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Abstract

This paper develops a new, direct approach to entropic tilting of model-based
predictive distributions to match histogram forecasts provided in the U.S. Survey
of Professional Forecasters (SPF). We focus on tilting to histogram probabilities
directly, rather than to moments of fitted distributions. We reformulate the single-
histogram tilting problem and derive a novel analytic characterization for the multiple-
histogram case, with iterative solutions via Iterative Proportional Fitting. Application
to quarterly real-time forecasts of major macroeconomic aggregates from a Bayesian
vector autoregression with time-varying volatility shows that tilting to SPF histograms
significantly improves on the model’s baseline forecasts, particularly during periods
around the Great Recession and the COVID-19 pandemic.
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1 Introduction

An immense literature has explored the predictive content of forecasts from the U.S. Survey
of Professional Forecasters (SPF) or its counterpart in the euro area. Within this body of
work, many studies have focused on survey point forecasts, resulting in these forecasts
being widely recognized for their real-time accuracy. While less studied, the SPF (both
in the U.S. and euro area) also includes density forecasts, expressed as histograms over
forecast bins. The merits of these density forecasts have been more widely debated. Some
research has found value in these projections. For example, Clements| (2004, 2014) finds
that such histograms can offer informative density forecasts, often competitive with or
superior to parametric model-based alternatives during periods of heightened uncertainty.
On the other hand, studies such as Clements| (2008) and Engelberg, Manski, and Williams
(2009) have noted several limitations of histogram forecasts, including issues of coherence,
underdispersion, and resolution due to fixed binning and finite responses However, it
should be noted that some of these issues are more prevalent in individual forecasters’
histograms than in the aggregate histograms that average across forecasters.

One of the ways that survey forecasts have been explored or used is to try to improve
forecasts from time series models, such as vector autoregressions, by combining the
alternative projections. For example, Faust and Wright (2013) use current-quarter point
forecasts from surveys as jumping off points to enhance model-based forecasts. More
formally, point forecasts from surveys can be brought to inform model forecasts through
(Gaussian) conditional forecasting methods, with model forecasts conditioning on survey
forecasts. A closely related, less parametric approach is to use the method of entropic tilting
introduced into economic forecasting by Robertson, Tallman, and Whiteman, (2005)). In the
tilting approach, the model’s predictive distribution is modified so that the relevant moments

of the modified distribution match the chosen moments from the survey forecasts. Our

1Relatedly, see also [Kniippel and Pavlova) (2023). In addition, Lenza, Moutachaker, and Paredes| (2025)
develop a quantile regression forecast model that improves — at short horizons — on the density forecast
accuracy of the ECB’s SPF for the euro area.



paper rather emphasizes the application of entropic tilting to directly match probabilistic
forecasts, as opposed to matching the moments of an underlying distribution.

Most studies that entropically tilt model-based forecasts toward SPF information focus
on a survey’s point forecasts, and interpret these as targets for matching the predictive
mean. As examples, Krueger, Clark, and Ravazzolo (2017) entropically tilt forecasts from
a Bayesian vector autoregression (BVAR) to (point) nowcasts from the SPF, and Tallman
and Zaman (2020) tilt BVAR forecasts to (point) long-run survey forecasts The existing
work that uses density forecasts from the SPF to inform model-based forecasts does so
by extracting a limited set of moments from the SPF histograms. Galvao, Garratt, and
Mitchell (2021)) and Banbura, et al.| (2021) proceed by fitting continuous distributions
(parametrically and non-parametrically, respectively) to summarize histogram information
in the form of first or second moments from the fitted distributions | Ganics and Odendahl
(2021)) impute first and second moments under the assumption that all mass within a given
histogram bin is concentrated at the center of the bin. All of this work on combining survey
and model forecasts uses aggregate (average or median) forecasts from the SPF.

This paper develops and examines a different, direct approach to combining information
in density forecasts of the SPF with model-based forecasts. Our approach takes the SPF
histograms as given and avoids the need to fit distributions to the histograms and rely
on moments from the fitted distribution. Accordingly, our approach does not require
taking a stand on how the SPF forecaster distributes predictive mass within each histogram
bin or taking a stand on a parametric or non-parametric distribution to characterize the
histogram and then in turn estimating the distribution. Instead, our approach directly tilts
the predictive distribution of the BVAR to the SPF histogram bins, using information

directly in the SPF and nothing more to set the tilting targets. Throughout, we focus

2Additional applications of entropic tilting to BVAR forecasts include Cogley, Morozov, and Sargent
(2005)), and |Bobeica and Hartwig| (2023).

*Specifically, (Galvao, Garratt, and Mitchell (2021) extract moment parameters from fitted generalized
beta distributions (Engelberg, Manski, and Williams}, 2009), whereas Banbura, et al.|(2021) employ random
sampling from multinomial distributions and kernel-smoothed estimates from the resulting densities.



our application to histograms of the average SPF forecaster, also known as “consensus”
histograms [/

Our paper has two primary contributions. The first is methodological: We develop a
new analytical characterization for the tilting problem when targeting histogram bins. As
noted already by Tallman and West (2022)), the tilting solution is particularly simple when
only a single histogram is targeted, and reweighs model draws within each bin to match
SPF-provided bin probabilities. Compared to their work, we reformulate the solution in
the single-histogram case, and extend the solution to the case of multiple histograms. In
addition, we discuss implementation details.

Our second contribution is empirical: Focusing on the U.S., we examine the information
content of SPF histogram forecasts for the accuracy of forecasts of major macroeconomic
aggregates produced by a Bayesian vector autoregression. Using our analytical solution
for the tilting problem, we entropically tilt the BVAR’s quarterly forecast distributions to
SPF histograms, using the available multi-year forecast horizons from the SPF for three
variables, including GDP growth, the unemployment rate, and core PCE inﬂationE] The
BVAR includes stochastic volatility with fat-tailed innovations to the VAR and volatility
outliers, a specification recently developed by Carriero, et al. (2024) and found to forecast
well in a long historical sample, including the high volatility induced by the COVID-
19 pandemic. We provide evidence that, relative to the baseline model forecasts, SPF
histogram forecasts add the most information content around the Great Recession and its
aftermath during the COVID-19 pandemic, with most of the information coming from
the SPF’s unemployment rate forecasts from one through three years ahead. As our
baseline already allows for some flexibility in adapting to changing economic conditions,

in particular during times of turbulence, the gains from tilting densities from less flexible

“4For a discussion of potential difficulties in handling individual SPF histograms see, for example,
Bassetti, Casarin, and Del Negro|(2023)) and |Clark and Mertens|(2024).

°Our development and use of an analytical solution to the problem of tilting to histograms and application
to BVAR forecasts distinguishes this paper from the earlier work of |Clark, Ganics, and Mertens| (2022),
which instead relied on the standard numerical solution of the tilting problem and tilted SPF-consistent point
forecasts obtained from a model specified in state-space form to the SPF histograms.



models are, or course, largerﬂ

Our examination of the point and density accuracy of forecasts from the tilted distri-
bution to the baseline distribution of the BVAR shows that, on average over the period
from 1996 through 2025, entropically tilting BVAR forecasts to the annual SPF histograms
consistently improves the BVAR’s quarterly forecast accuracy, with the sizes of the gains
varying over horizons and across variables. Drilling into accuracy over time shows that the
benefits of entropic tilting BVAR-based forecasts to SPF forecast histograms are driven
by the period since 2007 (i.e., since the Great Recession), perhaps related to the fact that
unemployment rate forecasts and longer-horizon forecasts did not become available to
inform the tilted forecasts until 2009, when their SPF publication began[] While helpful
to forecast accuracy on average for the 2007-2025 sample, the benefits of entropically
tilting the BVAR forecasts to the SPF histograms are driven by the years around the Great
Recession and around COVID’s outbreak in 2020. In more normal periods, the BVAR’s
forecasts are not improved by bringing information from the SPF to bear through tilting to
the survey’s histogram forecasts.

The paper proceeds as follows. Section [2]details the connection of our approach to other
work on the method of entropic tilting. Section [3|develops our analytical solution to tilting
to histogram forecasts. Section [| describes the data used and details the forecasting BVAR.
Section [3] presents empirical results of tilting BVAR forecasts to SPF density forecasts.
Section [0 concludes. Additional details and results are provided in a supplementary online

appendix (pending).

Corresponding results for tilting a standard Gaussian BVAR are available upon request. See also the
results of [Bobeica and Hartwig| (2023) related to robustness of BVAREs tilted to the ECB’s SPF during the
COVID-19 pandemic.

"Relatedly, the SPF has collected probabilistic forecasts for core PCE inflation only since 2007.



2 Related literature

Our use of entropic tilting to align model-implied forecast densities with survey histograms
particularly across multiple forecast horizons can be viewed as a modern and applied ex-
tension of the classical Iterative Proportional Fitting (IPF) algorithm. In our methodology,
IPF serves to iteratively reweight a joint distribution so that its marginals match externally
imposed constraints (e.g., SPF histogram bins), while minimizing the Kullback-Leibler
(KL) divergence from a prior distribution. This structure of iterative KL projection is
rooted in foundational work on IPF (Deming and Stephan, 1940), later formalized as an
I-projection by Csiszar (1975) and given geometric interpretation by Fienberg| (1970). Our
approach also connects naturally to the literature on empirical likelihood and exponential
tilting. Schennach| (2007)) demonstrates how exponential tilting arises in moment-based
estimation problems as a dual representation of KL minimization.

A related strand develops the theoretical and structural underpinnings of exponential-
tilting adjustments. |Giacomini and Ragusa (2014) apply the same Kullback-Leibler-
projection principle to impose nonlinear theoretical moment conditions, such as Euler-
equation restrictions, on model-based forecast densities. Their “theory-coherent forecast-
ing” approach and our framework share identical entropic geometry but differ in purpose:
theirs enforces structural coherence with economic theory, ours empirical coherence with
survey-implied probability mass functions. Antolin-Diaz, Petrella, and Rubio-Ramirez
(2021)) further show that conditional-forecasting and structural-scenario analyses in SVARs
can likewise be derived as KL.-minimizing projections, providing a unifying information-
theoretic view of constrained forecasting across theoretical, structural, and empirical
contexts.

