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Abstract

We consider GLS and OLS estimation in a linear regression model with serially
correlated errors, and we provide the following contributions. First, we clarify when
OLS is consistent or not. Second, we give sufficient conditions such that GLS is valid
without the assumption of exogenous regressors (uncorrelated with past innovations).
Third, we devise a feasible GLS procedure valid whether or not the regressors are ex-
ogenous, and which achieves a MSE close to that of the correctly specified infeasible
GLS. We also illustrate how GLS can be more robust than OLS when the regressors are
exogenous, even when GLS is based on an incorrect correction. The main assumptions
are: a) the regressors are pre-determined (uncorrelated with future innovations); b)
the errors are stationary thereby admitting a Wold representation in terms of some
unpredictable innovations; c¢) the moving-average representation of the errors is in-
vertible and implies a short-memory process. We also briefly address issues related to
heteroskedastic errors.
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1 Introduction

We consider a linear regression model with serially correlated errors. If the regressors are
fixed or strictly exogenous (i.e., uncorrelated with the innovations at all leads and lags),
Generalized Least-Squares (GLS) is the Best Linear Unbiased Estimate ( BLUE). If the
regressors are pre-determined (i.e., uncorrelated with future innovations), GLS is no longer
unbiased but is consistent and asymptotically efficient. With exogenous regressors OLS is
consistent, though not efficient. Early work concentrated on fixed regressors or equivalently
strictly exogenous regressors. This remained the case well into the 80s; e.g., Amemiya (1986).
Contributions to construct GLS estimates include Cochrane and Orcutt (1949), Prais and
Winsten (1954), Durbin (1970), Amemiya (1973), among others.

Spurred by the development of the Generalized Method of Moments (GMM) by Hansen
(1982) econometricians started to tackle the problem of estimating the limit variance of the
OLS estimate. Early contributions include White and Domowitz (1984), Newey and West
(1987) and a comprehensive treatment was provided by Andrews (1991). Since then all the
theoretical and empirical work has concentrated on OLS and a flood of papers have been
devoted to deliver improved estimates of the limit variance of OLS so that the confidence
intervals have accurate finite sample coverage rates. This continues to this day. There is
little work about GLS in the theoretical and empirical literature when dealing with the linear
model with serially correlated errors, at least in econometrics. One is satisfied using OLS
with a disregard for ways to improve the properties of the estimate per se; e.g., bias, variance
and MSE (mean-squared errors).

There are generally three main reasons for adopting OLS instead of GLS. 1) There seems
to be a misconception, though not shared by all, about whether OLS is valid with the
regressors being exogenous or not (i.e., uncorrelated with past innovations or not). It is
generally believed that GLS is inconsistent with non-exogenous regressors. This view is now
taught early on in undergraduate textbooks; e.g., Stock and Watson (2019), ch. 16. 2) When
applying GLS one needs to choose a specification for the serial correlation in the errors. It is
then argued that an incorrect specification can lead to worse results than using OLS; i.e., it
is believed that while OLS is sub-optimal relative to GLS, it is more robust; see, e.g., Engle
(1974), Judge et al. (1985), p. 281, and Choudhury et al. (1999). 3) Even with a decent
specification, the gains in accuracy can be minor and the inference can be misleading; e.g.,
bad coverage rates using standard estimates of the asymptotic distribution. Our goal is to

show that all these claims are, in general, wrong under weak conditions.



Our focus is on the linear model y = X 5 4 u. Of course, our results rely on some crucial
assumptions. The first is that the regressors are pre-determined, which is often viewed as
less controversial than the requirement of exogenous regressors. The second is that the
errors are a stationary process and the associated Wold linear representation is invertible.
This is usually satisfied but may fail in some models, especially those involving rational
expectations arguments. Under the stated conditions, the first and second contributions
are to dispel the belief that OLS is valid with non-exogenous regressors, while GLS is valid
only with exogenous regressors. We show the opposite to be true, in general. We assume
that w, is a stationary process so that it has a linear representation in terms of a (possibly)
infinite linear model of the form u; = 2;0:0 cjer—; with e, being an ¢.7.d. sequence satisfying
E(e|®;_1) = 0 for some information set ®;, thereby making e; the sequence of innovations
of interest. The usual argument for the consistency of GLS relies on whether z; is exogenous
with respect to u;. We argue that this leads to an incorrect result. One should analyze this
issue by assessing whether z, is exogenous with respect to the innovations e;. For OLS, it does
not matter since the condition remains E(z,u;) = 0. But this implies E(z; Y77, cer—j) = 0,
which requires regressors exogenous with respect to e;. Theoretical and simulation evidence
substantiate these statements. Non-exogenous regressors imply, in general, inconsistent OLS
estimates, while the GLS estimates are consistent. Also, unlike OLS, GLS is consistent with
lagged dependent variables as regressors.

The second contribution is to devise a FGLS procedure valid with pre-determined regres-
sors whether or not they are exogenous, which achieves a MSE close to that of the infeasible
GLS procedure that uses the true structure (and parameters) of the serial correlation in
the errors. Care must be applied, as one cannot base such estimates on the OLS residuals.
We propose a procedure based on a generalization of the so-called Durbin (1970) regression,
whose coefficients are consistent with or without exogenous regressors. Using the resulting
quasi-differenced series, we apply an autoregressive approximation of order, say kr, with kr
chosen using the Bayesian Information Criterion (BIC); see Schwarz (1978). The simula-
tions show that the resulting FGLS estimate performs surprisingly well in finite samples. It
delivers estimates having lower MSE than OLS, often by a wide margin. The finite sample
coverage rates of the confidence intervals constructed using the standard asymptotic distri-
bution are, in general, very close to the nominal level with lengths much shorter than using
OLS with heteroskedasticity and autocorrelation consistent standard errors. We provide ex-
tensive evidence for both exogenous and non-exogenous regressors. In most cases, the MSE
of the FGLS is close to that of the infeasible GLS estimate.



A non-trivial exception for which OLS remains valid with serially correlated errors and
non-exogenous regressors pertains to h steps ahead predictive regressions as in, e.g., Hansen
and Hodrick (1980). Under rational expectations, the errors are M A(h—1) and the regressors
are uncorrelated with the errors. Still, we show that FGLS is valid and leads to more efficient
estimates provided the MA process is invertible.

In the Supplement, we also consider the case with both serial correlation and het-
eroskedasticity. We propose a two-step GLS procedure suggested by Gonzilez-Coya and
Perron (2024) to fit the heteroskedasticity and further reduce the MSE. We also show that
GLS is more robust than OLS, in that even a blatantly incorrect GLS correction can achieve
a lower MSE than OLS when both are consistent; see Remark 6.

The rest of the paper is structured as follows. Section 2 provides the general setup,
motivation and conditions under which OLS and GLS are consistent. Section 3 presents
preliminary issues related to the feasible GLS estimate proposed. Section 4 presents the
procedures for the general case with an invertible short-memory stationary process for the
errors. Issues related to the inclusion of lagged dependent variables are also discussed.
Section 5 presents extensive simulations about the finite sample properties of the OLS and
FGLS for a wide variety of processes for the serial correlation in the errors for both exogenous
and non-exogenous regressors. Section 6 provides brief concluding remarks. A Supplement
contains some technical derivations, additional material and simulation results. An empirical
illustration of the importance of our results is presented in Gonzalez-Coya and Perron (2025)

who consider issues related to testing the Uncovered Interest Parity (UIP) condition.

2 General setup and motivation'

Consider a scalar time series of random variable y; generated by:
y=xp+u, t=1,...T, (1)

where z} = (z1, ..., Tx) is a vector of regressors assumed to be stationary, 3 = (34, ..., 3})
a vector of unknown coefficients, 7' is the sample size. In matrix notation: y = X+ u, with
y = (Y1, yr), u = (ug,...,ur) and X = (z4,...,2%). The ordinary least-squares (OLS)
estimate of (3 is B = (X'X )_1 X'y. We assume that the error sequence u; is a stationary

process so that it admits a Wold representation of the form

u = C(L)ey = 3277 cierj, (2)

!The material in this section was first discussed in Perron (2021). This paper now supersedes it.
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where ¢y = 1. The roots of C'(L) are assumed to be outside the unit circle, so that u; is
invertible and has an infinite autoregressive representation. Also, Z;io Jlej| < oo, so that u,
is a short-memory processes. Note that e; ~ i.i.d. (0,0?) (independent and identically dis-
tributed) with E(e;|®;_1) = 0 for some information set ®;, thereby making e; the sequence of
innovations of interest. We consider heteroskedastic innovations in the Supplement. We also
consider later what happens when the process is non-invertible. As a matter of terminology,
we label u; as the errors and e; as the innovations.

We assume that Ele,x;] = 0, otherwise some instrumental variable procedure would be

needed. We say that the regressors are “pre-determined” if:
E [xt(et-i—h cey eT)] = 07 (3)

i.e., regressors uncorrelated with future innovations. Throughout, we shall maintain that
this is the case with some comments about what happens when it does not hold in Remark

9. We label the regressors as exogenous if
Elxi(e;1,...,e1)] =0, (4)

i.e., regressors uncorrelated with past innovations. This last condition is often seen as prob-
lematic, e.g., Stock and Watson (2019), pp. 588-597. The assumption of pre-determined
regressors is usually seen as much less contentious, at least in well specified models, other-
wise one could forecast future innovations. The terminology used differs in the literature.
What we label as pre-determined is sometimes referred to as exogenous (or past and present
exogenous), and what we refer to as exogenous is labeled as strictly exogenous (or present
and future exogenous); e.g., Stock and Watson (2019), p. 573. We shall continue with our
terminology. Also, the conditions are usually stated in terms of conditional expectations, i.e.,
E[zi|eiq,...,er] = 0 or E[x4|e;1,...,e1] = 0. Since these imply (3) and (4), respectively,
and we make use of the latter only, this is without loss of generality. More importantly,
we define the relation between the regressors and the innovations e;, not the errors u; as is

commonly done in the literature. The benefits of doing this will become clear.

2.1 Conditions for the Consistency of OLS

It is well known that the main condition (again apart from technical issues) for the consis-
tency of the OLS estimate is that E(x;u;) = 0. This condition is usually seen as unproblem-
atic apart from obvious cases of omitted variables in u; correlated with some regressor, or the

presence of lagged dependent variables. The only problem is then that the limit variance is
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different from that obtained assuming i.i.d. errors and calls for the use of heteroskedasticity
and autocorrelation consistent covariance matrix estimates, HAC estimates for short.

However, this condition requires, in general, exogenous regressors, since F(z; z;:o cjer_j) =
0 is required. In general, this implies the requirement E(z:e,_;) = 0, which is unlikely to be
satisfied with non-exogenous regressors. We state that this is the case “in general” since there
are many ways in which the regressors could be non-exogenous and F(z;u;) = 0. We view
these as knife-edge cases; for example, x; is correlated with e; o but u; = e; + c1e;_1 + cze4_3.
Also, suppose that u; is an M A(2). Then, if ¢; E(xie,_1) = —coE(xe;_2) and E(xie) = 0,
we have E(xyu;) = 0. Such cases are, however, unlikely to hold in practice.

Another way of assessing this result is to argue that a regression with serially correlated
errors is dynamically misspecified. Consider an AR(1) model of the form u; = pu;_q +
e;. Then, F(u;z;) = 0 implies that x; is exogenous with respect to e; since F(u;z;) =
pE(ui_1z)+ E(epry) = 0 if E(us—q12¢) = 0 or equivalently E(e;_;z;) = 0, in general. In other

words, E(y|z,) = x5 if 2, is exogenous, except for some knife-edge cases.

