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Abstract

We consider GLS and OLS estimation in a linear regression model with serially
correlated errors, and we provide the following contributions. First, we clarify when
OLS is consistent or not. Second, we give suffi cient conditions such that GLS is valid
without the assumption of exogenous regressors (uncorrelated with past innovations).
Third, we devise a feasible GLS procedure valid whether or not the regressors are ex-
ogenous, and which achieves a MSE close to that of the correctly specified infeasible
GLS. We also illustrate how GLS can be more robust than OLS when the regressors are
exogenous, even when GLS is based on an incorrect correction. The main assumptions
are: a) the regressors are pre-determined (uncorrelated with future innovations); b)
the errors are stationary thereby admitting a Wold representation in terms of some
unpredictable innovations; c) the moving-average representation of the errors is in-
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heteroskedastic errors.
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1 Introduction

We consider a linear regression model with serially correlated errors. If the regressors are

fixed or strictly exogenous (i.e., uncorrelated with the innovations at all leads and lags),

Generalized Least-Squares (GLS) is the Best Linear Unbiased Estimate ( BLUE). If the

regressors are pre-determined (i.e., uncorrelated with future innovations), GLS is no longer

unbiased but is consistent and asymptotically effi cient. With exogenous regressors OLS is

consistent, though not effi cient. Early work concentrated on fixed regressors or equivalently

strictly exogenous regressors. This remained the case well into the 80s; e.g., Amemiya (1986).

Contributions to construct GLS estimates include Cochrane and Orcutt (1949), Prais and

Winsten (1954), Durbin (1970), Amemiya (1973), among others.

Spurred by the development of the Generalized Method of Moments (GMM) by Hansen

(1982) econometricians started to tackle the problem of estimating the limit variance of the

OLS estimate. Early contributions include White and Domowitz (1984), Newey and West

(1987) and a comprehensive treatment was provided by Andrews (1991). Since then all the

theoretical and empirical work has concentrated on OLS and a flood of papers have been

devoted to deliver improved estimates of the limit variance of OLS so that the confidence

intervals have accurate finite sample coverage rates. This continues to this day. There is

little work about GLS in the theoretical and empirical literature when dealing with the linear

model with serially correlated errors, at least in econometrics. One is satisfied using OLS

with a disregard for ways to improve the properties of the estimate per se; e.g., bias, variance

and MSE (mean-squared errors).

There are generally three main reasons for adopting OLS instead of GLS. 1) There seems

to be a misconception, though not shared by all, about whether OLS is valid with the

regressors being exogenous or not (i.e., uncorrelated with past innovations or not). It is

generally believed that GLS is inconsistent with non-exogenous regressors. This view is now

taught early on in undergraduate textbooks; e.g., Stock and Watson (2019), ch. 16. 2) When

applying GLS one needs to choose a specification for the serial correlation in the errors. It is

then argued that an incorrect specification can lead to worse results than using OLS; i.e., it

is believed that while OLS is sub-optimal relative to GLS, it is more robust; see, e.g., Engle

(1974), Judge et al. (1985), p. 281, and Choudhury et al. (1999). 3) Even with a decent

specification, the gains in accuracy can be minor and the inference can be misleading; e.g.,

bad coverage rates using standard estimates of the asymptotic distribution. Our goal is to

show that all these claims are, in general, wrong under weak conditions.

1



Our focus is on the linear model y = Xβ + u. Of course, our results rely on some crucial

assumptions. The first is that the regressors are pre-determined, which is often viewed as

less controversial than the requirement of exogenous regressors. The second is that the

errors are a stationary process and the associated Wold linear representation is invertible.

This is usually satisfied but may fail in some models, especially those involving rational

expectations arguments. Under the stated conditions, the first and second contributions

are to dispel the belief that OLS is valid with non-exogenous regressors, while GLS is valid

only with exogenous regressors. We show the opposite to be true, in general. We assume

that ut is a stationary process so that it has a linear representation in terms of a (possibly)

infinite linear model of the form ut =
∑∞

j=0 cjet−j with et being an i.i.d. sequence satisfying

E(et|Φt−1) = 0 for some information set Φt, thereby making et the sequence of innovations

of interest. The usual argument for the consistency of GLS relies on whether xt is exogenous

with respect to ut. We argue that this leads to an incorrect result. One should analyze this

issue by assessing whether xt is exogenous with respect to the innovations et. For OLS, it does

not matter since the condition remains E(xtut) = 0. But this implies E(xt
∑∞

j=0 ctet−j) = 0,

which requires regressors exogenous with respect to et. Theoretical and simulation evidence

substantiate these statements. Non-exogenous regressors imply, in general, inconsistent OLS

estimates, while the GLS estimates are consistent. Also, unlike OLS, GLS is consistent with

lagged dependent variables as regressors.

The second contribution is to devise a FGLS procedure valid with pre-determined regres-

sors whether or not they are exogenous, which achieves a MSE close to that of the infeasible

GLS procedure that uses the true structure (and parameters) of the serial correlation in

the errors. Care must be applied, as one cannot base such estimates on the OLS residuals.

We propose a procedure based on a generalization of the so-called Durbin (1970) regression,

whose coeffi cients are consistent with or without exogenous regressors. Using the resulting

quasi-differenced series, we apply an autoregressive approximation of order, say kT , with kT
chosen using the Bayesian Information Criterion (BIC); see Schwarz (1978). The simula-

tions show that the resulting FGLS estimate performs surprisingly well in finite samples. It

delivers estimates having lower MSE than OLS, often by a wide margin. The finite sample

coverage rates of the confidence intervals constructed using the standard asymptotic distri-

bution are, in general, very close to the nominal level with lengths much shorter than using

OLS with heteroskedasticity and autocorrelation consistent standard errors. We provide ex-

tensive evidence for both exogenous and non-exogenous regressors. In most cases, the MSE

of the FGLS is close to that of the infeasible GLS estimate.
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A non-trivial exception for which OLS remains valid with serially correlated errors and

non-exogenous regressors pertains to h steps ahead predictive regressions as in, e.g., Hansen

and Hodrick (1980). Under rational expectations, the errors areMA(h−1) and the regressors

are uncorrelated with the errors. Still, we show that FGLS is valid and leads to more effi cient

estimates provided the MA process is invertible.

In the Supplement, we also consider the case with both serial correlation and het-

eroskedasticity. We propose a two-step GLS procedure suggested by González-Coya and

Perron (2024) to fit the heteroskedasticity and further reduce the MSE. We also show that

GLS is more robust than OLS, in that even a blatantly incorrect GLS correction can achieve

a lower MSE than OLS when both are consistent; see Remark 6.

The rest of the paper is structured as follows. Section 2 provides the general setup,

motivation and conditions under which OLS and GLS are consistent. Section 3 presents

preliminary issues related to the feasible GLS estimate proposed. Section 4 presents the

procedures for the general case with an invertible short-memory stationary process for the

errors. Issues related to the inclusion of lagged dependent variables are also discussed.

Section 5 presents extensive simulations about the finite sample properties of the OLS and

FGLS for a wide variety of processes for the serial correlation in the errors for both exogenous

and non-exogenous regressors. Section 6 provides brief concluding remarks. A Supplement

contains some technical derivations, additional material and simulation results. An empirical

illustration of the importance of our results is presented in González-Coya and Perron (2025)

who consider issues related to testing the Uncovered Interest Parity (UIP) condition.

2 General setup and motivation1

Consider a scalar time series of random variable yt generated by:

yt = x′tβ + ut, t = 1, . . . , T, (1)

where x′t = (x1t, . . . , xkt) is a vector of regressors assumed to be stationary, β
′ = (β1, . . . , βk)

a vector of unknown coeffi cients, T is the sample size. In matrix notation: y = Xβ+u, with

y = (y1, ..., yT )′, u = (u1, ..., uT )′ and X = (x′1, ..., x
′
T )′. The ordinary least-squares (OLS)

estimate of β is β̂ = (X ′X)−1X ′y. We assume that the error sequence ut is a stationary

process so that it admits a Wold representation of the form

ut = C(L)et =
∑∞

j=0 cjet−j, (2)

1The material in this section was first discussed in Perron (2021). This paper now supersedes it.
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where c0 = 1. The roots of C(L) are assumed to be outside the unit circle, so that ut is

invertible and has an infinite autoregressive representation. Also,
∑∞

j=0 j|cj| <∞, so that ut
is a short-memory processes. Note that et ∼ i.i.d. (0, σ2e) (independent and identically dis-

tributed) with E(et|Φt−1) = 0 for some information set Φt, thereby making et the sequence of

innovations of interest. We consider heteroskedastic innovations in the Supplement. We also

consider later what happens when the process is non-invertible. As a matter of terminology,

we label ut as the errors and et as the innovations.

We assume that E[etxt] = 0, otherwise some instrumental variable procedure would be

needed. We say that the regressors are “pre-determined”if:

E [xt(et+1, ..., eT )] = 0, (3)

i.e., regressors uncorrelated with future innovations. Throughout, we shall maintain that

this is the case with some comments about what happens when it does not hold in Remark

9. We label the regressors as exogenous if

E [xt(et−1, ..., e1)] = 0, (4)

i.e., regressors uncorrelated with past innovations. This last condition is often seen as prob-

lematic, e.g., Stock and Watson (2019), pp. 588-597. The assumption of pre-determined

regressors is usually seen as much less contentious, at least in well specified models, other-

wise one could forecast future innovations. The terminology used differs in the literature.

What we label as pre-determined is sometimes referred to as exogenous (or past and present

exogenous), and what we refer to as exogenous is labeled as strictly exogenous (or present

and future exogenous); e.g., Stock and Watson (2019), p. 573. We shall continue with our

terminology. Also, the conditions are usually stated in terms of conditional expectations, i.e.,

E [xt|et+1, ..., eT ] = 0 or E [xt|et−1, ..., e1] = 0. Since these imply (3) and (4), respectively,

and we make use of the latter only, this is without loss of generality. More importantly,

we define the relation between the regressors and the innovations et, not the errors ut as is

commonly done in the literature. The benefits of doing this will become clear.

2.1 Conditions for the Consistency of OLS

It is well known that the main condition (again apart from technical issues) for the consis-

tency of the OLS estimate is that E(xtut) = 0. This condition is usually seen as unproblem-

atic apart from obvious cases of omitted variables in ut correlated with some regressor, or the

presence of lagged dependent variables. The only problem is then that the limit variance is
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different from that obtained assuming i.i.d. errors and calls for the use of heteroskedasticity

and autocorrelation consistent covariance matrix estimates, HAC estimates for short.

However, this condition requires, in general, exogenous regressors, sinceE(xt
∑t

j=0 cjet−j) =

0 is required. In general, this implies the requirement E(xtet−j) = 0, which is unlikely to be

satisfied with non-exogenous regressors. We state that this is the case “in general”since there

are many ways in which the regressors could be non-exogenous and E(xtut) = 0. We view

these as knife-edge cases; for example, xt is correlated with et−2 but ut = et+ c1et−1+ c3et−3.

Also, suppose that ut is an MA(2). Then, if c1E(xtet−1) = −c2E(xtet−2) and E(xtet) = 0,

we have E(xtut) = 0. Such cases are, however, unlikely to hold in practice.

Another way of assessing this result is to argue that a regression with serially correlated

errors is dynamically misspecified. Consider an AR(1) model of the form ut = ρut−1 +

et. Then, E(utxt) = 0 implies that xt is exogenous with respect to et since E(utxt) =

ρE(ut−1xt)+E(etxt) = 0 if E(ut−1xt) = 0 or equivalently E(et−jxt) = 0, in general. In other

words, E(yt|xt) = x′tβ if xt is exogenous, except for some knife-edge cases.

Remark 1. The Rational Expectations (RE) case. There is one non-trivial and empir-
ically relevant exception for which OLS remains valid with serially correlated errors and

non-exogenous regressors. This pertains to multi-steps ahead predictive regressions as exam-

ined, for instance, in Hansen and Hodrick (1980). In their framework, it is supposed that

E(yt+h|Φt) = x′tβ, where Φt is the information set available at time t. Then,

yt+h = x′tβ + ut+h, (5)

with ut+h = yt+h − E(yt+h|Φt) so that the error terms are forecast errors from using the

best predictor based on xt. It can be shown that ut+h is an MA(h − 1) process. Since

xt ⊂ Φt, E(xtut+h) = 0 and OLS is consistent. Following our notation, we can write (5)

as yt = x′t−hβ + ut, where ut =
∑h−1

j=0 cjet−j. OLS is then consistent only requiring pre-

determined regressors so that E[xt−h
∑h−1

j=0 cjet−j] = 0. Hence, this type of models involve no

issue related to exogenous regressors and the fact that the regressors are pre-determined is

an implication of the rational expectations hypothesis. Still, as discussed in Remark 5 below,

GLS remains consistent with non-exogenous regressors.