Our methodology builds directly on and extends the literature on entropic tilting and
constrained Bayesian forecasting, including key contributions by Mike West and coau-
thors. In particular, [Tallman and West (2022) develop a foundational treatment of entropic

tilting as a Bayesian decision-analytic method for modifying forecast distributions un-



der expectation constraints, including cases with quantile or indicator function targets.
Their analytic treatment of tilting under histogram- or quantile-based constraints shares
the same structure as our own KL projection approach, though our implementation em-
phasizes iterative reweighting across multiple marginals, leveraging computational tools
from iterative proportional fitting. The related work of |West| (2024) further generalizes
constrained forecasting within a decision-theoretic framework, advocating entropic tilting
as a principled alternative to naive probabilistic conditioning. This distinction is particu-
larly relevant in our context, where survey histograms represent external, judgment-based
constraints not generated within the probabilistic system of the model itself. Our approach
complements the scenario synthesis framework of |Adrian, et al. (2025)), which employs
entropic tilting to reconcile a baseline forecast with externally specified scenarios. While
their emphasis lies in evaluating the concordance of narrative scenarios with a statistical
reference using expected misclassification rates, our contribution focuses on reconciling
high-frequency density forecasts with survey-based marginal distributions for multiple
variables and multiple forecast horizons.

More broadly, our paper also contributes to the literature that evaluates the predictive
content of probabilistic survey forecasts. A large part of this literature has examined
heterogeneity, consistency, and performance characteristics across individual respondentsﬂ
By contrast, and similar to the literature surveyed in the previous section, we investigate
the predictive value of aggregated probability forecasts, where issues of coherence and
consistency are fairly negligible, as we document below.

Our focus on directly tilting model-based forecasts to match histogram probabilities
complements this literature by providing a practical method to leverage the information
content of survey histograms without imposing additional parametric assumptions. As such,

our out-of-sample analysis differs from that of Giacomini and Ragusa (2014}, who evaluate

8See, for example, [Engelberg, Manski, and Williams|(2009), |Clements| (2010), Rich, Song, and Tracy
(2012), Kenny, Kostka, and Maseral (2014), Kenny, Kostka, and Masera| (2015), [Meyler (2020), Bassetti,
Casarin, and Del Negrol (2022} 2023)), |Coroneo, Iacone, and Profumo| (2024)), |Allayioti, et al.| (2024),
Clements, Rich, and Tracy| (2025)), and |Clements| (2025)).



entropic tilting as a means of imposing theory-coherent moment restrictions—such as
Euler equations—on model-based predictive densities. Their exercise tests whether such
structural coherence improves forecast performance in a frequentist rolling-window setting.
By contrast, we evaluate empirical coherence: our tilting aligns Bayesian predictive
densities with survey-implied probability distributions from the SPF and assesses the
resulting forecasts using standard density-forecast scoring rules. Thus, whereas |(Giacomini
and Ragusa’s analysis validates theoretical consistency, our framework tests calibration
gains from survey consistency within a Bayesian, analytically tractable implementation.
By evaluating the forecast performance of tilted distributions, we contribute empirical
evidence on the value of survey-based density information in enhancing model-based
forecasts of key macroeconomic variables. Moreover, we document the added value of
survey histograms particularly during periods of economic turbulence, such as the Great
Recession and the COVID-19 pandemic, relative to state-of-the-art time-series models

highlighting the practical relevance of our approach for real-world forecasting challenges.

3 Analytical tilting to histograms

Here, we present our new analytical solution to the problem of tilting to histograms. We
begin with describing the basic setup of the tilting problem. We then take up the solution
to the problem. Given its particular simplicity, we first discuss the case of tilting to a single
histogram. We then describe the generalization to two and more histograms. In addition,
we discuss our computational implementation of the tilting solution in the occasional cases
in which the original predictive density from the model does not have mass in some of the

target bins from SPF histogram forecasts.



3.1 Setup of the tilting problem

Let y, denote the variable of interest, such as the quarter-on-quarter log growth rate of
GDP. At a forecast origin of period ¢, estimates of a BVAR (some other model could be
used) provide a baseline predictive density for future outcomes, which we denote p(X;),
where X, is a (typically) multivariate vector of outcomes, such as GDP growth in different
quarters.

As detailed with examples in Section [} for a selected set of variables and forecast
horizons, the SPF collects and publishes forecasts of probability distributions, in the form
of histograms with pre-specified bins of outcome ranges. More formally, for /N histograms,

each with J bins, A?, the SPF collects and publishes
Prob, (b7, < f (X)) < b)Y j.n,

where the b terms refer to lower and upper limits of the SPF-specified bins and f;* (X )
denotes an outcome that is a (non-)linear transformation of the vector of underlying

forecasts X;. Let A}, denote the set of outcomes inside the j-th bin of histogram n:
ALy =X b < fi (X)) <01 (D

where b ; denotes the upper limit for the j bin, the lower limit of the first bin is b}, and
open-ended bins are represented as by, = —oo and by ; = oo.

If histogram n targets the unemployment rate, f;* (X) is the linear average of the
quarterly unemployment rates for the targeted year contained in X ;. If histogram n targets
GDP growth, f;* (X) is the simple percentage change in the annual average level of real
GDP, which involves the ratio of average annual levels of real GDP between the targeted
and the previous year.

Turning back to the general setup, for simplicity we drop the ¢ subscripts on the set of



outcomes, bin limits, X, and the transformation function f(-). Each histogram provides
probabilities for a set of ./ mutually exclusive and exhaustive events {A;}7_,. For the
baseline density, p(A4;) = p(X € A;) describes the probabilities for X to fall in the jth
bin of the histogram. Since the events are mutually exclusive and exhaustive we have
ijl p(A;) = 1. The tilted density ¢(X) is required to match the histogram probabilities,
so that ¢(A;) = ¢(X € A;) are the target probabilities from the SPF histogram, with
Z;}:l q(A;) = 1. We seek to construct a tilted density, ¢(X'), that minimizes the relative

entropy (or Kullback-Leibler divergence measure)

D (a(X) || p(X)) = E? log (]%) ~ [atx) ot (]%)da: @

subject to matching histogram probabilities. Note that relative entropy is non-negative,

D (q(X)||p(X)) > 0, and equal to zero if and only if p(X) = ¢(X)]

3.2 Tilting to a single histogram

In the case of tilting to a single histogram with .J bins, { A;}7_,, the entropic tilting problem

Jj=1

amounts to finding a density ¢(X) that matches a given set of marginal distributions,
{q(A;)}/_,. and otherwise minimizes the relative entropy D, (q || p). The densities ¢(X)

and p(X) can generally be factorized as
9(X) = q(4;) ¢ (X[4)), p(X) =p(4;)p(X[4;), V), X € 4;, 3)
leading to a corresponding decomposition of relative entropy:

D (¢(X)[[p(X)) = D (¢ (A) [Ip(A +Zq (¢ (XT[4;) [[p (X]4;))}

9Notation for relative entropy has been adopted from Cover and Thomas| (2006).

10



where

Da() () = 1og<§jﬂj)

pl4;

)

D (q(X]4;) ||p(X]4;)) = / _, (X145) o (%) "

J

~—

Notice that D (¢ (A) || p (A)) is solely determined by the bin probabilities under the
baseline density p and the targeted density ¢. This term is fixed by the choice of bins and
proposal density, and it represents the relative entropy between the targeted histogram and
its counterpart from the baseline. Crucially, as argued next, the relative entropy between
histograms from baseline and the SPF targets is also the minimized relative entropy between
the baseline density p(X') and its tilted counterpart ¢(X ). To see this, note that we can
freely choose the conditionals of the tilted density g (X |A), to obtain zero relative entropy
within each bin. Thus, we can achieve the optimum by simply leaving the densities inside

each bin unchanged relative to the baseline:

D(q(X|4;) llp(X]4;)) =0 & q(X[4;) =p(X]|4;) V. 4)

Because relative entropy is nonnegative, this is the minimizing solution to the tilting
problem. Intuitively speaking, the minimizing solution reweights draws of X that fall into
the same bin A; with identical weight ¢ (4,) /p (4,), and minimizes relative entropy by
preserving the shape of the original distribution f inside each bin.

To make the implementation concrete in the single histogram case, suppose we have
a simple histogram with just two bins, for inflation next year, with one bin for inflation
to exceed 2 percent and the other bin for inflation to be 2 percent or less. Assume
that, for the particular year ahead, survey respondents attach equal probabilities of 50
percent to these two bins. Now suppose that, in the baseline forecast density from

the BVAR that is represented by Markov Chain Monte Carlo draws from the posterior

11



predictive distribution, the baseline density has 60 percent of forecast draws that exceed
2 percent and 40 percent of draws of inflation of 2 percent. In this case, our entropic
tilting solution takes all draws of inflation that are 2 percent or less and reweights (or
overweights) them by a factor of 5/4 and takes all draws of inflation exceeding 2 percent
and reweights by them by a factor of 5/6. With this solution, the tilted weights integrate
to 1, (5/4 x0.4) + (5/6 x 0.6) = 0.5 + 0.5 = 1, while satisfying the targeted histogram
probabilities of 50 percent in each bin. Moreover, within each bin, the relative weights of
the original draws are preserved, so that the shape of the baseline density within each bin

is unchanged.

3.3 Analytical solution to tilting with two or more histograms

The multiple-histogram case is a bit more involved than the one-histogram case, because
the targeted histograms restrict multiple marginal densities. In practical terms, the his-
tograms tell us the probability of X falling into either set of bins, but nothing about the
interdependence between X falling into bins from either histogram.

In the analytics for multiple histograms, we index the histograms by n =1,2,..., N
and N refers to the number of histograms. Each histogram contains J(n) bins that
represent a set of mutually exclusive events. Probabilities of falling into the jth bin of the
nth histogram under proposal and targeted histogram are denoted by p (A’;) and ¢ (A;L) ,

respectively.

