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Abstract

This paper studies debiased machine learning (DML) under a novel asymptotic

framework, providing insights that inform applied practice and explain simulation find-

ings. DML is a two-step estimation method applicable to many econometric models

where the parameter of interest depends on unknown nuisance functions. It usesK-fold

sample splitting to estimate the nuisance functions and attains standard asymptotic

properties under weaker conditions than classical semiparametric methods, accommo-

dating flexible machine-learning estimators in the first step. Practitioners implement-

ing DML confront two main decisions: whether to use DML1 or DML2 (the two variants

of DML estimators), and how to choose K? Existing practice favors DML2 with large

K based on simulation evidence, but these recommendations lack theoretical justifi-

cation, as existing theory shows both variants are asymptotically equivalent for any

fixed K. Under an asymptotic framework in which K grows with the sample size n,

we demonstrate that DML2 offers theoretical advantanges over DML1 in terms of bias,

mean squared error, and inference. We provide conditions under which increasing K

reduces DML2’s second-order asymptotic bias and MSE. These results support using

DML2 with K as large as feasible, and in particular with K = n, for which we propose

a computationally simple procedure.
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1 Introduction

Debiased machine learning (DML) has become a popular estimation method for econo-

metric settings where the parameter of interest depends on unknown nuisance functions

(Chernozhukov et al., 2018; Ahrens et al., 2025). DML attains standard asymptotic proper-

ties under milder conditions than classical semiparametric methods (Newey, 1994; Andrews,

1994; Newey and McFadden, 1994), accommodating machine-learning estimators for nui-

sance functions. In practice, two DML estimators can be used: DML1 and DML2. Both

randomly divide the data into K equal-sized folds to estimate nuisance functions, but dif-

fer in how these estimates are combined. Practitioners implementing DML face two key

questions: whether to use DML1 or DML2, and how to choose K? Existing recommenda-

tions favor DML2 with large K based on simulation evidence (Chernozhukov et al., 2018;

Ahrens et al., 2024a, 2025). However, these recommendations lack theoretical justification,

as existing asymptotic theory establishes that DML1 and DML2 have identical limiting dis-

tributions for any fixed K, providing no guidance for choosing between methods or selecting

K. To address these questions, this paper studies the properties of DML1 and DML2 under

a novel asymptotic framework in which K may grow with the sample size n. Under this

framework, we demonstrate that DML2 weakly dominates DML1 in terms of bias, MSE,

and inference. We also characterize when this dominance is strict and thereby explain sim-

ulation patterns that fixed-K theory cannot. We provide conditions under which increasing

K reduces DML2’s second-order asymptotic bias and MSE. These results support using

DML2 with K as large as feasible, and in particular with K = n, for which we propose a

computationally simple procedure.

DML is an estimation method applicable to econometric models in which the parameter

of interest θ0 is finite dimensional and satisfies a moment condition of the following form:

E[m(W, θ0, η0)] = 0 , (1.1)

where m is a known moment function, W is an observed random vector, and η0 is an

unknown nuisance function. Examples of a parameter θ0 that can be identified by the

moment condition (1.1) include several treatment effect parameters, such as the average

treatment effect (ATE), average treatment effect on the treated in difference-in-differences

designs (ATT-DID), local average treatment effect (LATE), weighted average treatment

effects (w-ATE), average treatment effect on the treated (ATT), treatment effect coefficient in

the partial linear model (PLM), among others, all of which have been studied in the literature

on semiparametric models (e.g., Robinson (1988), Robins et al. (1994), Hahn (1998), Hirano

et al. (2003), Frölich (2007), Farrell (2015), Chernozhukov et al. (2017), Sant’Anna and Zhao
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(2020), and Chang (2020)). In all these examples, the moment function m is linear in the

parameter θ0, and the nuisance function η0 is based on conditional expectations, such as the

propensity score. This paper considers a setup that includes all these examples.