Our purpose is to clarify the conditions under which OLS is consistent. Nothing new is

offered. The main condition still remains E(xtut) = 0. One often reads that GLS should not

be applied because it requires exogenous regressors. Since OLS is routinely applied, some

researchers may think that issues of exogeneity are irrelevant for the consistency of OLS.
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Stating the condition as E(xt
∑t−1

j=0 cjet−j) = 0 (for the linear processes considered) makes it

clear that exogeneity of the regressors with respect to all past innovations is needed except

for the “RE case”and some knife-edge occurrences. Of course, this requires working with

the Wold representation for ut. It may well be the case that one has some structural model

not in this form and is able to deduce that E(xtut) = 0 directly. Then issues of exogeneity

with respect to ut (or et) become irrelevant.

2.2 Conditions for the Consistency of GLS

Since ut is assumed stationary, let V (u) = σ2eΩ, a symmetric, non-singular, and positive

definite matrix. Then, there exists a non-singular matrix D such that D′D = Ω−1. The GLS

estimate is given by β̂GLS = (X ′Ω−1X)
−1
X ′Ω−1y and

β̂GLS − β =
(
X ′Ω−1X

)−1
X ′Ω−1u = (X ′D′DX)

−1
X ′D′Du.

The main condition for consistency is that

p limT→∞ T
−1X ′Ω−1u = p limT→∞ T

−1X ′D′Du = 0. (6)

In other words, DX and Du must be uncorrelated, at least in large samples. Consistency

can be achieved as follows. Note first that we can choose D to be lower triangular. For

instance, the Cholesky decomposition gives Ω = LL′ with L lower triangular. We can set

D = L−1, which will be lower triangular. The elements of DX are of the form
∑t

j=1 dtjx
′
j,

which for row t involves only current and past x’s. The next condition is to ensure that Du

recovers the vector of innovations (e1, e2, ..., et, ...) at least in large samples. This is where

the assumption of the invertibility of the MA representation is important, i.e., that the roots

of C(L) be all outside the unit circle. Then, ut has an autoregressive representation of the

form A(L)ut = et. A common practice is to approximate this possibly infinite AR process

by a finite order one, with the order increasing with T , i.e., use the process

ut =
∑kT

j=1 ρjut−j + et,kT ,

with kT increasing at some appropriate rate as T increases 2. This is a standard approach in

the time series literature. Note that as T increases, et,kT approaches et; see Section 4. Then,

with pre-determined regressors,

limT→∞E[X ′D′Du] = E[
∑∞

t=1(
∑t

j=1 dtjx
′
j)
′et] = 0, (7)

2Note that strictly speaking one should append a subscript kT to ρj . We omit this explicit dependence
in order to alleviate issues of cumbersome notation. The same applies to further estimates discussed below.
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Therefore, GLS is consistent without the need for exogenous regressors.

Remark 2. Since D′D = Ω−1, GLS is invariant to the choice of D. Hence, only pre-

determined regressors are needed whatever the choice of D, provided the invertibility condition

holds. Consider the AR(1) model with a forward filter, i.e., D chosen to be upper triangular,

call it F . Ignoring the first and last observations F = D′, the condition for consistency is

E[(xt − ρxt+1)(ut − ρut+1)] = E[(xt − ρxt+1)((1− ρ2)ut − ρet+1)] = 0,

which requires a) E[xt+1et+1] = 0, holding by assumption; b) E[xtet+1] = 0, satisfied with

predetermined regressors; and c) E[(xt − ρxt+1)ut] = 0, also holding given

E[(xt − ρxt+1)ut] = E[(xt − ρxt+1)
∑∞

j=0 ρ
jet−j] =

∑∞
j=0{E[xtρ

jet−j]− ρE[xt+1ρ
j−1et−j+1]}

=
∑∞

j=0{ρjE[xtet−j]− ρjE[xt+1et−j+1]} = 0,

since the last two terms are equivalent. What is needed is solely that there exist one decom-

position of Ω−1 with D lower triangular and Du = e, at least in large samples.

Consider AR(1) errors, ut = ρut−1 + et. Ignoring the first observation for simplicity,

D =


1 0 0

−ρ 1
. . .

0 −ρ 1

 (8)

and

p limT→∞ T
−1X ′D′Du = p limT→∞ T

−1∑T
t=2(xt − ρxt−1)(ut − ρut−1).

For this quantity to converge to zero, the conditions often advanced for (6) to hold are

E(xtut) = E(xtut−1) = E(xt−1ut) = 0. It is often argued that the condition E(xtut−1) = 0

is problematic; see Stock and Watson (2019), pp. 584-585, who use this reasoning to argue

that GLS requires exogenous regressors and, hence, have limited appeal in practice. But this

overlooks the fact that ut is a composite of the fundamental sources of variation, namely et,

and ignores the structure of the model. Also, assessing exogeneity conditions based on the

relation between xt and ut is not appropriate. Since the GLS regression is OLS applied to

the regression y∗ = X∗β+ e, where y∗ = Dy and X∗ = DX, issues related to the exogeneity
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of the regressors need to be analyzed via the relation of X∗ to e and not of X to u. The

transformation eliminates ut. Indeed, we can write (6) as

T−1 (DX)′ (Du) = T−1
∑T

t=2 (xt − ρxt−1) et. (9)

Thus, for consistency, we need E (xt − ρxt−1) et = 0, or E(xtet) = E(xt−1et) = 0, for all

t, which is satisfied with predetermined regressors. There is no need to assume exogenous

regressors. Then, with ρ known, one can consistently estimate β using the regression

(yt − ρyt−1) = (xt − ρxt−1)′β + et, (t = 2, ..., T ). (10)

Remark 3. Keeping the AR(1) example, suppose we apply GLS with some arbitrary value
|ρ∗| < 1. Then, with D∗ as defined by (8) with ρ∗ instead of ρ,

T−1 (D∗X)′ (D∗u) = T−1
∑T

t=2 (xt − ρ∗xt−1) (ut − ρ∗ut−1)
= T−1

∑T
t=2 (xt − ρ∗xt−1) (et − (ρ− ρ∗)ut−1)

= T−1
∑T

t=2 (xt − ρ∗xt−1) (et − (ρ− ρ∗)(et−1 + ρut−2)).

Therefore, assuming pre-determined regressors what is needed for consistency is either a)

exogenous regressors irrespective of the value of ρ and ρ∗; or b) non-exogenous regressors

and ρ = ρ∗. Accordingly, if the regressors are exogenous, GLS is consistent using any value

of ρ∗, including 0, so that OLS is consistent, a well-known result. On the other hand, with

non-exogenous regressors, we need ρ = ρ∗ for consistency, i.e., the correct value of the

parameter of the serial correlation in ut. Of importance is the fact that when ρ 6= 0, the

value ρ∗ = 0 is not permitted, showing that OLS is indeed inconsistent as claimed above

using other arguments. This result can be extended to more general cases.

Remark 4. An important implication of our result is the fact that unlike OLS, GLS is
consistent with lagged dependent variables as regressors. This follows given that (7) remains

0 when xt includes lagged dependent variables given E(yt−jet) = 0 (j ≥ 1). Since in the

original model estimated by OLS, a lagged dependent variable implies E(xtut) 6= 0, OLS is

inconsistent. The GLS transformation can be viewed as a way to obtain a regression with

pre-determined regressors with respect to the relevant innovations et.

Remark 5. GLS is, in general, consistent with predictive regressions of the type discussed in
Remark 1, provided the MA process is invertible. This follows trivially since (7) is satisfied if

the regressors only include lagged values at delay h, i.e., the GLS regression still only involves

predetermined regressors with respect to the innovations et. We show in the Supplement,

Section S.3, that even for this case GLS performs much better.
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Remark 6. It is often argued that GLS may be less robust than OLS because a wrong
specification of the process for ut may lead GLS to have higher MSE than OLS. Section S.1

in the supplement considers a very simple AR(1)-based procedure to obtain a GLS estimate

that is (almost) never worse than OLS, subject to very minor random deviations. Of course,

using the incorrect quasi-differences does not lead to the best outcome as GLS is optimal only

when the correct specification is used. Still, the results are important in that they suggest

that some departures from the true specification due to misspecification or biased parameter

estimates will not make FGLS being less precise than OLS. The general message is that to

minimize the MSE it is better to do any kind of GLS method instead of OLS.

3 Issues Related to Constructing a Feasible GLS Estimate

We consider first the case with AR(1) residuals to present the main issues of interest. The

model with non-exogenous regressors is

yt = βxt + ut, ut = ρut−1 + et, (11)

with xt = (1, wt)
′, wt = vt + et−1, vt, et ∼ i.i.d.N(0, 1) independent of each other. In

practice, one needs a feasible version of the GLS estimate. Here, the Cochrane and Orcutt

(1949) procedure will not work since it estimates ρ using the OLS residuals, i.e., ρ̂CO =∑T
t=2 ût−1ût/

∑T
t=2 û

2
t−1, where ût = yt − x′tβ̂OLS. Without exogenous regressors, β̂OLS is

inconsistent and so will ρ̂CO. A method valid without exogenous regressors is to first estimate

ρ using Durbin’s regression (Durbin (1970)), which simply re-writes (10) as

yt = ρyt−1 + x′tβ − ρx′t−1β + et. (12)

Then, a consistent estimate of ρ, say ρ̂D, can be obtained estimating (12) by OLS. One can

then construct a feasible version of the quasi-difference regression (10) using

(yt − ρ̂Dyt−1) = (xt − ρ̂Dxt−1)′β + et, (t = 2, ..., T ), (13)

to estimate β. The estimates of β and ρ will be consistent with regressors exogenous or not

as long as they are pre-determined. Alternatively, one can simply estimate β using OLS

applied directly to the Durbin regression (12), though this is less effi cient since it does not

amount to a GLS procedure. Of course, one can iterate though we do not pursue this avenue.

It is useful to illustrate the issues via simple simulation experiments. The specifications

are the same as (11) for the AR(1) case and is yt = x′tβ + ut, where xt = (1, wt)
′ with
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wt = vt + et−1, and ut = ρut−1 + et is an AR(1) process; vt, et ∼ i.i.d.N(0, 1) independent of

each other. We set u0 = 0, without loss of generality, β = (1, 1)′, ρ = 0.8 and T = 500. The

simulations are based on 10,000 replications. Note that E (xt+1et) 6= 0, so that the regressors

are not exogenous. Accordingly, E(xtut) 6= 0 and OLS is inconsistent. Note that E (etxt) = 0

so that no “classical”endogeneity problem is present. Also E(xtet−j) = 0 (j > 0) so that

GLS is consistent. We consider the following regressions, where δ = ρβ:

a) yt = x′tβ + ut (OLS); b) yt = x′tβ + ρyt−1 + x′t−1δ + ũt (Durbin)

c) yt − ρyt−1 = (xt − ρxt−1)′ β + et (GLS); d) yt − ρ̂yt−1 = (xt − ρ̂xt−1)′ β + et (FGLS)

The first is OLS; the second is the Durbin regression from which consistent estimates of ρ

and β can be obtained. The third is the infeasible GLS based on the known value of ρ (to

be used as a benchmark). The fourth is a feasible GLS regression for which we shall use two

estimates of ρ: a) that used in the Cochrane and Orcutt procedure, labelled CO-FGLS. b)

The estimate of ρ obtained from the Durbin regression, labelled as FGLS.

The results are presented in Table 1. The bias and MSE of OLS is very large, in accor-

dance with its inconsistency. The Durbin and FGLS methods lead to very small biases, since

they yield consistent estimates. The FGLS has better finite sample properties and performs

nearly as well as the infeasible GLS method. The CO-FGLS method has surprisingly small

bias (and MSE) despite being inconsistent. The implied estimate of ρ has a substantial

bias with mean 0.63 instead of 0.8. Here, the quasi-differencing operation is biased but still

effective in reducing the bias in the estimate of β, though not as well as with the estimate

from the Durbin regression. Using simulations with T = 10, 000, we verified that the the

FGLS estimate of β is more effi cient than that from the Durbin regression with a MSE 31%

smaller. Hence, we shall only consider the FGLS method.

4 FGLS for the general case

We now present the recommended feasible method, applicable to all cases except with lagged

dependent variables as regressors, discussed later. Assuming invertibility, we can approxi-

mate the linear processes (2) by some autoregression whose order increases with T , i.e., use

ut =
∑kT

j=1 ρjut−j + ekt, with kT → ∞ at some appropriate rate so that ekt is nearly i.i.d..

