψ−1
h

[
e′MZ2

(
Z ′

2MZ2
)−1

Z2Me− e′MZ0
(
Z ′

0MZ0
)−1

Z ′
0Me

]
= op (cTh) .

This leads to

ge (Tb, δh) /ψh = 2h1/4
(
δ0
)′
Z ′

∆e/ψh +Op
(
h3/4∧1−κ/2

)
+
∥∥∥δ0
∥∥∥Op (h3/4∧1−κ/2

)
+ op (cTh) ,

for a sufficiently small cT . This together with (S.82) and (S.83) yields,

ψ−1
h

(
QT (Tb) −QT

(
T 0
b

))
= −δh

(
Z ′

∆Z∆/ψh
)
δh

± 2δ′
h

(
Z ′

∆e/ψh
)

+Op
(
h3/4∧1−κ/2

)
+ op

(
h1/2

)
,

when T is large, where cT is a sufficiently small number. This concludes the proof. □
Proof of part (iii) of Theorem S.C.1. We proceed as in the proof of Theorem 4.1 and, hence, some

details are omitted. We again change the time scale s 7→ t ≜ ψ−1
h s on D (C) and observe that the

re-parameterization θh and σh,t does not alter the result of Lemma S.D.12. In addition, we have now,

dZ
(1)
ψ,s = ψ

−1/2
h (ds)1/2 = (ds)1/2 ,

dZ
(2)
ψ,s = ψ

−1/2
h Ys−ds = ψ

−1/2
h Ỹs− (ds)1/2 = Ỹs− (ds)1/2 ,

where the first equality in the second term above follows from Ỹ(k−1)h = h1/2Y(k−1)h on the old time scale.

N0
b (v) varies on the time horizon [N0

b −|v| , N0
b + |v|] as implied by D∗ (C), as defined in Section 4. Again,

in order to avoid clutter, we suppress the subscript ψh. We then have equation (S.61)-(S.62). Consider

Tb ≤ T 0
b (i.e., v ≤ 0). By Lemma S.D.12, there exists a T such that for all T > T ,

QT (θ∗) = −h−1/2δ′
hZ

′
∆Z∆δh + h−1/22δ′

hZ
′
∆e+ op (1)

= −
(
δ0
)′
 T 0

b∑
k=Tb+1

zkhz
′
kh

 δ0

+ 2
(
δ0
)′
h−1/2

T 0
b∑

k=Tb+1
zkhẽkh

+ op (1) ,

and note that this relationship corresponds to (S.63). As in the proof of Theorem 4.1 it is convenient to

associate to the continuous time index t in D∗, a corresponding D∗-specific index tv. We then define the

following functions which belong to D (D∗, R),

JZ,h (v) ≜
T 0

b∑
k=Tb(v)+1

zkhz
′
kh, Je,h (v) ≜

T 0
b∑

k=Tb(v)+1
zkhẽkh,

for (Tb (v) + 1)h ≤ tv < (Tb (v) + 2)h. Recall that the lower limit of the summation is Tb (v) + 1 =
T 0
b + ⌊v/h⌋ (v ≤ 0) and thus the number of observations in each sum increases at rate 1/h. We first note

that the partial sums of cross-products between the predictable and stochastic semimartingale regressors
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is null because the drift processes are of higher order (recall Lemma S.D.10). Given the previous lemma

we can decompose QT (θ, v) as follows,

QT (θ, v) =
(
δ0
p

)′
R1,h (v) δ0

p +
(
δ0
Z

)′
R2,h (v) δ0

Z (S.86)

+ 2
(
δ0
)′
 1√

h

T 0
b∑

k=Tb+1
zkhẽkh

 ,
where

R1,h (v) ≜
T 0

b∑
k=Tb(v)+1

 h Y(k−1)hh
3/2

Y(k−1)hh
3/2

(
Y(k−1)hh

)2

 , R2,h (v) ≜
[
Z ′

∆Z∆
]
{·,p×p} ,

and δ0 has been partitioned accordingly; that is, δ0
p =

(
µ0
δ , α

0
δ

)′
is the vector of parameters associated with

the predictable regressors whereas δ0
Z is the vector of parameters associated with the stochastic martingale

regressors in Z. By standard results for convergence of Riemann sums,

(
δ0
p

)′
R1,h (v) δ0

p
u.c.p.⇒

(
δ0
p

)′

 N0
b −Nb

� N0
b

N0
b

+v Ỹsds� N0
b

N0
b

+v Ỹsds
� N0

b

N0
b

+v Ỹ
2
s ds

 δ0
p. (S.87)

Next, since Z
(j)
t (j = 3, . . . , p+ 2) is a continuous Itô semimartingale, we have by Theorem 3.3.1 in Jacod

and Protter (2012),

R2,h (v) u.c.p.⇒ ⟨Z∆, Z∆⟩ (v) . (S.88)

We now turn to examine the asymptotic behavior of the second term in (S.86) on D∗. We use the following

steps. First, we present a stable central limit theorem for each component of Z ′
∆e. Second, we show the

joint convergence stably in law to a continuous Gaussian process, and finally we verify tightness of the

sequence of processes, which in turn yields the stable convergence under the uniform metric. We begin

with the second element of Z ′
∆e,

1√
h

T 0
b∑

k=Tb(v)+1
α0
δz

(2)
kh ẽkh = 1√

h

T 0
b∑

k=Tb(v)+1
α0
δ

(
Y(k−1)hh

)
ẽkh,

and using Ỹ(k−1)h = h1/2Y(k−1)h [recall that Ỹ(k−1)h is bounded by the localization Assumption S.D.2] we

then have

1√
h

T 0
b∑

k=Tb(v)+1
α0
δ

(
Y(k−1)hh

)
ẽkh =

T 0
b∑

k=Tb(v)+1
α0
δ

(
Ỹ(k−1)h

)
ẽkh

⇒
� N0

b

N0
b

+v
α0
δ ỸsdWe,s,

which follows from the convergence of Riemann approximations for stochastic integrals [cf. Theorem 2.1
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in Hansen (1992)]. For the first component, the argument is similar:

1√
h

T 0
b∑

k=Tb(v)+1
µ0
δz

(1)
kh ẽkh ⇒

� N0
b

N0
b

+v
µ0
δdWe,s. (S.89)

Next, we consider the p-dimensional lower subvector of Z ′
∆e, which can be written as

2
(
δ0
Z

)′
 1√

h

T 0
b∑

k=Tb(v)+1
z̃khẽkh

, (S.90)

where we have partitioned zkh as zkh =
[
h1/2 Y(k−1)hh z̃′

kh

]′
. Then, note that the small-dispersion

asymptotic re-parametrization implies that z̃khẽkh corresponds to zkhẽkh from Theorem 4.1. Hence, we

shall apply the same arguments as in the proof of Theorem 4.1 since (S.90) is simply 2
(
δ0
Z