DML relies on two ingredients to attain standard asymptotic properties (e.g., asymptotic

normality with parametric rates) for the DML estimator of θ0. The first one is the Neyman

orthogonality, a necessary condition on the moment function m to guarantee that the esti-

mation of θ0 is as accurate as if the true η0 had been used; see Remarks 3.1 and 3.2. The

second ingredient is cross-fitting, a form of sample splitting used in the nuisance function

estimation, that complements the orthogonality condition to accommodate for a larger class

of flexible nuisance functions estimators, including machine-learning methods.

Two versions of the DML estimator for θ0 were proposed by Chernozhukov et al. (2018),

namely DML1 and DML2. Both versions randomly divide the data into K equal-sized folds,

denoted as Ik for k = 1, . . . , K. For each fold Ik, an estimator η̂k of η0 is constructed

using all the data except the data in fold Ik. Then, DML1 first calculates preliminary

estimators θ̃k by solving the moment condition (1.1) within each fold Ik using the estima-

tor η̂k. It then combines the information across the folds by averaging the θ̃k’s to obtain

the proposed estimator for θ0. In contrast, DML2 first combines the information across

the folds by averaging moment conditions based on (1.1), where each fold uses estimates

η̂k, and then θ0 is estimated as the solution in θ of the average of moment conditions,

K−1
∑K

k=1

(
(n/K)−1

∑
i∈Ik m(Wi, θ, η̂k)

)
= 0.

Practitioners implementing DML confront two main decisions: whether to use DML1 or

DML2, and how to choose K? The literature already recommends DML2 over DML1, and

suggests using a large K for DML2 based on simulation evidence (Chernozhukov et al., 2018;

Ahrens et al., 2024a, 2025). However, these recommendations lack theoretical justification,

since existing asymptotic theory predicts that DML1 and DML2 have the same limiting

distribution when the number of folds K remains fixed as the sample size n tends to infinity.

To address these questions, this paper studies the properties of DML1 and DML2 under

a novel asymptotic framework in which K may grow with the sample size n. This asymptotic

framework captures finite-sample situations in which practitioners desire to use a large K to

improve the precision of the estimators η̂k’s, which use a fraction (K−1)/K of the data. This

approach follows a tradition in econometrics of using refined asymptotic approximations to

study finite-sample behavior, as in Cattaneo and Jansson (2018), Bugni and Canay (2021),

and Cai (2022). Under this framework, we can distinguish between DML1 and DML2 and

characterize how K affects their performance, thereby explaining simulation patterns that

fixed-K asymptotic theory cannot and providing formal guidance for implementation.

We make three contributions. First, we provide an asymptotic result that explains the
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discrepancy found in simulations between DML1 and DML2. Formally, we demonstrate

that DML2 weakly dominates DML1 in terms of bias, MSE, and inference. We also charac-

terize when this dominance is strict, and thereby explain simulation patterns that fixed-K

asymptotic theory cannot.

Second, we show that the existing estimation and inference results for DML2—based on

fixed-K asymptotic theory—continue to apply for any K ∈ {2, . . . , n}. Formally, we provide

conditions under which the finite-sample distribution of DML2 is approximated by the same

limiting distribution uniformly in K. This implies that we can use DML2 with K = n, i.e.,

the leave-one-out estimator, which ensures replicability.

Third, we derive a second-order asymptotic approximation for scalar DML2 estimators

that we use to explain observed patterns in DML2’s finite-sample bias and MSE. Under the

conditions we provide, we conclude that increasing K decreases the second-order asymptotic

bias and MSE, implying that an optimal choice for DML2 is K = n. In particular, commonly

recommended choices such as K = 5 or K = 10 are suboptimal. Furthermore, we use our

approximation to quantify the relatively efficiency loss from suboptimal choices.