Then (12) and (13) are replaced by

yt =
∑kT

j=1 ρjyt−j + x′tβ −
∑kT

j=1 x
′
t−jδj + ekt, (14)

(yt −
∑kT

j=1 ρ̂
D
j yt−j) = (xt −

∑kT
j=1 ρ̂

D
j xt−j)

′β + ekt, (t = kT + 1, ..., T ), (15)
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where ρ̂Dj (j = 1, ..., kT ) are the OLS estimates of the coeffi cients associated with the lagged

dependent variables from regression (14). Of course, one can iterate starting with any

consistent estimate. However, as our simulations will show the estimates have very good

properties so that iterations are not warranted. The FGLS estimate can then be computed

in two steps: 1) For any given kT , estimate (14) by OLS and use BIC to select the lag length

k∗T . The search is made for kT ∈ [0, kmaxT ] and the method suggested by Ng and Perron (2005)

is used to ensure a proper comparison across models with different values of kT , i.e., using the

same effective number of observations, namely T − kmaxT . The maximal order kmaxT increases

with T , but in practice the method is robust to reasonable values. We use kmaxT = 12 when

T = 200, 500. Hence, BIC selects k∗T = arg minkT [ln(σ̂2ek∗) + (ln(T − kmaxT )/(T − kmaxT ))kT ],

where σ̂2ek∗ = (T − kmaxT )−1
∑T

t=kmax+1
ê2kt and êkt are the residuals from applying OLS to

(14) using observations t = kmaxT + 1, ..., T for each value of kT . 2) From step 1, use the

estimates ρ̂Dj (j = 1, ..., k∗T ) to construct the quasi-differenced variables (yt −
∑k∗T

j=1 ρ̂
D
j yt−j)

and (xt −
∑k∗T

j=1 ρ̂
D
j xt−j). The FGLS estimate of β is then obtained applying OLS to the

regression (15) with kT = k∗T using the observations t = k∗T + 1, ..., T .

The FGLS and GLS estimates will have the same asymptotic properties. The arguments

are as follows. If the process is an AR(p), BIC will select a value k∗T that converges in

probability to p. The estimates ρ̂Dj are consistent for ρj (j = 1, ..., k∗T ). For general linear

short-memory processes k∗T = Op(ln(T )), which increases to infinity. Hence, ||ρ̂Dj − ρj|| =

Op(T
−1/2), where || · || is the Euclidean norm of the vector. This holds following Berk (1974)

under the same conditions, basically that kT →∞ and k3T/T → 0. Since these rates allow a

log rate of increase for kT , the same result holds when selecting kT using BIC, which implies

a log rate of increase as shown in Hannan and Deistler (2012). Given the consistency and

rate of convergence of ρ̂Dj , it is then easy to show the equivalence between FGLS and the

infeasible GLS. The estimation of the parameters ρ̂Dj has no first-order effect. Since the

technical arguments involve only modifications of already established results, see Remark 7,

we omit the details. Hence, the asymptotic distribution is given by

√
T (β̂ − β)

d→ N(0, p limT→∞ σ
2
e(T

−1X ′Ω−1X)−1),

and the limit variance is consistently estimated by

σ̂2ek[(T − k∗T )−1
∑T

k∗T+1
(xt −

∑k∗T
j=1 ρ̂

D
j xt−j)

′(xt −
∑k∗T

j=1 ρ̂
D
j xt−j)]

−1,

where σ̂2ek = (T − k∗T )−1
∑T

t=kT+1
ê2kt, with êkt the estimated residuals from applying OLS to

(15) with kT = k∗T . The main idea is to have some transformations to make the regression
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residuals as close as possible to the contemporaneous true errors and then have this regression

involve only past regressors so that only pre-determined regressors are required. Of course, of

concern is whether the asymptotic approximation and the choice of the tuning parameters k∗T
provide good approximations in finite sample. In Section 5, we provide extensive simulations

to show that a) the mean, variance and MSE are close to that which could be obtained using

the infeasible GLS procedure; b) the coverage rates of the confidence intervals are near the

nominal level, i.e., the asymptotic distribution is a good approximation; c) the length of the

confidence intervals are shorter (higher precision) compared to other methods.

Remark 7. Amemiya (1973) analyzed feasible GLS when the errors ut are an ARMA(p, q)

process approximated by an AR(kT ) with kT increasing with T . He uses the OLS residuals

and assumes “non-stochastic”regressors. Our results show that his proposed method is valid

only under the assumption of exogenous regressors. Still, our approach is closely related. For

a similar more recent treatment, see Fang et al. (2023). For more advanced treatments, see

Hannan and Kavalieris (1986) and Hannan and Deistler (2012), among many others.

Remark 8. To improve upon OLS, Baillie et al. (2025) proposed using the Durbin regres-
sion (14). They claim correctly that the estimate of β is consistent whether the regressors

are exogenous or not. However, this leads to a less effi cient estimate compared to FGLS.

Simulation experiments showed our FGLS procedure to be more effi cient mostly due to the

fact that with serially correlated regressors issues of multicolinearity reduces effi ciency; see

also González-Coya and Perron (2025) who present evidence of very poor power of tests when

using the Durbin regression for cases calibrated to real data. Hence, we shall not further con-

sider this method. As discussed below, it offers no additional advantage in extended contexts

such as models with lagged dependent variables and non-predetermined regressors. 3

Remark 9. The crucial condition for GLS to be consistent is that the regressors be pre-
determined. With innovations correlated with some omitted observable variables, the problem

is easy to fix. Simply include enough lags of the covariates as regressors. This is in fact

the reason why Baillie et al. (2025) advocate using the Durbin regression to have estimates

robust to non-predetermined regressors. They include all lags of both the dependent and

3For the record, which is incorrectly stated in their paper, their prior versions (e.g., arXiv:2203.04080v1)
before presenting our work at the NBER-NSF time series conference in September 2022, labelled the method
as DynReg and argued that it was a device to improve the finite sample coverage rate over OLS+HAC.
It continued to claim that OLS was consistent and GLS not when the errors are serially correlated with
non-exogenous regressors. Their newer versions changed the label of the method as the Durbin regression
and they now claim that OLS is inconsistent while GLS is. These changes were in no doubt fostered by our
work, but improperly acknowledged.
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original regressors as covariates. Doing so, they lose considerable effi ciency. Our aim is

geared to provide an effi cient method. One can test whether the regressors are pre-determined

or not. What causes the correlation between the innovations and the regressors is of no

consequence. The fact is that non-determinedness implies correlation between some variables

and the errors means that tests can be performed for its potential presence. What is needed

are estimates of the residuals based on a consistent estimate of β whether or not exogeneity

or pre-determinedness hold. When the omitted variable is observed, this can be achieved via

the Durbin regression (12) using a variable addition test (e.g., Engle (1982)). The steps are

the following: a) Estimate the Durbin regression (14) and get the estimate β̂
D
; b) construct

the residuals ûDt = yt − x′tβ̂
D
; c) De-mean the residuals to obtain ũDt = ûDt − T−1

∑T
t=1 û

D
t ;

d) Perform an LM test for variable addition using lagged values of xt. This can be done

sequentially using the first, then second, and so on lags. Upon a rejection, include the

relevant lagged variables as regressors in the main equation (1); e) Apply FGLS as outlined

above to this regression. This will lead to a consistent of estimate of β with regressors pre-

determined or not. One can also select the lagged regressors to be included via information

criteria, such as the BIC. When the omitted variable is unobserved none of the procedures

discussed here will be consistent except in some special cases.

4.1 The case with lagged dependent variables as regressors

As stated in Remark 4, GLS is consistent with lagged dependent variables as regressors.

However, alternative methods to get consistent estimate of the parameters ρj (j = 1, ..., k∗T )

are needed to construct the FGLS estimate. Consider the model

yt =
∑py

j=1 αjyt−j + x′tβ + ut,

where ut = C(L)et is again a linear invertible stationary short-memory process and xjt

(j = 1, ..., k) are pre-determined regressors. When constructing the Durbin regression, one

pre-multiplies both sides by (1 −
∑k∗T

j=1 ρjL
j) for some k∗T selected via the BIC information

criterion. Assuming k∗T = py for simplicity, this leads to the regression

yt =
∑k∗T

j=1 α
∗
jyt−j + (x′tβj −

∑k∗T
j=1 x

′
t−jδj) + ekt, (16)

where α∗j = αj + ρj and δj = (δj1, ..., δjk) with δji = βjiρj. Accordingly, the parameters

ρj cannot be identified using the coeffi cient on the lagged dependent variable α
∗
j since αj is

unknown. However, as suggested by Wallis (1967), one can obtain consistent estimates using

the fact that ρj = δji/βji, given by ρ̂
D
j = δ̂ji/β̂j. One can then proceed to construct the
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FGLS estimates as described in Step 2 above. A drawback is that with multiple regressors

xjt, there are many ways to construct an estimate of ρ̂
D
j , one for each i. Simulations and

applications reported in González-Coya and Perron (2025) show that the results are not

sensitive to the choice of the variable used because GLS is robust to small variations in ρj.

5 Simulation results

The issues addressed are the following: the bias, variance and MSE of the FGLS estimates,

the exact coverage rate and lengths of the confidence intervals. We also report similar results

for the infeasible GLS procedure that uses the true value of Ω to construct the estimate

β̂GLS = (X ′Ω−1X)
−1
X ′Ω−1y, with V ar(β̂GLS|X) = σ2e(X

′Ω−1X)−1, and uses the true values

of the parameters. This is done to assess the extent to which the FGLS procedure is able to

provide as precise an estimate as possible. For AR(1) processes, we also report results for the

Cochrane and Orcutt (1949), labelled CO. It is often the case, with rational expectations

models, that the theory predicts MA(h − 1) errors whenever forecasts at horizons h are

involved. In the simulations, we shall consider errors generated from MA(1) processes. It

is useful to also consider an approximate GLS procedure for MA(1) errors for the following

reasons: a) an autoregressive approximation selected using the BIC may yield a rather

parsimonious model that fails to capture the extent of the serial correlation in the errors; b)

we may have prior knowledge that the errors are anMA(1) process. Hence, we also consider

the following approximate GLS procedure, labelled, GMA. It is based on the OLS regression

y∗t = x∗tβ + et, where y∗t =
∑t−1

j=0(−θ̂)jyt−j, x∗t =
∑t−1

j=0(−θ̂)jxt−j with θ̂ the MLE (exact or
approximate) of θ for ũt = et + θ̂et−1, where ũt = yt−xtβ̃ with β̃ the OLS estimate from the
regression (14) with kT = int[4(T/100)2/9].

We consider the DGP yt = α+βx1t+ut. We set (α, β) = (0, 1), without loss of generality.

The sample size is T = 200. For the errors ut, we consider the following specifications: 1)

AR(1): ut = ρuut−1+et; ρu = {−0.5, 0.0, 0.2, 0.5, 0.8}; 2) AR(2): ut = ρu1ut−1+ρu2ut−2+et;

(ρu1, ρu2) = {(1.34,−0.42), (0.5, −0.3), (−0.5, 0.3), (0.0, 0.3), (0.5, 0.3)}; 3) MA(1): ut =

et + θet−1; θ = {−0.7,−0.4, 0.5}; 4) ARMA(1, 1): ut = ρuut−1 + et + θet−1; (ρu, θ) =

{(−0.5,−0.4), (0.2,−0.4), (0.2, 0.5), (0.5,−0.4), (0.5, 0.5), (0.8,−0.4), (0.8, 0.5)}. Through-

out, et ∼ i.i.d. N(0, 1) and x1t = ρxx1t−1 + vt + γet−1 with vt ∼ i.i.d.N(0, 1) independent of

et. When γ = 0, the regressors are exogenous, while γ 6= 0 imply non-exogenous regressors.

We report results for ρx = 0.8, while the Supplement reports results for ρx = 0; see Tables

S.4-S.7. We use 10,000 replications and T = 200, 500. The results are presented in Tables
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2-5. We focus our discussion on the MSE and the confidence intervals.

To construct the confidence intervals, we simply use the fact that, for some given lag

length k∗T , the FGLS estimate is simply OLS obtained from the regression (15), so that an

estimate of (T times) the asymptotic covariance matrix is V ar(β̂FGLS) = σ̂2e(X
′
k∗T
Xk∗T

)−1,

where Xk∗T
= (x′k∗T+1, ..., x

′
T )′, xt = (1, x∗1t) for t = k∗T + 1, ..., T , with x∗t = xt −

∑k∗T
j=1 ρ̂

D
j xt−j

and σ̂2e = (T − k∗T )−1
∑T

t=k∗T+1
ê2tkT , with êtkT the OLS residuals from estimating regres-

sion (15) by OLS. For the GMA procedure the variance is estimated similarly, except

that V ar(β̂GMA) = σ̂2e(X
∗′X∗)−1, where X∗ = (x∗′1 , ..., x

∗′
T )′, x∗t = (1, x∗1t) for t = 1, ..., T ,

with x∗t =
∑t−1

j=0(−θ̂)jxt−j. To construct the confidence interval of the OLS estimate,

we use the so-called HAC standard errors based on the weighting scheme suggested by

Andrews (1991) with automatic bandwidth selection. This leads to the following esti-

mate of the asymptotic covariance matrix: V ar(β̂OLS) = (T−1X ′X)
−1

Σ̂ (T−1X ′X)
−1, where

Σ̂ = T−1
∑T−1

j=−T+1w(j/m)Γ̂v(j) with Γ̂v(j) = T−1
∑T

t=j+1 v̂tv̂
′
t−j for j ≥ 0 and Γ̂v(j) =

T−1
∑T

t=−j+1 v̂t+j v̂
′
t for j < 0, and v̂t = xt(yt − x′tβ̂OLS). We use the quadratic spectral

kernel recommended by Andrews (1991) for which w(z) = (3/z2) (sin(z)/z − cos(z)), where

z = 6πz/5, and m is the bandwidth parameter constructed using the automatic bandwidth

selection using an AR(1) approximation. The confidence intervals are constructed in the

usual way, via β̂A,i± z1−α/2 ·V ar(β̂A)
1/2
ii , where A refers to the estimator (OLS, GLS, FGLS,

etc...), i is the index for the coeffi cient, z1−α/2 is the 1− α/2 quantile of the N(0, 1) distrib-

ution. We use α = 0.05, i.e., two-sided 95% confidence sets.