3.4 The case of two histograms

Considering the case of two histograms, we denote the probabilities pertaining to joint

occurrences in bins ¢ and j of the two histograms as follows

p(ALA)=p(XeAinX e A2), (5)

10The definition applies to every 0 < i < J(1) and 0 < j < J(2).

12



The SPF prescribes targeted values for, ¢ (A}) and ¢ (AJQ) , instead of the joint density

q (A}, A?) To decompose the the relative entropy objective, we factorize the densities:

mi (AL A2) ¢ (X]AL 42) (6)

AD) p (A3) mP (A}, A2) p (XA}, AZ) (7)

where we have introduced the following “interaction coefficients,” that capture the depen-

dence structure between the two histograms.

q (A} A3)
q(A}) q(A2)°

p (A}, A3)

(AL A2 ML ik
(A p(A) p (4

(8)

mP (A;, A7)

These interaction coefficients are measures of association and capture deviations from
independence. Formally, the interaction coefficients are also Radon-Nikodym derivatives
that describe the change of measure between the product of the marginal distributions
q (A}) and ¢ (A?) and the joint distribution ¢ (A}, A?), and the same for p() A positive
association, m4? (A}, AJQ) > 1, reflects the case when outcomes tend to occur together (and
vice versa for negative associations). From the factorizations in (6) and (7)), we obtain a

linear decomposition of relative entropy:

D (q(X)||p(X)) =D (q(A") |lp (A")) + D (¢ (4%) I|p(4%))
+ A (m? (A, A%) [|mP (A", A%))

+E,{D (¢ (X]A", 4%) ||p (XA, A%)}, 9

"'"The product of the marginal distributions characterizes a (hypothetical) joint distribution that would
arise if events in both histograms were independent. Note that m9 (A}, Af) = 1 if and only if events in both
histograms are independent under ¢(-).

13



with A, (m? (A", A%) |[m? (A%,AJQ-)) =

1 2 1 2 mq (All’AQ)
qu (A7) q (A3) m? (4], A?) 1og<m . (10

and E,{D (q(X|A", A%) ||p(X|A", A%))} =
ZZ (45, A47) - D (¢ (X]AY, A%) ||p (X[|AY, A4%)) . (D)

As in the one-histogram case, the first term in (9) is fixed by the choice of bins and the
targeted histogram probabilities; we refer to this term as “marginal entropy,” since it
captures the relative entropy between the marginal histogram densities. The last term in (9))
captures an average of the relative entropies between the conditional densities inside each
of the joint cross-histogram events, as defined in (1 1)), which are not directly restricted by
the histograms. As before, the within-cross-event relative entropies, V¢, j, can be set to

zero by leaving the conditional densities unchanged relative to the baselineE]
q(X|AY, A%) =p(X|A",A?) < D(q(X|A", A% ||p(X|A", 4%) =0, (12)

This leaves the second term in (), A, (m? (A, A?) ||mP (A', A?)), as the only re-
maining component of relative entropy that can be influenced by choice of ¢(X). We
refer to A, (+||-) as “interaction entropy,” and it measures the entropic cost of changing
the interaction (or association) structure between the two histograms. We thus need to
choose the joint bin probabilities ¢ (A%, AJQ) , or equivalently the interaction coefficients

m? (A}, A?), to minimize interaction entropy while satisfying the constraints imposed by

12 Applying the usual definition for relative entropy to the within-cross-event case, we have:

q (X|AL, A2)> "

D (q(X]AL, 42) || p (XA}, 4%)) —/X (X]AL,42) 1o (M

where the integral is taken over X € Al N A?.

14



the targeted marginal histogram probabilitiesfz]

Lain Ay (m (AT, A7) [|m? (AT, 4)) (13)

subject to Zq(Ag ) m? (A}, A3) Zq (A}AY) = Vi, (14)
J

and Y q(A3) m? (A}, A2) Zq AZAY) = Vi, (15)

The first order conditions for minimizing relative entropy imply the following:

m? (A}, A3) = mP(ALAD) o -¢ Vi, j (16)
q(A},A?) Q(Azl) q(A?) 1 42

— } . HE . B2 17

AL p(AD) p(az P {a”

where ¢} and quz are (elements of vectors of) Lagrange multipliers attached to events from
each histogram that need to be set such as to assure that (14)) and (15]) hold. Notice that
J(1) x J(2) values for ¢ (A}, A?) are pinned down by p (A}, A?) and the J(1) + J(2)
Lagrange multipliers ¢; and ¢3. At the optimum, the Lagrange multipliers satisfy the

following set of conditions:

Vi (18)

- (St o a1 1) <1
and gb (Zq ) -mP A1 AQ) gb)

L, v (19)

Without convenient closed-form solutions for ¢ and qﬁ? available, we obtain the

solution by iterating over (T8) and (T9)[™ As discussed in Section 2} our procedure is an

3Note that, as a consequence of and we have 35, q (A3|4}) ¢ (A}) = ¢ (A7) and
>iq(Al |A§) q (A?) = ¢ (A}). Moreover, > ZZ q (All, A?) = 1 also holds, since the targeted (marginal)
histogram probabilities sum to one.

"*Formally, index each step of the iteration by s and for s = 0 set initial values ¢; {0} = 1 and ¢>{0} = 1.
Then iterate over the following: First, given ¢3{s — 1} V i, for each event i in A, set ¢} {s} to satisfy

dH{s} - (27 q (A2) mP (A}, A3) ¢3{s — 1}) =1, V j. Second, given ¢}{s} V i, for each event i in A2,

4%

set ¢2{s} to satisfy ¢3{s} - (32, ¢ (A}) m? (A}, A3) ¢i{s}) =1, V j. until convergence at a solution

(2 ]

15



instance of “iterative proportional fitting” (IPF) which has a longstanding tradition in the

statistics literature.

Remark: When the original density, p (Azl, AJQ) , 1s identical to the product density of its

marginals, and the interaction coefficient equals one:
p(ALA) =p(Al) -p(A)) &mP (ALLA2) =1, Vi

In this case, the entropy-minimizing Lagrange multipliers ¢} and gb]z are all identical to
one. ﬁ] When, under the baseline, the histogram events are mutually independent, jointly

tilting to all histograms is identical to sequentially targeting the individual histograms.

3.5 The general case of two and more histograms

Our approach easily generalizes to case of three and more histograms. As in the two-
histogram case, relative entropy can be decomposed into (a) the sum of relative entropies
for the marginal histograms, (b) relative entropy of the cross-product densities (“interaction
entropy”’), and (c) the relative entropy of the within-cross-event densities. As before, the
marginal entropy is fixed by the problem, and the within-cross-event entropies can always
be set to zero, so that only the minimization of interaction entropy remains.

With N = 3, the optimal solution is characterized by the following:

q (A}, A3, A}) ¢(AD) a(43) q(4AD

A}
p(ALAZ A p(AD) p(A2) p(AY)

N RN (20)

where ¢, ¢3, ¢} are (elements of vectors of) Lagrange multipliers attached to bin events

from each histogram that need to be set such as to assure that probabilities sum to one,

that satisfies the constraints (I4) and (I3).
5To verify this, note that with m? (A}, A?) = 1, the interaction entropy is equal to the relative

entropy between ¢ (Al, A2) and the independence distribution ¢ (Al) -q (Az): Ay (mq (Al7 A2) [l 1) =
D (g (A", A%) ||q (A") - q (A?)) , which in turn is minimized (to zero) by setting the interaction coefficient
for ¢(-) to unity, m? (A}, A%) = 1.

16



analogously to and in the case of N = 2.

At the optimum, the Lagrange multipliers satisfy the following set of conditions:

N

ob (S5 (A2) - q (A -mP (AL AZAD) - ¢2-67 ) =1, Vi, @D
% k

¢2

BN

J k

and  Gp - (D) q(A})-q(A) -mP (A} A2 AD) ¢l -0 | =1, Vi, (23)
7 7

which are a direct extension of the case of two-histogram case and straightforward to
generalize to case of arbitrary /V. Starting from an initialization that sets all Lagrange

multipliers to one, we solve for the solution by iterating over (21)-(23).

3.6 Computational implementation

This section details our computational implementation of the tilting solution in the occa-
sional cases in which the (simulated) predictive density from the model does not have mass
in some of the target bins from SPF histogram forecasts In the context of our application

to histograms, the sufficient condition for a solution to the tilting problem is to have
PALAY ) =p(AiNATNAIN..) >0, Vi, k. (24)

However, the proposals simulated from our BVAR may not always satisfy this condition
To address this computational issue we construct an augmented proposal density that is

a mixture between the original density and an equally weighted density over all joint

16For our purpose, where the original density is represented as draws from a Monte Carlo simulation, the
terms “generate draws” and “has mass” are understood to be synonyms.

7In principle, since the model’s forecast densities are unbounded, there is always non-zero mass on any
event. However, for practical purposes, the probability of landing in a given joint cross-histogram event
can be very small, leading to zero draws in a given simulation of arbitrary (but finite) length. As a point of
reference, consider an application, similar to ours, with N = 8 histograms having J = 10 bins each, leading
to 100,000,000 events.
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cross-histogram event events (leaving the within-joint-event density unspecified), placing

only minimal weight on the latter:
AL AZ, ) = (1 —w)p(AL, A%, ) +w/(JY) (25)

where J(n) denotes the number of bins in the nth histogram, so that [ [ J(n) denotes the
total number of joint cross-histogram events. (In our application, we set w = 1e7%.) The
idea of adding uninformative “noise” to the proposal is related (though distinct) to the use
of tempering by Montes-Galdon, Paredes, and Wolf (2022) in estimating the underlying
model density while ensuring coverage of events that the survey places mass on.