Finally, we use our theoretical results to provide three recommendations for the imple-

mentation of DML. First, practitioners should prefer DML2 over DML1, because DML2 offers

theoretical advantages over DML1, and DML2 is robust to the choice of K for a large class

of first-step estimators. Second, practitioners should use DML2 with K = n. This choice

of K is optimal and ensures replicability of the estimator. We propose a computationally

simple procedure to implement DML2 with K = n in Section 5.2. Lastly, if practitioners

must choose a small value of K such as K = 5 or K = 10, they should prefer K = 10 since

this choice guarantees substantially lower efficiency losses than K = 5.

Related Literature: This paper contributes to the growing DML literature, where

estimators have been developed for semiparametric problems without requiring strong con-

ditions on nuisance estimators (e.g., without Donsker class assumptions). Examples include

Chernozhukov et al. (2017), Chernozhukov et al. (2018), Chernozhukov et al. (2022a), Cher-

nozhukov et al. (2022b,c), Semenova and Chernozhukov (2021), Semenova (2023a,b), Es-

canciano and Terschuur (2023), Rafi (2023), Cheng et al. (2023), Ji et al. (2023), Noack

et al. (2024), Fava (2024), Kennedy et al. (2024), and Jin and Syrgkanis (2024). Most of

these papers use DML2, with exceptions such as Chernozhukov et al. (2017), Ji et al. (2023),

and Cheng et al. (2023), which use DML1.1 With the exception of Kennedy et al. (2024)

and Jin and Syrgkanis (2024), these papers derive first-order asymptotic theory assuming

K remains fixed as n → ∞. Kennedy et al. (2024) and Jin and Syrgkanis (2024) use a

1In many of these papers, such as Rafi (2023) and Semenova (2023a), DML1 and DML2 are numerically
equivalent; see Remark 2.1.
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structure-agnostic framework to establish optimality of DML estimators. In contrast, we

study DML1 and DML2 properties when K → ∞ as n → ∞, demonstrating that DML2

offers theoretical advantages over DML1 and characterizing conditions under which DML2

with K = n (the leave-one-out estimator) is optimal in terms of second-order asymptotic

bias and MSE. To the best of our knowledge, this literature does not provide theoretical

guidance for selecting K, an issue we address here.

This paper also contributes to the literature on double-robust estimators, including

Robins et al. (1994), Robins and Rotnitzky (1995), Scharfstein et al. (1999), Farrell (2015),

Sant’Anna and Zhao (2020), Chang (2020), Callaway and Sant’Anna (2021), Rothe and

Firpo (2019), and Singh and Sun (2024). With the exception of Rothe and Firpo (2019),

these papers study first-order asymptotic theory for estimators that remain consistent even

when some components of η0 are misspecified. Rothe and Firpo (2019) studies higher-order

properties of double-robust estimators in a missing-data setting where η0 is estimated via a

leave-one-out approach. Our results complement that work in several ways. First, the DML

versions of double-robust estimators accommodate flexible estimation of η0 components. Sec-

ond, we present second-order properties of DML2 estimators more generally. Third, we show

that among DML2 estimators, the leave-one-out estimator is optimal in terms of bias and

MSE under certain conditions. Notably, this optimal estimator coincides with the estimator

studied in Rothe and Firpo (2019).

More broadly, this paper contributes to the literature on semiparametric models, which

has a long tradition in econometrics and statistics (e.g., Bickel (1982), Robinson (1988),

Newey (1990), Andrews (1994), Newey and McFadden (1994), Newey (1994), Linton (1995),

and Bickel and Ritov (2003)). Many papers in this literature provide conditions for studying

estimators based on a plug-in approach (i.e., the same data are used to estimate η0 and θ0).

In contrast, we provide conditions for studying the second-order properties of DML2, which

uses sample splitting.

Outline: Section 2 presents notation and summarizes existing results. Section 3 presents

the limiting distributions of DML1 and DML2 for large K values. Section 4 derives the

second-order asymptotic approximation for DML2 allowing for large K values. Section 5

presents recommendations based on our theoretical results. Section 6 shows simulation

evidence that motivate the problem. Section 7 concludes. Appendix contains the proofs

of main results, auxiliary results, and well-know examples in the literature. Supplemental

Appendix contain additional simulations and proofs.