)′
times Wh (v) =

h−1/2Je,h (v), where Je,h (v) ≜
∑T 0

b

k=Tb(v)+1 z̃khẽ with (Tb (v) + 1)h ≤ tv < (Tb (v) + 2)h. Theorem 2.1 in

Hansen (1992), Wh (v) ⇒ WZe (v). Since the case v > 0 is analogous, this proves the finite-dimensional

convergence of the process QT (θ, ·) , for each θ. It remains to verify stochastic equicontinuity. As for the

terms in R1,h (v), we can decompose

(αδ)2

 T 0
b∑

k=Tb(v)+1

(
z

(2)
kh

)2
−
(� N0

b

N0
b

+v
Ỹ 2
s ds

) ,
as

Q6,T (θ, v) +Q7,T (θ, v) ,

where

Q6,T (θ, v) ≜ (αδ)2
(∑

k

ζ∗
2,h,k

)
, and Q7,T (θ, v) ≜ (αδ)2

(∑
k

ζ∗∗
2,h,k

)
,

with

ζ∗
2,h,k ≜

(
z

(2)
kh

)2
−
(� kh

(k−1)h
Ỹ 2
s ds

)
− 2Ỹ(k−1)h

� kh

(k−1)h

(
Ỹ(k−1)h − Ỹs

)
ds

+ 2E
[
Ỹ(k−1)h

(
Ỹ(k−1)h · h−

� kh

(k−1)h
Ỹsds

)
| F(k−1)h

]
≜ L1,h,k + L2,h,k,

and

ζ∗∗
2,h,k = 2Ỹ(k−1)h(Ỹ(k−1)hh−

� kh

(k−1)h
Ỹsds

− E
[(
Ỹ(k−1)hh−

� kh

(k−1)h
Ỹsds

)
| F(k−1)h

]
).

Then, we have the following decomposition for

Q
c
T (θ∗) ≜ QT (θ∗) +

(
δ0
)′

Λ (v) δ0,
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(if v ≤ 0 and defined analogously for v > 0),

Q
c
T (θ∗) =

9∑
r=1

Qr,T (θ, v) ,

where Qr,T (θ, v) , r = 1, . . . , 4, are defined in (S.64) and Q5,T (θ, v) ≜ (µδ)2 (
∑
k ζ1,h,k), Q8,T (θ, v) ≜

(µδ)2 (h−1/2∑
k ξ1,h,k), Q9,T (θ, v) ≜ (αδ)2(h−1/2∑

k ξ2,h,k) where ζ1,h,k ≜ (z(1)
kh )2 − h, ξ1,h,k ≜ h1/2ẽkh

and ξ2,h,k ≜ (Ỹ(k−1)hh
1/2)ẽkh. Moreover, recall that

∑
k stands for

∑T 0
b
Tb(v)+1

for Nb (v) ∈ D∗ (C). Let us

consider Q6,T (θ, v) first. For s ∈ [(k − 1)h, kh], by the Burkhölder-Davis-Gundy inequality∣∣∣E [Ỹ(k−1)h
(
Ỹ(k−1)h − Ỹs

)
| F(k−1)h

]∣∣∣ ≤ Kh,

from which we can deduce that, using a maximal inequality for any r > 1,[
E
(

sup
(θ, v)

∣∣∣∣∣(αδ)2∑
k

L2,h,k

∣∣∣∣∣
)r]1/r

≤ Kr

(
sup
(θ, v)

(αδ)2r∑
k

hr
)1/r

= Krh
r−1

r . (S.91)

By a Taylor series expansion for the mapping f : y → y2, and s ∈ [(k − 1)h, kh],

E
∣∣∣Ỹ 2

(k−1)h − Ỹ 2
s − 2Ỹ(k−1)h

(
Ỹ(k−1)h − Ỹs

)∣∣∣ ≤ KE
[(
Ỹ(k−1)h − Ỹs

)2
]

≤ Kh,

where the second inequality follows from the Burkhölder-Davis-Gundy inequality. Thus, using a maximal

inequality as in (S.91), we have for r > 1[
E
(

sup
(θ, v)

∣∣∣∣∣(αδ)2∑
k

L1,h,k

∣∣∣∣∣
)r]1/r

= Krh
r−1

r . (S.92)

(S.91) and (S.92) imply that Q6,T (·, ·) is stochastically equicontinuous. Next, note that Q7,T (θ, v) is

a sum of martingale differences times h1/2 (recall the definition of ∆hṼk = h1/2∆hVk(ν, δZ,1, δZ,2)).
Therefore by Assumption S.D.2, for any 0 ≤ s < t ≤ N , Vt − Vs = Op (1) uniformly and therefore,

sup
(θ, v)

∣∣∣Q7,T (θ, v)
∣∣∣ ≤ KOp

(
h1/2

)
. (S.93)

Given (S.87) and (S.91)-(S.93), we deduce that

sup
(θ, v)

{∣∣∣Q6,T (θ, v)
∣∣∣+ ∣∣∣Q7,T (θ, v)

∣∣∣} = op (1) .

As for the term involving R1,h (v), it is easy to see that sup(θ, v) |Q (θ, v) | → 0. Next, we can use some

of the results in the proof of Theorem 4.1. In particular, the asymptotic stochastic equicontinuity of the

sequence of processes {2 (δZ)′ Wh (v)} follows from the same property as those applied to {Q3,T (θ, v)}
and {Q4,T (θ, v)}. The stochastic equicontinuity of

(δZ)′ (R2,h (θ, v) − ⟨Z∆, Z∆⟩ (v)) δZ ,

also follows from the same proof. Recall Q1,T (θ, v) + Q2,T (θ, v) as defined in (S.64). Thus, stochastic

equicontinuity follows from (S.66) and the equation right before that. Next, let us consider Q9,T (θ, v) .We

use the alternative definition (ii) of stochastic equicontinuity in Andrews (1994). Consider any sequence
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{(θ, v)} and {(θ̄, v̄)} (we omit the dependence on h for simplicity). Assume Nb ≤ N0
b ≤ N̄b (the other

cases can be proven similarly) and let Ndh ≜ N̄b −Nb. Then,

∣∣∣Q9,T (θ, v) −Q9,T

(
θ̄, v̄

)∣∣∣ =

∣∣∣∣∣∣∣αδ
T 0

b∑
k=Tb(v)+1

Ỹ(k−1)hẽkh − ᾱδ

Tb(v̄)∑
k=T 0

b

Ỹ(k−1)hẽkh

∣∣∣∣∣∣∣
≤ |αδ|

∣∣∣∣∣∣
T 0

b∑
k=Tb(v)+1

Ỹ(k−1)hẽkh

∣∣∣∣∣∣ (S.94)

+ |ᾱδ|

∣∣∣∣∣∣∣
Tb(v̄)∑
k=T 0

b

Ỹ(k−1)hẽkh

∣∣∣∣∣∣∣ .
The second term is such that, by the Burkhölder-Davis-Gundy inequality for any r ≥ 1,

E

 sup
0≤u≤dh

∣∣∣∣∣∣∣
T 0

b +⌊Nu/h⌋∑
k=T 0

b

Ỹ(k−1)hẽkh

∣∣∣∣∣∣∣
r

| FN0
b



≤ Kr (Ndh)r/2 E

 1
Ndh

T 0
b +⌊Ndh/h⌋∑
k=T 0

b

� kh

(k−1)h

(
Ỹs
)2
ds


r/2

| FN0
b

 ≤ Krd
r/2
h .