5.1 Simulations with exogenous regressors

Wefirst present results with exogenous regressors, i.e., γ = 0, that allows a proper comparison

since both OLS and FGLS are consistent. The following features are noteworthy: 1) The

MSE of the FGLS estimate is never higher than when using OLS. It can be dramatically

lower; e.g., the case of the AR(2) with parameters 1.34 and -0.42 for which the reduction

is 96% when T = 200. Overall, the reductions are substantial. 2) In most cases, the

MSE of FGLS are near those obtained using the infeasible GLS, so the suggested procedure

nearly achieves the best possible outcome. This is even the case for processes having an MA

component, which are notoriously diffi cult to approximate using low order autoregressions.

3) When the error process is strongly correlated the reduction in MSE comes from both a

reduction in bias and variance. When the extent of the correlation is small, most of the

reduction is due to a decrease in variance. 4) For the AR(1) case, using the Cochrane and

Orcutt (1949) procedure (valid here because of exogenous regressors) yields results that are
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nearly identical to using the more general method advocated. This shows that FGLS adapts

well to the generating process. 5) For the MA(1) case, the GMA performs as well as FGLS

and the infeasible GLS. In all cases, the gains are mostly due to a decrease in variance.

The results for the coverage rates of the confidence intervals with nominal level 95% are

presented in the last two column-panels of Tables 2-5. The following features are noteworthy.

1) In most cases, the exact coverage rates for the FGLS method are within 1% of the nominal

level, hence within random errors due to simulations. This holds even with strong correlation

in the errors unlike the method based on OLS, which is subject to high size distortions as

extensively documented in the literature. The main reason for why the coverage rates of

FGLS are near the nominal 95% level is because it involves residuals that are nearly i.i.d.,

in which case the Central Limit Theorem (CLT) is a good approximation even for small

samples. The OLS method involves the product xtut which can be strongly correlated, in

which case a much large sample is needed for the CLT to provide a good approximation.

2) The length of the confidence set using FGLS is always shorter than that obtained with

OLS. The differences are larger as the process is more strongly correlated. For instance, in

the case of the AR(2) with parameters 1.34 and -0.42, the length of the confidence interval

with FGLS is 77% smaller. With i.i.d. regressors (ρx = 0), see the Supplement, the same

qualitative results hold, though the coverage rates of the confidence intervals for OLS are

close to the nominal level 95% in all cases (similar to FGLS) given that xtut is less correlated.

Overall, the simulations show that the suggested FGLS procedure can do no worse than OLS

even with near zero correlation. It yields estimates with much lower MSE, especially as the

strength of the serial correlation increases. This is achieved with no cost and some benefits

to the coverage rates of the confidence intervals and a substantial reduction in their lengths.

5.2 Simulations with non-exogenous regressors

The specifications are the same except that now γ 6= 0. Accordingly, xt is not an exogenous

regressor, it is simply pre-determined. We consider two values of γ, namely γ = 0.25 (weak

correlation) and γ = 0.50 (strong correlation). The results are presented in the second and

third horizontal panels of Tables 2-5. Note that the condition E(xtut−1) = 0 usually used to

justify the consistency of GLS is not satisfied. Still, the results will show its irrelevance as

FGLS performs very well while OLS very poorly. This accords with the theoretical discussion.

The following features are noteworthy. 1) For the MSE (and bias and variance), much of

the same results hold as with exogenous regressors. Again, FGLS performs almost as well as

the infeasible GLS. 2) For MA(1) processes the approximate GLS, labelled GMA, performs
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slightly better than FGLS, when T = 200; the differences are substantially reduced when

T = 500, in which case both performs nearly as well as the infeasible GLS. 3) Across all

cases, the main difference is the very large bias and MSE of OLS. For instance, for an AR(1)

with parameter ρu = 0.8, the MSE is about 23 times larger than FGLS when T = 200 and

γ = 0.5 (and 55 times larger when T = 500). There are even more pronounced examples

like the AR(2) with parameters (1.34,−0.42) for which the differences are 149 times larger

when T = 200 and 363 times when T = 500. Both the bias and variance of OLS are much

larger than those with FGLS for both T = 200, 500, given that OLS is inconsistent.

The results for the coverage rates of the confidence intervals are presented in the last two

column segments of Tables 2-5. The following features are noteworthy. 1) The results for

OLS are meaningless. The coverage rates are all over the map and can be near 0 with strong

correlation in the errors. Also, they get noticeably worse as T increases. 2) For FGLS, the

coverage rates are near 95% for AR(1) errors. For AR(2) errors, we see some less accurate

coverage rates for γ = 0.5. 3) For MA(1) errors, the coverage rates of GMA and FGLS are

good when γ = 0.25, but more precise with GMA when γ = 0.5. 4) For ARMA(1, 1) errors,

the coverage rates of FGLS are good for γ = 0.25 but less so for γ = 0.5. The results for the

case with i.i.d. regressors are presented in the Supplement, with similar conclusions.

Remark 10. As discussed in Remarks 1 and 5, in the rational expectations case, both OLS
and GLS are consistent. Simulation experiments in the Supplement show that, with exogenous

or non-exogenous regressors, FGLS is by far superior to OLS in terms of MSE and length

of the coverage rates, with results similar to the case with exogenous regressors.

Remark 11. González-Coya and Perron (2025) present simulation results about the power
of tests on β for cases calibrated to real data. With exogenous regressors, the tests based on

all methods have nearly the correct size while FGLS has the highest power by a wide margin

over the Durbin regression and OLS, which have very little power. When the regressors are

non-exogenous, OLS has distorted size, as expected, but otherwise the relative power functions

remain the same. The poor performance of the tests based on the Durbin regression arises

from the fact that with regressors that are serially correlated, as is usually the case, the

introduction of many lagged regressors creates a collinearity problem that inflates the MSE

of the estimates and thereby reduces power. This is avoided when using FGLS since the final

regression is a simple transformation of the original regressors.

Remark 12. If heteroskedasticity in the innovations is a concern, two avenues are possible.
The first is to correct the standard errors using a heteroskedasticity-robust covariance matrix
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as suggested by, e.g., White (1980) or subsequent variations. Our recommendation is to

apply a further FGLS correction as suggested by González-Coya and Perron (2024). It is

based on an Adaptive Lasso procedure to fit the skedastic function. The method and some

simulation results are presented in the Supplement, Section S.4. Overall, further reduction

in the MSE are possible even using incorrect covariates to estimate the skedastic function

as long as there is some correlation between the covariates used in the Lasso specification

and those in the true skedastic function. The coverage rate of the confidence intervals have

an exact size close to the nominal level and the lengths are smaller compared to applying

OLS or correcting only for serial correlation. With homoskedastic innovations, the results

are equivalent to those obtained correcting only for serial correlation. Hence, correcting for

heteroskedasticity when it is not present has no detrimental effect.

5.3 The case with a non-invertible process

We now consider the case with non-invertible errors with the roots of C(L) inside the unit

circle. For motivation, let us revisit the example discussed in Remark 1. The predictive

model states that E(yt+k|Φt) = x′tβ, where Φt is the information set available at time t.

Then, yt+k = x′tβ + ut+k, with ut+k = yt+k − E(yt+k|Φt) so that the error terms are forecast

errors from using the best predictor based on xt. It can be shown that ut+k is anMA(k− 1)

process of the form ut+k = et+k + c1et+k−1+ ....+ ck−1et+1, with et ∼ i.i.d. (0, σ2e). Since xt ⊂
Φt, E(xtut+k) = 0, OLS is consistent and can be applied with the relevant HAC correction.

For simplicity, we shall restrict ourselves to the case of MA(1) errors. Suppose that yt
is an AR(2) process with parameters (1.34,−0.42). Suppose that k = 2, then ut+k is an

MA(1) with parameter 1.34. Hence, the root is inside the unit circle and the process is

non-invertible. In this case, OLS is consistent since it only requires E(xtut+2) = 0 which is

guaranteed by the rational expectations hypothesis.

Things are more complex with GLS. First, there does not exist a matrix D such that

D′D = Ω−1 and Du = e, with the vector of innovations having elements et for t = k, ..., T ,

even in large samples. Continuing with the MA(1) example with ut+2 = et + cet−1, we have

that the covariance matrix of u when the MA parameter is c is simply a scaled version of

the covariance matrix of u when the MA parameter is c−1. Hence, the GLS estimates are

the same using either values since the scale factor cancels. It does not imply that GLS is

inconsistent since it is simply a consequence of the well known observational equivalence. If

two processes are observationally equivalent, then estimators based on them will be identical.

For FGLS, we can gain some insights by looking at the transformation of the model
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applying an autoregressive filter α(L). Then, α(L)ut+k has the same autocovariance function

as C(L)et+k. If C(L) is invertible, α(L) = C(L)−1 and α(L)ut+k = et+k. This is the case

discussed above with consistent and effi cient GLS estimates. When the process is non-

invertible, the transformation will involve the observationally equivalent representation with

α(L) = (1 + c−1L). A researcher using the invertible model would not recover the true

structural shocks, but rather

(1− c−1L)−1ut+k = (1− c−1L)−1(1− cL)et+k = (1− c−1L)−1(1− c−1L+ c−1L− cL)et+k

= et + (c−1 − c)(1− c−1L)−1et+k−1 = et + (c−1 − c)
∑∞

i=0(c
−1)iet+k−1−i.

A discussion of these issues is contained in Hannan (1971) and Rozanov (1967). The problem

is with the second term, which involves all past values of the innovations. Since DX involves

past values of xt, FGLS will be consistent with exogenous regressors but will be inconsistent

otherwise. If we consider a model of the form y = Xβ + u, with ut a general non-invertible

process that is correlated beyond period t, e.g., some non-invertible ARMA process, then

both OLS and GLS fail to be consistent. The problem is that it is very diffi cult, given

the observational equivalence between the non-invertible and invertible representations, to

ascertain whether the process is invertible or not.

6 Conclusions

We showed that 1) OLS is, in general, inconsistent with non-exogenous regressors, while GLS

is consistent; 2) a simple FGLS procedure based on estimating an approximating AR(k∗T )

process with k∗T chosen using the BIC works very well and delivers estimates that a) are by far

superior to OLS (lower MSE); b) robust to a wide variety of data-generating process; c) have

confidence intervals with exact coverage rates close to the nominal level with length much

shorter than with OLS. This holds whether the regressors are exogenous or not, provided

a) the regressors are pre-determined, and b) the stationary linear error process is invertible.

We used the simple linear model as it is the leading case of interest. A similar treatment for

models with endogenous regressors contemporaneously correlated with the innovations and

estimated via some instrumental variable procedure is covered in Olivari and Perron (2024).

Our results provide a strong case for abandoning the often-used OLS+HAC approach so

common nowadays.
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Table 1: Root mean squared errors, bias and variance of estimators of β and ρ; AR(1)
model.