The augmented proposal describe in (25)), leaves the within-joint-event density,
P(X|A}, A%, ...) unspecified. For the results reported below, we derive tilting weights
q(A}, A3, ...)/p(A}, A3, ...) based on the augmented proposal, but focus the evaluation
only on (reweighted) draws from the original BVAR proposal. This procedure amounts to
conditioning the tilted density on outcomes for which the BVAR has generated draws with
positive probability. Thus, the results reported below reflect (X |X € P) where P is the

set of outcomes that fall into joint cross-histogram events for which the BVAR simulation

has generated drawsEg]

4 Data and model specification

This section details the SPF forecasts used in entropic tilting, the real-time data used for

model estimation and forecasting, and the forecasting model.

4.1 Survey data from the SPF

Our analysis uses forecasts of real GDP growth, the unemployment rate, and core PCE

inflation from the U.S. Survey of Professional Forecasters (SPF). The SPF collects forecasts

"Formally, let P = {X|X € (Aj N A5 N...) withp(X € AjNAZN...) > 0,forsomei,j...}.
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quarterly, and they are publicly available on the Federal Reserve Bank of Philadelphia’s
website. In particular, we consider the SPF’s density forecasts, which are collected in the
form of probability histograms for fixed-event, calendar-year forecasts, for (variously) the
current year up through three years ahead. These forecasts refer to percent changes in
annual average levels of GDP; the annual average level of the unemployment rate; and
the Q4/Q4 percent change in the core PCE price index. Figures show the histogram
forecasts published for 2025Q3. The histograms are constructed from individual forecaster
responses, which are aggregated into bins. While our BVAR specification and forecast
evaluation will include the 3-month Treasury bill rate, the SPF does not collect or publish

density forecasts of any interest rates.
[Figure 1 about here.]

The availability and specifics of histogram forecasts have varied over time. Since 1981,
the SPF has always included current- and next-year density forecasts of GDP growth.
In 2007Q1, the survey added current- and year-ahead histogram forecasts of core PCE
inflation, and has maintained this coverage through the present. In 2009Q2, the survey
extended the GDP horizons to include 2- and 3-year-ahead histograms and added histogram
forecasts for the unemployment rate for the current year through 3 years ahead. Reflecting
the availability of real-time data on core PCE inflation (more below), the earliest histogram

forecasts we use are for 1996Q1]"]
[Figure 2 about here.]
[Figure 3 about here.]
[Figure 4 about here.]

The ranges underlying the histogram forecasts (in most cases) have also changed over

time, leading to variation in the bins and their widths. Figure 4| shows time series of the

19The Federal Reserve Bank of Philadelphia took over management of the SPF in 1992.
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bins for the histograms of real GDP growth, unemployment rate, and core PCE inflation
forecasts used by the SPF. For example, the SPF lowered the histogram ranges for the
unemployment a few years after the Great Recession ended, widened them sharply with

the COVID-19 pandemic, and narrowed the unemployment ranges a few years later.
[Figure 5 about here.]

Throughout, we collect probabilistic forecast for the average SPF forecaster (“consen-
sus histogram’), which is consistent with treating the ensemble of individual forecasts as
an equally weighted linear prediction pool. Equally weighted prediction pools have been
shown to often lead to good forecast performance (for example, see |Clark and Mertens
(2024)) for a recent survey)@ Moreover, as argued next, the SPF consensus histograms
display good coherence with SPF point forecasts. By contrast, Engelberg, Manski, and
Williams| (2009) and [Clements| (2025 [2010) have documented notable inconsistencies
between point and histogram predictions of individual SPF participants. For the case of
GDP growth forecasts, Figure 5| compares SPF point forecasts against potential mean and
median values consistent with the SPF histograms. Following Engelberg, Manski, and
Williams (2009) and (Clements| (2010), a range of SPF-consistent means is computed while
taking the lower and upper bounds of each bin as the location of the probability mass
within that bin. As can be seen, the SPF point forecasts lie within or very close to the range
of SPF-consistent means for all forecast horizons and for most of the times ']

For sake of comparison, we also compute SPF-consistent medians from the midpoints
of the bins containing the median, which is found by accumulating bin probabilities until
reaching 50%. (Of course, the true medians are not known and could lie within the range
of upper and lower limits of the respective median bins which we omit for sake of brevity).

Not surprisingly, the SPF-consistent medians are less sensitive to quarterly changes in

20Studies such as [Chernis, et al.| (2025) and Diebold, Shin, and Zhang| (2023) (and other references
therein) have developed alternative pooling schemes for individual SPF histogram forecasts.

21 As shown in Figures [11|and [12]in the appendix, similar results apply also to the cases of of SPF
histograms for core inflation and the unemployment rate.
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the outlook, in particular at longer forecast horizons, which reflects inertia in the identity
of the median bin, as well as the infrequent nature of changes in bin limits. That said,
SPF-consistent medians broadly track the point-forecast trajectories and often lie within
the range of histogram-consistent mean forecasts

Overall, this coherence between point and histogram forecasts for the consensus SPF
histograms suggests that tilting to histogram information will not produce results that are
wildly at odds with point forecast information. Of course, point forecast information from
the SPF has a well-established track record of predictive value. For the remainder of this
paper, we will ignore information on point forecasts, which also allows us to sidestep the
question as to whether those should be interpreted as means or modal forecasts or other

metrics. Instead, we solely focus on the predictive value contained in histograms.

4.2 Real-time data for model estimation and forecast evaluation

In keeping with common macroeconomic forecasting, we obtain baseline forecasts from
models of major macroeconomic aggregates, at the quarterly frequency: real GDP growth,
the unemployment rate, core PCE inflation, and the 3-month Treasury bill rateF_gl Real-time
data vintages for GDP, the unemployment rate, and the core PCE price index are taken
from the Federal Reserve Bank of Philadelphia’s Real-Time Data Set for Macroeconomists
(RTDSM). We obtained the T-bill rate from the FRED database of the Federal Reserve
Bank of St. Louis.

Our analysis of out-of-sample forecasts uses real-time data vintages from 1996Q1 (the
first for which core PCE data are available) through 2025Q3. As described in |Croushore
and Stark (2001)), the vintages of the RTDSM are dated to reflect the information available

around the middle of each quarter. For each forecast origin ¢ starting with 1996:Q1, we use

22Nevertheless, the SPF-consistent median values for GDP growth typically run below the actual point
forecasts, suggestive of skew in the growth distribution (when point forecasts are interpreted as means).

2Quarterly levels of the unemployment and T-bill rates are monthly averages. GDP growth and PCE
inflation are constructed as 400 times log differences of the levels of GDP and the price index.
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the real-time data vintage ¢ containing data through ¢ — 1 to estimate the forecast models
and construct forecasts for periods ¢ and beyond. To evaluate the accuracy of the real-time
forecasts, we use the second available (in the quarterly vintages of the RTDSM) estimates
of the real-time measured variables as actuals in evaluating forecast accuracy. Our models

are estimated using data starting in 1959.

4.3 BVAR-SVO-t model

We produce baseline macroeconomic forecasts using the BVAR-SVO-t model developed
in |Carriero, et al.| (2024)), but modified so that stochastic volatility follows an AR(1) rather

than random walk process. The BVAR takes the form::

yr = Ho + IH(L)yi—1 + vt , v~ N(0,%,), (26)

where y, is a vector of IV observables, II(L) = >_?_ TI, L'"! is a pth-order lag polynomial
of VAR coefficients, and v; denotes the VAR’s residuals. We denote the vector of stacked
coefficients contained in {II;}}_, as IT. All models are specified with non-conjugate priors
for IT and ;. In the results presented below, the innovation variance matrix 3J; varies over
time. The online appendix shows that a homoskedastic (constant >.) BVAR yields very
similar impacts of tilting to SPF histograms.

The innovation vector in the model consists of a vector of Gaussian innovations scaled
by three time-varying variance components, for: (i) stochastic volatility; (ii) rare, transitory,
and large — i.e., outlier — changes in volatility; and (iii) transitory changes in volatility
that are more frequent but less extreme in impact (consistent with draws from the tails of a
fat-tailed distribution). With this stochastic structure, the VAR’s innovation v; can be seen

as mixed Gaussian instead of Gaussian. More specifically, the innovation vector and its
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covariance matrix take the forms:
Uy = At A(t)'5 Ot Qrer, ¢~ N(Oa I)v Y = At Oy Qi Q; O;(A_l),~

A~ is a unit-lower-triangular matrix. A?® is a diagonal matrix of stochastic volatilities;
the elements of the vector of logs of the diagonal elements of A;, denoted log \;, evolve as

AR(1) processes with correlated errors:
log A\t = Vo + Uylog A1 + ¢, with e, ~ N(0, D),

where U is a vector of intercepts and W, is a diagonal matrix of AR(1) coefficients.

The outliers enter the model in a diagonal matrix of scale factors, denoted O;, with
diagonal elements o, that are mutually ¢.7.d. over all j and t. The outlier o;; has a
two-part distribution that distinguishes regular observations with 0;; = 1 from outliers for
which 0;; > 2 Outliers in variable j, j = 1,..., N, occur with probability p; and the

distribution:

1 with probability 1 — p;

0jt =

U(2,20) with probability p,,
where U (2, 20) denotes a uniform distribution with support between 2 and 20. Stock and
Watson| (2016) first used this outlier specification with stochastic volatility in a multivariate
unobserved component model of inflation.

Finally, the frequent-change volatility states consistent with fat-tailed innovations enter

the model in the diagonal matrix (); with elements ¢;; that are mutually 7.i.d. over all j

and ¢t. This component of the model is equivalent to having ¢-distributed VAR residuals

(conditional on A; and O;). Following Jacquier, Polson, and Rossi (2004), we let the

24The lower bound of 2 on the scale shift in outliers is motivated by seeing outliers as events firmly
outside the typical mass of their otherwise Gaussian distribution (conditional on o; ;).
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squares of the diagonal elements of ();, g, ., have inverse-gamma distributions:

d; d;
2, ~IG (3%5]).