By the law of iterated expectations, and using the property that dh ↓ 0 in probability, we can find a T

large enough such that for any B > 0E
 sup

0≤u≤dh

∣∣∣∣∣∣∣
T 0

b +⌊Nu/h⌋∑
k=T 0

b

Ỹ(k−1)hẽkh

∣∣∣∣∣∣∣
r

| FN0
b




1/r

≤ Krd
1/2
h P (Ndh > B) → 0.

The argument for the first term in (S.94) is analogous. By Markov’s inequality and combining the above

steps, we have that for any ε > 0 and η > 0 there exists some T such that for T > T ,

P
(∣∣∣Q9,T (θ, v) −Q9,T

(
θ̄, v̄

)∣∣∣ > η
)
< ε.

Thus, the sequence {Q9,T (·, ·)} is stochastically equicontinuous. Noting that the same proof can be

repeated for Q8,T (·, ·), we conclude that the sequence of processes {Qc
T (θ∗) , T ≥ 1} in (S.86) is stochas-

tically equicontinuous. Furthermore, by (S.87) and (S.88) we obtain,(
δ0
p

)′
R1,h (θ, v) δ0

p +
(
δ0
Z

)′
(R2,h ((θ, v))) δ0

Z
u.c.p.⇒

(
δ0
)′

Λ (v) δ0.

This suffices to guarantee the G -stable convergence in law of the process {QT (·, ·) , T ≥ 1} towards a

process W (·) with drift Λ (·) which, conditional on G , is a two-sided Gaussian martingale process with

covariance matrix given in (S.7). By definition, D∗ (C) is compact and Th(λ̂b,π − λ0) = Op (1) , which
together with the fact that the limit process is a continuous Gaussian process enable one to deduce the

main assertion from the continuous mapping theorem for the argmax functional. □
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S.D.6.3 Proof of Proposition S.C.2

We begin with a few lemmas. Let Ỹ ∗
t ≜ Ỹ⌊t/h⌋h. The first result states that the observed process {Ỹ ∗

t }
converges to the non-stochastic process {Ỹ 0

t } defined in (S.5) as h ↓ 0. Assumption S.D.2 is maintained
throughout and the constant K > 0 may vary from line to line.

Lemma S.D.13. As h ↓ 0, sup0≤t≤N |Ỹ ∗
t − Ỹ 0

t | = op (1).

Proof. Let us introduce a parameter γh with the property γh ↓ 0 and h1/2/γh → B where B < ∞. By

construction, for t < N0
b ,

Ỹt − Ỹ 0
t =

� t

0
α0

1

(
Ỹs − Ỹ 0

s

)
ds+Bγh

(
ν0
)′
Dt

+Bγh
(
δ0
Z,1

)′
� t

0
dZs +Bγh

� t

0
σe,sdWe,s.

We can use Cauchy-Schwarz’s inequality, so that

∣∣∣Ỹt − Ỹ 0
t

∣∣∣2 ≤ 2K
[∣∣∣∣∣
� t

0
α1
(
Ỹs − Ỹ 0

s

)
ds

∣∣∣∣∣
2

+
(∣∣∣ν0′Dt

∣∣∣2 +
∣∣∣∣∣δ0′
Z,1

� t

0
dZs

∣∣∣∣∣
2

+
∣∣∣∣∣
� t

0
σe,sdWe,s

∣∣∣∣∣
2 )

(Bγh)2

≤ 2Kt
[∣∣∣α0

1

∣∣∣2 � t

0

∣∣∣Ỹs − Ỹ 0
s

∣∣∣2 ds+
(

sup
0≤s≤t

∣∣∣ν0′Ds

∣∣∣2
+ sup

0≤s≤t

∣∣∣∣∣δ0′
Z,1

� t

0
dZs

∣∣∣∣∣
2

+ sup
0≤s≤t

∣∣∣∣� s

0
σe,udWe,u

∣∣∣∣2 )(Bγh)2
]
.

By Gronwall’s inequality,

∣∣∣Ỹt − Ỹ 0
t

∣∣∣2 ≤ 2 (Bγh)2C exp
(� t

0
2K2tds

)
≤ 2 (Bγh)2C exp

(
2K2t2

)
,

where C < ∞ is a bound on the sum of the supremum terms in the last equation above. The bound

follows from Assumption S.D.2. Then,

sup
0≤t≤N

∣∣∣Ỹt − Ỹ 0
t

∣∣∣ ≤ K
√

2Bγh exp
(
K2N2

)
→ 0,

as h ↓ 0 (and so γh ↓ 0). The assertion then follows from ⌊t/h⌋h → t as h ↓ 0. The case with t ≥ N0
b is

proved in a similar fashion. □

Lemma S.D.14. As h ↓ 0, uniformly in (µ1, α1), (N/T )
∑T 0

b
k=1(µ1 + α1Ỹ(k−1)h) P→

� N0
b

0 (µ1 + α1Ỹ
0
s )ds.

Proof. Note that

sup
µ1,α1

∣∣∣∣∣∣NT
T 0

b∑
k=1

(
µ1 + α1Ỹ(k−1)h

)
−
� Nλ0

0

(
µ1 + α1Ỹ

0
s

)∣∣∣∣∣∣
= sup

µ1,α1

∣∣∣∣∣
� N0

b

0

(
µ1 + α1Ỹ

∗
s

)
ds−

� N0
b

0

(
µ1 + α1Ỹ

0
s

)
ds

∣∣∣∣∣
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≤ sup
α1

� N0
b

0
|α1|

∣∣∣Ỹ ∗
s − Ỹ 0

s

∣∣∣ ds ≤ KOp (γh) sup
α1

|α1| ,

which goes to zero as h ↓ 0 by Lemma S.D.13 (recall h1/2/γh → B) and by Assumption S.D.2. □

Lemma S.D.15. For each 3 ≤ j ≤ p+ 2 and each θ, as h ↓ 0,

⌊N0
b /h⌋∑
k=1

(
µ1 + α1Ỹ(k−1)h

)
δ

(j)
Z,1∆hZ

(j)
k

P→
� Nλ0

0

(
µ1 + α1Ỹ

0
(k−1)h

)
dZ(j)

s .

Proof. Note that

⌊N0
b /h⌋∑
k=1

(
µ1 + α1Ỹ(k−1)h

)
δ

(j)
Z,1∆hZ

(j)
k =

� N0
b

0

(
µ1 + α1Ỹ

∗
s

)
dZ(j)

s .