Notation: We use: [K] = {1, . . . , K}, [n] = {1, . . . , n}, [p] = {1, . . . , p}, || · || denotes the
euclidean distance for vectors and the L2-operator norm for matrices, and || · ||∞ denotes the

element-wise supremum norm for vectors and matrices.
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2 Setup and Previous Results

The parameter of interest is θ0 ∈ Θ ⊆ Rd and satisfies the following moment condition:

E[m(W, θ0, η0(X))] = 0d×1 , (2.1)

where m : W × Θ × E → Rd is a known moment function and (W,X) ∈ W × X ⊆ Rdw+dx

is a random vector with distribution F0. The nuisance function η0 : X ⊆ Rdx → E ⊆ Rp is

an unknown function of the covariates X.

This paper considers moment functions m that are linear in the parameter of interest:

m(W, θ, η) = ψb(W, η)− ψa(W, η)θ , (2.2)

where ψb and ψa are functions that satisfy conditions specified in Assumption 3.1, which

includes the identification condition, E[ψa(W, η0(X))] ∈ Rd×d is invertible, and guarantees

a Neyman orthogonality condition,

E [∂ηm(W, θ0, η0(X)) | X] = 0 , a.e.

where ∂ηm denotes the matrix of partial derivatives m with respect to the values of η and

∂ηm(W, θ0, η0(X)) is the ∂ηm evaluated at η = η0(X).

A wide range of parameters of interest can be identified through moment conditions such

as (2.1) using a moment function like (2.2). Examples of θ0 include the average treatment

effect (Example C.1), the average treatment effect on the treated in difference-in-differences

designs (Example C.2), and the local average treatment effect (Example C.3), among others.

All these examples are presented in Appendix C and additional examples appear in Ahrens

et al. (2025).

Consider the goal of estimating θ0 using a random sample {(Wi, Xi) : 1 ≤ i ≤ n} drawn

from the distribution F0. The parameter θ0 based on (2.1) and (2.2) can be identified as

follows,

θ0 = E[ψa(W, η0(X))]−1 E[ψb(W, η0(X))] . (2.3)

Accordingly, an ideal estimator for θ0 is defined by replacing the expected values in (2.3)

with sample analogs. That is,

θ̂∗n =

(
n−1

n∑
i=1

ψa(Wi, ηi)

)−1(
n−1

n∑
i=1

ψb(Wi, ηi)

)
, (2.4)
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where ηi = η0(Xi) denotes the value of the nuisance function η0 evaluated at the covariate

Xi for observation i. However, the values of the ηi’s are unknown. As a result, the oracle

estimator θ̂∗n is infeasible. For this reason, it is common to calculate first estimates η̂i of

ηi that can be used later to compute an estimator of θ0. Remark 2.4 discusses the plug-in

approach used in classical semiparametric methods. In what follows, we formally explain

how DML estimates η0 and θ0.

2.1 First-Step DML: Nuisance Function Estimation

DML proposes to calculate the estimates η̂i of ηi using a cross-fitting procedure, which is a

form of sample-splitting. This procedure has two steps and implicitly assumes that n can be

divided by K:2

1. Sample splitting : Randomly split the indices into K equal-sized folds Ik, i.e., ∪K
k=1Ik =

[n]. The number of observations in fold Ik is denoted by nk = n/K.

2. Nuisance Function Estimates : For each fold Ik, the estimates η̂i of ηi are defined by

η̂i = η̂k(Xi) , ∀i ∈ Ik , (2.5)

where η̂k(·) is an estimator of the nuisance function η0(·) using {Wi : i /∈ Ik}, which
is all the data except the ones with indices on the fold Ik. All the estimates η̂i are

calculated by repeating the process for all the k ∈ [K].

Both DML estimators use the same estimates η̂i, but they differ in how they combine

information across the different folds defined above. We explain this next.