Remark 1. The Rational Ezpectations (RE) case. There is one non-trivial and empir-
ically relevant exception for which OLS remains valid with serially correlated errors and
non-exogenous regressors. This pertains to multi-steps ahead predictive regressions as exam-
ined, for instance, in Hansen and Hodrick (1980). In their framework, it is supposed that

E(yin|®:) = 23, where @, is the information set available at time t. Then,

Yerh = T3 + Upsn, (5)

with ugyn, = Yern — E(yern|®y) so that the error terms are forecast errors from using the
best predictor based on xy. It can be shown that uy, is an MA(h — 1) process. Since
xy C Oy, E(zyuirn) = 0 and OLS is consistent. Following our notation, we can write (5)
as yr = x,_,0 + uy, where u; = Z;:é ciei—;. OLS is then consistent only requiring pre-
determined regressors so that Elx;_p, Z?;& cjer—;] = 0. Hence, this type of models involve no
issue related to exogenous regressors and the fact that the regressors are pre-determined is
an implication of the rational expectations hypothesis. Still, as discussed in Remark 5 below,

GLS remains consistent with non-exogenous regressors.

Our purpose is to clarify the conditions under which OLS is consistent. Nothing new is
offered. The main condition still remains F(z;u;) = 0. One often reads that GLS should not
be applied because it requires exogenous regressors. Since OLS is routinely applied, some

researchers may think that issues of exogeneity are irrelevant for the consistency of OLS.



Stating the condition as F(z; Z;;E cjer—;) = 0 (for the linear processes considered) makes it
clear that exogeneity of the regressors with respect to all past innovations is needed except
for the “RE case” and some knife-edge occurrences. Of course, this requires working with
the Wold representation for u;. It may well be the case that one has some structural model
not in this form and is able to deduce that F(z;u;) = 0 directly. Then issues of exogeneity

with respect to u; (or e;) become irrelevant.

2.2 Conditions for the Consistency of GLS

Since u; is assumed stationary, let V (u) = 02, a symmetric, non-singular, and positive
definite matrix. Then, there exists a non-singular matrix D such that D'D = Q~!. The GLS
estimate is given by B¢ = (X'Q1X) ™" X'Q~ 1y and

Bars — B = (X'Q7'X) ' X'Q'u = (X'D'DX) "' X'D'Du.
The main condition for consistency is that
plimy_ o TP X'Q 7w = plimg_oo T X' D'Du = 0. (6)

In other words, DX and Du must be uncorrelated, at least in large samples. Consistency
can be achieved as follows. Note first that we can choose D to be lower triangular. For
instance, the Cholesky decomposition gives 2 = LL’ with L lower triangular. We can set
D = L7, which will be lower triangular. The elements of DX are of the form 22:1 dij
which for row ¢ involves only current and past x’s. The next condition is to ensure that Du
recovers the vector of innovations (eq, es, ..., €, ...) at least in large samples. This is where
the assumption of the invertibility of the MA representation is important, i.e., that the roots
of C(L) be all outside the unit circle. Then, u; has an autoregressive representation of the
form A(L)u; = e;. A common practice is to approximate this possibly infinite AR process

by a finite order one, with the order increasing with 7T, i.e., use the process

_ k
Uy = ijl PjUt—j + €tk

with k7 increasing at some appropriate rate as 1" increases 2. This is a standard approach in
the time series literature. Note that as T" increases, e; , approaches e;; see Section 4. Then,

with pre-determined regressors,

limy_.o E[X'D'Du] = E[}_72, (35, dyz))'e,] = 0, (7)

2Note that strictly speaking one should append a subscript k7 to p;- We omit this explicit dependence
in order to alleviate issues of cumbersome notation. The same applies to further estimates discussed below.
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Therefore, GLS is consistent without the need for exogenous regressors.

Remark 2. Since D'D = Q~', GLS is invariant to the choice of D. Hence, only pre-
determined regressors are needed whatever the choice of D, provided the invertibility condition
holds. Consider the AR(1) model with a forward filter, i.e., D chosen to be upper triangular,

call it F'. Ignoring the first and last observations F' = D', the condition for consistency is

El(xy — prig1) (uy — pugsr)] = Ef(xr — prygr) (1 — PQ)Ut — pery1)] = 0,

which requires a) Elxiiiei11] = 0, holding by assumption; b) E|xier11] = 0, satisfied with

predetermined regressors; and c¢) El(x; — pxii1)u] = 0, also holding given
El(zy — prep)u] = El(ve — prega) Z;io Pjet—j] = Z;io{E[ﬂftﬂjet—j] - PE[$t+1pj_1€t—j+1]}
= Zj’io{ij[xtetfj] - PjE[9€t+1€t7j+1]} =0,

since the last two terms are equivalent. What is needed is solely that there exist one decom-

position of Q=1 with D lower triangular and Du = e, at least in large samples.

Consider AR(1) errors, u; = puy_1 + €;. Ignoring the first observation for simplicity,

1 0 0

and

plimy oo T X'D'Du = plimy oo T30 (2 — pry—y) (ur — pug_1).

For this quantity to converge to zero, the conditions often advanced for (6) to hold are
E(zyu) = E(ziui—1) = E(xi—quy) = 0. It is often argued that the condition E(zui—1) =0
is problematic; see Stock and Watson (2019), pp. 584-585, who use this reasoning to argue
that GLS requires exogenous regressors and, hence, have limited appeal in practice. But this
overlooks the fact that u; is a composite of the fundamental sources of variation, namely e,
and ignores the structure of the model. Also, assessing exogeneity conditions based on the
relation between z; and wu,; is not appropriate. Since the GLS regression is OLS applied to

the regression y* = X*( + e, where y* = Dy and X* = DX, issues related to the exogeneity



of the regressors need to be analyzed via the relation of X* to e and not of X to u. The

transformation eliminates u;. Indeed, we can write (6) as
T (DX) (Du) =TS, (2 — pwe_1) e (9)

Thus, for consistency, we need E (z; — pxy_1)e; = 0, or E(xe;) = E(xy_1e4) = 0, for all
t, which is satisfied with predetermined regressors. There is no need to assume exogenous

regressors. Then, with p known, one can consistently estimate [ using the regression

(ye — pye1) = (x4 — pre1)' B +e, (t=2,...,7T). (10)

Remark 3. Keeping the AR(1) example, suppose we apply GLS with some arbitrary value
|p*| < 1. Then, with D* as defined by (8) with p* instead of p,

TH(D*X) (D) = T, (m = p'ma) (w — prupy)
= T Y, (= p'wa) (e — (p = p")usy)
= T Y, (= p'wi) (e — (p — p7) (e + puiz)).

Therefore, assuming pre-determined regressors what is needed for consistency is either a)
exogenous regressors irrespective of the value of p and p*; or b) non-exogenous regressors
and p = p*. Accordingly, if the regressors are exogenous, GLS is consistent using any value
of p*, including 0, so that OLS is consistent, a well-known result. On the other hand, with
non-exogenous regressors, we need p = p* for consistency, i.e., the correct value of the
parameter of the serial correlation in u,. Of importance is the fact that when p # 0, the
value p* = 0 1s not permitted, showing that OLS is indeed inconsistent as claimed above

using other arguments. This result can be extended to more general cases.

Remark 4. An important implication of our result is the fact that unlike OLS, GLS 1is
consistent with lagged dependent variables as regressors. This follows given that (7) remains
0 when z; includes lagged dependent variables given E(y_je;) = 0 (j > 1). Since in the
original model estimated by OLS, a lagged dependent variable implies E(xyu;) # 0, OLS is
inconsistent. The GLS transformation can be viewed as a way to obtain a regression with

pre-determined regressors with respect to the relevant innovations e;.

Remark 5. GLS is, in general, consistent with predictive regressions of the type discussed in
Remark 1, provided the MA process is invertible. This follows trivially since (7) is satisfied if
the regressors only include lagged values at delay h, i.e., the GLS regression still only involves
predetermined regressors with respect to the innovations e;,. We show in the Supplement,

Section S.3, that even for this case GLS performs much better.
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Remark 6. It is often argued that GLS may be less robust than OLS because a wrong
specification of the process for uy may lead GLS to have higher MSE than OLS. Section S.1
in the supplement considers a very simple AR(1)-based procedure to obtain a GLS estimate
that is (almost) never worse than OLS, subject to very minor random deviations. Of course,
using the incorrect quasi-differences does not lead to the best outcome as GLS is optimal only
when the correct specification is used. Still, the results are important in that they suggest
that some departures from the true specification due to misspecification or biased parameter
estimates will not make FGLS being less precise than OLS. The general message is that to
minimize the MSE it is better to do any kind of GLS method instead of OLS.

3 Issues Related to Constructing a Feasible GLS Estimate

We consider first the case with AR(1) residuals to present the main issues of interest. The

model with non-exogenous regressors is
Yr = Bxe +up,  up = pusq + ey, (11)

with 2, = (L,wy), wy = v, + e_1, vy, e, ~ i.4.d.N(0,1) independent of each other. In
practice, one needs a feasible version of the GLS estimate. Here, the Cochrane and Orcutt
(1949) procedure will not work since it estimates p using the OLS residuals, i.e., peo =
Sty i) S, 42, where @ = 3 — @}fops. Without exogenous regressors, Bopg is
inconsistent and so will p°°. A method valid without exogenous regressors is to first estimate

p using Durbin’s regression (Durbin (1970)), which simply re-writes (10) as

Y = pyr—1 + 238 — pry_1 5 + ey (12)

Then, a consistent estimate of p, say p”, can be obtained estimating (12) by OLS. One can

then construct a feasible version of the quasi-difference regression (10) using

(yt - IbDytfl) = (.7315 - ,betfl)lﬁ + €t, (t = 27 [T T)7 (13)

to estimate 3. The estimates of 5 and p will be consistent with regressors exogenous or not
as long as they are pre-determined. Alternatively, one can simply estimate 5 using OLS
applied directly to the Durbin regression (12), though this is less efficient since it does not
amount to a GLS procedure. Of course, one can iterate though we do not pursue this avenue.

It is useful to illustrate the issues via simple simulation experiments. The specifications

are the same as (11) for the AR(1) case and is y; = 2|8 + u;, where x; = (1,w;)" with
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wy = vy + €1, and uy = puy_q + e, is an AR(1) process; vy, e; ~ i.1.d.N(0, 1) independent of
each other. We set ug = 0, without loss of generality, 5 = (1,1)’, p = 0.8 and 7" = 500. The
simulations are based on 10,000 replications. Note that F (z;y1e;) # 0, so that the regressors
are not exogenous. Accordingly, E(xu;) # 0 and OLS is inconsistent. Note that £ (e;z:) =0
so that no “classical” endogeneity problem is present. Also E(z.e,—;) = 0 (j > 0) so that

GLS is consistent. We consider the following regressions, where § = pf3:

a) yy = vy +u, (OLS); b) yp = 238 + pys—1 +2;_10 +u; (Durbin)
c) Yt — pYi—1 = (x4 — th—l)lﬁ +e (GLS); d) yo — py—1 = (z — ,59515—1)/5 +e (FGLS)

The first is OLS; the second is the Durbin regression from which consistent estimates of p
and § can be obtained. The third is the infeasible GLS based on the known value of p (to
be used as a benchmark). The fourth is a feasible GLS regression for which we shall use two
estimates of p: a) that used in the Cochrane and Orcutt procedure, labelled CO-FGLS. b)
The estimate of p obtained from the Durbin regression, labelled as FGLS.

The results are presented in Table 1. The bias and MSE of OLS is very large, in accor-
dance with its inconsistency. The Durbin and FGLS methods lead to very small biases, since
they yield consistent estimates. The FGLS has better finite sample properties and performs
nearly as well as the infeasible GLS method. The CO-FGLS method has surprisingly small
bias (and MSE) despite being inconsistent. The implied estimate of p has a substantial
bias with mean 0.63 instead of 0.8. Here, the quasi-differencing operation is biased but still
effective in reducing the bias in the estimate of 3, though not as well as with the estimate
from the Durbin regression. Using simulations with 7" = 10,000, we verified that the the
FGLS estimate of 3 is more efficient than that from the Durbin regression with a MSE 31%
smaller. Hence, we shall only consider the FGLS method.