By Markov’s inequality and the dominated convergence theorem, for every ε > 0 and every η > 0:

P

( ∣∣∣∣∣
� N0

b

0
α1
(
Ỹ ∗
s − Ỹ 0

s

)
δ

(j)
Z,1dZ

(j)
s

∣∣∣∣∣ > η

)

≤

(
sup0≤s≤N

∑p
r=1

(
σ

(j,r)
Z,s

)2
)1/2

η
|α1|

∣∣∣δ(j)
Z,1

∣∣∣ (� N0
b

0
E
[(
Ỹ ∗
s − Ỹ 0

s

)2
]
ds

)1/2

,

which goes to zero as h ↓ 0 in view of Lemma S.D.13 and Assumption S.D.2. □

Lemma S.D.16. As h ↓ 0, uniformly in µ1, α1,

T 0
b∑

k=1

(
µ1 + α1Ỹ(k−1)h

) (
Ỹkh − Ỹ(k−1)h −

(
µ0

1 + α0
1Ỹ(k−1)h

)
h
)

P→ 0.

Proof. By definition [recall the notation in (S.4)],

Ỹkh − Ỹ(k−1)h =
� kh

(k−1)h

(
µ0

1 + α0
1Ỹs
)
ds+ ∆hṼk

(
ν0, δ0

Z,1, δ
0
Z,2

)
.

Then,

T 0
b∑

k=1

(
µ1 + α1Ỹ(k−1)h

) (
Ỹkh − Ỹ(k−1)h −

(
µ0

1 + α0
1Ỹ(k−1)h

)
h
)

=
T 0

b∑
k=1

� kh

(k−1)h

(
µ1 + α1Ỹ(k−1)h

) (
µ0

1 + α0
1Ỹs −

(
µ0

1 + α0
1Ỹ(k−1)h

))

+
T 0

b∑
k=1

� kh

(k−1)h

(
µ1 + α1Ỹ(k−1)h

)
∆hṼk

(
ν0, δ0

Z,1, δ
0
Z,2

)

=
� N0

b

0

(
µ1 + α1Ỹ

∗
(k−1)h

) (
α0

1

(
Ỹs − Ỹ ∗

(k−1)h

))
ds

+Bγh

� N0
b

0

(
µ1 + α1Ỹ

∗
s

)
dVs.
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For the first term on the right-hand side of the last equation

sup
µ1,α1

∣∣∣∣∣
� N0

b

0

(
µ1 + α1Ỹ

∗
s

) (
α0

1

(
Ỹs − Ỹ ∗

s

))
ds

∣∣∣∣∣
≤
∣∣∣α0

1

∣∣∣ ∣∣∣∣∣
� N0

b

0
sup
µ1,α1

(
µ1 + α1Ỹ

∗
s

) (
Ỹs − Ỹ 0

s + Ỹ 0
s − Ỹ ∗

s

)
ds

∣∣∣∣∣
≤
∣∣∣α0

1

∣∣∣K
� N0

b

0
sup

0≤s≤N0
b

∣∣∣Ỹs − Ỹ 0
s

∣∣∣+ sup
0≤s≤N0

b

∣∣∣Ỹ 0
s − Ỹ ∗

s

∣∣∣ ds
 ,

which is op (1) as h ↓ 0 from Lemma S.D.13 and Assumption S.D.2. Next, consider the vector of regressors

Z, and note that for any 3 ≤ j ≤ p+ 2,

Bγh sup
µ1,α1

∣∣∣∣∣
� N0

b

0

(
µ1 + α1Ỹ

∗
s

)
dZ(j)

s

∣∣∣∣∣
≤ Bγh sup

µ1,α1

∣∣∣∣∣
� N0

b

0

(
µ1 + α1Ỹ

∗
s

) p∑
r=1

σ
(j,r)
Z,s dW

(r)
Z

∣∣∣∣∣ .
Let

Rj,h = Rj,h (µ1, α1) ≜
� N0

b

0
Bγh

(
µ1 + α1Ỹ

∗
s

) p∑
r=1

σ
(j,r)
Z,s dW

(r)
Z ,

(we index Rj by h because Ỹ ∗
s depends on h). Then, we want to show that, for every ε > 0 and K > 0,

P

(
sup
µ1,α1

|Rj,h (µ1, α1)| > K

)
≤ ε. (S.95)

In view of Chebyshev’s inequality and the Itô’s isometry,

P (|Rj,h| > K) ≤
(
Bγh
K

)2
E

∣∣∣∣∣
� N0

b

0
(Rj,h/ (Bγh))

∣∣∣∣∣
2 ,

≤
[

sup
0≤s≤N

p∑
r=1

(
σ

(j,r)
Z,s

)2
](

Bγh
K

)2 � N0
b

0
E
[∣∣∣µ1 + α1Ỹ

∗
s

∣∣∣2 ds] ,
so that by the boundness of the processes (cf. Assumption S.D.2) and the compactness of Θ0, we have

for some A < ∞,

P (|Rj,h| > K) ≤ A

[
sup

0≤s≤T

p∑
r=1

(
σ

(j,r)
Z,s

)2
](

Bγh
K

)2
→ 0, (S.96)

since γh ↓ 0. This demonstrates pointwise convergence. It remains to show the stochastic equicontinuity

of the sequence of processes {Rj,h (·)}. Choose 2m > p and note that standard estimates for continuous

Itô semimartingales result in E[|Rj,h|2m] ≤ K which follows using the same steps that led to (S.96) with

the Burkhölder-Davis-Gundy inequality in place of the Itô’s isometry. Let g(Ỹ ∗
s , θ̃) ≜ µ1,1 + α1,1Ỹ

∗
s ,

θ̃1 ≜ (µ1,1, α1,1)′ and θ̃1 ≜ (µ2,1, α2,1)′. For any θ̃1, θ̃2, first use the Burkhölder-Davis-Gundy inequality

to yield,
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E
[∣∣∣Rj,h (θ̃2

)
−Rj,h

(
θ̃1
)∣∣∣2m]

≤ (Bγh)2mKm

[
sup

0≤s≤N

p∑
r=1

(
σ

(j,r)
Z,s

)2
]m

× E
[(� N0

b

0

(
g
(
Ỹ ∗
s , θ̃2

)
− g

(
Ỹ ∗
s , θ̃1

))2
ds

)m]

≤ (Bγh)2mKm

[
sup

0≤s≤N

p∑
r=1

(
σ

(j,r)
Z,s

)2
]m

× E
[(� N0

b

0

(
(µ1,2 − µ1,1) + (α1,2 − α1,1) Ỹ ∗

s

)2
ds

)m]

≤ (Bγh)2mKm

[
sup

0≤s≤N

p∑
r=1

(
σ

(j,r)
Z,s

)2
]m

× E
[(� N0

b

0
((µ1,2 − µ1,1) + (α1,2 − α1,1)C)2 ds

)m]

≤ (Bγh)2mKmE
[(� N0

b

0

(
2 (µ1,2 − µ1,1)2 + 2C (α1,2 − α1,1)2

)
ds

)m]

≤ 2m (Bγh)2mKm

∥∥∥2 (θ̃2 − θ̃1
)∥∥∥2m

(� N0
b

0
ds

)m
(S.97)

+ 2m (Bγh)2mK
(
θ̃1, θ̃2, m, C

)
,

where C = sups≥0 |Ỹ ∗
s |, K(θ̃1, θ̃2, m, C) is some constant that depends on its arguments and we have

used the fact that (a+ b)2 ≤ 2a2 + 2b2. Thus, since γh ↓ 0, the mapping Rj,h (·) satisfies a Lipschitz-type

condition [cf. Section 2 in Andrews (1992)]. This is sufficient for the asymptotic stochastic equicontiuity

of {Rj,h (·)}. Therefore, using Theorem 20 in Appendix I of Ibragimov and Has’minskǐı (1981), (S.96) and

(S.97) yield (S.95). Since the same result can be shown to remain valid for each term in the stochastic

element ∆hVk(ν, δZ,1, δZ,2), this establishes the claim. □

Proof of Proposition S.C.2. To avoid clutter, we prove the case for which the true parameters are
(
µ0

1, α
0
1
)′
.