The j* residual g, - £;, (adjusted for the rotation by A~! and scaling by A?® O,) has a

student-t distribution with d; degrees of freedom, since ¢, ~ N(0, 1) and d;/q;; ~ X?lj-

4.4 Model estimation

Our models are estimated with a Gibbs sampler, based on the methods of |Carriero, Clark,
and Marcellino (2019) (henceforth “CCM?”) for estimating large BVARs, but as corrected
in|Carriero, et al. (2022). As in CCM, we use a Minnesota prior for the VAR coefficients 11
and follow their other choices for priors as far as applicable, too. Throughout, our BVARs
include p = 4 lags.

For the infrequent outlier component of the BVAR-SVO-t model, we follow Stock and
Watson! (2016) in placing a beta prior on the outlier probability p;. The prior is set to imply
a mean outlier frequency of once every 10 years in quarterly data for SVO-t estimates,
with precision set to be consistent with 10 years’ worth of prior observations. For the
t-distributed component of the BVAR-SVO-t model, we follow Jacquier, Polson, and Rossi
(2004) and estimate the degrees of freedom d; for each variable using a uniform discrete
prior with a range of 3 to 40. Carriero, et al. (2024)) provide details on the Gibbs sampler
steps for these and other volatility components of the model.

Parameter estimates from the BVAR-SVO-t model are based on 5,000 retained draws,
obtained by sampling a total of 7,5000 draws and discarding the first 2,500. For each
retained draw of parameters in the Gibbs sampler, we produce 50 draws of forecasts

Accordingly, all results in the paper are based on a total of 250 thousand draws of forecasts

23This approach builds on the ideas of Waggoner and Zhal (1999). At every Gibbs sampler node m, we
employ J draws of the volatility components and VAR shocks over the forecast horizons, to better balance
computational costs against a high degree of accuracy in the Monte Carlo approximation of the VAR’s
predictive likelihood.
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from the BVAR’s posterior predictive distribution.

5 Effect of SPF-tilting on model forecasts

This section evaluates the effects of entropic tilting when applied to predictive densities for
real GDP growth, the unemployment rate, core PCE inflation, and the 3-month T-bill rate,
comparing the predictive densities of the BVAR-SVO-t model against histogram forecasts
reported by the SPF. As described in Section 4.1} as available we include SPF histograms
for GDP growth, unemployment, and inflation, for horizons from the current year through
three years ahead. While we do not tilt to survey forecast information for the T-bill rate,
tilting to forecasts of other variables will impact the model’s forecasts of the interest rate.

Entropic tilting is implemented using the analytical solution detailed in the preceding
section. Of course, a single given histogram (one variable at one horizon) has multiple
bins to hit. Histograms for additional variables or horizons adds to the bins to hit. The
timing and horizons of BVAR forecasts are aligned with SPF survey rounds.

Our tilting implementation appropriately bridges between the underlying quarterly
forecasts from the BVAR and the annual forecasts of the SPF histograms. Specifically,
starting from the quarterly draws, we perform the necessary transformations to obtain

BVAR draws of calendar year forecasts as defined by the SPF, to which we apply the tilting

targetsFE]

[Figure 6 about here.]

5.1 Visual fit to SPF histograms

We begin by illustrating the differences between raw model output and SPF histogram

forecasts for selected forecast origins, of 2009Q1 and 2022Q2. In both instances, reflecting

26Reflecting the SPF’s variable-specific convention, these transformation can be linear (e.g., taking annual
averages of quarterly forecasts of the unemployment rate) or nonlinear (e.g. calculating growth rates of
annual average levels of GDP).
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somewhat unusual economic circumstances associated with the Great Recession (2009Q1)
and the recovery following the COVID-19 pandemic (2022Q?2), the SPF forecasts differ
from the BVAR forecasts, such that entropic tilting to the SPF histograms has an impact
on the model’s forecasts. For brevity, we defer to Section the details of the choice of
SPF histograms used as targets.

Figures [0] and [7] provide predictive densities for annual forecasts corresponding to
SPF horizons, from the current year through two years ahead (we omit three years ahead
for chart readability). Each panel provides the BVAR forecasts as magenta (untilted)
and dotted black (tilted) lines. For variables and horizons for which SPF histograms are
available, the relevant panels show the SPF histograms with black bars and untilted BVAR
histograms with red bars.

Starting with basic features of the SPF histograms and the BVAR’s untilted forecasts,
the baseline model, the BVAR-SVO-t specification, produces smooth predictive densities.
In contrast, the SPF histograms in some instances exhibit mass concentrated in specific
bins, reflecting survey participants’ discrete expectations. Most starkly, in 2009Q1, when
the economy was still in recession, the SPF predictive density for GDP growth in 2009
was sharply skewed to the left, with substantial probability on GDP growth of -2 percent or
less and an 89 percent probability of GDP declining in 2009 (panel [6a). While the BVAR’s
predictive density shows a significant chance of a decline in GDP for the year, the model
had a much more favorable outlook for GDP growth. In this instance, tilting the BVAR’s
forecasts to the SPF histograms substantially shifts the model’s predictive density for GDP
growth in 2009 to the left. In general, though, as noted above, tilting the model output to
match the SPF histogram redistributes probability mass within bins, preserving the overall
shape while aligning with survey responses.

Tilting to the SPF histograms also impacts the model’s forecasts for unemployment and
core PCE inflation (in 2009Q1, there were not yet published unemployment histograms to

incorporate as tilting targets). As expected, with tilting reducing the GDP growth forecast,
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it also raises the unemployment rate forecast, shifting the model’s predictive density to the
right (panel [6b). The available SPF forecast of core inflation tends to reduce the dispersion
of the BVAR’s forecast for inflation in 2009 (panel [6c). Forecasts for the year-ahead
horizon, the year of 2010, show patterns similar to those for the current year forecasts,
although with tilting in this instance also tending to shift to the right some the model’s
forecast for core PCE inflation (panel [6f). The BVAR'’s forecasts for two years ahead

continue to show some impact of tilting to SPF histograms, but smaller impacts than for

shorter horizons (panels [6g} [6h] and [61)).

[Figure 7 about here.]

In 2021Q2, with the economy continuing to recover from the COVID-19 pandemic,
the SPF predictive density for GDP growth in 2021 is somewhat skewed to the right,
as shown in Figure [/l The histogram’s mode put a probability of 51 percent on growth
between 4 and 6.9 percent and a probability of 24 percent on growth between 7 and 9.9
percent, compared to a probability of 16 percent on growth between 2.5 and 3.9 percent.
The SPF’s density forecast for the unemployment rate in 2021 is largely symmetric, but
fairly dispersed. Entropically tilting the BVAR’s forecasts to match these histogram shapes
results in predictive densities for GDP growth and unemployment with two peaks (panels
and [7b). The same occurs with the BVAR’s forecasts of core PCE inflation, in this
case also shifting the predictive distribution toward higher inflation (panel[7c). At longer
horizons, the impacts of tilting to the SPF histograms are comparable for year-ahead GDP
growth (panel and more modest two years out (panel [7g), and some tilting impacts

remain evident for longer-horizon forecasts of unemployment and core PCE inflation

(panels and [7i).

[Figure 8 about here.]

As the preceding examples indicate, entropic tilting the BVAR’s forecasts to SPF

histograms can materially alter the model’s forecasts in order to closely follow the SPF
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bin probabilities. To provide a broader time perspective on how much such tilting impacts
the baseline model forecasts, we examine the time series of the KLIC distance between
the untilted and tilted distributions from 1996 into 2025. The KLIC distance provides
a measure of how much (at each forecast origin) the conditions provided by the SPF
histograms alter the baseline BVAR’s predictive density. The model’s ability to adapt to
these conditions is evident in the tilting process, which effectively redistributes probability
mass to align with the survey data.

Figure 8| provides the time series of KLIC distances. This history includes some periods
characterized by significant uncertainty, particularly during the GFC and the COVID-19
pandemic. Tilting the model outputs to the SPF around the aforementioned periods of
greater uncertainty also leads to more notable differences in relative entropy, as measured
by the KLIC, between the model and the SPF histogram forecasts as illustrated in Figure[§]
The figure shows the total KLIC (black line) and contributions (colored bars) from tilting
to the selected set of targets, for unemployment (by each year of available SPF forecast),
inflation (also by year), and current-year GDP growth. The total KLIC is typically lower
than the sum of KLIC’s obtained from separately tilting to individual targets, since the
information conveyed by different targets tends to overlap.

As shown in the figure, the information content conveyed by the SPF (as measured
by the KLIC) has varied over time. In the period of (relatively speaking, by historical
standards) macroeconomic stability from 1996 through 2006 — a period in which the
only SPF histograms available for tilting were current- and next-year GDP growth —
the KLIC distance between the model’s raw forecast and the tilted forecast density was
relatively small and stable, with varying (over time) contributions from both the current-
and next-year GDP forecasts. Subsequently, the information content conveyed by the
SPF (as measured by the KLIC) rose particularly around the GFC and its aftermath for a
few years and then again during the COVID-19 pandemic. Around the GFC, the KLIC

contribution bars are largest for the SPF’s unemployment rate forecasts from one through
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three years ahead. The current-year forecasts of unemployment, the current- and next-year
forecasts of GDP growth, and the available core PCE forecasts make some contribution,
but by less so than the unemployment forecasts one or more years ahead. Together, around
the GFC, the multi-year unemployment rate histograms from the SPF seem to provide
the most information content for the BVAR forecasts. The shorter period of COVID-19
volatility around 2020 shows broadly similar patterns, but with a larger contribution from

the current year unemployment rate forecast.