4 FGLS for the general case

We now present the recommended feasible method, applicable to all cases except with lagged

dependent variables as regressors, discussed later. Assuming invertibility, we can approxi-

mate the linear processes (2) by some autoregression whose order increases with 7', i.e., use

U = Z;Zl pjut—j + €, with kp — oo at some appropriate rate so that ey, is nearly 7.7.d..
Then (12) and (13) are replaced by

k k
Y = Zjil PiYi—j + x5 — 2;1 352_]'53' + ek, (14)
(yr — Zfil ﬁjpyt—j) = (2 — 2521 i)fxt_j)’ﬁ +ep, (t=kr+1,..,T), (15)
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where ,bJD (j =1,...,kr) are the OLS estimates of the coefficients associated with the lagged
dependent variables from regression (14). Of course, one can iterate starting with any
consistent estimate. However, as our simulations will show the estimates have very good
properties so that iterations are not warranted. The FGLS estimate can then be computed
in two steps: 1) For any given kr, estimate (14) by OLS and use BIC to select the lag length
k%.. The search is made for kr € [0, k**] and the method suggested by Ng and Perron (2005)
is used to ensure a proper comparison across models with different values of k7, i.e., using the
same effective number of observations, namely 7" — k7**. The maximal order k7** increases
with 7', but in practice the method is robust to reasonable values. We use £7** = 12 when
T = 200,500. Hence, BIC selects k% = arg ming, [In(62,.) + (In(T — k22 /(T — k22)) k],
where 62, = (T — k@) "L37, €2, and ¢ are the residuals from applying OLS to
(14) using observations ¢t = k™ 4 1,...,T for each value of kr. 2) From step 1, use the
estimates ﬁjD (j = 1,...,k}) to construct the quasi-differenced variables (y; — 2521 ﬁijt—j)
and (z; — Zfﬁl ﬁf) zi—j). The FGLS estimate of § is then obtained applying OLS to the
regression (15) with kr = k. using the observations ¢t = k. + 1,...,T.

The FGLS and GLS estimates will have the same asymptotic properties. The arguments
are as follows. If the process is an AR(p), BIC will select a value k}. that converges in
probability to p. The estimates ﬁf are consistent for p; (j = 1,...,k}). For general linear
short-memory processes k. = O,(In(7)), which increases to infinity. Hence, || ﬁJ-D —p;ll =
O,(T~/%), where || - || is the Euclidean norm of the vector. This holds following Berk (1974)
under the same conditions, basically that kr — oo and k2./T — 0. Since these rates allow a
log rate of increase for kr, the same result holds when selecting k7 using BIC, which implies
a log rate of increase as shown in Hannan and Deistler (2012). Given the consistency and
rate of convergence of b]D , it is then easy to show the equivalence between FGLS and the
infeasible GLS. The estimation of the parameters ﬁjp has no first-order effect. Since the
technical arguments involve only modifications of already established results, see Remark 7,

we omit the details. Hence, the asymptotic distribution is given by
VT(B = B8) % N(0,plimy_.oo 02T X'Q71X) 7Y,
and the limit variance is consistently estimated by
2T = k)™ Sk (e — S P ) (e — S P )7

where 6%, = (T — k%)~ ZtT:kT 1 €y> With &g the estimated residuals from applying OLS to

(15) with k7 = k}.. The main idea is to have some transformations to make the regression
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residuals as close as possible to the contemporaneous true errors and then have this regression
involve only past regressors so that only pre-determined regressors are required. Of course, of
concern is whether the asymptotic approximation and the choice of the tuning parameters k7.
provide good approximations in finite sample. In Section 5, we provide extensive simulations
to show that a) the mean, variance and MSE are close to that which could be obtained using
the infeasible GLS procedure; b) the coverage rates of the confidence intervals are near the
nominal level, i.e., the asymptotic distribution is a good approximation; ¢) the length of the

confidence intervals are shorter (higher precision) compared to other methods.

Remark 7. Amemiya (1973) analyzed feasible GLS when the errors u; are an ARM A(p, q)
process approximated by an AR(kr) with kr increasing with T'. He uses the OLS residuals
and assumes “non-stochastic” regressors. Qur results show that his proposed method is valid
only under the assumption of exogenous regressors. Still, our approach s closely related. For
a similar more recent treatment, see Fang et al. (2023). For more advanced treatments, see

Hannan and Kavalieris (1986) and Hannan and Deistler (2012), among many others.

Remark 8. To improve upon OLS, Buaillie et al. (2025) proposed using the Durbin regres-
sion (14). They claim correctly that the estimate of B is consistent whether the regressors
are exogenous or not. However, this leads to a less efficient estimate compared to FGLS.
Simulation experiments showed our FGLS procedure to be more efficient mostly due to the
fact that with serially correlated regressors issues of multicolinearity reduces efficiency; see
also Gonzalez-Coya and Perron (2025) who present evidence of very poor power of tests when
using the Durbin regression for cases calibrated to real data. Hence, we shall not further con-
sider this method. As discussed below, it offers no additional advantage in extended contexts

such as models with lagged dependent variables and non-predetermined regressors. *

Remark 9. The crucial condition for GLS to be consistent is that the regressors be pre-
determined. With innovations correlated with some omitted observable variables, the problem
1s easy to fir. Simply include enough lags of the covariates as regressors. This is in fact
the reason why Baillie et al. (2025) advocate using the Durbin regression to have estimates

robust to non-predetermined regressors. They include all lags of both the dependent and

3For the record, which is incorrectly stated in their paper, their prior versions (e.g., arXiv:2203.04080v1)
before presenting our work at the NBER-NSF time series conference in September 2022, labelled the method
as DynReg and argued that it was a device to improve the finite sample coverage rate over OLS+HAC.
It continued to claim that OLS was consistent and GLS not when the errors are serially correlated with
non-exogenous regressors. Their newer versions changed the label of the method as the Durbin regression
and they now claim that OLS is inconsistent while GLS is. These changes were in no doubt fostered by our
work, but improperly acknowledged.
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original regressors as covariates. Doing so, they lose considerable efficiency. Our aim is
geared to provide an efficient method. One can test whether the regressors are pre-determined
or not. What causes the correlation between the innovations and the regressors is of no
consequence. The fact is that non-determinedness implies correlation between some variables
and the errors means that tests can be performed for its potential presence. What is needed
are estimates of the residuals based on a consistent estimate of 5 whether or not exogeneity
or pre-determinedness hold. When the omitted variable is observed, this can be achieved via
the Durbin regression (12) using a variable addition test (e.g., Engle (1982)). The steps are
the following: a) Estimate the Durbin regression (14) and get the estimate BD; b) construct
the residuals 4P =y, — xQBD; c¢) De-mean the residuals to obtain uP = 4P — T1 Zthl al;
d) Perform an LM test for variable addition using lagged values of x;. This can be done
sequentially using the first, then second, and so on lags. Upon a rejection, include the
relevant lagged variables as regressors in the main equation (1); e) Apply FGLS as outlined
above to this regression. This will lead to a consistent of estimate of 3 with regressors pre-
determined or mot. One can also select the lagged regressors to be included via information
criteria, such as the BIC. When the omitted variable is unobserved none of the procedures

discussed here will be consistent except in some special cases.

4.1 The case with lagged dependent variables as regressors

As stated in Remark 4, GLS is consistent with lagged dependent variables as regressors.
However, alternative methods to get consistent estimate of the parameters p; (j = 1,..., k})

are needed to construct the FGLS estimate. Consider the model
Yr = Z?il Ye—j + 15 4 Uy,

where u; = C(L)e; is again a linear invertible stationary short-memory process and
(j = 1,..., k) are pre-determined regressors. When constructing the Durbin regression, one
pre-multiplies both sides by (1 — Zfil p;L7) for some kj selected via the BIC information

criterion. Assuming k}. = p, for simplicity, this leads to the regression
k* % k*
Y = Zjil G Yp—j + (37;5] - Z]‘21 $;7j5j> + €k, (16)

where af = a; + p; and §; = (0;1,...,0;) with 6;; = B,,0;. Accordingly, the parameters
p; cannot be identified using the coefficient on the lagged dependent variable o] since a; is
unknown. However, as suggested by Wallis (1967), one can obtain consistent estimates using

the fact that p;, = d;;/f;;, given by f)f = 5ji / Bj. One can then proceed to construct the
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FGLS estimates as described in Step 2 above. A drawback is that with multiple regressors
xj;, there are many ways to construct an estimate of f)JD , one for each ¢. Simulations and
applications reported in Gonzilez-Coya and Perron (2025) show that the results are not

sensitive to the choice of the variable used because GLS is robust to small variations in p,.

5 Simulation results

The issues addressed are the following: the bias, variance and MSE of the FGLS estimates,
the exact coverage rate and lengths of the confidence intervals. We also report similar results
for the infeasible GLS procedure that uses the true value of €2 to construct the estimate
Bars = (X'Q1X) 7 X'Q Yy, with Var(Bg.61X) = 02(X’Q71X)~!, and uses the true values
of the parameters. This is done to assess the extent to which the FGLS procedure is able to
provide as precise an estimate as possible. For AR(1) processes, we also report results for the
Cochrane and Orcutt (1949), labelled CO. It is often the case, with rational expectations
models, that the theory predicts M A(h — 1) errors whenever forecasts at horizons h are
involved. In the simulations, we shall consider errors generated from M A(1) processes. It
is useful to also consider an approximate GLS procedure for M A(1) errors for the following
reasons: a) an autoregressive approximation selected using the BIC may yield a rather
parsimonious model that fails to capture the extent of the serial correlation in the errors; b)
we may have prior knowledge that the errors are an M A(1) process. Hence, we also consider
the following approximate GLS procedure, labelled, GMA. It is based on the OLS regression
yr = x; B + e, where y; = Z;;B(—@)jyt,j, T = Zj;t(—é)jwt,j with 0 the MLE (exact or
approximate) of 0 for u; = e; + 0e;_1, where u; = y, — x4 with 5 the OLS estimate from the
regression (14) with kr = int[4(T/100)%°].

We consider the DGP y; = a+ Sz, +u;. Weset («, 5) = (0, 1), without loss of generality.
The sample size is T' = 200. For the errors u;, we consider the following specifications: 1)
AR(1): uy = pyus—1+er; p, = {—0.5,0.0,0.2,0.5,0.8}; 2) AR(2): ur = pyytt—1-+ Puotit—2 +€;
(Puts Puz) = {(1.34,-0.42),(0.5, —0.3),(—0.5,0.3), (0.0,0.3),(0.5,0.3)}; 3) MA(1): u, =
e + 0Oei_q; 0 = {—0.7,—-0.4,0.5}; 4) ARMA(1,1): u = pyus—1 + e + Oer_1; (p,,0) =
{(=0.5,—0.4), (0.2, —0.4), (0.2,0.5), (0.5,—0.4),(0.5,0.5), (0.8, —0.4), (0.8,0.5)}. Through-
out, e; ~ i.i.d. N(0,1) and xy; = p,x1,-1 + v + ye,_1 with v, ~ i.i.d.N(0,1) independent of
e;. When v = 0, the regressors are exogenous, while v # 0 imply non-exogenous regressors.
We report results for p, = 0.8, while the Supplement reports results for p, = 0; see Tables
S.4-S.7. We use 10,000 replications and 7" = 200, 500. The results are presented in Tables
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2-5. We focus our discussion on the MSE and the confidence intervals.