The extension to parameters being local-to-zero is straightforward. The least-squares estimates of
(
µ0

1, α
0
1
)′

are given by,

µ̂1N̂b = Ỹ
N̂b

− Ỹ0 − α̂1h
T̂b∑
k=1

Ỹ(k−1)h (S.98)

α̂1 =
∑T̂b
k=1

(
Ỹkh − Ỹ(k−1)h

)
Ỹ(k−1)h

h
∑T̂b
k=1 Ỹ

2
(k−1)h − N̂−1

b

(
h
∑T̂b
k=1 Ỹ(k−1)h

)2 (S.99)

−
N̂−1
b

(
Ỹ
N̂b

− Ỹ0
)
h
∑T̂b
k=1 Ỹ(k−1)h

h
∑T̂b
k=1 Ỹ

2
(k−1)h − N̂−1

b

(
h
∑T̂b
k=1 Ỹ(k−1)h

)2 .
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Then, assuming T̂b < T 0
b ,

α̂1 =
∑T̂b
k=1

(
µ0

1h+ α0
1Ỹ(k−1)hh+ ∆hṼh,k

)
Ỹ(k−1)h

h
∑T̂b
k=1 Ỹ

2
(k−1)h − N̂−1

b

(
h
∑T̂b
k=1 Ỹ(k−1)h

)2

−

(
µ0

1 + α0
1N̂

−1
b

∑T̂b
k=1 Ỹ(k−1)hh+ N̂−1

b Bγh
(
V
N̂b

− V0
))

h
∑T̂b
k=1 Ỹ(k−1)h

h
∑T̂b
k=1 Ỹ

2
(k−1)h − N̂−1

b

(
h
∑T̂b
k=1 Ỹ(k−1)h

)2

+ op (1) ,

and thus

α̂1 =
∑T 0

b
k=1

(
µ0

1h+ α0
1Ỹ(k−1)hh+ ∆hṼk

)
Ỹ(k−1)h

h
∑T̂b
k=1 Ỹ

2
(k−1)h − N̂−1

b

(
h
∑T̂b
k=1 Ỹ(k−1)h

)2

−

(
µ0

1 + α0
1N̂

−1
b

∑T 0
b
k=1 Ỹ(k−1)hh+ N̂−1

b Bγh
(
VN0

b
− V0

))
h
∑T 0

b
k=1 Ỹ(k−1)h

h
∑T̂b
k=1 Ỹ

2
(k−1)h − N̂−1

b

(
h
∑T̂b
k=1 Ỹ(k−1)h

)2

× h

T 0
b∑

k=1
Ỹ(k−1)h

−

∑T 0
b

k=T̂b+1

(
µ0

1h+ α0
1Ỹ(k−1)hh+ ∆hṼk

)
Ỹ(k−1)h

h
∑T̂b
k=1 Ỹ

2
(k−1)h − N̂−1

b

(
h
∑T̂b
k=1 Ỹ(k−1)h

)2

+
N̂−1
b

(∑T 0
b

k=T̂b+1
µ0

1h+ α0
1
∑T 0

b

k=T̂b+1
Ỹ(k−1)hh+Bγh

(
VN0

b
− V

N̂b

))
h
∑T̂b
k=1 Ỹ

2
(k−1)h − N̂−1

b

(
h
∑T̂b
k=1 Ỹ(k−1)h

)2

× h

T 0
b∑

k=T̂b+1

Ỹ(k−1)h.

By part (ii) of Theorem S.C.1, N0
b − N̂b = Op(h1−κ), and thus it is easy to see that the third and fourth

terms converge to zero in probability at a rate slower than h1−κ. For the first and second terms, recalling

that ∆hṼh,k = h1/2∆Vh,k from (S.4), we have by ordinary convergence of approximations to Riemann

sums, Lemma S.D.14 and the continuity of probability limits,

α0
1

T 0
b∑

k=1
Ỹ(k−1)hh

P→ α0
1

� N0
b

0
Ỹsds,

T 0
b∑

k=1
µ0

1h
P→ µ0

1

� N0
b

0
ds,

and by Lemma S.D.15,
∑T 0

b
k=1 Ỹ(k−1)h∆hṼk

P→ 0. Thus, we deduce that

α̂1 = α0
1 +Op (Bγh) . (S.100)
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Using (S.100) into (S.98),

µ̂1N̂b = Ỹ
N̂b

− Ỹ0 − α0
1h

T̂b∑
k=1

Ỹ(k−1)h −Op (Bγh) ,

= Ỹ
N̂b

− Ỹ0 − α0
1h

T 0
b∑

k=1
Ỹ(k−1)h − α0

1h

T 0
b∑

k=T̂b+1

Ỹ(k−1)h − op (1) .

By part (ii) of Theorem S.C.1, the number of terms in the second sum above increases at rate T κ and

thus, α0
1h
∑T 0

b

k=T̂b+1
Ỹ(k−1)h = KOp(h1−κ), where we have also used standard estimates for the drift arising

from the Burkhölder-Davis-Gundy inequality. This gives

µ̂1N̂b = ỸN0
b

− Ỹ0 − α0
1

� N0
b

0
Ỹsds− α0

1Op
(
h1−κ

)
− op (1) .

Noting that

ỸN0
b

− Ỹ0 = µ0
1N

0
b + α0

1

� N0
b

0
Ỹsds+Op (Bγh)

(
VN0

b
− V0

)
,

we have µ̂1N
0
b = µ0

1N
0
b +Op (Bγh) (VN0

b
− V0), which yields

µ̂1 = µ0
1 +Op (Bγh) . (S.101)

Thus, as h ↓ 0, µ̂1 is consistent for µ0
1. The case where T̂b > T 0

b can be treated in the same fashion

and is omitted. The consistency proof for (µ̂2, α̂2)′ is analogous and also omitted. The second step is to

construct the least-squares residuals and scaling them up. The residuals are constructed as follows,

ûkh =

h
−1/2

(
∆hỸk − µ̂1x̃

(1)
kh − α̂1x̃

(2)
kh

)
, k ≤ T̂b

h−1/2
(
∆hỸk − µ̂2x̃

(1)
kh − α̂2x̃

(2)
kh

)
, k > T̂b,

where x̃
(1)
kh = h and x̃

(2)
kh = Ỹ(k−1)hh. This yields, for k ≤ T 0

b ≤ T̂b,

ûkh = h−1/2
(
µ0

1h+ α0
1Ỹ(k−1)hh+Bγh∆hVk − µ̂1h− α̂1Ỹ(k−1)hh

)
,

and using (S.100) and (S.101),

ûkh = h−1/2(µ0
1h+ α0

1Ỹ(k−1)hh+Bγh∆hVk − µ0
1h

−Op
(
h3/2

)
− α0

1Ỹ(k−1)hh−Op
(
h3/2

)
)