β ρ

OLS Durbin GLS FGLS CO-FGLS FGLS CO-FGLS

RMSE 0.400 0.036 0.025 0.025 0.041 0.034 0.175

Bias 0.400 0.029 0.012 0.020 0.035 0.027 0.171

Variance 0.0031 0.0013 0.0006 0.0006 0.0008 0.0010 0.0013
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Table 3: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

AR(2) case with ρx = 0.8. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Length

AR(2) OLS GLS FGLS OLS GLS FGLS OLS GLS FGLS OLS FGLS OLS FGLS

T
=

2
0
0

γ = 0

0.5,-0.3 0.32 0.28 0.29 4.54 4.23 4.28 0.34 0.29 0.28 0.95 0.95 0.23 0.21

-0.5,0.3 0.17 0.13 0.13 3.22 2.83 2.86 0.16 0.13 0.13 0.94 0.95 0.16 0.14

1.34,-0.42 11.45 0.42 0.42 26.96 5.15 5.19 8.09 0.40 0.39 0.87 0.94 1.08 0.25

0,0.3 0.31 0.26 0.28 4.39 4.09 4.20 0.22 0.27 0.26 0.90 0.93 0.18 0.20

0.5,0.3 1.86 0.47 0.48 10.79 5.50 5.60 1.27 0.47 0.45 0.86 0.94 0.43 0.27

γ = 0.25

0.5,-0.3 0.36 0.26 0.28 4.83 4.04 4.18 0.31 0.27 0.26 0.92 0.94 0.22 0.20

-0.5,0.3 0.21 0.12 0.13 3.61 2.74 2.84 0.16 0.12 0.12 0.91 0.94 0.15 0.13

1.34,-0.42 27.51 0.39 0.41 44.90 5.00 5.16 7.29 0.37 0.37 0.58 0.94 1.02 0.24

0,0.3 0.32 0.25 0.28 4.58 3.94 4.20 0.20 0.26 0.24 0.86 0.92 0.18 0.19

0.5,0.3 3.79 0.44 0.49 16.41 5.32 5.61 1.14 0.44 0.43 0.64 0.93 0.41 0.26

γ = 0.5

0.5,-0.3 0.41 0.22 0.25 5.35 3.72 4.00 0.25 0.23 0.22 0.85 0.94 0.19 0.18

-0.5,0.3 0.30 0.10 0.12 4.41 2.54 2.79 0.14 0.10 0.10 0.84 0.92 0.15 0.12

1.34,-0.42 58.25 0.33 0.39 71.48 4.61 5.00 5.38 0.32 0.32 0.16 0.92 0.88 0.22

0,0.3 0.36 0.21 0.29 4.91 3.65 4.25 0.17 0.22 0.20 0.79 0.89 0.16 0.18

0.5,0.3 7.50 0.38 0.49 25.20 4.90 5.60 0.83 0.37 0.36 0.25 0.91 0.35 0.24

T
=

5
0
0

γ = 0

0.5,-0.3 0.13 0.11 0.11 2.86 2.66 2.66 0.13 0.11 0.11 0.94 0.94 0.14 0.13

-0.5,0.3 0.06 0.05 0.05 2.02 1.81 1.81 0.06 0.05 0.05 0.94 0.94 0.10 0.09

1.34,-0.42 4.61 0.16 0.16 17.11 3.23 3.23 3.95 0.16 0.16 0.91 0.94 0.77 0.15

0,0.3 0.12 0.11 0.11 2.79 2.62 2.62 0.08 0.10 0.10 0.89 0.94 0.11 0.13

0.5,0.3 0.75 0.19 0.19 6.91 3.51 3.51 0.60 0.18 0.18 0.91 0.94 0.30 0.17

γ = 0.25

0.5,-0.3 0.18 0.11 0.11 3.40 2.57 2.61 0.12 0.10 0.10 0.88 0.94 0.13 0.12

-0.5,0.3 0.11 0.05 0.05 2.67 1.76 1.78 0.06 0.05 0.05 0.86 0.94 0.09 0.08

1.34,-0.42 21.68 0.15 0.16 41.99 3.12 3.19 3.51 0.15 0.15 0.40 0.94 0.72 0.15

0,0.3 0.16 0.10 0.11 3.21 2.54 2.61 0.08 0.10 0.10 0.82 0.94 0.11 0.12

0.5,0.3 2.84 0.18 0.19 14.90 3.40 3.50 0.53 0.17 0.17 0.48 0.94 0.28 0.16

γ = 0.5

0.5,-0.3 0.28 0.09 0.10 4.59 2.39 2.51 0.09 0.09 0.09 0.69 0.93 0.12 0.12

-0.5,0.3 0.18 0.04 0.05 3.67 1.63 1.72 0.05 0.04 0.04 0.68 0.93 0.09 0.08

1.34,-0.42 54.49 0.13 0.15 71.60 2.85 3.08 2.57 0.12 0.12 0.01 0.92 0.62 0.14

0,0.3 0.24 0.09 0.11 4.15 2.35 2.59 0.07 0.08 0.08 0.64 0.92 0.10 0.11

0.5,0.3 6.90 0.15 0.19 25.24 3.10 3.45 0.39 0.15 0.15 0.04 0.92 0.24 0.15
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Table 5: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

ARMA(1,1) case with ρx = 0.8. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Length

ARMA(1,1) OLS GLS FGLS OLS GLS FGLS OLS GLS FGLS OLS FGLS OLS FGLS

T
=

2
0
0

γ = 0

-0.5,-0.4 0.09 0.04 0.04 2.38 1.60 1.61 0.11 0.04 0.05 0.97 0.96 0.13 0.09

0.2,-0.4 0.13 0.13 0.13 2.90 2.82 2.84 0.16 0.13 0.15 0.96 0.96 0.16 0.15

0.2,0.5 0.59 0.39 0.41 6.07 4.93 5.10 0.51 0.39 0.38 0.92 0.94 0.28 0.24

0.5,-0.4 0.25 0.24 0.25 3.96 3.91 3.95 0.22 0.25 0.22 0.93 0.93 0.18 0.18

0.5,0.5 1.30 0.43 0.46 9.00 5.19 5.40 1.05 0.43 0.43 0.90 0.94 0.40 0.26

0.8,-0.4 0.88 0.43 0.46 7.41 5.21 5.41 0.59 0.43 0.41 0.86 0.93 0.30 0.25

0.8,0.5 5.12 0.39 0.41 17.83 4.93 5.09 3.65 0.38 0.40 0.87 0.94 0.73 0.25

γ = 0.25

-0.5,-0.4 0.48 0.04 0.04 6.08 1.52 1.63 0.12 0.04 0.05 0.60 0.96 0.13 0.08

0.2,-0.4 0.19 0.12 0.14 3.48 2.69 2.96 0.15 0.12 0.14 0.93 0.95 0.15 0.14

0.2,0.5 1.00 0.35 0.40 8.30 4.73 5.04 0.47 0.37 0.36 0.79 0.94 0.27 0.24

0.5,-0.4 0.23 0.22 0.23 3.84 3.73 3.82 0.21 0.23 0.21 0.92 0.93 0.18 0.18

0.5,0.5 3.15 0.39 0.46 15.28 4.96 5.44 0.96 0.41 0.41 0.64 0.93 0.38 0.25

0.8,-0.4 1.59 0.39 0.46 10.52 4.99 5.39 0.54 0.41 0.39 0.69 0.93 0.28 0.25

0.8,0.5 13.75 0.35 0.43 32.12 4.67 5.21 3.30 0.36 0.38 0.56 0.93 0.70 0.24

γ = 0.5

-0.5,-0.4 1.23 0.04 0.05 10.38 1.48 1.82 0.12 0.03 0.04 0.08 0.93 0.13 0.08

0.2,-0.4 0.32 0.11 0.19 4.64 2.61 3.36 0.13 0.10 0.12 0.81 0.90 0.14 0.13

0.2,0.5 1.77 0.31 0.42 11.94 4.42 5.19 0.36 0.32 0.30 0.49 0.89 0.23 0.22

0.5,-0.4 0.22 0.21 0.24 3.81 3.62 3.94 0.17 0.20 0.18 0.90 0.90 0.16 0.16

0.5,0.5 6.58 0.34 0.53 23.97 4.60 5.73 0.71 0.35 0.35 0.21 0.88 0.32 0.23

0.8,-0.4 2.90 0.36 0.52 15.33 4.77 5.73 0.40 0.35 0.33 0.35 0.88 0.24 0.23

0.8,0.5 29.47 0.30 0.53 51.13 4.36 5.73 2.39 0.31 0.32 0.14 0.88 0.59 0.22

T
=

5
0
0

γ = 0

-0.5,-0.4 0.03 0.02 0.02 1.45 0.98 0.98 0.04 0.02 0.02 0.96 0.96 0.08 0.05

0.2,-0.4 0.05 0.05 0.05 1.83 1.76 1.77 0.06 0.05 0.05 0.95 0.96 0.09 0.09

0.2,0.5 0.23 0.16 0.17 3.85 3.26 3.30 0.21 0.15 0.15 0.94 0.93 0.18 0.15

0.5,-0.4 0.10 0.10 0.10 2.51 2.50 2.50 0.09 0.09 0.09 0.93 0.93 0.11 0.12

0.5,0.5 0.51 0.18 0.19 5.70 3.45 3.51 0.45 0.17 0.17 0.92 0.93 0.26 0.16

0.8,-0.4 0.35 0.18 0.19 4.69 3.40 3.46 0.27 0.17 0.17 0.90 0.94 0.20 0.16

0.8,0.5 2.05 0.16 0.17 11.31 3.22 3.27 1.73 0.15 0.16 0.91 0.94 0.51 0.15

γ = 0.25

-0.5,-0.4 0.38 0.01 0.02 5.83 0.97 1.05 0.04 0.01 0.02 0.15 0.95 0.08 0.05

0.2,-0.4 0.11 0.05 0.05 2.68 1.72 1.85 0.06 0.05 0.05 0.85 0.95 0.09 0.09

0.2,0.5 0.68 0.15 0.17 7.15 3.06 3.25 0.19 0.14 0.14 0.64 0.93 0.17 0.15

0.5,-0.4 0.11 0.09 0.10 2.57 2.40 2.52 0.08 0.09 0.08 0.91 0.92 0.11 0.11

0.5,0.5 2.41 0.16 0.19 14.06 3.20 3.46 0.40 0.16 0.16 0.41 0.93 0.25 0.16

0.8,-0.4 1.14 0.17 0.19 9.28 3.27 3.49 0.24 0.16 0.16 0.55 0.94 0.19 0.16

0.8,0.5 10.88 0.14 0.17 30.18 2.98 3.26 1.54 0.14 0.15 0.34 0.94 0.48 0.15

γ = 0.5

-0.5,-0.4 1.00 0.01 0.02 9.71 0.89 1.11 0.04 0.01 0.01 0.00 0.92 0.08 0.05

0.2,-0.4 0.19 0.04 0.06 3.84 1.60 1.99 0.05 0.04 0.04 0.62 0.91 0.09 0.08

0.2,0.5 1.56 0.13 0.17 11.87 2.89 3.28 0.14 0.12 0.12 0.13 0.90 0.15 0.14

0.5,-0.4 0.12 0.08 0.11 2.81 2.26 2.64 0.07 0.08 0.07 0.84 0.88 0.10 0.10

0.5,0.5 6.04 0.15 0.22 23.86 3.07 3.71 0.30 0.14 0.14 0.02 0.89 0.21 0.15

0.8,-0.4 2.66 0.15 0.19 15.54 3.06 3.47 0.18 0.14 0.13 0.08 0.90 0.16 0.14

0.8,0.5 27.70 0.13 0.21 51.30 2.89 3.58 1.11 0.12 0.12 0.01 0.88 0.41 0.14
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In Section S-1, we present the detailed theoretical and simulation evidence about the
claims made in Remark 6. Additional simulations results are reported in Section S-2 that
complement those in Section 5, while Section S-3 presents simulation results for predictive
regressions. Section S-4 discusses our suggested method to correct for possible heteroskedas-
ticity in the errors. The method is presented as well as simulations showing that further
reductions in MSE can be achieved.

S-1 The Robustness of GLS

It is often argued that GLS may be less robust than OLS because a wrong specification
of the process for ut may lead GLS to have higher MSE than OLS. We show that this is
incorrect, in general. To have meaningful comparisons, we assume exogenous regressors so
that both OLS and GLS are consistent. Note first that GLS is consistent even when using
a misspecified model when the regressors are exogenous and pre-determined. Suppose you
assume that V (u) = σ2eΩ∗ while the correct specification is V (u) = σ2eΩ. Let Ω−1∗ = D′∗D∗
and Ω−1 = D′D. Then,

T−1X ′Ω−1∗ u = T−1X ′Ω−1∗ D
−1e = T−1(HX)′e

p→ 0,

since HX with H = X ′Ω−1∗ D
−1 is simply a linear combination of all the regressors, which

are uncorrelated with the innovations at all leads and lags (and current value). We shall
show that when adopting a simple AR(1) specification, it is possible to obtain GLS estimates
that performs no worse than OLS, and most often much better, irrespective of the true data-
generating process for the errors, as long as it is stationary. For reasons that will become
clear, we apply an AR(1) GLS with some known value ρ, i.e., OLS applied to the regression
(??). We ignore the initial condition for simplicity. We have the following results about the
relative MSE of OLS and GLS.

Theorem 1. Let ut be a zero mean stationary process and β̂GLS the estimate applying OLS to
(??) for a given value ρ. The scalar exogenous variable xt is jointly stationary with ut, both
having at least finite second-order momemnts, and satisfies p limT→∞ T

−1∑T−j
t=1 xtxt+j =

Rx(j), corx(j) = Rx(j)/Rx(1), with similar definitions for coru(j). Also, hxu(0) is the
spectral density function at frequency zero of xtut, R̃xu(1) =

∫ π
−π cos(λ)hx(λ)hu(λ)dλ, and

R̃xu(2) =
∫ π
−π cos(2λ)hx(λ)hu(λ)dλ with hx(λ) and hu(λ), the spectral density function of xt

and ut, respectively. Then, limT→∞(MSE(β̂GLS)/MSE(β̂OLS)) < 1if

ρ2 − 2ρ(1 + ρ2)R̃xu(1)/hxu(0) + ρ2R̃xu(2)/hxu(0) < 2ρ2 corx(1)2 − 2ρ(1 + ρ2) corx(1).
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The result in the previous Theorem, proved in Section S-1.1, is useful but opaque as far
as obtaining useful insights given the level of generality. The following corollary considers
the case with i.i.d. regressors. While restrictive, the results allow important insights that
still apply with a serially correlated regressor.