To construct the confidence intervals, we simply use the fact that, for some given lag
length k%, the FGLS estimate is simply OLS obtained from the regression (15), so that an
estimate of (T times) the asymptotic covariance matrix is Var(fpers) = 62(X ,;}Xk;)_l,
where Xpe = (s 1, 27), @ = (L, 23) for t = k3 + 1, T, with 27 =z, — Zfil f)ijt_j
and 6% = (T — k&)™ ZtT:kT 1 €,, With éy, the OLS residuals from estimating regres-
sion (15) by OLS. For the GMA procedure the variance is estimated similarly, except
that Var(Baya) = 62(X¥X*)!, where X* = (¥, ... a), o = (1, %) for t = 1,..., T,
with z; = Zz;})(—é)jxt_j. To construct the confidence interval of the OLS estimate,
we use the so-called HAC standard errors based on the weighting scheme suggested by
Andrews (1991) with automatic bandwidth selection. This leads to the following esti-
mate of the asymptotic covariance matrix: Var(8og) = (T X'X) ' (T X'X) ™", where
£ =17 Zsz__lT-Hw(]/m)f‘v(]) with fv(]) =T ZtT:j+1 0;_; for j = 0 and fv(]) =
T-1 ZtT:fjH By ;0 for j < 0, and 9, = x,(y; — #Borg). We use the quadratic spectral
kernel recommended by Andrews (1991) for which w(z) = (3/z?) (sin(z)/z — cos(z)), where
z = 672/5, and m is the bandwidth parameter constructed using the automatic bandwidth
selection using an AR(1) approximation. The confidence intervals are constructed in the
usual way, via BA,@‘ +2_a Var(BA)ip, where A refers to the estimator (OLS, GLS, FGLS,
etc...), 4 is the index for the coefficient, z;_,/2 is the 1 — a//2 quantile of the N(0, 1) distrib-

ution. We use o = 0.05, i.e., two-sided 95% confidence sets.

5.1 Simulations with exogenous regressors

We first present results with exogenous regressors, i.e., v = 0, that allows a proper comparison
since both OLS and FGLS are consistent. The following features are noteworthy: 1) The
MSE of the FGLS estimate is never higher than when using OLS. It can be dramatically
lower; e.g., the case of the AR(2) with parameters 1.34 and -0.42 for which the reduction
is 96% when T = 200. Overall, the reductions are substantial. 2) In most cases, the
MSE of FGLS are near those obtained using the infeasible GLS, so the suggested procedure
nearly achieves the best possible outcome. This is even the case for processes having an MA
component, which are notoriously difficult to approximate using low order autoregressions.
3) When the error process is strongly correlated the reduction in MSE comes from both a
reduction in bias and variance. When the extent of the correlation is small, most of the
reduction is due to a decrease in variance. 4) For the AR(1) case, using the Cochrane and

Orcutt (1949) procedure (valid here because of exogenous regressors) yields results that are
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nearly identical to using the more general method advocated. This shows that FGLS adapts
well to the generating process. 5) For the M A(1) case, the GMA performs as well as FGLS
and the infeasible GLS. In all cases, the gains are mostly due to a decrease in variance.
The results for the coverage rates of the confidence intervals with nominal level 95% are
presented in the last two column-panels of Tables 2-5. The following features are noteworthy.
1) In most cases, the exact coverage rates for the FGLS method are within 1% of the nominal
level, hence within random errors due to simulations. This holds even with strong correlation
in the errors unlike the method based on OLS, which is subject to high size distortions as
extensively documented in the literature. The main reason for why the coverage rates of
FGLS are near the nominal 95% level is because it involves residuals that are nearly i.i.d.,
in which case the Central Limit Theorem (CLT) is a good approximation even for small
samples. The OLS method involves the product z;u; which can be strongly correlated, in
which case a much large sample is needed for the CLT to provide a good approximation.
2) The length of the confidence set using FGLS is always shorter than that obtained with
OLS. The differences are larger as the process is more strongly correlated. For instance, in
the case of the AR(2) with parameters 1.34 and -0.42, the length of the confidence interval
with FGLS is 77% smaller. With i.i.d. regressors (p

qualitative results hold, though the coverage rates of the confidence intervals for OLS are

. = 0), see the Supplement, the same
close to the nominal level 95% in all cases (similar to FGLS) given that x;u; is less correlated.
Overall, the simulations show that the suggested FGLS procedure can do no worse than OLS
even with near zero correlation. It yields estimates with much lower MSE, especially as the
strength of the serial correlation increases. This is achieved with no cost and some benefits

to the coverage rates of the confidence intervals and a substantial reduction in their lengths.

5.2 Simulations with non-exogenous regressors

The specifications are the same except that now v # 0. Accordingly, z; is not an exogenous
regressor, it is simply pre-determined. We consider two values of 7, namely v = 0.25 (weak
correlation) and v = 0.50 (strong correlation). The results are presented in the second and
third horizontal panels of Tables 2-5. Note that the condition F(z;u;—1) = 0 usually used to
justify the consistency of GLS is not satisfied. Still, the results will show its irrelevance as
FGLS performs very well while OLS very poorly. This accords with the theoretical discussion.

The following features are noteworthy. 1) For the MSE (and bias and variance), much of
the same results hold as with exogenous regressors. Again, FGLS performs almost as well as
the infeasible GLS. 2) For M A(1) processes the approximate GLS, labelled GMA, performs
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slightly better than FGLS, when 7" = 200; the differences are substantially reduced when
T = 500, in which case both performs nearly as well as the infeasible GLS. 3) Across all
cases, the main difference is the very large bias and MSE of OLS. For instance, for an AR(1)
with parameter p, = 0.8, the MSE is about 23 times larger than FGLS when 7" = 200 and
v = 0.5 (and 55 times larger when 7' = 500). There are even more pronounced examples
like the AR(2) with parameters (1.34, —0.42) for which the differences are 149 times larger
when 7" = 200 and 363 times when 7" = 500. Both the bias and variance of OLS are much
larger than those with FGLS for both T" = 200, 500, given that OLS is inconsistent.

The results for the coverage rates of the confidence intervals are presented in the last two
column segments of Tables 2-5. The following features are noteworthy. 1) The results for
OLS are meaningless. The coverage rates are all over the map and can be near 0 with strong
correlation in the errors. Also, they get noticeably worse as T' increases. 2) For FGLS, the
coverage rates are near 95% for AR(1) errors. For AR(2) errors, we see some less accurate
coverage rates for v = 0.5. 3) For M A(1) errors, the coverage rates of GMA and FGLS are
good when v = 0.25, but more precise with GMA when v = 0.5. 4) For ARM A(1,1) errors,
the coverage rates of FGLS are good for v = 0.25 but less so for v = 0.5. The results for the

case with 7.7.d. regressors are presented in the Supplement, with similar conclusions.

Remark 10. As discussed in Remarks 1 and 5, in the rational expectations case, both OLS
and GLS are consistent. Simulation experiments in the Supplement show that, with exogenous
or non-exogenous regressors, FGLS is by far superior to OLS in terms of MSE and length

of the coverage rates, with results similar to the case with exogenous regressors.

Remark 11. Gonzailez-Coya and Perron (2025) present simulation results about the power
of tests on [ for cases calibrated to real data. With exogenous regressors, the tests based on
all methods have nearly the correct size while FGLS has the highest power by a wide margin
over the Durbin regression and OLS, which have very little power. When the regressors are
non-exogenous, OLS has distorted size, as expected, but otherwise the relative power functions
remain the same. The poor performance of the tests based on the Durbin regression arises
from the fact that with regressors that are serially correlated, as is usually the case, the
introduction of many lagged regressors creates a collinearity problem that inflates the MSE
of the estimates and thereby reduces power. This is avoided when using FGLS since the final

regression is a simple transformation of the original regressors.

Remark 12. If heteroskedasticity in the innovations is a concern, two avenues are possible.

The first is to correct the standard errors using a heteroskedasticity-robust covariance matrix
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as suggested by, e.g., White (1980) or subsequent variations. Our recommendation is to
apply a further FGLS correction as suggested by Gonzilez-Coya and Perron (2024). It is
based on an Adaptive Lasso procedure to fit the skedastic function. The method and some
simulation results are presented in the Supplement, Section S.4. Qverall, further reduction
in the MSE are possible even using incorrect covariates to estimate the skedastic function
as long as there is some correlation between the covariates used in the Lasso specification
and those in the true skedastic function. The coverage rate of the confidence intervals have
an exact size close to the nominal level and the lengths are smaller compared to applying
OLS or correcting only for serial correlation. With homoskedastic innovations, the results
are equivalent to those obtained correcting only for serial correlation. Hence, correcting for

heteroskedasticity when it is not present has no detrimental effect.

5.3 The case with a non-invertible process

We now consider the case with non-invertible errors with the roots of C'(L) inside the unit
circle. For motivation, let us revisit the example discussed in Remark 1. The predictive
model states that F(y;.x|®;) = z}3, where ®; is the information set available at time t¢.
Then, yix = 0 + Uik, With uprr = yirp — E(yiax|P:) so that the error terms are forecast
errors from using the best predictor based on z;. It can be shown that uy is an M A(k —1)
process of the form w; = €4 p+ 16411+ .. + Ch_16111, With e; ~ i.i.d. (0,02). Since z; C
®,, E(xur) = 0, OLS is consistent and can be applied with the relevant HAC correction.
For simplicity, we shall restrict ourselves to the case of M A(1) errors. Suppose that y,
is an AR(2) process with parameters (1.34, —0.42). Suppose that & = 2, then wu; is an
MA(1) with parameter 1.34. Hence, the root is inside the unit circle and the process is
non-invertible. In this case, OLS is consistent since it only requires F(z;usy9) = 0 which is
guaranteed by the rational expectations hypothesis.

Things are more complex with GLS. First, there does not exist a matrix D such that
D'D = Q7! and Du = e, with the vector of innovations having elements e, for t = k, ..., T,
even in large samples. Continuing with the M A(1) example with u; .2 = e; + ce;—1, we have
that the covariance matrix of « when the MA parameter is c¢ is simply a scaled version of

the covariance matrix of © when the MA parameter is ¢ !.

Hence, the GLS estimates are
the same using either values since the scale factor cancels. It does not imply that GLS is
inconsistent since it is simply a consequence of the well known observational equivalence. If
two processes are observationally equivalent, then estimators based on them will be identical.

For FGLS, we can gain some insights by looking at the transformation of the model
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applying an autoregressive filter «(L). Then, o(L)uyy has the same autocovariance function
as C(L)egy. If C(L) is invertible, a(L) = C(L)™! and a(L)uss, = e41p. This is the case
discussed above with consistent and efficient GLS estimates. When the process is non-
invertible, the transformation will involve the observationally equivalent representation with
a(L) = (1 4+ ¢ 'L). A researcher using the invertible model would not recover the true

structural shocks, but rather

(1—c L) Muyp=0—-c'L) "1 —cl)eyp =1 —c'L) "1 —c 'L+ c 'L —cL)ey
=e+(ct—o)(l—c L)y e =e+(ct—c) Zio(c_l)"et%_l_i_

A discussion of these issues is contained in Hannan (1971) and Rozanov (1967). The problem
is with the second term, which involves all past values of the innovations. Since DX involves
past values of x;, FGLS will be consistent with exogenous regressors but will be inconsistent
otherwise. If we consider a model of the form y = X/ + u, with u; a general non-invertible
process that is correlated beyond period ¢, e.g., some non-invertible ARMA process, then
both OLS and GLS fail to be consistent. The problem is that it is very difficult, given
the observational equivalence between the non-invertible and invertible representations, to

ascertain whether the process is invertible or not.