= h−1/2Bγ∆hVk −Op (h) . (S.102)

Similarly, for T 0
b ≤ T̂b ≤ k,

ûkh = h−1/2Bγh∆hVk −Op (h) , (S.103)

whereas for T̂b < k ≤ T 0
b ,

ûkh = h−1/2(µ0
1h+ α0

1Ỹ(k−1)hh+Bγh∆hVk − µ0
2h
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−Op
(
h3/2

)
− α0

2Ỹ(k−1)hh−Op
(
h3/2

)
)

= h−1/2
(
−µ0

δh− α0
δ Ỹ(k−1)hh+Bγh∆hVk −Op

(
h3/2

))
= −µ0

δh
1/2 − α0

δ Ỹ(k−1)hh
1/2 + h−1/2Bγh∆hVk −Op (h) . (S.104)

Next, note that
∑T 0

b

k=T̂b+1
µ0
δh

1/2 ≤ Kh1/2−κ and
∑T 0

b

k=T̂b+1
α0
δ Ỹ(k−1)hh

1/2 ≤ Kh1/2−κ since by Theorem

S.C.1-(ii) there are T κ terms in each sum. Moreover, recall that ekh = ∆he
∗
k ∼ N (0, σ2

e,k−1h) and thus9

T 0
b∑

k=T̂b+1

ekh =
√
h

T 0
b∑

k=T̂b+1

h−1/2ekh = h1/2−κop (1) .

Therefore,
∑T 0

b

k=T̂b+1
ûkh = Kop(h1/2−κ). Since κ ∈ (0, 1/2) , this shows that the residuals ûkh from equa-

tion (S.104) are asymptotically negligible. That is, asymptotically the estimator of ((β0
S)′, (δ0

Z,1)′, (δ0
Z,2)′)′

minimizes (assuming T̂b ≤ T 0
b ),

T̂b∑
k=1

(
ûkh − x̃′

khβS
)2 +

T∑
k=T 0

b
+1

(
ûkh − x̃′

khβS − z̃′
0,khδS

)2
+ op (1) ,

where X = [X̃(1), β0 =
[
µ0

1 α0
1
(
β0
S

)′]′
, and Z0 and δ0

S are partitioned accordingly. The subscript S

indicates that these are the parameters of the stochastic semimartingale regressors. This is exactly the

same regression model as in Proposition 3.3. Hence, the consistency result for the slope coefficients of

the semimartingale regressors follows from the same proof. The following regression model estimated by

least-squares provides consistent estimates for β0
S and δ0

S : Û = X̃β̂S + Ẑ0δ̂S + residuals, where

Ẑ0 =



z̃
(1)
1 · · · z̃

(p)
1

...
. . .

...

z̃
(1)
T̂bh

· · · z̃
(p)
T̂bh

z̃
(1)
(T 0

b
+1)h · · · z̃

(p)
(T 0

b
+1)h

...
. . .

...

z̃
(1)
N · · · z̃

(p)
N


,

and Û = (ûkh; k = 1, . . . , T̂b, T 0
b + 1, . . . , N). Therefore, using (S.102) and (S.103), we have

h−1/2
[
β̂S − β0

δ̂S − δ0

]
=
[
X̃ ′X̃ X̃ ′Ẑ0
Ẑ ′

0X̃ Ẑ ′
0Ẑ0

]−1

× h−1/2

X̃ ′e X̃ ′
(
Z0 − Ẑ0

)
δ0 + X̃ ′AOp (h)

Ẑ ′
0e Ẑ ′

0

(
Z0 − Ẑ0

)
δ0 + Ẑ ′

0AOp (h)

 ,
for some matrix A = Op (1). It then follows by the same proof as in Proposition 3.3 that[

X̃ ′X̃ X̃ ′Ẑ0
Ẑ ′

0X̃ Ẑ ′
0Ẑ0

]−1

X̃ ′AOp
(
h1/2

)
= op (1) , (S.105)

9The same bound holds for the corresponding sum involving the other terms in ∆hVk.
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and [
X̃ ′X̃ X̃ ′Ẑ0
Ẑ ′

0X̃ Ẑ ′
0Ẑ0

]−1 1
h1/2 X̃

′
(
Z0 − Ẑ0

)
δ0 = Op (1) op (1) = op (1) . (S.106)

The same arguments can be used for Ẑ ′
0(Z0 − Ẑ0)δ0 and Ẑ ′

0AOp (h) . Therefore, in view of (S.100) and

(S.101), we obtain µ̂1 = µ0
1 + op (1) and α̂1 = α0

1 + op (1), respectively, whereas (S.105) and (S.106) imply

β̂S = β0
S +op (1) and δ̂S = δ0

S +op (1), respectively. Under the setting where the magnitude of the shifts is

local to zero, we observe that by Proposition 4.1, N̂b − N̂0
b = Op(h1−κ) and one can follow the same steps

that led to (S.100) and (S.101) and proceed as above. The final result is θ̂ = θ0 + op (1), which completes

the proof. □

S.D.6.4 Negligibility of the Drift Term

Recall Lemma S.D.10 and apply the same proof as in Section S.D.5.6. Of course, the negligibility only

applies to the drift processes µ·,t from (2.3) (i.e., only the drift processes of the semimartingale regressors)

and not to µ0
1, µ

0
2, α

0
1 or α0

2. The steps are omitted since they are the same.

S.E Additional Simulations Results about HDR Confidence Sets

We continue with the analysis of finite-sample from Section 7. We consider discrete-time DGPs of the

form

yt = D′
tν

0 + Z ′
tβ

0 + Z ′
tδ

0
Z1{t>T 0

b } + et, t = 1, . . . , T, (S.1)

with T = 100 and, without loss of generality, ν0 = 0 (except for M5-M6, M8-M9). We consider eight

versions of (S.1): M3 involves a break in the simultaneous mean and variance of an i.i.d. series with Zt = 1
for all t, Dt absent, and et = (1 + 1{t>T 0

b })ut with ut ∼ i.i.d.N (0, 1); M4 is the same as M1 but with

stationary Gaussian AR(1) disturbances et = 0.3et−1+ut, ut ∼ i.i.d.N (0, 0.49); M5 is a partial structural

change model with Dt = 1 for all t, ν0 = 1 and Zt = 0.5Zt + ut with ut ∼ i.i.d.N (0, 0.75) independent

of et ∼ i.i.d.N (0, 1); M6 is similar to M5 but with ut ∼ i.i.d.N (0, 1) and heteroskedastic disturbances

given by et = vt |Zt| where vt is a sequence of i.i.d. N (0, 1) random variables independent of {Zt}; M7 is

the same as M4 but with ut drawn from a tυ distribution with υ = 5 degrees of freedom; M8 is a model with

a lagged dependent variable with Dt = yt−1, Zt = 1, et ∼ i.i.d.N (0, 0.49), ν0 = 0.3 and Z ′
tδ