5.2 Forecast accuracy evaluation

We assess the performance of the tilted and untilted forecasts using real-time forecast
evaluations, of forecasts made starting in 1996Q1 and continuing into 2025. As indicated
above, drawing on the histogram forecasts available in the SPF, our tilting targets include
GDP growth, unemployment, and core PCE inflation. For the unemployment rate, we
use all of the SPF horizons available, from the current year through three years ahead,
starting with the 2009Q2 forecast origin. For core PCE inflation, we use the current and
next year forecast, starting with 2007Q1. In the case of GDP growth, we use only the
current year and next-year forecast histograms in the entropic tilting, starting with 1996Q1.
Our rationale for only using the current year and next-year GDP forecasts reflects two
considerations. First, at longer horizons, the SPF’s view of GDP is likely connected to its
view of unemployment, such that the unemployment outlook by itself has information for
the GDP forecast. Second, it is well known that GDP growth has only low-order serial
correlation, and that predictability declines quickly with a few quarters (see, e.g., Breitung
and Kniippel| (2021)). Of course, one could consider tilting the BVAR forecasts to other,
more limited combinations of the available SPF histogram forecasts. We view our chosen,
larger set of targets to have the advantage of being comprehensive in capturing the SPF’s
view of the macroeconomic outlook and providing a simple and broad look at the potential

efficacy of information BVAR forecasts with survey-based density forecasts in the form of
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the SPF histograms.

5.3 Forecast accuracy of annual histogram predictions

We begin by gauging the potential for improved forecast accuracy from tilting to the
SPF by comparing the SPF histogram forecasts to the BVAR’s predictive densities for
corresponding annual forecasts. That means we compare the quality of predictions for
outcomes to fall into a given SPF-defined bin as predicted by the model (without tilting) and
the SPF histogram forecasts. As summary measure, we computed discrete rank probability
score (DRPS) for both the BVAR-SVO-t model and the SPF histogram forecasts. The
DRPS is defined as DRPS, = ", (PF — Df)2, with K indicating the number of bins,
PF denoting the cumulative forecast probability from bins 1 through k, and DY is the
cumulation of an indicator variable with value for £ of 1 if the outcome falls in the bin and
value of 0 otherwise. The lower the score, the better the forecast. Past studies of survey
forecasts using the DRPS include Boero, Smith, and Wallis| (201 1)), Clements| (2018)), and

Krueger and Pavlova (2024).
[Figure 9 about here.]

The real-time contributions of realized outcomes to the DRPS score are shown in
Figure 0] for the samples over which annual forecasts from the SPF are available at a
given horizon. For chart readability, we report results for the current year and year-ahead
horizons; results for longer horizons are qualitatively similar. As can be seen from the
figure, for the period before the Great Recession (i.e., 1996-2006), the SPF’s density
forecasts of GDP growth at the current- and next-year horizons were less accurate than
the BVAR’s annual forecasts (on average, by roughly 20 to 30 percent). However, for
the period since the Great Recession, the SPF’s density forecasts are generally more
accurate than the BVAR’s. For real GDP growth, the SPF’s advantage is sizable (roughly

50 to 60 percent) and consistent over the period since the Great Recession. In the case
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of the unemployment rate and core PCE inflation, the SPF’s forecasts show the largest
average gains relative to the BVAR through about 2016 and then smaller gains for the
remainder of the sample (with average gains over the entire sample of about 20 percent for
unemployment and 10 percent for inflation). Overall, these DRPS results for annual density
forecasts from the SPF compared to the BVAR indicate that, since the Great Recession,
the SPF histogram forecasts provide valuable information for forecasting GDP growth,

unemployment, and inflation.

5.4 Forecast accuracy of BVARs tilted to SPF histograms
[Table 1 about here.]

From this evidence of predictive content in the SPF’s histograms, we turn to examining
the potential forecast accuracy gains that may be achieved by using entropic tilting to
inform BVAR forecasts with SPF histogram forecasts. More specifically, we compare
tilted BVAR forecasts to an untilted baseline in terms of quarterly forecasts of growth,
unemployment, inflation, and the T-bill rate at horizons ranging from horizons of ~ =0
through 15 (so from the current quarter through four years ahead). Table [I] provides results
for the full sample of 1996-2025. For each variable and horizon, the table reports the ratio
of the RMSE or CRPS for the tilted forecast to the corresponding score for the untilted
BVAR-SVO-t forecast, with values below one indicating improved performance from
tilting. The tables also indicate statistical significance of the relative RMSE and CRPS as
measured by Diebold-Mariano-West tests.

These results indicate that, on average over the full sample, entropically tilting BVAR
forecasts to the annual SPF histograms consistently improves the BVAR’s quarterly forecast
accuracy, both point (RMSE) and density (CRPS). The sizes of the gains vary over horizons
and across variables. The benefits of bring the SPF histograms to bear are generally
smallest for GDP growth, except at i = 0, for which the current-year SPF forecast is

particularly helpful for improving the BVAR’s nowcast. At medium horizons, tilting to the
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SPF histograms yields small improvements in GDP forecast accuracy (roughly 2 percent
for RMSE and 5 percent for CRPS), whereas it has little impact at long horizons (with
RMSE and CRPS ratios at about 1.0). Tilting to SPF histograms yields larger (albeit not
statistically significant) benefits to forecasting the unemployment rate, lowering the RMSE
by roughly 20 percent at medium horizons (and CRPS by a bit less) and roughly 10 percent
at longer horizons before dwindling away by h = 15. For core PCE inflation and the T-bill
rate, the gains to tilting to the SPF histograms fall in between those for GDP growth and
unemployment. At medium horizons, forecasts for these variables show tilting gains of
roughly 10 percent, commonly with statistical significance. While omitted in the interest
of brevity, corresponding results for a sample ending before the pandemic are qualitatively

very similar.
[Table 2 about here.]

While the full sample shows gains (on average) to our proposed tilting approach, the
benefits of incorporating the information from SPF histograms could vary over time. One
specific driver of time variation could be the changing availability of SPF histograms for
tilting. As noted above, before 2007 and the availability of inflation or unemployment
histograms from the SPF, the tilting impacts are driven entirely by the information in
the current- and next-year GDP forecast histograms. SPF histograms for inflation and
unemployment only impact the tilted forecasts starting in 2007 and 2009, respectively.
Accordingly, Table [2] provides quarterly forecast accuracy results for a sample of 2007-
2025. Broadly, the RMSE and CRPS ratios are very similar for the 2007-2025 and
1996-2025 samples. It follows that the benefits of entropic tilting BVAR-based forecasts to
SPF forecast histograms are driven by the period since 2007, corresponding to the period
since the Great Recession. With only GDP growth histogram forecasts available for tilting
from 1996 through 2006, there is little implied benefit to bringing the SPF densities to bear

in this pre-Great Recession period.
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[Figure 10 about here.]

The benefits of tilting to SPF histograms could also vary within the period since the
Great Recession. For example, the judgment of forecasters captured in the SPF might be
especially helpful around business cycle turning points and less helpful in the middle of
economic expansions. To examine time variation, we consider the RMSEs and CRPS’s
of the untilted and tilted forecasts computed over an expanding time sample as forecast
moves forward and report time series of the difference in the cumulative average scores.
For brevity, Figure (10| provides the CRPS results, for selected horizons of i =0, 4, 8, and
12 quarters ahead. RMSE results are qualitatively the same.

Consistent with the comparison of the average results in the tables for the 1996-2025
and 2007-2025 samples, the time series of cumulative average CRPS differences show
little consistent advantage to tilting to just the SPF’s current- and next-year GDP growth
histograms in roughly the first 10 years of the sample. Across horizons, the negative
cumulative CRPS differences for inflation and interest rates point to some small gains to
tilting in this period, with the opposite for unemployment and little net impact for GDP
growth (except at the nowcast horizon of ~ = 0). Following the onset of the Great Recession
in late 2007, the cumulative average loss differences dropped, often sharply, continuing
for a few years in most cases. This indicates the judgment of professional forecasters
embedded in the SPF histograms was especially helpful following the Great Recession.
Plots of time series of the BVAR’s median forecast with the SPF histogram-implied mean
(omitted in the interest of brevity) show that, in this period, the SPF forecasts improve
accuracy by pulling down (boosting) the model’s too-strong forecasts of GDP growth
and the T-bill rate (unemployment rate), while tending to edge up the model’s relatively
low forecasts of core inflation. Subsequently, from roughly 2014 until the COVID-19
pandemic, score differences were largely flat (in the case of inflation for the first few years
of this interval) or drifted up, indicating that the raw BVAR forecasts were on balance more

accurate than their SPF-tilted counterparts. Then, with the pandemic and the remainder
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of the sample, relative performance showed a similar pattern, with (relative to the raw
BVAR) tilted forecast accuracy improving for a time with the pandemic’s outbreak and
then either edging up or showing little change. Together, this time variation indicates that
the information content of the SPF’s histogram forecasts is most evident around turning

points and otherwise not much of an improvement on BVAR forecasts.

5.5 Tilting to selected SPF histograms
[Table 3 about here.]

As noted above, while we have focused on tilting BVAR forecasts to a relatively
comprehensive set of SPF histograms, one could instead choose to tilt to subsets of
horizons or variables on the basis of subjective preference or perhaps performance. Many
possible permutations are possible. Rather than engage in an exhaustive search and set of
results, we consider a basic range of alternative sets of tilting targets, in which the BVAR
forecasts are tilted to: (1) all of the available SPF forecasts for growth, unemployment, and
inflation for the current and next year; (i) all of the available SPF forecasts of GDP growth
(covering all horizons, not just current- and next-year as in the baseline tilting set); (iii) the
same (i.e., all forecast horizons available) for unemployment, and (iv) the same for core
PCE inflation. To be clear, when we tilt to forecasts of single variable, we tilt all of the
BVAR'’s forecasts (i.e., all variables) to those single-variable histograms.

Table [3| provides quarterly forecast accuracy results for these comparisons, for the full
sample of 1996-2025 (results for 2007-2025 are qualitatively very similar and available in
the online appendix). In this table, all tilting forecasts are compared against the raw BVAR
forecasts, and to facilitate comparisons, results for the baseline tilting set of all variables is
provided in the first column of results. To save space, results are reported for a selected
subset of horizons.