6 Conclusions

We showed that 1) OLS is, in general, inconsistent with non-exogenous regressors, while GLS
is consistent; 2) a simple FGLS procedure based on estimating an approximating AR(k}.)
process with k7. chosen using the BIC works very well and delivers estimates that a) are by far
superior to OLS (lower MSE); b) robust to a wide variety of data-generating process; c) have
confidence intervals with exact coverage rates close to the nominal level with length much
shorter than with OLS. This holds whether the regressors are exogenous or not, provided
a) the regressors are pre-determined, and b) the stationary linear error process is invertible.
We used the simple linear model as it is the leading case of interest. A similar treatment for
models with endogenous regressors contemporaneously correlated with the innovations and
estimated via some instrumental variable procedure is covered in Olivari and Perron (2024).
Our results provide a strong case for abandoning the often-used OLS-+HAC approach so

common nowadays.
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Table 1: Root mean squared errors, bias and variance of estimators of § and p; AR(1)

model.
B p
OLS | Durbin | GLS | FGLS | CO-FGLS || FGLS | CO-FGLS
RMSE 0.400 | 0.036 | 0.025 | 0.025 0.041 0.034 0.175
Bias 0.400 | 0.029 | 0.012 | 0.020 0.035 0.027 0.171
Variance | 0.0031 | 0.0013 | 0.0006 | 0.0006 | 0.0008 0.0010 | 0.0013
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Table 3: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,
AR(2) case with p, = 0.8. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Length

AR(2) OLS GLS FGLS | OLS GLS FGLS | OLS GLS FGLS | OLS FGLS | OLS FGLS

0.5,-0.3 0.32 0.28 0.29 4.54 4.23 4.28 0.34 0.29 0.28 0.95 0.95 0.23 0.21

-0.5,0.3 0.17  0.13 0.13 3.22 283 2.86 0.16 0.13 0.13 0.94 0.95 0.16 0.14

v=0 1.34,-0.42 | 11.45 0.42 0.42 26.96 5.15 5.19 8.09 0.40 0.39 0.87 0.94 1.08 0.25
0,0.3 0.31 0.26 0.28 439 4.09 4.20 0.22 0.27 0.26 0.90 0.93 0.18 0.20

0.5,0.3 1.86 047 048 | 10.79 5.50 5.60 1.27 047 045 0.86 094 0.43 0.27

0.5,-0.3 0.36 0.26 0.28 4.83 4.04 4.18 0.31 0.27 0.26 0.92 0.94 0.22 0.20

= -0.5,0.3 0.21 0.12 0.13 3.61 2.74 2.84 0.16 0.12 0.12 0.91 0.94 0.15 0.13
Cﬂ] v=0.25 1.34,-0.42 | 27.51 0.39 0.41 44.90 5.00 5.16 7.29 0.37 0.37 0.58 0.94 1.02 0.24
& 0,0.3 0.32 0.25 0.28 458 394 4.20 0.20 0.26 0.24 | 0.86 0.92 0.18 0.19
0.5,0.3 3.79 0.44 0.49 16.41  5.32 5.61 1.14 0.44 0.43 0.64 0.93 0.41 0.26

0.5,-0.3 0.41 0.22 0.25 5.35 3.72 4.00 0.25 0.23 0.22 0.85 0.94 0.19 0.18

-0.5,0.3 0.30 0.10 0.12 4.41 2.54 2.79 0.14 0.10 0.10 0.84 0.92 0.15 0.12

v=10.5 1.34,-0.42 | 58.25 0.33 0.39 | 7148 4.61 5.00 5.38 0.32 0.32 0.16  0.92 0.88 0.22
0,0.3 0.36 0.21 0.29 4.91 3.65 4.25 0.17 0.22 0.20 0.79 0.89 0.16 0.18

0.5,0.3 7.50  0.38 0.49 | 25.20 4.90 5.60 0.83 0.37 0.36 0.25 0.91 0.35 0.24

0.5,-0.3 0.13 0.11 0.11 2.86 2.66 2.66 0.13 0.11 0.11 0.94 0.94 0.14 0.13

-0.5,0.3 0.06  0.05 0.05 2.02 1.81 1.81 0.06 0.05 0.05 0.94 094 0.10 0.09

v=0 1.34,-0.42 | 4.61 0.16 0.16 17.11  3.23 3.23 3.95 0.16 0.16 0.91 0.94 0.77 0.15
0,0.3 0.12 0.11 0.11 2.79 2.62 2.62 0.08 0.10 0.10 0.89 0.94 0.11 0.13

0.5,0.3 0.75 0.19 0.19 6.91 3.51 3.51 0.60 0.18 0.18 0.91 0.94 0.30 0.17

0.5,-0.3 0.18 0.11 0.11 3.40 2.57 2.61 0.12  0.10 0.10 0.88 0.94 0.13 0.12

S -0.5,0.3 0.11  0.05 0.05 2.67 1.76 1.78 0.06 0.05 0.05 0.86  0.94 0.09 0.08
Lﬁ v=0.25 1.34,-042 | 21.68 0.15 0.16 41.99 3.12 3.19 3.51  0.15 0.15 0.40 0.94 0.72 0.15
&~ 0,0.3 0.16 0.10 0.11 3.21 2.54 2.61 0.08 0.10 0.10 0.82 0.94 0.11 0.12
0.5,0.3 2.84 0.18 0.19 | 14.90 3.40 3.50 0.53 0.17 0.17 | 048 094 0.28 0.16

0.5,-0.3 0.28 0.09 0.10 4.59 2.39 2.51 0.09 0.09 0.09 0.69 0.93 0.12 0.12

-0.5,0.3 0.18 0.04 0.05 3.67 1.63 1.72 0.05 0.04 0.04 | 0.68 0.93 0.09 0.08

v=20.5 1.34,-0.42 | 54.49 0.13 0.15 71.60 2.85 3.08 2.57 0.12 0.12 0.01 0.92 0.62 0.14
0,0.3 0.24 0.09 0.11 4.15 2.35 2.59 0.07  0.08 0.08 0.64 0.92 0.10 0.11

0.5,0.3 6.90 0.15 0.19 | 25.24 3.10 3.45 0.39 0.15 0.15 0.04 0.92 0.24 0.15
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Table 5: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,

ARMA(1,1) case with p, = 0.8. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Length

ARMA(1,1) | OLS GLS FGLS | OLS GLS FGLS | OLS GLS FGLS | OLS FGLS | OLS FGLS

-0.5,-0.4 0.09 004 0.04 238  1.60 1.61 0.11 0.04 005 | 097 096 | 0.13  0.09

0.2,-0.4 0.13 0.13 0.13 2.90 2.82 2.84 0.16 0.13 0.15 0.96 0.96 0.16 0.15

0.2,0.5 0.59 039 041 6.07 493 510 | 051 039 038 | 092 094 | 028 0.24

v=0 0.5,-0.4 025 024 0.25 3.96 3.91 395 | 022 025 022 | 093 093 | 018 0.18
0.5,0.5 1.30 0.43 0.46 9.00 5.19 5.40 1.05 0.43 0.43 0.90 0.94 0.40 0.26

0.8,-0.4 0.88 043  0.46 741  5.21 5.41 059 043 041 | 0.86 093 | 030 0.25

0.8,0.5 512 039 041 | 17.83 493 5.09 | 3.65 038 040 | 0.87 094 | 0.73  0.25

-0.5,-0.4 0.48 0.04 0.04 6.08 1.52 1.63 | 0.12 0.04 005 | 060 096 | 0.13  0.08

0.2,-0.4 0.19 0.12 0.14 3.48 2.69 2.96 0.15 0.12 0.14 0.93 0.95 0.15 0.14

S 0.2,0.5 1.00 035 040 830 473 504 | 047 037 036 | 079 094 | 027 0.24
? v=0.25 0.5,-0.4 0.23 0.22 0.23 3.84 3.73 3.82 0.21  0.23 0.21 0.92 0.93 0.18 0.18
& 0.5,0.5 315 039 046 | 1528 496 544 | 096 041 041 | 064 093 | 038 0.25
0.8,-0.4 1.59 0.39 0.46 10.52  4.99 5.39 0.54 041 0.39 0.69 0.93 0.28 0.25

0.8,0.5 13.75 035 043 | 3212 4.67 521 330 036 038 | 056 093 | 0.70 0.24

-0.5,-0.4 123  0.04 005 | 10.38 1.48 1.82 | 0.12 0.03 0.04 | 0.08 093 | 0.13  0.08

0.2,-0.4 0.32 0.11 0.19 4.64 2.61 3.36 0.13 0.10 0.12 0.81 0.90 0.14 0.13

0.2,0.5 177  0.31 0.42 11.94 4.42 5.19 0.36 0.32 0.30 0.49 0.89 0.23 0.22

v=0.5 0.5,-0.4 0.22 0.21 0.24 3.81 3.62 3.94 0.17  0.20 0.18 0.90 0.90 0.16 0.16
0.5,0.5 6.58 0.34 0.53 23.97 4.60 5.73 0.71  0.35 0.35 0.21 0.88 0.32 0.23

0.8,-0.4 290 036 052 | 1533 477 573 | 040 035 033 | 035 088 | 024 0.23

0.8,0.5 2947 030 053 | 51.13 436 573 | 239 031 032 | 014 088 | 0.59 0.22

-0.5,-0.4 0.03 0.02 0.02 145 098 098 | 0.04 002 0.02 | 096 096 | 0.08 0.05

0.2,-0.4 0.05 0.05 0.05 1.83 1.76 1.77 | 0.06 0.05 005 | 095 096 | 0.09 0.09

0.2,0.5 0.23 0.16 0.17 38 326 330 | 021 015 015 | 094 093 | 018 0.15

v=0 0.5,-0.4 0.10 0.10 0.10 2.51 2.50 2.50 0.09 0.09 0.09 0.93 0.93 0.11 0.12
0.5,0.5 0.51 0.18 0.19 570 3.45  3.51 045 0.17 017 | 092 093 | 026 0.16

0.8,-0.4 0.35 0.18 0.19 469 340 346 | 027 0.17 0.17 | 090 094 | 020 0.16

0.8,0.5 2.05 0.16 0.17 11.31  3.22 3.27 1.73 0.15 0.16 0.91 0.94 0.51 0.15

-0.5,-0.4 0.38 0.01 0.02 583 097 1.05 | 0.04 0.01 002 | 0.15 095 | 0.08 0.05

0.2,-0.4 0.11 0.05 0.05 2,68 1.72 1.85 | 0.06 0.05 005 | 0.85 095 | 0.09 0.09

= 0.2,0.5 0.68 0.15 0.17 7.15 3.06 3.25 0.19 0.14 0.14 0.64 0.93 0.17 0.15
U|T v=025 0.5-04 0.11 0.09 0.10 2.57 2.40 2.52 0.08 0.09 0.08 0.91 0.92 0.11 0.11
&~ 0.5,0.5 2.41 0.16 0.19 14.06  3.20 3.46 0.40 0.16 0.16 0.41 0.93 0.25 0.16
0.8,-0.4 1.14 0.17 0.19 9.28 3.27 3.49 0.24 0.16 0.16 0.55 0.94 0.19 0.16

0.8,0.5 10.88 0.14 0.17 30.18  2.98 3.26 1.54 0.14 0.15 0.34 0.94 0.48 0.15

-0.5,-0.4 1.00 0.01 0.02 9.71 0.89 1.11 0.04 0.01 0.01 0.00 0.92 0.08 0.05

0.2,-0.4 0.19 0.04 0.06 3.84 1.60 1.99 | 0.05 0.04 004 | 062 0091 0.09 0.08

0.2,0.5 1.56 0.13 0.17 11.87 2.89 3.28 0.14 0.12 0.12 0.13 0.90 0.15 0.14

v=0.5 0.5,-0.4 0.12 0.08 0.11 2.81 2.26 2.64 0.07  0.08 0.07 0.84 0.88 0.10 0.10
0.5,0.5 6.04 015 022 | 2386 3.07 3.71 0.30 0.14 0.14 | 0.02 0.89 | 0.21 0.15

0.8,-0.4 266 015 0.19 | 1554 3.06 347 | 018 0.14 0.13 | 0.08 090 | 0.16 0.14

0.8,0.5 27.70  0.13 0.21 51.30 2.89 3.58 1.11  0.12 0.12 0.01 0.88 0.41 0.14
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In Section S-1, we present the detailed theoretical and simulation evidence about the
claims made in Remark 6. Additional simulations results are reported in Section S-2 that
complement those in Section 5, while Section S-3 presents simulation results for predictive
regressions. Section S-4 discusses our suggested method to correct for possible heteroskedas-
ticity in the errors. The method is presented as well as simulations showing that further
reductions in MSE can be achieved.

S-1 The Robustness of GLS

It is often argued that GLS may be less robust than OLS because a wrong specification
of the process for u; may lead GLS to have higher MSE than OLS. We show that this is
incorrect, in general. To have meaningful comparisons, we assume exogenous regressors so
that both OLS and GLS are consistent. Note first that GLS is consistent even when using
a misspecified model when the regressors are exogenous and pre-determined. Suppose you
assume that V(u) = 02(), while the correct specification is V(u) = 02Q. Let Q' = D.D,
and Q! = D'D. Then,

TX' QG u=T'X'0'De=T" (HX)e %0,

since HX with H = X'Q_1D! is simply a linear combination of all the regressors, which
are uncorrelated with the innovations at all leads and lags (and current value). We shall
show that when adopting a simple AR(1) specification, it is possible to obtain GLS estimates
that performs no worse than OLS, and most often much better, irrespective of the true data-
generating process for the errors, as long as it is stationary. For reasons that will become
clear, we apply an AR(1) GLS with some known value p, i.e., OLS applied to the regression
(??). We ignore the initial condition for simplicity. We have the following results about the
relative MSE of OLS and GLS.