2.2 Second-Step DML: Parameter-of-Interest Estimation

Definition 2.1 (DML1). The DML1 estimator first calculates preliminary estimators θ̃k by

solving the moment condition (2.1) within each fold Ik using the estimates η̂i,

θ̃k solve n−1
k

∑
i∈Ik

m(Wi, θ, η̂i) = 0 ,

2When n is not divisible by K, the number of observations in some folds will be ⌊n/K⌋ while in others
⌊n/K⌋+ 1, where ⌊n/K⌋ is the greatest integer less than or equal to n/K.
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it then combines the information across the folds by averaging the θ̃k’s to obtain the proposed

estimator for θ0,

θ̂
(1)
n,K = K−1

K∑
k=1

θ̃k . (2.6)

Explicit expressions for θ̃k can be obtained since the moment function m is as in (2.2),

θ̃k =

(
1

nk

∑
i∈Ik

ψa(Wi, η̂i)

)−1(
1

nk

∑
i∈Ik

ψb(Wi, η̂i)

)
, ∀ k ∈ [K] .

Note that θ̃k is similar to (2.4) but using only observations in the fold Ik and the estimates

η̂i instead of ηi.

Definition 2.2 (DML2). The DML2 estimator first combines the information across the

folds Ik by averaging the sample analog of moment conditions like (2.1) using the estimates

η̂i, and then estimates θ0 by solving the average of moment conditions,

θ̂
(2)
n,K solve

1

K

K∑
k=1

(
1

nk

∑
i∈Ik

m(Wi, θ, η̂i)

)
= 0 .

An explicit expression for θ̂
(2)
n,Kn

is obtained by using that the moment function m is as in

(2.2),

θ̂
(2)
n,K =

(
1

n

n∑
i=1

ψa(Wi, η̂i)

)−1(
1

n

n∑
i=1

ψb(Wi, η̂i)

)
. (2.7)

Note that θ̂
(2)
n,K is similar to (2.4) but using the estimates η̂i instead of ηi.

Remark 2.1. The DML1 and DML2 estimators can be equal under certain conditions. If

ψa(Wi, η̂i) has zero variance (e.g., ψa is a constant ψa
0 as in Example C.1) and the K-fold

partition {Ik : 1 ≤ k ≤ K} divides the data into exactly K subsets with equal size, then

both DML1 and DML2 estimators defined in (2.6) and (2.7) are equal. In particular,

θ̂
(1)
n,K = K−1

K∑
k=1

(ψa
0)

−1

(
n−1
k

∑
i∈Ik

ψb(Wi, η̂i)

)

= (ψa
0)

−1

(
n−1

n∑
i=1

ψb(Wi, η̂i)

)
= θ̂

(2)
n,K .
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Therefore, the DML1 and DML2 estimators for the ATE (Example C.1) are numerically the

same when the data are divided in exactly K folds. In contrast, if ψa(Wi, η̂i) has positive

variance, then θ̂
(1)
n,K ̸= θ̂

(2)
n,K in general. This occurs in all the other examples.

Remark 2.2. It has been recommended to use DML2 based on simulation evidence. More

concretely, Remark 3.1 in Chernozhukov et al. (2018) state that for some moment functions

there is no difference between DML1 and DML2, but for some other moment functions

DML2 is better behaved than DML1. The theoretical reasons explaining this difference are

unknown. Section 3 will provide an explanation.

Remark 2.3. Simulation evidence shows that increasing the number of folds K reduces

DML2’s finite-sample bias and MSE (Ahrens et al., 2024a,b; Chernozhukov et al., 2018)).

An intuitive explanation is that more accurate first-step estimators should imply better

estimators for the parameter of interest. One way to obtain more data in the first-step is to

increase K, since the nuisance function estimators use 50%, 80%, and 90% of the data when

K is 2, 5, and 10, respectively. However, it is theoretically unknown if the improvement in

the accuracy of the estimation of η0 translated into more precise estimates for θ0. Section 4

will provide conditions that formalize this intuition.