Corollary 1. Under the same conditions as in Theorem 1, except that xt ∼ i.i.d.(0, σ2x),
limT→∞(MSE(β̂GLS)/MSE(β̂OLS)) < 1 if

ρ/(2(1 + ρ2))(1 + coru(2)) < coru(1) when ρ > 0,

ρ/(2(1 + ρ2))(1 + coru(2)) > coru(1) when ρ < 0.

A necessary condition for such inequalities to hold is that ρ coru(1) > 0. To explore the
intuitive content, suppose that ut is an AR(1) process with parameter ρu and ρ > 0. Then,

limT→∞(MSE(β̂GLS)/MSE(β̂OLS)) < 1 ⇐⇒ ρ(1 + ρ2u)− 2ρu(1 + ρ2) < 0.

If ρ = ρu, the condition is trivially satisfied, as expected. Moreover, it is satisfied unless
ρu < 0.27, in which case we need 0 < ρ < 2ρu. As will transpire from the simulations
results, ρ coru(1) > 0 is nearly also a suffi cient condition unless coru(1) is small. This is
quite a strong result. It says that applying GLS with an AR(1) specification will lead to an
estimate with lower MSE than OLS for a wide range of data-generating processes for ut by
simply quasi-differencing the data with a parameter ρ that has the same sign as coru(1), the
first-order correlation coeffi cient of ut. If coru(1) = 0, OLS performs better. This can occur
with serial correlation implying coru(1) = 0 and coru(j) 6= 0 for some j > 1. An example
is an MA(2) process of the form ut = et + θ2et−2. We view such cases as knife-edge ones.
When coru(1) is small, the same results hold for a range given by 0 < ρ < 2ρu.

S-1.1 Proof of some results

Proof of Theorem 1. The GLS estimator is the OLS estimator of the quasi-differenced
equation

(yt − ρyt−1) = (xt − ρxt−1)′β + et, (t = 2, ..., T ).

Let wt = ut − ρut−1 and note that wt is a filter: wt = ψ(L)ut with ψ(L) = (1 − ρL). Let
Λ = E[ww′] so that

Λ−1 =



1 −ρ

−ρ 1 + ρ2 −ρ 0

−ρ 1 + ρ2 −ρ
. . .

0 −ρ 1 + ρ2 −ρ

−ρ 1


.
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Hence, the GLS estimator can be written as

β̂GLS = (X ′Λ−1X)−1X ′Λ−1y, β̂GLS − β = (X ′Λ−1X)−1X ′Λ−1u.

The variance of the GLS estimator is

Var(β̂GLS) = (X ′Λ−1X)−1X ′Λ−1ΩΛ−1X(X ′Λ−1X)−1.

The OLS estimator can be written as

β̂OLS = (X ′X)−1X ′y, β̂OLS − β = (X ′X)−1X ′u.

with Var(β̂OLS) = (X ′X)−1X ′ΩX(X ′X)−1. Since both estimators are consistent the limit of
their MSE is equivalent to the limit of their variance. We have,

limT→∞ T Var(β̂OLS) = p limT→∞(T−1X ′X)−1T−1X ′ΩX(T−1X ′X)−1

= Rx(0)−22πhxu(0).

Note that hxu(0) is (2π times) the spectral density function of the process zt = xtut. By the
Convolution Theorem, we have,

hxu(ω) =

∫ π

−π
hx(λ)hu(ω − λ)dλ,

and thus

hxu(0) =

∫ π

−π
hx(λ)hu(−λ)dλ =

∫ π

−π
hx(λ)hu(λ)dλ,

since hu(−λ) = hu(λ). The asymptotic variance of the GLS estimator is

limT→∞ T Var(β̂GLS) = p limT→∞(T−1X ′Λ−1X)−1T−1X ′Λ−1ΩΛ−1X(T−1X ′Λ−1X)−1

= ((1 + ρ2)Rx(0)− 2ρRx(1))−22πhx∗u∗(0), (A.1)

where x∗t = xt− ρxt−1 and u∗t = ut− ρut−1. The spectral density function of x∗t is thus given
by

hx∗(ω) = |ψ(e−iω)|2hx(ω)

= (1− ρe−iω)(1− ρeiω)hx(ω)

= (1 + ρ2 − 2ρ cos(ω))hx(ω).

Analogously, the spectral density function of u∗t , is given by

hu∗(ω) = (1 + ρ2 − 2ρ cos(ω))hu(ω).
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Hence, the spectral density function at frequency zero of the process z∗t = x∗tu
∗
t is

hx∗u∗(0) =

∫ π

−π
h∗x(λ)h∗u(−λ)dλ

=

∫ π

−π
(1 + ρ2 − 2ρ cos(λ))2hx(λ)hu(λ)dλ

= (1 + ρ2)2hxu(0)− 4ρ(1 + ρ2)

∫ π

−π
cos(λ)hx(λ)hu(λ)dλ

+4ρ2
∫ π

−π
cos(λ)2hx(λ)hu(λ)dλ

= (1 + ρ2)2hxu(0)− 4ρ(1 + ρ2)

∫ π

−π
cos(λ)hx(λ)hu(λ)dλ

+2ρ2
∫ π

−π
(1 + cos(2λ))hx(λ)hu(λ)dλ

= (2ρ2 + (1 + ρ2)2)hxu(0)− 4ρ(1 + ρ2)R̃xu(1) + 2ρ2R̃xu(2).

Now, we can write equation (A.1) as

limT→∞ T Var(β̂GLS) = ((1 + ρ2)Rx(0)− 2ρRx(1))−22π((2ρ2 + (1 + ρ2)2)hxu(0)

−4ρ(1 + ρ2)R̃xu(1) + 2ρ2R̃xu(2))

and the ratio of interest is

limT→∞

(
MSE(β̂GLS)

MSE(β̂OLS)

)
=

limT→∞ T Var(β̂GLS)

limT→∞ T Var(β̂OLS)

=
Rx(0)2

((1 + ρ2)Rx(0)− 2ρRx(1))2
(2ρ2 + (1 + ρ2)2)hxu(0)− 4ρ(1 + ρ2)R̃xu(1) + 2ρ2R̃xu(2)

hxu(0)
,

and thus,

limT→∞

(
MSE(β̂GLS)

MSE(β̂OLS)

)
< 1

iff (2ρ2 + (1 + ρ2)2)− 4ρ(1 + ρ2)
R̃xu(1)

hxu(0)
+ 2ρ2

R̃xu(2)

hxu(0)
< ((1 + ρ2)− 2ρ corx(1)))2

iff ρ2 − 2ρ(1 + ρ2)
R̃xu(1)

hxu(0)
+ ρ2

R̃xu(2)

hxu(0)
< 2ρ2 corx(1)2 − 2ρ(1 + ρ2) corx(1).�

Proof of Corollary 1: Note that if xt is i.i.d., its spectral density function is hx(ω) =

(2π)−1Rx(0) for all ω. Thus, using the results in Theorem 1:

hxu(ω) =

∫ π

−π
hx(λ)hu(λ)dλ = hx(0)

∫ π

−π
hu(λ)dλ

=
1

2π
Rx(0)Ru(0)

A-4



and

R̃xu(1) =

∫ π

−π
cos(λ)hx(λ)hu(λ)dλ = hx(0)

∫ π

−π
cos(λ)hu(λ)dλ =

1

2π
Rx(0)Ru(1),

R̃xu(2) =

∫ π

−π
cos(2λ)hx(λ)hu(λ)dλ = hx(0)

∫ π

−π
cos(2λ)hu(λ)dλ =

1

2π
Rx(0)Ru(2).

Hence,

limT→∞

(
MSE(β̂GLS)/MSE(β̂OLS)

)
< 1

iff ρ2 − 2ρ(1 + ρ2) coru(1) + ρ2 coru(2) < 0

iff
ρ

2(1 + ρ2)
(1 + coru(2)) < coru(1) when ρ > 0,

iff
ρ

2(1 + ρ2)
(1 + coru(2)) > coru(1) when ρ < 0.�

S-1.2 Simulations

We illustrate the issues discussed using simulations. We consider the following DGP:

yt = α + βxt + ut,

where xt ∼ i.i.d. (0, 1). We set (α, β) = (0, 1), without loss of generality. The sample
size is T = 200. For the errors ut, we consider the following specifications: 1) AR(1):
ut = ρuut−1 + et; ρu = {−0.5, 0.0, 0.2, 0.5, 0.8}; 2) AR(2): ut = ρu1ut−1 + ρu2ut−2 + et;
(ρu1, ρu2) = {(1.34,−0.42), (0.5,−0.3), (−0.5, 0.3), (0.0, 0.3), (0.5, 0.3)}; 3) MA(1): ut =

et + θet−1; θ = {−0.7,−0.4, 0.5}; 4) ARMA(1, 1): ut = ρuut−1 + et + θet−1; (ρu, θ) =

{(−0.5,−0.4), (0.2,−0.4), (0.2, 0.5), (0.5,−0.4), (0.5, 0.5), (0.8,−0.4), (0.8, 0.5)}. Through-
out, et ∼ i.i.d. N(0, σ2e) independent of xj for all t and j so that the regressors are exogenous,
otherwise OLS would be inconsistent and the comparisons meaningless. We set σ2x = σ2e = 1.
For all cases, we consider a range of values for the parameters. These are chosen mostly arbi-
trarily, except for the first pair of the AR(2) case, which are typical estimates for detrended
U.S. real GDP; e.g., Blanchard (1981). In all cases, we adopt an AR(1) specification with
different values of the quasi-differencing parameter ρ. The results are presented in Table
S.1. The first column reports the value of coru(1) and the main entries are the MSE of GLS
relative to the MSE of OLS for various value of ρ in the range (−0.9, 0.9). We shall discuss
the purpose of the values reported in the last column later.
It is most instructive to start with the AR(1) case. When ρu = 0, as expected OLS is best

and GLS has higher MSE. When ρu = −0.5, GLS has lower MSE for all negative values of
ρ and, vice versa, when ρu = 0.5, 0.8, GLS has lower MSE for all positive values of ρ. When
ρu = 0.2, a small value, things are more complex. Here, GLS is best when ρ ∈ (0.1, 0.4)
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but marginally worse than OLS when ρ ∈ (0.5, 0.9) (and, of course also worse when ρ is
negative). These results are what one would expect from Corollary 1, in particular the fact
that when ρu < 0.5 GLS is better when 0 < ρ < 2ρu. The results for the other cases are
qualitatively similar and in accordance with the theory. When coru(1) is “large”, GLS has
smaller MSE than OLS when the sign of the quasi-difference parameter is the same as the
sign of coru(1). If coru(1) is “small”GLS is better when ρ is in the vicinity of coru(1). Of
special interest is the AR(2) case with (ρu1, ρu2) = (1.34,−0.42), which is roughly typical of
many macroeconomic time series given the strong serial correlation. In this case, the gains in
MSE reduction over OLS are of the order of 95% when ρ ∈ (0.6, 0.9). These are substantial
gains, which can be obtained by merely using an incorrect AR(1) process with a wide range
of values of ρ. This illustrates strong robustness to using GLS.
The theoretical and simulation results suggest a very simple procedure to obtain a GLS

estimate that is (almost) never worse than OLS, subject to very minor random deviations.
First use a test for serial correlation at delay one; we use the LM test of Godfrey (1978). If
the test does not reject the null hypothesis of no serial correlation, then use OLS. This will
occur when coru(1) is “small”. If the test rejects, estimate coru(1) via the sample first-order
serial correlation of the OLS residuals. If it is positive (negative), use any positive (negative)
value of the quasi-differencing parameter ρ. To make clear that any value of ρ will do, in
the simulations we simply draw ρ from a Uniform distribution with support (0.1, 0.9) when
positive value are required and with support (−0.9,−0.1) when negative values are in order.
The results for the relative MSE of GLS over that of OLS are reported in the last column
of Table S.1 under the heading “hybrid”. They show that this hybrid-GLS procedure yields
more precise estimates for all cases, except for few minor cases due to random variations
when coru(1) is “small”. An exception is when coru(1) = 0 and there is correlation at higher
lags; see the AR(2) case with (ρu1, ρu2) = (0.0, 0.3). We view this as a knife-edge case.
Tables S.2-S.3 report corresponding results when xt is an AR(1) process given by xt =

ρxxt−1 + vt with vt ∼ i.i.d. N(0, 1), with ρx = 0.5 and ρx = 0.8. The results are qualitatively
similar.