Theorem 1. Let u; be a zero mean stationary process and BG g the estimate applying OLS to
(??) for a given value p. The scalar exogenous variable z, is jointly stationary with u;, both
having at least finite second-order momemnts, and satisfies plimp_o T 1 ZtT:_lj Tyl =
R.(j), cory(j) = R.(j)/R.(1), with similar definitions for cor,(j). Also, h.,(0) is the
spectral density function at frequency zero of zyuy, Reu(1) = J7_cos(A)hy (M) hu(N)dX, and
Ruu(2) = J7_cos(2A) hy(A) o (N)dX with hy(X) and hy(X), the spectral density function of x,

and uy, respectively. Then, imy_ o (MSE(B q,5)/ MSE(B ;) < Lif

p* = 2p(1+ p*) Rou(1) /hu(0) + p* Ru(2) /s (0) < 207 cory(1)? — 2p(1 + p*) cory(1).

A-1



The result in the previous Theorem, proved in Section S-1.1, is useful but opaque as far
as obtaining useful insights given the level of generality. The following corollary considers
the case with 7.7.d. regressors. While restrictive, the results allow important insights that
still apply with a serially correlated regressor.

Corollary 1. Under the same conditions as in Theorem 1, except that x; ~ i.i.d.(0,02),
limy oo (MSE(B1s) / MSE(Bo15)) < 1 if

p/(2(1 4+ p*))(1 + cor,(2)) < cory(1) when p >0,

p/(2(1+ p*))(1 + cor,(2)) > cor,(1) when p < 0.

A necessary condition for such inequalities to hold is that pcor,(1) > 0. To explore the
intuitive content, suppose that u, is an AR(1) process with parameter p, and p > 0. Then,

limy oo (MSE(Bgrs)/ MSE(Bors)) < 1 <= p(1+p2) = 2p,(1 4 p*) < 0.

If p = p,, the condition is trivially satisfied, as expected. Moreover, it is satisfied unless
P < 0.27, in which case we need 0 < p < 2p,. As will transpire from the simulations
results, pcor,(1l) > 0 is nearly also a sufficient condition unless cor,(1) is small. This is
quite a strong result. It says that applying GLS with an AR(1) specification will lead to an
estimate with lower MSE than OLS for a wide range of data-generating processes for u; by
simply quasi-differencing the data with a parameter p that has the same sign as cor,(1), the
first-order correlation coefficient of w;. If cor,(1) = 0, OLS performs better. This can occur
with serial correlation implying cor,(1) = 0 and cor,(j) # 0 for some j > 1. An example
is an M A(2) process of the form u; = e; + 02¢;_5. We view such cases as knife-edge ones.
When cor, (1) is small, the same results hold for a range given by 0 < p < 2p,,.

S-1.1 Proof of some results

Proof of Theorem 1. The GLS estimator is the OLS estimator of the quasi-differenced
equation

(e — pyi-1) = (v — pri1)' B4ep, (t=2,..,T).
Let w; = u; — puy_1 and note that w; is a filter: w; = ¥(L)u, with ¢»(L) = (1 — pL). Let
A = E[ww'] so that

L —p
—p 1+p* —p 0
At —p  1+p —p
0 —p 1+p* —p
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Hence, the GLS estimator can be written as
Bars = (X'AT'X) XAy, Baps — B = (XA X)L XA,
The variance of the GLS estimator is
Var(Bars) = (XA X)) XA QAL X (X/ATEX) 7L
The OLS estimator can be written as
Bows = (X'X) ' X'y, Bors — B = (X'X) 7' X'u.

with Var(Bors) = (X'X) "' X’QX(X'X)"L. Since both estimators are consistent the limit of
their MSE is equivalent to the limit of their variance. We have,

limy oo T Var(Bors) = plimpeo(T ' X'X) ' T X'QX(T1X'X) !
= R.(0)7227h.,(0).

Note that h,,(0) is (27 times) the spectral density function of the process z; = z,u;. By the
Convolution Theorem, we have,

o) = / " e (Vha(w — A,

and thus

™

al0) = / " e\ (—A)dA = / B ()R (V).

—T —T

since h,(—A) = hy(A). The asymptotic variance of the GLS estimator is

limy_oo T Var(Bars) = plimreo(T ' XA X) T XA QA X (T XALX)
= ((1+ p")Ru(0) = 2pR,(1)) 221Ny (0), (A1)

where x; = x; — pr;—1 and uf = u; — puy—;. The spectral density function of z} is thus given
by

has (W) = [(e™™)ho(w)
= (L= pe™™)(1 = pe)hy(w)
= (1+p* —2pcos(w))hg(w).

Analogously, the spectral density function of uy, is given by

ho(w) = (1 + p* — 2pcos(w))hy(w).
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Hence, the spectral density function at frequency zero of the process z; = xju; is

B (0) = /W B ()R (= \)dA

—Tr

— /7r (14 p? = 2pcos(N))?hy (A Ry (N)dA

—T
s

= (14 2P ha(0) — 4p(1 + ) / cos(N) (A (A) A

—Tr

+4p? /7r c0S(A) %Ry (A) Ry (N)dA

—T
s

= (14 2P ha(0) — 4p(1 + ) / cos(N) (A (A) X

—Tr

1207 / " (1 4+ cos(20) s (A (V)

= (20" + (14 p*)*)hau(0) = 4p(1 + p*) Ruu(1) + 20° R (2).
Now, we can write equation (A.1) as
limy oo T Var(Bars) = (14 p*)Ra(0) = 20R(1))"*27((20° + (1 + 0°)*)hau(0)
—4p(1 + p*) Reu(1) + 29" Ry (2))

and the ratio of interest is

T <MSE(@GLS)> _ limgoo T Var(Bgps)

MSE(Bors) limy o T Var(Bors)
N R,(0)* (20* + (14 3 hau(0) — 4p(1 + p*) Ruu(1) + 20*Reu(2)
(14 p?)R.(0) — 2pR,(1))2 ha(0) ’

and thus,

2+ (L ) = a1+ A 4 2 < (1 77) = 2pcon (1)
iff p* — 2p(1 + p?) i::(%)) +p? 1::((3)) < 2p?cory(1)* — 2p(1 + p?) cor,(1).0

Proof of Corollary 1: Note that if x; is i.i.d., its spectral density function is h,(w) =
(27) 'R, (0) for all w. Thus, using the results in Theorem 1:

hoal) = / " (W hu(N)dA = 1 (0) / " ha(VdA

= L RAO)R(0)
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and

Ru() = [ o0 A = 1(0) [ cosO(N)dA = 5 Re(O) (1),
Rou(2) = /_ " 082N ) ha (M hu(V)dA = £ (0) /_ " cos(2A ) (\)dA = % L(0)Ru(2)

limz o (MSE<BGLS>/MSE(BOLS)> <1
iff p? — 2p(1 + p*) cor, (1) + p® cory(2) < 0
iff ﬁu + cory(2)) < cory(1) when p > 0,

iff ﬁ(l + cor,(2)) > cory,(1) when p < 0.0

S-1.2 Simulations

We illustrate the issues discussed using simulations. We consider the following DGP:
Y = a+ By + uy,

where x; ~ i.i.d. (0,1). We set (a,) = (0,1), without loss of generality. The sample
size is ' = 200. For the errors u;, we consider the following specifications: 1) AR(1):
up = pyi—1 + e p, = {—0.5,0.0,0.2,0.5,0.8}; 2) AR(2): ur = pyyUt—1 + puotit—2 + €4;
(Pu1s Puz) = {(1.34,—-0.42),(0.5,-0.3),(—0.5,0.3), (0.0,0.3),(0.5,0.3)}; 3) MA(1): w =
et +0eiq; 0 = {—0.7,-0.4,0.5}; 4) ARMA(1,1): u = pyur—1 + e + Oer_1; (p,,0) =
{(=0.5,—0.4), (0.2, —0.4), (0.2,0.5), (0.5,—0.4),(0.5,0.5), (0.8, —0.4), (0.8,0.5)}. Through-
out, e; ~ i.i.d. N(0,0?) independent of z; for all ¢ and j so that the regressors are exogenous,
otherwise OLS would be inconsistent and the comparisons meaningless. We set 02 = 02 = 1.
For all cases, we consider a range of values for the parameters. These are chosen mostly arbi-
trarily, except for the first pair of the AR(2) case, which are typical estimates for detrended
U.S. real GDP; e.g., Blanchard (1981). In all cases, we adopt an AR(1) specification with
different values of the quasi-differencing parameter p. The results are presented in Table
S.1. The first column reports the value of cor,(1) and the main entries are the MSE of GLS
relative to the MSE of OLS for various value of p in the range (—0.9,0.9). We shall discuss
the purpose of the values reported in the last column later.

It is most instructive to start with the AR(1) case. When p,, = 0, as expected OLS is best
and GLS has higher MSE. When p,, = —0.5, GLS has lower MSE for all negative values of
p and, vice versa, when p, = 0.5,0.8, GLS has lower MSE for all positive values of p. When
pu = 0.2, a small value, things are more complex. Here, GLS is best when p € (0.1,0.4)
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but marginally worse than OLS when p € (0.5,0.9) (and, of course also worse when p is
negative). These results are what one would expect from Corollary 1, in particular the fact
that when p, < 0.5 GLS is better when 0 < p < 2p,. The results for the other cases are
qualitatively similar and in accordance with the theory. When cor,(1) is “large”, GLS has
smaller MSE than OLS when the sign of the quasi-difference parameter is the same as the
sign of cor,(1). If cor,(1) is “small” GLS is better when p is in the vicinity of cor,(1). Of
special interest is the AR(2) case with (p,;, pu2) = (1.34, —0.42), which is roughly typical of
many macroeconomic time series given the strong serial correlation. In this case, the gains in
MSE reduction over OLS are of the order of 95% when p € (0.6,0.9). These are substantial
gains, which can be obtained by merely using an incorrect AR(1) process with a wide range
of values of p. This illustrates strong robustness to using GLS.

The theoretical and simulation results suggest a very simple procedure to obtain a GLS
estimate that is (almost) never worse than OLS, subject to very minor random deviations.
First use a test for serial correlation at delay one; we use the LM test of Godfrey (1978). If
the test does not reject the null hypothesis of no serial correlation, then use OLS. This will
occur when cor, (1) is “small”. If the test rejects, estimate cor, (1) via the sample first-order
serial correlation of the OLS residuals. If it is positive (negative), use any positive (negative)
value of the quasi-differencing parameter p. To make clear that any value of p will do, in
the simulations we simply draw p from a Uniform distribution with support (0.1,0.9) when
positive value are required and with support (—0.9, —0.1) when negative values are in order.
The results for the relative MSE of GLS over that of OLS are reported in the last column
of Table S.1 under the heading “hybrid”. They show that this hybrid-GLS procedure yields
more precise estimates for all cases, except for few minor cases due to random variations
when cor, (1) is “small”. An exception is when cor,(1) = 0 and there is correlation at higher
lags; see the AR(2) case with (p,;, p,2) = (0.0,0.3). We view this as a knife-edge case.

Tables S.2-S.3 report corresponding results when z; is an AR(1) process given by x; =
PpTi—1+ vy with vy ~ i.i.d. N(0,1), with p, = 0.5 and p, = 0.8. The results are qualitatively
similar.

Remark 1. In the hybrid procedure discussed above, we use the OLS residuals to construct
an estimate of cor,(1). From the results in Section 2.1, the OLS estimates of the parameters
are inconsistent when the regressors are not exogenous. Here, however, the regressors are
exogenous. When constructing a FGLS estimate, we do not need this hybrid procedure.