0
Z1{t>T 0

b } is

replaced by Z ′
t

(
1 − ν0) δ0

Z1{t>T 0
b }; M9 has FIGARCH(1,d,1) errors given by et = σtut, ut ∼ i.i.d.N (0, 1)

and σt = 0.1 + (1 − 0.2L (1 − L)d)e2
t where d = 0.6 is the order of differencing and L the lag operator,

Dt = 1, ν0 = 1 and Zt ∼ i.i.d.N (1, 1.44) independent of et. M10 is similar to M6 but with an

ARFIMA(0.3, d, 0) regressor Zt with order of differencing d = 0.5, Var (Zt) = 1 and et ∼ N (0, 1)
independent of {Zt}. We set β0 = 1 in all models, except in M8 where β0 = 0. The Results are reported

in Table 5-12.
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Table 5: Small-sample coverage rate and length of the confidence set for model M3
δ0

Z = 0.3 δ0
Z = 0.6 δ0

Z = 1 δ0
Z = 2

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
λ0 = 0.5 HDR 0.970 86.65 0.937 76.29 0.901 55.59 0.934 26.11

Bai (1997) 0.854 70.60 0.843 58.27 0.857 40.70 0.923 14.24

ÛT .neq 0.961 88.95 0.961 80.33 0.961 61.15 0.964 32.16
ILR 0.989 92.53 0.985 84.06 0.977 58.05 0.958 12.31

λ0 = 0.35 HDR 0.976 89.81 0.961 83.26 0.935 64.87 0.934 26.11
Bai (1997) 0.823 69.86 0.822 55.87 0.844 38.91 0.932 14.24

ÛT .neq 0.963 89.84 0.963 82.26 0.961 65.87 0.964 32.16
ILR 0.990 93.48 0.985 88.69 0.982 68.23 0.977 15.45

λ0 = 0.2 HDR 0.978 90.39 0.975 85.89 0.934 70.05 0.957 29.63
Bai (1997) 0.782 70.24 0.805 56.37 0.831 37.66 0.928 14.80

ÛT .neq 0.968 91.11 0.968 87.62 0.972 78.17 0.967 46.24
ILR 0.980 93.32 0.981 91.60 0.978 81.60 0.981 22.60

The model is yt = β0 + δ0
Z1{t>⌊T λ0⌋} + et, et =

(
1 + 1{t>⌊T λ0⌋}

)
ut, ut ∼ i.i.d.N (0, 1) , T = 100. The notes of Table 2 apply.

Table 6: Small-sample coverage rate and length of the confidence set for model M4
δ0

Z = 0.3 δ0
Z = 0.6 δ0

Z = 1 δ0
Z = 2

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
λ0 = 0.5 HDR 0.904 72.44 0.901 57.37 0.919 29.70 0.971 5.85

Bai (1997) 0.833 66.34 0.834 41.32 0.895 18.63 0.969 5.49

ÛT .eq 0.958 87.16 0.968 71.47 0.958 45.82 0.957 28.01

ILR 0.932 79.38 0.944 53.48 0.966 21.98 0.993 4.87

λ0 = 0.35 HDR 0.910 70.98 0.902 53.88 0.917 28.07 0.973 5.99

Bai (1997) 0.849 65.13 0.840 40.43 0.900 18.69 0.974 5.49

ÛT .eq 0.960 87.46 0.961 72.79 0.962 46.44 0.961 28.03

ILR 0.942 80.94 0.946 55.20 0.965 23.55 0.993 4.93

λ0 = 0.2 HDR 0.905 72.26 0.913 50.61 0.933 25.07 0.973 6.35

Bai (1997) 0.829 65.56 0.899 41.42 0.932 19.62 0.966 5.55

ÛT .eq 0.962 88.77 0.968 78.61 0.963 57.87 0.965 29.88

ILR 0.938 83.24 0.951 63.66 0.972 28.94 0.994 5.16

The model is yt = β0 + δ0
Z1{t>⌊T λ0⌋} + et, et = 0.3et−1 + ut, ut ∼ i.i.d.N (0, 0.49) , T = 100. The notes of Table 2 apply.

Table 7: Small-sample coverage rate and length of the confidence set for model M5
δ0

Z = 0.3 δ0
Z = 0.6 δ0

Z = 1 δ0
Z = 2

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
λ0 = 0.5 HDR 0.915 77.14 0.912 61.71 0.910 30.64 0.912 7.15

Bai (1997) 0.805 65.94 0.821 44.07 0.850 20.71 0.887 5.96

ÛT .eq 0.950 85.23 0.951 67.40 0.951 39.87 0.955 17.46
ILR 0.961 84.37 0.966 59.94 0.977 26.09 0.986 7.14

λ0 = 0.35 HDR 0.915 75.53 0.911 58.88 0.905 29.77 0.912 7.27
Bai (1997) 0.821 64.69 0.826 42.93 0.849 20.77 0.888 5.99

ÛT .eq 0.948 85.48 0.948 68.95 0.948 41.40 0.954 17.57
ILR 0.959 84.67 0.964 61.55 0.973 27.70 0.987 7.13

λ0 = 0.2 HDR 0.911 74.46 0.931 56.22 0.935 29.22 0.929 7.85
Bai (1997) 0.820 64.06 0.870 42.86 0.896 22.11 0.887 6.16

ÛT .eq 0.952 86.80 0.956 75.20 0.952 51.99 0.952 19.92
ILR 0.961 86.03 0.964 68.69 0.978 36.34 0.985 7.51

The model is yt = ν0 + Ztβ0 + Ztδ0
Z1{t>⌊T λ0⌋} + et, Zt = 0.5Zt−1 + ut, ut ∼ i.i.d.N (0, 0.75) , et ∼ i.i.d.N (0, 1) , T = 100. The

notes of Table 2 apply.
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Table 8: Small-sample coverage rate and length of the confidence set for model M6
δ0

Z = 0.3 δ0
Z = 0.6 δ0

Z = 1 δ0
Z = 2

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
λ0 = 0.5 HDR 0.920 77.03 0.923 70.69 0.930 60.02 0.969 35.03

Bai (1997) 0.690 56.73 0.716 41.63 0.783 27.53 0.885 12.70

ÛT .eq 0.962 87.76 0.962 78.32 0.962 63.80 0.962 40.82
ILR 0.790 71.07 0.805 59.66 0.824 40.78 0.909 11.63

λ0 = 0.35 HDR 0.928 76.41 0.925 68.21 0.933 56.17 0.964 31.73
Bai (1997) 0.691 55.18 0.720 40.25 0.757 26.90 0.883 12.62

ÛT .eq 0.953 87.76 0.953 78.55 0.953 64.81 0.953 41.98
ILR 0.795 71.34 0.804 60.48 0.832 30.42 0.903 10.78

λ0 = 0.2 HDR 0.915 75.86 0.919 66.79 0.926 52.50 0.957 27.46
Bai (1997) 0.707 55.03 0.770 39.77 0.828 26.82 0.901 12.68

ÛT .eq 0.951 88.48 0.952 82.09 0.954 71.84 0.950 50.72
ILR 0.795 72.01 0.809 62.75 0.829 45.18 0.913 12.62

The model is yt = ν0 +Ztβ0 +Ztδ0
Z1{t>⌊T λ0⌋} + et, et = vt |Zt| , vt ∼ i.i.d.N (0, 1) , Zt = 0.5Zt−1 +ut, ut ∼ i.i.d.N (0, 1) T = 100.