Remark 1. In the hybrid procedure discussed above, we use the OLS residuals to construct
an estimate of coru(1). From the results in Section 2.1, the OLS estimates of the parameters
are inconsistent when the regressors are not exogenous. Here, however, the regressors are
exogenous. When constructing a FGLS estimate, we do not need this hybrid procedure.

Remark 2. After the first draft of this paper was completed, we became aware of the work
by Koreisha and Fang (2001). They present exact bounds for the relative variance of OLS,
GLS and Feasible GLS allowing for misspecification of the process generating the errors when
constructing the FGLS estimate. The results depend on the covariance matrix of the errors,
the exact nature of the GLS structure used and the method to construct the FGLS estimate,

A-6



the regressors and the sample size. The bounds are, however, not informative and quite
complex. Accordingly they resort to simulation experiments using approximate autoregressive
processes of order 1, 7 and 14 when T = 200 to construct the FGLS estimate. In the paper,
they report results for few selected cases, which do not allow addressing several of the issues
discussed above, e.g., the effect of the sign of the quasi-difference parameter, the strength of
the correlation in the errors. They wrongly conclude that GLS (constructed using an AR
misspecification) is always better than OLS. As shown above this is not the case.

S-2 Additional simulations related to Section 5

Tables S.4-S.7 present simulations results related to those presented in Section 6. The setup
is exactly the same, except that we set ρx = 0, instead of ρx = 0.8. The goal is simply to
show robustness of the results. The are indeed qualitatively similar.

S-3 Simulations with predictive regressions

As discussed in Section 2.1.1 and Remark 4, in the case of predictive regressions assuming
rational expectations, both OLS and GLS are consistent. We present the results of a small
simulation experiment to show that, with exogenous or non-exogenous regressors, FGLS is
by far superior to OLS in terms of MSE and length of the coverage rates, when the MA
process is invertible. The setup adopted corresponds to regression

yt+k = x′tβ + ut+k

with k = 2 so that the errors are MA(1). The data-generating process is similar to that
used above except that the regressors are lagged two periods so that yt = α + βxt−2 + ut,
ut = et+θet−1 and xt = ρxxt−1+vt+γet−1 with vt and et independent i.i.d.N(0, 1) variables.
We set (α, β) = (0, 1), ρx = 0 and again γ = 0 (exogenous regressors), γ = 0.25 (weak
correlation) and γ = 0.50 (strong correlation). We also consider θ = −0.7, −0.4 and 0.5.
The results are presented in Table S.8. With γ = 0, the results are similar to those in

Table 4. FGLS and GMA have much lower MSE than OLS and are nearly as effi cient as
the infeasible GLS, especially when T = 500. The coverage rates for all methods are near
the nominal 95% level, except when the MA parameter is strongly negative. Again, the
length of the confidence intervals are shorter with FGLS and GMA compared to OLS. With
non-exogenous regressors, the results are broadly similar. The only exception is that the
coverage rates for GMA are substantially lower than the nominal level. Those for FGLS are
adequate except when θ = −0.7. This is in line with our theoretical results.

A-7



S-4 Correcting for heteroskedasticity

In this section, we now consider a FGLS procedure for heteroskedasticity in the errors et. We
describe the method suggested by González-Coya and Perron (2024) based on an Adaptive
Lasso procedure to fit the skedastic function. Lasso is a non-parametric estimation method
first proposed by Tibshirani (1996). It selects regressors amongst a potentially large set wtj
(j = 1, ..., d), where d can be very large, by imposing a `1 penalty on their size. Lasso forces
the coeffi cients to be equally penalized. We can, however, assign different weights to different
coeffi cients. If the weights are data-dependent and properly chosen, this can enhance the
properties of Lasso, in particular when the irrelevant covariates are highly correlated with
the relevant ones. To that effect, Zou (2006) considered the adaptive Lasso given by

φ̂
A

= arg minφ{(1/2)
∑T

t=1(log(v2t )− φ0 −
∑d

j=1wtjφj)
2 + λ

∑d
j=1 ϑ̂j

∣∣φj∣∣}, (A.2)

where ϑ̂j = |φ̂j|−ψ, ψ > 0 and φ̂j is a root-T -consistent estimator of φj. Here, vt is some
process exhibiting heteroskedasticity, though no serial correlation, to be specified below. The
implementation of Adaptive Lasso to obtain a fit to the skedastic function is as follows. 1)
Compute the first-step estimate of φ as the solution to the Ridge regression problem:

φ̂
ridge

= arg minφ{(1/2)
∑T

t=1(log(v2t )− φ0 −
∑d

j=1wtjφj)
2 + λr

∑d
j=1 φ

2
j},

where λr is selected via cross-validation. 2) Compute the weights as ϑ̂j = |φ̂ridgej |−ψ. The
Adaptive Lasso estimates are then

φ̂
A

= arg minφ{(1/2)
∑T

t=1(log(v2t )− φ0 −
∑d

j=1wtjφj)
2 + λA

∑d
j=1 |φ̂

ridge

j |−ψ
∣∣φj∣∣},

where the two tuning parameters, λA and ψ are selected via the following K-cross-validation
method: a) Fix L possible values for ψ; we use L = 6 and ψc = (0, 0.25, 0.5, 0.75, 1, 2). b)
Fix a partition for the K-fold cross-validation, i.e., split the data into K roughly equal-
sized parts. We use K = 10. Let κ : {1, . . . , T} 7→ {1, . . . , K} be an indexing function
that indicates the partition to which observation t is allocated to by the randomization. c)
For every ψci , compute the optimal cross-validated λ

A
i and the mean cross-validated error.

For the kth part, we fit the model to the other K − 1 parts of the data, and calculate the
prediction error of the fitted model when predicting the kth part of the data. We do this for
k = 1, . . . , K and combine the K estimates of the prediction error. Denote by f̂−ki (w) the
fitted function, computed with the kth part of the data removed and using ψci . Then the
cross-validation estimate of the prediction error is

CV(f̂i) = T−1
∑T

t=1 L
(

log(v2t ), f̂
−κ(t)
i (w)

)
,

where L(·) is a loss function; we use the MSE. Let λAi be the value that minimizes CV(f̂i). d)
The cross-validated pair (λA∗, ψc∗) used is the one that minimizesCV(λAi , ψ

c
i) for i = 1, . . . , L.
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Note that we do not have in mind any oracle model. The aim is to be agnostic about such
knowledge and to try to devise a method as robust as possible that allows a reduction in the
MSE. Since the skedastic function is, in general, not consistently estimated, there is a need
to further correct the variance estimate of the FGLS estimator using a Heteroskedasticity
Robust version. We denote the resulting fitted value of the skedastic function by ṽ2t .
Here, vt ≡ êtk, the residuals from applying the GLS regression

(yt −
∑k∗T

j=1 ρ̂
D
j yt−j) = (xt −

∑k∗T
j=1 ρ̂

D
j xt−j)

′β + ekt, (t = k∗T + 1, ..., T ), (A.3)

Let β̂F−C denote the GLS estimate that corrects only for serial correlation and β̂F−CH , the
one that corrects for both serial correlation and heteroskedasticity. To be more precise,
we apply the following steps: a) Estimate by OLS the quasi-differenced regression (A.3) to
obtain the residuals êtk; b) Estimate the model log(max{ê2tk, δ2}) = φ0 −

∑d
j=1 ztjφj, via

Adaptive Lasso, where δ = 0.1 is some small positive number to avoid dealing with residuals
that are nearly zero. Note that zt may include some or all elements of xt or transformations
of them. Denote the predicted values from this model by ṽt ≡ ẽ2tk; c) β̂F−CH is the weighted
least squares (WLS) estimator of the quasi-differenced regression (A.3), with weights given
by ẽ−2tk .
In order to construct confidence intervals for the parameter β of interest, introducing some

finite sample refinements can be beneficial. Here, we describe the particular form adopted,
following Miller and Startz (2019) and Rothenberg (1988). We focus on the estimate of the
asymptotic variance of the FGLS estimator:

V ar(β̂F−CH) = (T−1X ′W̃−1X)−1Ω̂(T−1X ′W̃−1X)−1, (A.4)

where W̃ is a diagonal matrix with entries w̃tt = ṽt(w)2 ≡ ẽ2tk, the predicted values obtained
from the procedure to fit the skedastic function vt(w), X is the matrix of regressors, Ω̂ =

T−1X ′Σ̂F−CHX with Σ̂F−CH a diagonal matrix with tth entry given by:

Σ̂F−CH
tt =

ê2tk−F−CH

(ẽ2tk)
2

(
1

(1− ht,F−CH)2
+ 4

ht,F−C
k

d̂f

)
, (A.5)

where êF−CH = [ê1,F−CH , ..., êT,F−CH ]′ are the estimated residuals from the FGLS regression
correcting for serial correlation and heteroskedasticity, i.e., êtF−CH = y∗t − β̂F−CHx∗t , with

y∗t = (yt −
∑k∗T

j=1 ρ̂
D
j yt−j)/(ẽ

2
tk)

1/2, (A.6)

x∗t = (xt −
∑k∗T

j=1 ρ̂
D
j xt−j)/(ẽ

2
tk)

1/2. (A.7)

d̂f is an estimate of the degrees of freedom used in the estimation of the weights. For Lasso,
the number of nonzero coeffi cients is an unbiased estimate for the degrees of freedom (Zou
et al. (2007)). The confidence intervals for the kth coeffi cient is then obtained using β̂F−CH,k
± z1−α/2SE(β̂F−CHk),where z1−α/2 is the 1 − α/2 quantile of the normal distribution and

SE(β̂FGLS,k) := (V ar(β̂F−CH))
1/2
kk , with V ar(β̂F−CH) defined in (A.4).
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S-4.1 Simulation results with heteroskedasticity

We consider the linear model (1) with serially correlated and heteroskedastic errors. The
specifications are the same as in the text except that et ∼ N(0, vt (z)) or, equivalently,
et =

√
vt (z)εt, where εt ∼ i.i.d. N(0, 1). We apply a FGLS accounting for heteroskedasticity

in the FGLS regression used to correct for serial correlation,

yt −
∑k∗T

j=1 ρ̂
D
j yt−j = (xt −

∑k∗T
j=1 ρ̂

D
j xt−j)

′β + etk, (t = k∗T + 1, ..., T ),

This is then equivalent to applying OLS to the regression y∗t = x∗tβ + etk−F−CH , where y∗t
and x∗t are defined by (A.6) and (A.7) and the estimate of ẽ

2
tk is constructed as outlined

in the previous section. We only consider a subset of the cases used earlier with T = 200.
These are: 1) AR(1): ut = 0.5ut−1 + vt(z)1/2εt; 2) AR(2): ut = 1.34ut−1 − 0.42ut−2 +

vt(z)1/2εt; 3) MA(1): ut = vt(z)1/2εt + 0.5vt−1(z)1/2εt−1; 4) ARMA(1, 1): ut = 0.8ut−1 +

vt(z)1/2εt − 0.4vt−1(z)1/2εt−1, where εt ∼ i.i.d. N(0, 1). We consider three specifications
for the skedastic function νt(·) as in Romano and Wolf (2017). These are, from weak to
strong heteroskedasticity: a) Power function: νt(x)1 = x2t ; b) Squared log function: νt(x)2 =

[log(xt)]
2; c) Exponential of a second-degree polynomial: νt(x)3 = exp (0.2xt + 0.2x2t ). The

input matrix isW = (1, w, w2, cos(w), cos(2w), cos(3w)). We consider two cases: a) wt = xt,
which assumes that we select the correct variable influencing the skedastic function; b)
wt = φxt + (1− φ)qt with qt ∼ U(1, 4) and φ ∼Bernouli(ρ) with ρ = 0.75. In this case, the
covariate used to model the skedastic function is not the same as the true one but is correlated
with it, the correlation being ρ. Note that in practice, one can include a vast set of potential
covariates. Hence, with the parsimonious set considered, the improvements obtained in terms
of MSE and length of the confidence intervals should be viewed as conservative.
The results are reported in Table S.9; the first panel for wt = xt and the second for

wt = φxt + (1 − φ)qt. We present the MSE, bias and variance of the FGLS estimate as
well as the coverage rates and lengths of the confidence intervals obtained using the method
discussed in the previous section. We also present results for the OLS estimate, the FGLS
estimate that accounts only for serial correlation (F-C) and the FGLS estimate that accounts
for both serial correlation and heteroskedasticity (F-CH). This is done to gauge the extent
of the improvement provided by the correction for heteroskedasticity. Note that when using
F-C, we construct the confidence intervals that correct for serial correlation the same way as
we do for F-CH, i.e., applying the same correction for potential remaining heteroskedasticity.
When the covariate used is the correct one, we see important reduction in the MSE of

the F-CH estimate relative to F-C, more so as the heteroskedasticity is stronger. Both the
variance and the bias contribute to the reductions in the MSE. Since correcting for serial
correlation via a FGLS procedure provides substantially more precise estimates relative to
OLS, needless to say that the same applies when further correcting for heteroskedasticity.
The coverage rates of the confidence intervals have an exact size close to the nominal level.
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The OLS estimates also have good coverage rates in most cases but can be sensitive to the
strength of the serial correlation; e.g., the AR(2) case. However, the lengths are substantially
smaller using F-CH compared to OLS and to a lesser extent compared to F-C.
The results in the bottom panel pertains to the case with an incorrect covariate, though

correlated with the correct one. The results are similar with the exception that the incremen-
tal reductions in MSE, bias and variance provided by the correction for heteroskedasticity
are smaller, as expected. Nevertheless, they are still important enough in magnitude. Hence,
using incorrect covariates to estimate the skedastic function can still lead to more precise
estimates, as long as there is some correlation between the two sets of covariates. The cov-
erage rate of the confidence intervals have an exact size close to the nominal level and the
lengths are much smaller than those with OLS and, to some extent, than with F-C.
We also performed simulation experiments with homoskedastic errors. The results were

then essentially equivalent to those obtained with F-C. This means that correcting for het-
eroskedasticity when it is not present has no detrimental effect on the precision of the esti-
mate, a result emphasized by González-Coya and Perron (2024). Overall, the results show
that a further correction for heteroskedasticity can lead to more precise estimates and smaller
lengths of the confidence intervals compared to only correcting for serial correlation.
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Table S.5: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