Remark 2.4. An estimator η̂ of η0 can be obtained by using all the data, and then an

estimator of θ0 can be defined by replacing ηi by the estimates η̂i in (2.4), where η̂i = η̂(Xi).

An estimator of θ0 based on this approach is known as the plug-in estimator, and the con-

ditions under which it has standard properties (e.g., asymptotic normality and parametric

convergence rates) have been studied in the literature on semiparametric models (e.g., An-

drews (1994), Newey (1994), Newey and McFadden (1994)). However, this approach is

sensitive to the “own observation” bias, which arises when the same data are used to esti-

mate both η0 and θ0 (Newey and Robins (2018)). Stronger conditions are often required on

the class of nuisance functions to attenuate the own observation bias on the analysis of the

plug-in estimator. In contrast, DML—the approach considered in this paper to construct

estimators—removes this bias by relying on cross-fitting, which is a form of sample splitting,

that allocates one part of the data to estimate the nuisance function and other to estimate

the parameter of interest.
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2.3 Previous Results

Under some conditions (including K fixed as n → ∞), Chernozhukov et al. (2018) showed

that both DML estimators θ̂
(1)
n,K and θ̂

(2)
n,K have the same asymptotic distribution,

√
n
(
θ̂
(j)
n,K − θ0

)
d→ N(0,Σ) , (2.8)

where the variance of the asymptotic distribution is given by

Σ = E [ψa(W, η0(X))]−1E [m(W, θ0, η0(X))m(W, θ0, η0(X))⊺]E [ψa(W, η0(X))] , (2.9)

which only depends on the moment function m, the true nuisance function η0, and the

data distribution F0. This result implies that the existing theoretical framework cannot

distinguish between estimators based on DML1 and DML2, as discussed in the introduction.

Moreover, this asymptotic theory provides no direct guidance to select K for DML2.

The proof of (2.8) relies on a first-order equivalent condition, which is the central idea

in DML. More concretely, both DML estimators θ̂
(1)
n,K and θ̂

(2)
n,K are first-order equivalent to

the oracle estimator θ̂∗n, √
n
(
θ̂
(j)
n,K − θ̂∗n

)
p→ 0 , j = 1, 2 . (2.10)

This result is the central idea since it implies that the estimation of θ0 using DML is as

accurate as if the true η0 had been used.

Although the existing asymptotic theory shows that DML1 and DML2 are asymptotically

equivalent, it has been conjectured that (1) DML2 can outperform DML1, as suggested by

simulation evidence on their relative performance, and (2) increasing the number of folds

K improves DML2 in terms of bias and mean-squared error (MSE). To investigate these

conjectures, we consider an asymptotic framework in which K depends on the sample size

n, i.e., K = Kn, allowing Kn → ∞ as n → ∞. We show that the accuracy (bias and MSE)

and inference of DML1 are sensitive to the choice of K, whereas DML2 is not, implying

that DML2 offers theoretical advantage over DML1 in terms of bias, MSE, and inference.

Moreover, we provide conditions under which increasing K reduces the magnitude of the

second-order asymptotic bias and the second-order asymptotic MSE of DML2, leading to the

practical recommendation of Kn = n as an asymptotically optimal choice. Finally, Section

5.2 proposes a computationally simple procedure for implementing DML2 with Kn = n.
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3 Asymptotic Theory for DML1 and DML2 when K

increases

We show that DML2 offers theoretical advantages over DML1 when K = Kn increases with

the sample size n (Theorem 3.1). We also prove that DML2 is robust to the choice ofK = Kn

for a large class of first-step estimators (Theorem 3.2). Finally, Section 3.1 explains why and

when DML1 is sensitive to the choice of K. In what follows, we first present and discuss the

assumptions, and we then establish the results.

Let G = E[ψa(W, η0(X))] ∈ Rd×d and Ω = E[m(W, θ0, η0(X)) m(W, θ0, η0(X))⊺] ∈ Rd×d.