Remark 2. After the first draft of this paper was completed, we became aware of the work
by Koreisha and Fang (2001). They present exact bounds for the relative variance of OLS,
GLS and Feasible GLS allowing for misspecification of the process generating the errors when
constructing the FGLS estimate. The results depend on the covariance matrix of the errors,
the exact nature of the GLS structure used and the method to construct the FGLS estimate,

A-6



the regressors and the sample size. The bounds are, however, not informative and quite
complex. Accordingly they resort to simulation experiments using approrimate autoregressive
processes of order 1, 7 and 14 when T = 200 to construct the FGLS estimate. In the paper,
they report results for few selected cases, which do not allow addressing several of the issues
discussed above, e.g., the effect of the sign of the quasi-difference parameter, the strength of
the correlation in the errors. They wrongly conclude that GLS (constructed using an AR
misspecification) is always better than OLS. As shown above this is not the case.

S-2 Additional simulations related to Section 5

Tables S.4-S.7 present simulations results related to those presented in Section 6. The setup
is exactly the same, except that we set p, = 0, instead of p, = 0.8. The goal is simply to
show robustness of the results. The are indeed qualitatively similar.

S-3 Simulations with predictive regressions

As discussed in Section 2.1.1 and Remark 4, in the case of predictive regressions assuming
rational expectations, both OLS and GLS are consistent. We present the results of a small
simulation experiment to show that, with exogenous or non-exogenous regressors, FGLS is
by far superior to OLS in terms of MSE and length of the coverage rates, when the MA
process is invertible. The setup adopted corresponds to regression

/
Yirk = T8+ Upys

with £ = 2 so that the errors are M A(1). The data-generating process is similar to that
used above except that the regressors are lagged two periods so that v, = o + B, + wy,
uy = eg+0e, 1 and x; = p,xy 1+ v, +ve,_1 with v, and e; independent i.7.d. N (0, 1) variables.
We set (a,3) = (0,1), p, = 0 and again v = 0 (exogenous regressors), v = 0.25 (weak
correlation) and v = 0.50 (strong correlation). We also consider § = —0.7, —0.4 and 0.5.

The results are presented in Table S.8. With v = 0, the results are similar to those in
Table 4. FGLS and GMA have much lower MSE than OLS and are nearly as efficient as
the infeasible GLS, especially when 7" = 500. The coverage rates for all methods are near
the nominal 95% level, except when the MA parameter is strongly negative. Again, the
length of the confidence intervals are shorter with FGLS and GMA compared to OLS. With
non-exogenous regressors, the results are broadly similar. The only exception is that the
coverage rates for GMA are substantially lower than the nominal level. Those for FGLS are
adequate except when # = —0.7. This is in line with our theoretical results.
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S-4 Correcting for heteroskedasticity

In this section, we now consider a FGLS procedure for heteroskedasticity in the errors e;. We
describe the method suggested by Gonzélez-Coya and Perron (2024) based on an Adaptive
Lasso procedure to fit the skedastic function. Lasso is a non-parametric estimation method
first proposed by Tibshirani (1996). It selects regressors amongst a potentially large set wy;
(j =1,...,d), where d can be very large, by imposing a ¢; penalty on their size. Lasso forces
the coefficients to be equally penalized. We can, however, assign different weights to different
coefficients. If the weights are data-dependent and properly chosen, this can enhance the
properties of Lasso, in particular when the irrelevant covariates are highly correlated with
the relevant ones. To that effect, Zou (2006) considered the adaptive Lasso given by

~A ] N
¢ =argming{(1/2) 3, (log(v}) — ¢y — Y5y wiid)* + A S5, 05 |}, (A.2)
where 1A9j = |<z)j|_w, 1 > 0 and gAbj is a root-T-consistent estimator of ¢,. Here, v; is some

process exhibiting heteroskedasticity, though no serial correlation, to be specified below. The
implementation of Adaptive Lasso to obtain a fit to the skedastic function is as follows. 1)
Compute the first-step estimate of ¢ as the solution to the Ridge regression problem:

= argming{(1/2) ZtT:1<1Og<UtQ) — ¢ — Z?:l wtj¢j)2 + A" Z;‘lzl ¢?}>

~ridge

where A" is selected via cross-validation. 2) Compute the weights as 1A9j = |$§nge|*w. The
Adaptive Lasso estimates are then
0" = argming{(1/2) S, (og(e?) — 60 — iy wigé,)? + M S 16717 o),

where the two tuning parameters, A and ¢ are selected via the following K-cross-validation
method: a) Fix L possible values for v¢; we use L = 6 and ¢ = (0,0.25,0.5,0.75,1,2). b)
Fix a partition for the K-fold cross-validation, i.e., split the data into K roughly equal-
sized parts. We use K = 10. Let x : {1,...,7} — {1,..., K} be an indexing function
that indicates the partition to which observation ¢ is allocated to by the randomization. c)
For every 1], compute the optimal cross-validated )\;4 and the mean cross-validated error.
For the kth part, we fit the model to the other K — 1 parts of the data, and calculate the
prediction error of the fitted model when predicting the kth part of the data. We do this for
k=1,...,K and combine the K estimates of the prediction error. Denote by f;*(w) the
fitted function, computed with the kth part of the data removed and using v);. Then the
cross-validation estimate of the prediction error is

OV(fy) = T S, L (log(op), £ (w))

where L(-) is a loss function; we use the MSE. Let A2 be the value that minimizes CV(f;). d)
The cross-validated pair (A**,1)°*) used is the one that minimizes CV (A, ¢¢) fori = 1,..., L.
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Note that we do not have in mind any oracle model. The aim is to be agnostic about such
knowledge and to try to devise a method as robust as possible that allows a reduction in the
MSE. Since the skedastic function is, in general, not consistently estimated, there is a need
to further correct the variance estimate of the FGLS estimator using a Heteroskedasticity
Robust version. We denote the resulting fitted value of the skedastic function by v?.

Here, v; = é;;, the residuals from applying the GLS regression

k. kx . N
(e = 22520 Y yeg) = (e = Y55y oy we) B+ exs, (t=kip+1,..,7T), (A.3)

Let /3 r_c denote the GLS estimate that corrects only for serial correlation and B r_c, the
one that corrects for both serial correlation and heteroskedasticity. To be more precise,
we apply the following steps: a) Estimate by OLS the quasi-differenced regression (A.3) to
obtain the residuals é;; b) Estimate the model log(max{é?,,6?}) = ¢, — Z;.lzl 2P, Via
Adaptive Lasso, where § = 0.1 is some small positive number to avoid dealing with residuals
that are nearly zero. Note that z; may include some or all elements of x; or transformations
of them. Denote the predicted values from this model by v; = €2 ; ¢) B r_cp 1s the weighted
least squares (WLS) estimator of the quasi-differenced regression (A.3), with weights given
by €,2.

In order to construct confidence intervals for the parameter /3 of interest, introducing some
finite sample refinements can be beneficial. Here, we describe the particular form adopted,
following Miller and Startz (2019) and Rothenberg (1988). We focus on the estimate of the
asymptotic variance of the FGLS estimator:

Var(Bp_ o) = (T X'W X))\ QT ' X'W1X)™! (A.4)

where W is a diagonal matrix with entries wy = v (w)?

from the procedure to fit the skedastic function v;(w), X is the matrix of regressors, QO =
T1X'SF-CHX with 2F~CH 3 diagonal matrix with ¢ entry given by:

= ¢4, the predicted values obtained

R 52 1 Ry o n
$F-CH _ Cik—F—CH ! LE-C 7 A5
! (@,)? (1= hep-cnm)’ k d (A.5)

where ép_cy = [é1,7—cH, .-, ér.r—cn)’ are the estimated residuals from the FGLS regression
correcting for serial correlation and heteroskedasticity, i.e., éip—cp =y — Bp_cprs, with

. ki
yp = (i — Zj:l P?yt—j)/(g?k)lﬂv (A.6)
X kho.
v o= (o= 2L Y y) /(@)Y (A.7)

df is an estimate of the degrees of freedom used in the estimation of the weights. For Lasso,
the number of nonzero coefficients is an unbiased estimate for the degrees of freedom (Zou
et al. (2007)). The confidence intervals for the kth coefficient is then obtained using 3 p_ HE
+ 21, /QSE(B F_cm,)-where z1_y/5 is the 1 — /2 quantile of the normal distribution and

SE(BFGLS,k) = (VGT(BF—CH»JIC{;» with Var(BF—CH) defined in (A.4).
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S-4.1 Simulation results with heteroskedasticity

We consider the linear model (1) with serially correlated and heteroskedastic errors. The
specifications are the same as in the text except that e; ~ N(0,v;(2)) or, equivalently,
er = \/ vt (2)et, where g; ~ i.i.d. N(0,1). We apply a FGLS accounting for heteroskedasticity
in the FGLS regression used to correct for serial correlation,

ko k. «
Yt — 2321 PjD?/t—j = (2 — ZJL ngxt—j),ﬁ +ew, (t=kp+1,...7),

This is then equivalent to applying OLS to the regression y; = ;5 + e—_r_cu, where y;
and z} are defined by (A.6) and (A.7) and the estimate of 2, is constructed as outlined
in the previous section. We only consider a subset of the cases used earlier with 7" = 200.
These are: 1) AR(1): u; = 0.5u,_1 + v(2)Y%e; 2) AR(2): w; = 1.34u, y — 0.42u;_5 +
v(2)Y2e4; 3) MA): uy = vy(2)Y2e; + 0.5v,1(2)Y%e4_1; 4) ARMA(1,1): uy = 0.8u;_; +
v,(2)Y2e; — 0.4v,_1(2)"%¢,_1, where g, ~ i.i.d. N(0,1). We consider three specifications
for the skedastic function v4(-) as in Romano and Wolf (2017). These are, from weak to
strong heteroskedasticity: a) Power function: v;(z); = z7; b) Squared log function: v,(x), =
log(z,)]%; ¢) Exponential of a second-degree polynomial: v;(x)s = exp (0.2z; + 0.222). The

2 cos(w), cos(2w), cos(3w)). We consider two cases: a) w; = 1z,

input matrix is W = (1, w, w
which assumes that we select the correct variable influencing the skedastic function; b)
wy = ¢z + (1 — ¢)gr with ¢ ~ U(1,4) and ¢ ~Bernouli(p) with p = 0.75. In this case, the
covariate used to model the skedastic function is not the same as the true one but is correlated
with it, the correlation being p. Note that in practice, one can include a vast set of potential
covariates. Hence, with the parsimonious set considered, the improvements obtained in terms
of MSE and length of the confidence intervals should be viewed as conservative.

The results are reported in Table S.9; the first panel for w; = x; and the second for
wy = ¢y + (1 — ¢)g;. We present the MSE, bias and variance of the FGLS estimate as
well as the coverage rates and lengths of the confidence intervals obtained using the method
discussed in the previous section. We also present results for the OLS estimate, the FGLS
estimate that accounts only for serial correlation (F-C) and the FGLS estimate that accounts
for both serial correlation and heteroskedasticity (F-CH). This is done to gauge the extent
of the improvement provided by the correction for heteroskedasticity. Note that when using
F-C, we construct the confidence intervals that correct for serial correlation the same way as
we do for F-CH, i.e., applying the same correction for potential remaining heteroskedasticity.

When the covariate used is the correct one, we see important reduction in the MSE of
the F-CH estimate relative to F-C, more so as the heteroskedasticity is stronger. Both the
variance and the bias contribute to the reductions in the MSE. Since correcting for serial
correlation via a FGLS procedure provides substantially more precise estimates relative to
OLS, needless to say that the same applies when further correcting for heteroskedasticity.
The coverage rates of the confidence intervals have an exact size close to the nominal level.
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The OLS estimates also have good coverage rates in most cases but can be sensitive to the
strength of the serial correlation; e.g., the AR(2) case. However, the lengths are substantially
smaller using F-CH compared to OLS and to a lesser extent compared to F-C.