AR(2) case with ρx = 0. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

AR(2) OLS GLS FGLS OLS GLS FGLS OLS GLS FGLS OLS FGLS OLS FGLS

T
=

2
0
0

γ = 0

0.5,-0.3 0.63 0.38 0.39 6.26 4.96 5.03 0.64 0.38 0.38 0.95 0.94 0.31 0.24

-0.5,0.3 1.11 0.38 0.38 8.36 4.93 4.97 1.11 0.38 0.38 0.95 0.95 0.41 0.24

1.34,-0.42 5.24 0.17 0.17 18.02 3.32 3.33 5.10 0.17 0.17 0.94 0.95 0.88 0.16

0,0.3 0.54 0.45 0.46 5.89 5.39 5.44 0.55 0.47 0.46 0.95 0.95 0.29 0.27

0.5,0.3 1.08 0.37 0.38 8.29 4.86 4.92 1.06 0.38 0.38 0.94 0.95 0.40 0.24

γ = 0.25

0.5,-0.3 1.88 0.36 0.38 11.86 4.82 4.97 0.60 0.36 0.35 0.68 0.94 0.30 0.23

-0.5,0.3 2.51 0.35 0.38 13.08 4.73 4.92 1.07 0.36 0.35 0.79 0.94 0.40 0.23

1.34,-0.42 13.88 0.17 0.17 31.60 3.28 3.31 4.75 0.16 0.16 0.73 0.95 0.85 0.16

0,0.3 0.52 0.42 0.45 5.80 5.21 5.26 0.53 0.44 0.44 0.94 0.94 0.28 0.26

0.5,0.3 2.25 0.35 0.38 12.42 4.73 4.95 1.00 0.36 0.35 0.82 0.94 0.39 0.23

γ = 0.5

0.5,-0.3 4.46 0.31 0.38 19.89 4.37 4.90 0.49 0.31 0.30 0.18 0.92 0.27 0.22

-0.5,0.3 5.06 0.31 0.40 20.39 4.40 5.02 0.94 0.31 0.30 0.43 0.90 0.38 0.22

1.34,-0.42 30.83 0.14 0.15 51.46 2.96 3.12 4.06 0.14 0.14 0.26 0.94 0.78 0.15

0,0.3 0.50 0.38 0.47 5.61 4.89 5.47 0.47 0.37 0.37 0.94 0.92 0.27 0.24

0.5,0.3 4.62 0.31 0.42 19.25 4.39 5.16 0.88 0.30 0.30 0.46 0.89 0.36 0.22

T
=

5
0
0

γ = 0

0.5,-0.3 0.27 0.15 0.15 4.14 3.07 3.08 0.26 0.15 0.15 0.95 0.95 0.20 0.15

-0.5,0.3 0.45 0.16 0.16 5.34 3.17 3.17 0.45 0.15 0.15 0.95 0.95 0.26 0.15

1.34,-0.42 2.17 0.07 0.07 11.62 2.04 2.04 2.17 0.07 0.07 0.95 0.96 0.57 0.10

0,0.3 0.23 0.19 0.19 3.80 3.48 3.48 0.22 0.18 0.18 0.95 0.95 0.18 0.17

0.5,0.3 0.45 0.15 0.15 5.33 3.09 3.09 0.44 0.15 0.15 0.95 0.95 0.26 0.15

γ = 0.25

0.5,-0.3 1.62 0.13 0.14 11.79 2.91 3.02 0.24 0.14 0.14 0.33 0.95 0.19 0.15

-0.5,0.3 1.77 0.14 0.15 11.81 3.00 3.08 0.43 0.14 0.14 0.58 0.94 0.26 0.15

1.34,-0.42 11.79 0.06 0.06 31.31 1.98 2.00 2.03 0.06 0.06 0.40 0.93 0.56 0.10

0,0.3 0.21 0.17 0.18 3.62 3.26 3.37 0.21 0.17 0.17 0.95 0.95 0.18 0.16

0.5,0.3 1.79 0.14 0.15 11.86 2.94 3.06 0.42 0.14 0.14 0.56 0.94 0.25 0.15

γ = 0.5

0.5,-0.3 4.17 0.12 0.14 19.94 2.74 2.99 0.19 0.12 0.12 0.01 0.92 0.17 0.13

-0.5,0.3 4.34 0.12 0.15 19.91 2.82 3.14 0.37 0.12 0.12 0.08 0.91 0.24 0.13

1.34,-0.42 29.61 0.05 0.06 52.75 1.86 1.91 1.72 0.05 0.05 0.01 0.95 0.51 0.09

0,0.3 0.20 0.15 0.19 3.56 3.10 3.45 0.19 0.15 0.15 0.94 0.91 0.17 0.15

0.5,0.3 4.26 0.12 0.15 19.68 2.77 3.10 0.37 0.12 0.12 0.09 0.92 0.24 0.13
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Table S.7: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

ARMA(1,1) case with ρx = 0. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

ARMA(1,1) OLS GLS FGLS OLS GLS FGLS OLS GLS FGLS OLS FGLS OLS FGLS

T
=

2
0
0

γ = 0

-0.5,-0.4 1.13 0.27 0.29 8.52 4.56 4.28 1.06 0.38 0.28 0.96 0.95 0.40 0.21

0.2,-0.4 0.55 0.51 0.52 5.91 5.67 5.74 0.52 0.49 0.49 0.94 0.95 0.28 0.27

0.2,0.5 0.79 0.31 0.34 7.04 4.49 4.67 0.74 0.31 0.33 0.94 0.95 0.34 0.23

0.5,-0.4 0.54 0.52 0.53 5.85 5.77 5.80 0.50 0.50 0.50 0.94 0.94 0.28 0.28

0.5,0.5 1.22 0.22 0.24 8.77 3.78 3.94 1.14 0.22 0.24 0.94 0.95 0.42 0.19

0.8,-0.4 0.75 0.43 0.45 6.95 5.29 5.42 0.69 0.43 0.42 0.94 0.95 0.33 0.25

0.8,0.5 2.83 0.16 0.17 13.47 3.20 3.30 2.68 0.16 0.17 0.95 0.95 0.64 0.16

γ = 0.25

-0.5,-0.4 5.55 0.26 0.31 21.44 4.10 4.51 0.99 0.25 0.26 0.43 0.93 0.39 0.20

0.2,-0.4 0.70 0.44 0.52 6.68 5.34 5.75 0.49 0.46 0.46 0.90 0.94 0.27 0.26

0.2,0.5 3.34 0.27 0.33 16.59 4.19 4.62 0.69 0.29 0.31 0.47 0.96 0.33 0.21

0.5,-0.4 0.50 0.44 0.48 5.65 5.28 5.55 0.48 0.47 0.47 0.94 0.94 0.27 0.26

0.5,0.5 6.56 0.20 0.25 23.67 3.58 3.98 1.07 0.21 0.22 0.36 0.95 0.40 0.18

0.8,-0.4 1.52 0.37 0.41 10.23 4.87 5.15 0.67 0.40 0.39 0.80 0.94 0.32 0.24

0.8,0.5 11.95 0.14 0.18 30.92 3.06 3.42 2.54 0.15 0.16 0.53 0.94 0.62 0.15

γ = 0.5

-0.5,-0.4 13.91 0.21 0.36 36.08 3.61 4.65 0.82 0.21 0.22 0.01 0.89 0.35 0.18

0.2,-0.4 1.07 0.39 0.71 8.71 4.95 6.78 0.41 0.39 0.39 0.75 0.86 0.25 0.24

0.2,0.5 8.29 0.25 0.48 27.75 4.01 5.45 0.57 0.25 0.27 0.04 0.87 0.30 0.19

0.5,-0.4 0.56 0.40 0.57 6.01 5.04 6.09 0.40 0.40 0.40 0.91 0.90 0.25 0.24

0.5,0.5 16.59 0.18 0.36 39.56 3.40 4.73 0.89 0.18 0.19 0.01 0.87 0.37 0.16

0.8,-0.4 3.01 0.34 0.50 15.63 4.61 5.66 0.58 0.34 0.33 0.47 0.89 0.82 0.23

0.8,0.5 27.92 0.13 0.27 50.66 2.89 4.18 2.16 0.13 0.14 0.06 0.84 0.57 0.14

T
=

5
0
0

γ = 0

-0.5,-0.4 0.43 0.10 0.11 5.22 2.59 2.63 0.42 0.10 0.11 0.95 0.95 0.25 0.13

0.2,-0.4 0.21 0.19 0.20 3.66 3.49 3.54 0.21 0.19 0.19 0.95 0.94 0.18 0.17

0.2,0.5 0.29 0.12 0.12 4.34 2.69 2.74 0.30 0.12 0.13 0.96 0.96 0.21 0.14

0.5,-0.4 0.20 0.20 0.20 3.56 3.56 3.56 0.20 0.20 0.20 0.95 0.95 0.18 0.17

0.5,0.5 0.43 0.08 0.09 5.32 2.25 2.30 0.46 0.09 0.09 0.97 0.95 0.27 0.12

0.8,-0.4 0.27 0.17 0.17 4.16 3.28 3.32 0.28 0.17 0.17 0.96 0.95 0.21 0.16

0.8,0.5 1.03 0.06 0.06 8.17 1.91 1.94 1.11 0.06 0.07 0.96 0.95 0.41 0.10

γ = 0.25

-0.5,-0.4 4.85 0.10 0.11 21.12 2.48 2.61 0.39 0.10 0.10 0.07 0.93 0.24 0.12

0.2,-0.4 0.43 0.19 0.21 5.39 3.47 3.63 0.19 0.18 0.18 0.79 0.93 0.17 0.16

0.2,0.5 2.97 0.12 0.14 16.39 2.79 3.02 0.28 0.12 0.11 0.13 0.93 0.21 0.13

0.5,-0.4 0.26 0.20 0.23 4.11 3.55 3.85 0.19 0.19 0.18 0.90 0.93 0.17 0.17

0.5,0.5 5.90 0.09 0.11 23.35 2.33 2.56 0.43 0.08 0.09 0.06 0.92 0.26 0.11

0.8,-0.4 1.16 0.17 0.18 9.46 3.26 3.41 0.27 0.16 0.16 0.57 0.93 0.20 0.15

0.8,0.5 10.22 0.06 0.07 30.21 1.97 2.15 1.05 0.06 0.06 0.15 0.93 0.40 0.10

γ = 0.5

-0.5,-0.4 13.54 0.09 0.15 36.35 2.34 3.05 0.33 0.08 0.09 0.00 0.88 0.23 0.12

0.2,-0.4 0.84 0.16 0.24 8.28 3.20 3.90 0.16 0.15 0.15 0.47 0.89 0.16 0.15

0.2,0.5 8.00 0.10 0.17 27.85 2.49 3.31 0.23 0.10 0.10 0.00 0.87 0.19 0.12

0.5,-0.4 0.32 0.17 0.28 4.62 3.26 4.31 0.16 0.16 0.16 0.84 0.86 0.16 0.15

0.5,0.5 16.23 0.07 0.13 39.83 2.10 2.92 0.36 0.07 0.07 0.00 0.87 0.23 0.10

0.8,-0.4 2.74 0.14 0.19 15.78 3.00 3.45 0.24 0.13 0.14 0.09 0.90 0.19 0.14

0.8,0.5 27.60 0.05 0.09 51.74 1.78 2.43 0.89 0.05 0.05 0.00 0.87 0.37 0.09
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