We write ψa(W, η) = [ψa
t,s(W, η)]t,s and m(W, θ, η) = [mt(W, θ, η)]t. Recall ηi = η0(Xi). Let

cG, c1, and c2 be positive constants. The next assumption restricts the class of econometric

models through conditions on the moment function m and function ψa.

Assumption 3.1. m(W, θ, η) and ψa(W, η) are twice continuously differentiable with respect

to η ∈ E ⊆ Rp and satisfy

(a) G and Ω are non-singular and ||G−1|| < cG.

(b) E[|mt(Wi, θ0, ηi)|4] < c1 and E[|ψa
t,s(Wi, ηi)|4] < c1 for all t, s ∈ [p].

(c) E[∂ηmt(Wi, θ0, ηi)|Xi] = 0, ||E[(∂ηmt(Wi, θ0, ηi))(∂ηmt(Wi, θ0, ηi))
⊺|Xi]||∞ < c2, and

supη∈E ||∂2ηmt(Wi, θ0, η)||∞ ≤ c2 for t ∈ [p].

(d) E[∂ηψ
a
t,s(Wi, ηi) | Xi] = 0 , ||E[(∂ηψa

t,s(Wi, ηi))(∂ηψ
a
t,s(Wi, ηi))

⊺ | Xi]|| < c2, and

supη∈E ||∂2ηψa
t,s(Wi, η)||∞ ≤ c2 for all t, s ∈ [p].

Parts (a) and (b) of Assumption 3.1 are standard conditions that guarantee identifica-

tion of the parameter of interest and stochastic expansions for the oracle estimator, similar

to Newey and Smith (2004, Assumptions 2 and 3). Part (c) of Assumption 3.1 presents

a Neyman-orthogonality condition, E[∂ηmt(Wi, θ0, ηi)|Xi] = 0, involving standard partial

derivatives as in Belloni et al. (2017) and Farrell et al. (2025) rather than functional deriva-

tives as in Chernozhukov et al. (2018). This type of condition is necessary to guarantee

that feasible estimators are as accurate as if the true values of the nuisance functions were

used; see Remark 3.1 for an explanation. It is possible to transform a moment function into

one that satisfies a Neyman-orthogonality condition under certain conditions; see Remark

3.2 for comments on existing methods. Part (c) of Assumption 3.1 also includes standard

conditions ensuring that nonlinear effects of first-step estimation error are negligible when

the nuisance estimators are sufficiently accurate (e.g., when their L2-convergence rates are

faster than n−1/4). Finally, part (d) of Assumption 3.1 implies that we can construct a DML

10



estimator for each component of G = E[ψa(Wi, ηi)]. It holds automatically when ψa does

not depend on η. Further discussion of part (d) of Assumption 3.1 appears in Section 3.1.

Assumption 3.1 holds in many common econometric models studied in the literature; see

Appendix C and Ahrens et al. (2025) for several examples. However, it excludes settings in

which the moment function is not differentiable in η; see Remark 3.3 for examples of such

non-smooth models where DML estimators have been proposed.

We next present conditions on the class of first-step estimators.

Assumption 3.2. For any sequence Kn ≤ n,

sup
1≤k≤Kn

E[||η̂k(X)− η0(X)||2]1/2 = o(n−1/4) .

Assumption 3.2 holds for several firs-step estimators considered in the DML literature.

For instance, it holds for deep neural networks as in Farrell et al. (2021) and Schmidt-Hieber

(2020). Under certain conditions, it holds for LASSO and related penalized estimators

of linear models (Tibshirani (1996), Van de Geer (2008), Belloni et al. (2011)). Kernel

estimators and series estimators (Newey (1997), Belloni et al. (2015), Chen (2007)) can

verify this assumption after appropriate trimming to ensure bounded inverse density weights

for kernel estimators, or well-conditioned Gram matrices for series estimators. It is unknown

if this assumption holds for random forest; see Chi et al. (2022).