Overall, none of the reduced sets of tilting targets exceeds the gains and consistency

achieved by tilting to our larger baseline set of SPF histograms. Some of the alternative
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approaches are not as good as the baseline tilting specification or match it, but none exceed
its accuracy with any consistency. Consider first the alternative to tilting to just current- and
next year forecasts of growth, unemployment, and inflation. This approach yields RMSE
and CRPS ratios very close to those for the baseline tilting specification. Of course, this
means that most or all of the information in SPF histograms forecasts that could improve
BVAR forecasts is contained in the current- and next-year forecasts, with less information
helpful in the available longer-horizon forecasts of unemployment and core PCE inflation.
If we instead consider tilting to forecasts of a single variable, it tends to be the case that,
for the BVAR forecasts of the variable being used as tilting information, tilting to its own
forecasts from the SPF tend to be about as helpful — or sometimes a little more helpful
— as tilting to the full set of SPF histograms we consider. For example, in the case of
inflation, RMSE and CRPS ratios show that inflation forecasts at longer horizons can be
improved by about 10-15 percent with either tilting to just the SPF’s inflation forecasts
or tilting to the full set of SPF histograms. However, tilting to SPF forecasts of a single
variable usually has smaller benefits to BVAR forecasts of other variables than to BVAR
forecasts of that variable. For example, when the BVAR forecasts of unemployment are
tilted to the SPF’s density forecasts of inflation, the accuracy of the BVAR’s unemployment
forecasts does not improve, whereas the BVAR’s unemployment forecasts are improved by

the baseline tilting (as well as by tilting to the SPF’s unemployment forecasts).

5.6 Tilting to a few histogram-consistent percentiles
[Table 4 about here.]

With previous studies such as those mentioned in the introduction finding that point
forecasts from the SPF can be used to improve forecasts from time series models, a natural
question is whether the information content we find in SPF histograms is driven mostly
or entirely by matching the center of the histograms, or whether there is information in

the entire histogram. To assess this question, we apply our analytical solution to entropic
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tilting to tilt the BVAR’s forecasts to just the medians of the SPF’s predictive histograms.
In this comparison, the set of variables and forecast horizons in the tilting is the same as
in our baseline tilting to complete SPF histograms. The histogram-implied percentiles
are calculated as the midpoints of the histogram bins where the cumulative probability
reaches or exceeds the desired percentile level. For example, if the cumulative probability
reaches 0.50 within a bin, the median is taken as the midpoint of that bin. If the cumulative
probability jumps from below 0.50 in one bin to above 0.50 in the next bin, the median
is taken as the midpoint of the second bin. This approach ensures that the calculated
percentiles accurately reflect the distribution of probabilities across the histogram bins.

The upper panel of Table §] provides these results for the 1996-2025 sample (results for
2007-2025 are qualitatively the same), comparing the forecasts with tilting to implied 50th
percentiles of SPF histograms with the untilted BVAR forecasts. (To save space, we omit
a few longer forecast horizons.) Broadly, the gains to entropic tilting to 50th percentiles
reported in this table panel are smaller and more selective than the gains shown in Table[I]'s
baseline results. Tilting to the SPF histogram’s medians has some benefit (relative to the
baseline BVAR) for unemployment at short horizons and for inflation at most horizons,
while harming the RMSE accuracy of GDP growth forecasts at short horizons and the
RMSE accuracy of T-bill rate forecasts at most horizons. In contrast, tilting to the full
histograms yields more consistent and more sizable gains.

A related question is whether most of the information in the SPF histograms could
be captured by the center of the histograms coupled with some limited information on
their shape. For this case, we tilt the BVAR forecasts to three percentiles of the same SPF
histograms as before: 15th, 50th, and 85th. This set of moments captures some rough
information about center and shape of the histograms (width and possible asymmetry).

The lower panel of Table [3] provides these results for 1996-2025 (results for 2007-2025
are qualitatively the same). Tilting the BVAR’s forecasts to this set of histogram percentiles

improves on tilting to just the histogram median. On average over the full sample, this
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tilting to 15th, 50th, and 85th percentiles yields consistent, modest to moderate gains in
accuracy for forecasts of unemployment, inflation, and the T-bill rate, with small gains for
GDP growth (but sizable for h = 0). Qualitatively, this set of tilting targets yields benefits
analogous to those achieved by tilting to the full histograms. Based on these results, the
shape of SPF histograms appears to have some information content for BVAR forecasts.
However, quantitatively, tilting to the full histograms yields slightly bigger gains than does
tilting to the 15th, 50th, and 85th percentiles of the histograms. The better performance of
full tilting is perhaps most evident for some short-horizon forecasts (e.g., GDP growth and

unemployment) and for the T-bill rate across most horizons.

6 Conclusion

This paper develops a new, direct approach to combining information in the density
forecasts of the SPF with model-based forecasts. Taking the SPF histograms as given —
without needing to fit histogram distributions or first and higher-order moments — our
approach directly tilts the predictive distribution of time series model-based forecasts to
the SPF histogram bins. Our solution is applicable to simulated densities from variety of
time series models, including linear VARs, Quantile VARs and DSGE models

We first develop a new analytical characterization for the tilting problem when targeting
histogram bins. To examine the empirical merits of the approach, we then examine the
information content of SPF histogram forecasts for the accuracy of forecasts of major
macroeconomic aggregates for the U.S. produced by a Bayesian VAR with time-varying
volatility.

Using our analytical solution for the tilting problem, we entropically tilt the BVAR’s
quarterly forecast distributions to SPF histograms, including multi-year forecast horizons
from the SPF for GDP growth, the unemployment rate, and core PCE inflation. Relative to

the baseline model forecasts, SPF histogram forecasts add the most information content
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around the Great Recession and its aftermath during the COVID-19 pandemic, with most
of the information coming from the SPF’s unemployment rate forecasts from one through
three years ahead. On average over samples of 1996-2025 and 2007-2025, entropically
tilting BVAR forecasts to the annual SPF histograms consistently improves the BVAR’s
quarterly forecast accuracy (point and density). The benefits of entropically tilting the
BVAR forecasts to the SPF histograms are specifically driven by the years around the
Great Recession and around COVID-19’s outbreak in 2020. In more normal periods, the
BVAR’s forecasts are not improved by bringing information from the SPF to bear through
tilting to the survey’s histogram forecasts.

In future applications we intend to extend the set of tilting targets to cover all available
SPF histogram forecasts, specifically to add those for longer horizons of GDP, and to
incorporate the SPF’s recession-probability forecasts. We also plan to examine the effects

of tilting on the joint distribution of outcomes, such as GDP and inflation.

A Additional Figures

This Appendix provides additional figures. Figures [[T] and [I2] extend the results on
coherence between SPF point and histogram, shown in Figure [5|above for the case of GDP

growth, to SPF histograms for core inflation and the unemployment rate.
[Figure 11 about here.]

[Figure 12 about here.]
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Table 1: Accuracy of tilted and untilted forecasts from BVAR-SVO-t model: 1996-2025

RMSE CRPS
h Output Unempl. Inflation Int. Rate Output Unempl. Inflation Int. Rate
0 0.60 0.52 0.94 0.97 0.79 0.63 0.95 0.96
1 1.01 0.71 1.02 0.97 0.93* 0.71 1.01 0.95**
2 099 0.76 0.99 0.95**  0.94 0.79 0.99 0.93**
3 097 0.78 0.92 0.94*  0.93 0.81 0.96 0.92**
4 097 0.79 0.93 0.92**  0.93 0.83 0.93 0.91*
5 098 0.81 0.90 0.92**  0.95 0.86 0.91* 0.90**
6 098 0.83 0.90 0.91**  0.95* 0.88 0.92* 0.90**
7  1.00 0.86 0.89* 0.91**  0.98 0.89 0.90* 0.90**
8 1.00 0.88 0.88* 0.91**  0.99 0.91 0.90* 0.90**
9 0.99* 0.90 0.90 0.91**  0.98 0.93 0.92* 0.91*
10 0.99 0.91 0.91 0.92**  0.99 0.95 0.92* 0.91*
11 1.00 0.93 0.91 0.92**  1.00 0.97 0.92* 0.91*
12 1.00 0.94 0.94* 0.92**  1.00 0.99 0.93**  0.91*
13 1.00 0.95 0.94* 0.92  1.01 1.00 0.94* 0.91%
14 1.00 0.97 0.90* 0.92**  1.01 1.01 0.92*  0.91*
15 1.00 0.99 0.93* 0.93* 1.01 1.02 0.94**  0.92*

Note: Forecasts for quarterly outcomes, h quarters ahead. Relative RMSE and CRPS of
BVAR-SVO(t)-AR(1) model tilted against SPF histograms for inflation, unemployment
and GDP (GDP: only current and next year), with BVAR-SVO(t)-AR(1) in denominator.
Evaluation window from 1996Q1 through 2025Q1 (and as far as realized values and
tilting targets are available). Reflecting availability of SPF data, the first forecast origin
used in this evaluation is 1996Q1. Significance assessed by Diebold-Mariano tests using
Newey-West standard errors with h + 1 lags.
5%, and 10% level, respectively.
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Table 2: Accuracy of tilted and untilted forecasts from BVAR-SVO-t model: 2007-2025

RMSE CRPS
h Output Unempl. Inflation Int. Rate Output Unempl. Inflation Int. Rate
0 0.56 0.51 0.91 0.97 0.73 0.58 0.92 0.95
1 1.00 0.71 1.02 0.97 0.90** 0.67 1.01 0.94*
2 098 0.76 0.97 0.95 0.91 0.77 0.98 0.92**
3 0.96* 0.78 0.88 0.93*  0.89™ 0.79 0.94 0.90**
4 097 0.78 0.89 0.91*  0.90* 0.81 0.89 0.89**
5 097 0.80 0.86* 0.89**  0.93 0.84 0.87* 0.87**
6 0.98" 0.83 0.86 0.88**  0.93* 0.85 0.88* 0.87**
7  1.00 0.85 0.85* 0.88**  0.97 0.87 0.86"**  0.86™*
8 1.00 0.87 0.84* 0.87* 0.98 0.89 0.86* 0.86**
9 0.99* 0.89 0.87 0.87*  0.98* 0.91 0.88* 0.87*
10 0.99* 0.90 0.87 0.88**  0.98 0.94 0.89* 0.87*
11 0.99 0.91 0.87 0.87* 0.99 0.96 0.88* 0.86*
12 1.00 0.93 0.91* 0.87** 1.00 0.98 0.90**  0.86*
13 1.00 0.94 0.92 0.87 1.01 1.00 0.91* 0.86**
14 1.00 0.96 0.86 0.88** 1.01 1.02 0.88***  0.86™*
15 1.00 0.98 0.91* 0.88** 1.01 1.04 0.91*  0.87*