The results in the bottom panel pertains to the case with an incorrect covariate, though
correlated with the correct one. The results are similar with the exception that the incremen-
tal reductions in MSE, bias and variance provided by the correction for heteroskedasticity
are smaller, as expected. Nevertheless, they are still important enough in magnitude. Hence,
using incorrect covariates to estimate the skedastic function can still lead to more precise
estimates, as long as there is some correlation between the two sets of covariates. The cov-
erage rate of the confidence intervals have an exact size close to the nominal level and the
lengths are much smaller than those with OLS and, to some extent, than with F-C.

We also performed simulation experiments with homoskedastic errors. The results were
then essentially equivalent to those obtained with F-C. This means that correcting for het-
eroskedasticity when it is not present has no detrimental effect on the precision of the esti-
mate, a result emphasized by Gonzélez-Coya and Perron (2024). Overall, the results show
that a further correction for heteroskedasticity can lead to more precise estimates and smaller
lengths of the confidence intervals compared to only correcting for serial correlation.
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Table S.5: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,
AR(2) case with p, = 0. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

AR(2) OLS GLS FGLS | OLS GLS FGLS | OLS GLS FGLS | OLS FGLS | OLS FGLS

0.5,-0.3 0.63  0.38 0.39 6.26  4.96 5.03 0.64 0.38 0.38 0.95 0.94 0.31 0.24

-0.5,0.3 1.11  0.38 0.38 8.36  4.93  4.97 1.11  0.38 0.38 0.95 0.95 0.41 0.24

v=0 1.34,-0.42 | 5.24 0.17 0.17 18.02 3.32 3.33 5.10 0.17 0.17 0.94 0.95 0.88 0.16
0,0.3 0.54  0.45 0.46 589  5.39 5.44 0.55 0.47  0.46 0.95 0.95 0.29 0.27

0.5,0.3 1.08 0.37  0.38 8.29 486  4.92 1.06 0.38 0.38 0.94 095 0.40 0.24

0.5,-0.3 1.88 0.36 0.38 | 11.86 4.82 4.97 | 0.60 0.36 0.35 0.68  0.94 0.30 0.23

= -0.5,0.3 251 0.35 0.38 | 13.08 4.73  4.92 1.07  0.36 0.35 0.79 094 0.40 0.23
Cﬁ] v=0.25 1.34,-042 | 13.88 0.17 0.17 31.60 3.28 3.31 4.75  0.16 0.16 0.73 0.95 0.85 0.16
&~ 0,0.3 0.52 0.42 0.45 5.80 5.21 5.26 0.53 0.44 0.44 0.94 0.94 0.28 0.26
0.5,0.3 2.25 0.35 0.38 | 1242 4.73  4.95 1.00 0.36 0.35 0.82 0.94 0.39 0.23

0.5,-0.3 4.46 0.31 0.38 19.89 4.37 4.90 0.49 0.31 0.30 0.18 0.92 0.27 0.22

-0.5,0.3 5.06 0.31 0.40 | 20.39 4.40 5.02 0.94 0.31 0.30 | 0.43  0.90 0.38 0.22

v=20.5 1.34,-0.42 | 30.83 0.14 0.15 51.46 2.96 3.12 4.06 0.14 0.14 0.26 0.94 0.78 0.15
0,0.3 0.50 0.38 0.47 5.61 4.89 5.47 0.47 0.37 0.37 0.94 0.92 0.27 0.24

0.5,0.3 4.62 0.31 0.42 | 19.25 4.39 5.16 0.88 0.30 0.30 | 0.46  0.89 0.36 0.22

0.5,-0.3 0.27  0.15 0.15 4.14 3.07 3.08 0.26 0.15 0.15 0.95 0.95 0.20 0.15

-0.5,0.3 0.45 0.16 0.16 534 3.17  3.17 | 045 0.15 0.15 0.95 0.95 0.26 0.15

v=0 1.34,-0.42 | 2.17 0.07 0.07 11.62  2.04 2.04 2.17  0.07 0.07 0.95 0.96 0.57 0.10
0,0.3 0.23  0.19 0.19 3.80 348 3.48 0.22 0.18 0.18 0.95 0.95 0.18 0.17

0.5,0.3 0.45 0.15 0.15 5.33 3.09 3.09 0.44 0.15 0.15 0.95 0.95 0.26 0.15

0.5,-0.3 1.62 0.13 0.14 11.79 291 3.02 0.24 0.14 0.14 0.33 0.95 0.19 0.15

S -0.5,0.3 1.77 0.14 0.15 11.81  3.00 3.08 043 0.14 0.14 0.58 0.94 0.26 0.15
Lﬁ v=0.25 1.34,-042 | 11.79 0.06 0.06 31.31 1.98 2.00 2.03 0.06 0.06 0.40 0.93 0.56 0.10
& 0,0.3 0.21 0.17 0.18 3.62  3.26 337 | 021 017 0.17 | 0.95 0.95 0.18 0.16
0.5,0.3 1.79 0.14 0.15 11.86 2.94 3.06 0.42 0.14 0.14 0.56 0.94 0.25 0.15

0.5,-0.3 4.17 0.12 0.14 19.94 2.74 2.99 0.19 0.12 0.12 0.01 0.92 0.17 0.13

-0.5,0.3 4.34 0.12 0.15 19.91 2.82 3.14 0.37 0.12 0.12 0.08 0.91 0.24 0.13

=05 1.34,-0.42 | 29.61 0.05 0.06 | 52.75 1.86 1.91 1.72  0.05 0.05 0.01 0.95 0.51 0.09
0,0.3 0.20 0.15 0.19 3.56 3.10 3.45 0.19 0.15 0.15 0.94 0.91 0.17 0.15

0.5,0.3 4.26 0.12 0.15 19.68  2.77 3.10 0.37 0.12 0.12 0.09 0.92 0.24 0.13
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Table S.7: Bias, empirical Mean Squared Error, Variance, Coverage Rate and Length of Confidence Intervals,
ARMA(1,1) case with p, = 0. (First 3 columns are multiplied by 100).

MSE Bias Variance Coverage Lenght

ARMA(1,1) | OLS GLS FGLS | OLS GLS FGLS | OLS GLS FGLS | OLS FGLS | OLS FGLS

-0.5,-0.4 1.13 027  0.29 8.52 456  4.28 1.06 038 028 | 096 095 | 040 0.21

0.2,-0.4 0.55 0.51 0.52 5.91 5.67 5.74 0.52  0.49 0.49 0.94 0.95 0.28 0.27

0.2,0.5 0.79 0.31 0.34 704 449 467 | 074 031 033 | 094 095 | 034 0.23

v=0 0.5,-0.4 0.54 0.52 0.53 585 577 580 | 0.50 0.50 050 | 094 094 | 028 0.28
0.5,0.5 1.22 0.22 0.24 8.77 3.78 3.94 1.14  0.22 0.24 0.94 0.95 0.42 0.19

0.8,-0.4 0.75 043 045 6.95 529 542 | 069 043 042 | 094 095 | 033 0.25

0.8,0.5 283 016 0.17 | 1347 320 3.30 | 268 0.16 017 | 095 095 | 0.64 0.16

-0.5,-0.4 555 0.26 0.31 | 2144 4.10 4.51 099 025 026 | 043 093 | 039 0.20

0.2,-0.4 0.70 044 0.52 6.68 534 575 | 049 046 046 | 090 094 | 027 0.26

S 0.2,0.5 334 027 033 | 1659 419 462 | 069 0.29 031 | 047 096 | 0.33 0.21
? v=0.25 0.5,-04 0.50 044 048 565 528 555 | 048 047 047 | 094 094 | 027 0.26
& 0.5,0.5 6.56 0.20 0.25 | 23.67 3.58  3.98 1.07 021 022 | 036 095 | 040 0.18
0.8,-0.4 1.52 0.37 0.41 10.23  4.87 5.15 0.67  0.40 0.39 0.80 0.94 0.32 0.24

0.8,0.5 1195 0.14 0.18 | 3092 3.06 342 | 254 0.15 016 | 053 094 | 062 0.15

-0.5,-0.4 13.91 0.21 0.36 | 36.08 361 465 | 082 021 022 | 001 0.89 | 035 0.18

0.2,-0.4 1.07 0.39 0.71 8.71 4.95 6.78 0.41  0.39 0.39 0.75 0.86 0.25 0.24

0.2,0.5 829 0.25 048 | 27.75 4.01 545 | 0.57 025 027 | 0.04 087 | 030 0.19

v=05 0.5,-04 0.56 040  0.57 6.0l 504 6.09 | 040 040 040 | 091 090 | 025 0.24
0.5,0.5 16.59 0.18 0.36 39.56  3.40 4.73 0.89 0.18 0.19 0.01 0.87 0.37 0.16

0.8,-0.4 301 034 050 | 15.63 4.61 566 | 058 034 033 | 047 0.89 | 0.82 0.23

0.8,0.5 27.92 0.13 027 | 50.66 2.89 4.18 | 2.16 0.13 0.14 | 0.06 0.84 | 0.57 0.14

-0.5,-0.4 0.43 0.10 0.11 5.22 2.59 2.63 0.42 0.10 0.11 0.95 0.95 0.25 0.13

0.2,-0.4 0.21 0.19 0.20 3.66 3.49 3.54 0.21  0.19 0.19 0.95 0.94 0.18 0.17

0.2,0.5 0.29 0.12 0.12 4.34 2.69 2.74 0.30 0.12 0.13 0.96 0.96 0.21 0.14

v=0 0.5,-0.4 0.20 0.20 0.20 3.56 3.56 3.56 0.20 0.20 0.20 0.95 0.95 0.18 0.17
0.5,0.5 043 0.08 0.09 532 225 230 | 046 0.09 009 | 097 095 | 027 0.12

0.8,-0.4 0.27 0.17  0.17 416 3.28 332 | 028 0.17 0.17 | 096 0.95 | 0.21 0.16

0.8,0.5 1.03 0.06 0.06 8.17 1.91 1.94 1.11  0.06 0.07 0.96 0.95 0.41 0.10

-0.5,-0.4 4.85 0.10 0.11 21.12  2.48 2.61 0.39 0.10 0.10 0.07 0.93 0.24 0.12

0.2,-0.4 0.43 0.19 0.21 539 347 363 | 019 0.18 018 | 0.79 093 | 0.17  0.16

= 0.2,0.5 2.97 0.12 0.14 16.39 2.79 3.02 0.28 0.12 0.11 0.13 0.93 0.21 0.13
U|T v=10.25 0.5-0.4 026 020 0.23 411 355 38 | 019 019 018 | 090 093 | 017 0.17
& 0.5,0.5 590 009 0.11 | 2335 233 256 | 043 0.08 0.09 | 0.06 092 | 0.26 0.11
0.8,-0.4 1.16 0.17  0.18 9.46  3.26  3.41 027 0.16 016 | 0.57 093 | 020 0.15

0.8,0.5 1022 0.06 0.07 | 3021 197 215 1.05 0.06 0.06 | 015 093 | 040 0.10

-0.5,-0.4 13.54  0.09 0.15 36.35  2.34 3.05 0.33 0.08 0.09 0.00 0.88 0.23 0.12

0.2,-0.4 0.84 0.16 0.24 828 320 39 | 016 0.15 015 | 047 0.89 | 016 0.15

0.2,0.5 8.00 0.10 0.17 | 2785 249 331 0.23 0.10 0.10 | 0.00 0.87 | 0.19 0.12

v=0.5 0.5,-0.4 0.32 0.17 0.28 4.62 3.26 4.31 0.16 0.16 0.16 0.84 0.86 0.16 0.15
0.5,0.5 16.23 0.07 0.13 |39.83 210 292 | 036 0.07 007 | 0.00 087 | 023 0.10

0.8,-0.4 2.74 0.14 0.19 15.78  3.00 3.45 0.24 0.13 0.14 0.09 0.90 0.19 0.14

0.8,0.5 27.60  0.05 0.09 51.74 1.78 2.43 0.89 0.05 0.05 0.00 0.87 0.37 0.09
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