The notes of Table 2 apply.

Table 9: Small-sample coverage rate and length of the confidence set for model M7
δ0

Z = 0.3 δ0
Z = 0.6 δ0

Z = 1 δ0
Z = 2

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
λ0 = 0.5 HDR 0.918 75.64 0.910 67.46 0.931 48.54 0.957 12.50

Bai (1997) 0.834 70.13 0.824 52.16 0.861 28.69 0.948 8.45

ÛT .eq 0.959 88.62 0.959 78.87 0.959 58.60 0.952 30.15
ILR 0.969 86.75 0.959 67.91 0.967 34.13 0.995 9.17

λ0 = 0.35 HDR 0.926 74.78 0.914 64.86 0.924 45.69 0.956 12.25
Bai (1997) 0.851 69.35 0.847 51.17 0.878 28.59 0.944 8.47

ÛT .eq 0.964 88.82 0.960 79.74 0.964 60.26 0.964 30.64
ILR 0.972 88.69 0.975 73.95 0.981 39.08 0.992 9.08

λ0 = 0.2 HDR 0.909 78.12 0.921 61.87 0.933 40.66 0.961 11.70
Bai (1997) 0.824 65.23 0.867 51.35 0.915 29.83 0.955 8.70

ÛT .eq 0.961 89.71 0.960 83.68 0.961 69.25 0.960 35.78
ILR 0.966 91.48 0.971 82.78 0.984 51.93 0.995 10.87

The model is yt = β0 + δ0
Z1{t>⌊T λ0⌋} + et, et = 0.3et−1 + ut, ut ∼ i.i.d. tυ , υ = 5, T = 100. The notes of Table 2 apply.

Table 10: Small-sample coverage rate and length of the confidence set for model M8
δ0

Z = 0.3 δ0
Z = 0.6 δ0

Z = 1 δ0
Z = 2

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
λ0 = 0.5 HDR 0.918 75.08 0.913 60.44 0.931 32.30 0.965 6.34

Bai (1997) 0.778 60.94 0.815 38.14 0.885 17.29 0.949 5.34

ÛT .eq 0.949 84.56 0.950 67.64 0.953 42.95 0.950 30.25
ILR 0.943 83.69 0.946 63.24 0.956 32.85 0.982 10.49

λ0 = 0.35 HDR 0.919 74.16 0.916 58.53 0.931 32.10 0.965 6.48
Bai (1997) 0.799 60.25 0.814 37.94 0.872 17.49 0.952 5.35

ÛT .eq 0.951 85.01 0.948 69.14 0.957 48.40 0.949 30.31
ILR 0.946 84.12 0.944 63.99 0.960 33.45 0.977 8.71

λ0 = 0.2 HDR 0.912 73.43 0.929 56.18 0.949 31.23 0.965 6.96
Bai (1997) 0.795 59.43 0.864 38.17 0.910 18.52 0.954 5.34

ÛT .eq 0.950 86.94 0.951 76.52 0.946 55.72 0.947 38.80
ILR 0.945 83.94 0.953 63.55 0.963 32.41 0.982 15.01

The model is yt = δ0
Z

(
1 − ν0

)
1{t>⌊T λ0⌋} + ν0yt−1 + et, et ∼ i.i.d.N (0, 0.49) , ν0 = 0.3, T = 100. The notes of Table 2 apply.
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Table 11: Small-sample coverage rate and length of the confidence sets for model M9
δ0

Z = 0.3 δ0
Z = 0.6 δ0

Z = 1 δ0
Z = 2

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
λ0 = 0.5 HDR 0.903 61.09 0.927 31.14 0930 18.33 0.930 9.10

Bai (1997) 0.791 37.86 0.831 17.73 0.855 10.43 0.868 5.30

ÛT .eq 0.947 65.23 0.947 39.76 0.947 28.82 0.947 20.36
ILR 0.909 72.62 0.946 45.06 0.962 23.97 0.978 9.34

λ0 = 0.35 HDR 0.904 60.58 0.918 30.96 0.904 18.16 0.928 0.34
Bai (1997) 0.791 37.70 0.829 18.04 0.852 10.61 0.870 5.34

ÛT .eq 0.942 66.27 0.942 40.63 0.942 29.39 0.942 20.67
ILR 0.922 72.20 0.947 45.27 0.959 24.93 0.973 8.55

λ0 = 0.2 HDR 0.920 61.37 0.946 31.00 0.942 20.44 0.944 9.04
Bai (1997) 0.791 39.23 0.841 19.28 0.876 11.99 0.886 6.16

ÛT .eq 0.934 71.42 0.931 47.53 0.934 34.12 0934 24.06
ILR 0.920 72.68 0.935 49.61 0.959 27.90 0.972 10.01

The model is yt = ν0 +Ztβ0 +Ztδ0
Z1{t>⌊T λ0⌋} + et, Zt ∼ i.i.d.N (1, 1.44) , {et} follows a FIGARCH(1,0.6,1) process and T = 100.

The notes of Table 2 apply.

Table 12: Small-sample coverage rate and length of the confidence set for model M10
δ0

Z = 0.3 δ0
Z = 0.6 δ0

Z = 1 δ0
Z = 2

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
λ0 = 0.5 HDR 0.952 74.84 0.930 36.02 0.921 13.11 0.916 4.34

Bai (1997) 0.809 45.33 0.844 17.11 0.864 8.27 0.883 3.61

ÛT .eq 0.959 72.69 0.959 39.81 0.959 24.25 0.959 14.79
ILR 0.929 83.23 0.951 69.67 0.971 44.40 0.987 10.44

λ0 = 0.35 HDR 0.934 73.08 0.937 35.37 0.923 13.68 0.920 4.55
Bai (1997) 0.821 45.70 0.838 17.78 0.867 8.53 0.889 3.71

ÛT .eq 0.964 76.14 0.964 44.61 0.965 27.33 0.964 15.84
ILR 0.934 81.32 0.959 62.98 0.977 34.38 0.984 9.12

λ0 = 0.2 HDR 0.941 71.46 0.959 59.03 0.950 15.39 0.919 5.03
Bai (1997) 0.818 47.82 0.872 20.44 0.878 9.60 0.873 3.92

ÛT .eq 0.971 82.40 0.971 59.03 0.971 39.02 0.972 20.42
ILR 0.928 83.26 0.952 70.03 0.964 42.65 0.982 10.30

The model is yt = ν0 + Ztβ0 + Ztδ0
Z1{t>⌊T λ0⌋} + et, et ∼ i.i.d.N (0, 1) , Zt ∼ ARFIMA (0.3, 0.6, 0) , T = 100. The notes of Table 2

apply.
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