Note: Forecasts for quarterly outcomes, h quarters ahead. Relative RMSE and CRPS of
BVAR-SVO(t)-AR(1) model tilted against SPF histograms for inflation, unemployment
and GDP (GDP: only current and next year), with BVAR-SVO(t)-AR(1) in denominator.
Evaluation window from 2007Q1 through 2025Q1 (and as far as realized values and
tilting targets are available). Reflecting availability of SPF data, the first forecast origin
used in this evaluation is 2007Q1. Significance assessed by Diebold-Mariano tests using
Newey-West standard errors with h + 1 lags.
5%, and 10% level, respectively.
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Table 3: Forecast accuracy when tilting to different targets (1996-2025)

RMSE CRPS
Output
h  Baseline AllO+ly GDP U Inf Baseline AllO+ly  GDP U Inf
0 0.60 0.62 0.55 0.69 0.97 0.79 0.80 0.74 0.86 1.00
1 1.01 1.03 1.02 0.97* 1.00 0.93* 0.93 0.93* 0.93** 1.01
2 0.99 0.99 0.98 0.99 1.00 0.94 0.94 0.94 0.96 1.01*
3 0.97 0.97 0.98 0.98* 1.00 0.93 0.94 0.94 0.93* 1.00
7 1.00 1.00 0.98* 0.99 1.00 0.98 1.00 0.94* 0.97 0.98**
11 1.00 1.00 0.99 1.00**  0.99***  1.00 1.01 0.97 0.99 0.98***
15 1.00 1.00 1.00 1.01 1.00***  1.01 1.01 1.00 1.02 0.99***
Unempl.
0 0.52 0.51 0.91 0.41 0.99 0.63 0.63 0.92 0.53 0.99
1 0.71 0.72 0.91 0.71 0.99 0.71 0.71 0.89 0.66 1.00
2 0.76 0.78 0.90 0.76 0.99 0.79 0.80 0.87* 0.77 1.00
3 0.78 0.80 0.89 0.76 0.99 0.81 0.82 0.87** 0.78 1.00
7 0.86 0.88 0.91% 0.80 0.99 0.89 0.90 0.91 0.84 1.00
11 0.93 0.94 0.96 0.87 1.00 0.97 0.95 0.96 0.95 1.00
15 0.99 0.99 1.00 0.96 1.00 1.02 1.00 1.02 1.05 1.01
Inflation
0 0.94 0.95 0.96 0.92 0.93 0.95 0.96 0.97 0.93 0.94
1 1.02 1.01 1.01 0.99 1.01 1.01 1.01 1.00 0.99 1.00
2 0.99 0.98 0.99 0.94 0.96 0.99 0.99 1.00 0.95 0.97
3 0.92 0.92 0.98 0.91 0.88 0.96 0.96 1.00 0.96 0.94
7 0.89* 0.89* 0.95 0.94 0.85* 0.90** 0.90**  0.96*  0.99 0.86**
11 0.91 0.91* 0.95* 0.98 0.89 0.92** 0.92**  0.97* 1.02 0.89**
15 0.93** 0.93* 0.97* 0.98 0.93 0.94%** 0.94*** 0.98 1.02 0.93**
Int. Rate
0 0.97 0.97 0.96 0.98 1.03** 0.96 0.96* 0.96* 0.96 1.02*
1 0.97 0.96* 0.96**  0.99 1.04** 0.95** 0.94**  0.94*** 0.95** 1.05**
2 0.95** 0.95**  0.94** 0.98 1.04** 0.93*** 0.92%** 0.92*** 0.93* 1.06**
3 0.94** 0.93**  0.93*** 0.96 1.05** 0.92** 0.91*** 0.91*** 0.91* 1.08***
7 0.91** 0.91**  0.91*** 0.87* 1.05** 0.90** 0.91**  0.90*** 0.83* 1.09***
11 0.92** 0.95**  0.93** 0.80* 1.05** 0.91* 0.95* 0.92**  0.76**  1.09***
15 0.93** 0.97**  0.95" 0.79* 1.04 0.92* 0.97* 0.94 0.75**  1.07*

Note: Forecasts for quarterly outcomes, h quarters ahead. Relative RMSE and CRPS of SVO-t AR(1)
model tilted against different SPF histogram targets (untilted SVO-t AR(1) in denominator). Sample: “full
sample”. Tilting targets as indicated in column headers. Significance assessed by Diebold-Mariano tests
using Newey-West standard errors with h + 1 lags. ***, ** and * denote significance at the 1%, 5%, and 10%
level, respectively.
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Table 4: Accuracy of forecasts tilted to selected SPF percentiles: 1996-2025

RMSE CRPS

h ~ Output Unempl. Inflation Int. Rate Output Unempl. Inflation Int. Rate

Tilting to 50th percentiles of SPF histograms

0 1.557 0.72 0.91 1.10™  1.19"*  0.86 0.97 1.04
I 1.15 0.87 1.10 1.12*  1.00 0.96 1.04 1.04
2 1.07 1.02 1.00 1.12 1.02 1.00 1.01 1.01
3 1.00 1.03 0.92 1.10 0.99 1.00 0.96 0.99
4 099 1.01 0.97 1.09 0.97 0.97 0.95 0.98
5 099 0.99 0.93 1.07 0.99 0.96 0.95 0.97
6 0.98 1.01 0.94 1.05 0.99 0.94 0.95 0.96
7 1.00 1.00 0.91 1.03 1.01 0.94 0.95 0.95
11 1.00 0.97 0.94 0.99 1.02 0.97 0.97 0.95
15 1.01* 1.01 0.94* 0.98 1.02* 1.02 0.99 0.96
Tilting to 15th, 50th, and 85th percentiles of SPF histograms
0 0.65 0.66 0.92 1.02 0.93 0.77 0.96 1.00
I 1.09 0.75 1.02 1.01 0.96 0.82 1.00 0.97
2 1.00 0.88 0.98 1.01 0.96 0.86 0.97 0.96
3 098 0.85 0.90 0.99 0.95 0.84 0.93 0.94*
4 097" 0.84 0.93 0.98 0.93* 0.84 0.92* 0.93*
5 098 0.85 0.90* 0.97 0.96 0.85 0.90* 0.92**
6 0.99 0.87 0.90 0.96 0.97 0.86 0.91* 0.91*
7 0.99 0.88 0.90 0.95 0.98 0.87 0.91* 0.91**
11 1.01 0.93 0.90* 0.94* 1.01 0.96 0.92* 0.92*
15 1.01* 0.98 0.93* 0.94*  1.02 1.00 0.95* 0.93**

Note: Forecasts for quarterly outcomes, h quarters ahead. Relative RMSE and CRPS
of SVO-t AR(1) model tilted against Inflation and Unemployment and GDP Nowcast
(medians) (untilted SVO-t AR(1) in denominator). Evaluation window from 1996Q1
through 2025Q1 (and as far as realized values and tilting targets are available). Reflecting
availability of SPF data, the first forecast origin used in this evaluation is 1996Q]1. Signifi-
cance assessed by Diebold-Mariano tests using Newey-West standard errors with A 4 1

kkk kK

lags. ***, ** and * denote significance at the 1%, 5%, and 10% level, respectively.
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Figure 1: SPF histogram for GDP growth per 2025Q3
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Mean Probabilities for Real GDP Growth in 2026
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Figure 2: SPF histogram for unemployment rate per 2025Q3
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Figure 3: SPF histogram for core PCE inflation per 2025Q3
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Figure 4: SPF histogram bins over time (since 1992)
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Figure 5: SPF-implied mean and median forecasts for real GDP growth
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Note: SPF-consistent median is the midpoint of the bin containing the median. Upper and lower bounds for
SPF-consistent means are computed from lower and upper bounds of the bins. The point forecasts are the
average of individual forecasters’ point forecasts. Data is shown for available SPF histograms since 1992.
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Figure 6: Examples of tilted and untilted predictive densities: 2009Q1
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Figure 7: Examples of tilted and untilted predictive densities: 2021Q2
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Figure 8: KLIC decomposition over time
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the colored bars indicate the KLICs obtained from targeting a given individual histogram.
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Figure 9: DRPS for forecasts from BVAR-SVO-t model and SPF
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Note: The figure shows time-averaged discrete rank probability score (DRPS) computed over growing
windows. DRPS are shown for the BVAR-SVO-t model and SPF histogram forecasts. The DRPS is
calculated for current year and one-year-ahead forecasts, respectively. Lower values indicate better density-
forecast performance. The x-axis represents the forecast horizon, while the y-axis indicates the cumulative
average of the relative probability score.
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Figure 10: Accuracy of tilted to untilted density forecasts over time
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Figure 11: SPF-implied mean and median forecasts for core PCE inflation
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Note: SPF-consistent median is the midpoint of the bin containing the median. Upper and lower bounds for
SPF-consistent means are computed from lower and upper bounds of the bins. The point forecasts are the
average of individual forecasters’ point forecasts. Core PCE inflation histograms are available from the SPF
since 2007.
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Figure 12: SPF-implied mean and median forecasts for unemployment rate
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Note: SPF-consistent median is the midpoint of the bin containing the median. Upper and lower bounds for
SPF-consistent means are computed from lower and upper bounds of the bins. The point forecasts are the
average of individual forecasters’ point forecasts. Unemployment rate histograms are available from the SPF
since 2009.
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