As is common in DML, a Neyman orthogonality condition on the moment function (As-

sumption 3.1) and sufficiently accurate first-step estimators (Assumption 3.2) are enough

to derive the limiting distribution of DML estimators. The next theorem presents the lim-

iting distributions of DML1 and DML2 under our new asymptotic framework, in which

K = Kn → ∞ as n→ ∞.

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold and let Kn be such that Kn ≤ n and

Kn/
√
n→ c ∈ [0,∞) as n→ ∞. Then,

√
n
(
θ̂
(1)
n,Kn

− θ0

)
d→ N(cΛ,Σ)

and
√
n
(
θ̂
(2)
n,Kn

− θ0

)
d→ N(0,Σ) ,

where θ̂
(1)
n,Kn

, θ̂
(2)
n,Kn

, and Σ are defined in (2.6), (2.7), and (2.9), respectively, and

Λ = −G−1E
[
ψa(W, η0(X)) G−1 m(W, θ0, η0(X))

]
. (3.1)

Theorem 3.1 provides an asymptotic result that explains the discrepancy found in sim-
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ulations between DML1 and DML2. As we mentioned in Remark 2.2, DML2 has been

recommended over DML1 based on simulation evidence. This theorem now provides the

theoretical explanation. It shows that DML2 is asymptotically better than DML1 in terms

of bias and MSE when c > 0 and Λ ̸= 0, otherwise both share the same limiting distribution.

Our explanation through Λ emerges under the proposed asymptotic framework, providing

insights not captured by the existing asymptotic theory or simulation-based evidence.

The distinction between DML1 and DML2 relies on the discrepancy measure Λ that

depends on the econometric model (m, θ0, and η0) and not on the first-step estimator η̂.

Therefore, the relative performance between DML1 and DML2 can be obtained by calculat-

ing Λ without using finite data. In particular, for several econometric models—such as ATE,

ATT-DID, ATT, and PLM—Λ = 0, but for others like LATE and w-ATE, it is typically

nonzero. Note that this discrepancy measure can be computed also for econometric models

where the moment function is not differentiable in η. We argue that if for those models

Λ ̸= 0, then DML2 should be preferred over DML1 even if those models are outside the

scope of our setup. We postpone our explanation to Section 3.1.

When Λ ̸= 0, DML1 becomes increasingly sensitive to large Kn values regarding bias,

MSE, and coverage probability of its associated confidence interval. In contrast, DML2

remains unaffected by the choice of Kn. By setting c = Kn/
√
n and using the limiting

distribution of DML1 in Theorem 3.1, we can approximate the finite sample distribution of

DML1,
√
n
(
θ̂
(1)
n,Kn

− θ0

)
, by N((Kn/

√
n)Λ,Σ) which is sensitive to the choice of Kn when n

is small and Λ ̸= 0. Intuitively, this suggest that the distribution of DML1 is not centered

at the origin and the gap is increasing on Kn. This implies that the standard recommended

DML1 confidence interval is not valid when Λ ̸= 0 and, furthermore, its coverage decrease

as Kn increases, explaining their simulation performance. We formalize this intuition in the

next corollary.

Corollary 3.1. Let CI
(1)
α be the standard recommended DML1 confidence interval for θ0,t

(t-th component of θ0),

CI(1)α = [θ̂
(1)
n,Kn

− z1−α/2
ŝt,n√

n
, θ̂

(1)
n,Kn

+ z1−α/2
ŝt,n√

n
] ,

where ŝ2t,n is a consistent estimator for Σt,t (t-th diagonal term of Σ). Under the conditions

of Theorem 3.1, we then have

P
(
θ0,t ∈ CI(1)α

)
= P(Kn) + o(1) ,

12



where

P(Kn) = Φ

(
z1−α/2 +

Kn√
n

Λt√
Σt,t

)
+ Φ

(
z1−α/2 − Kn√

n
Λt√
Σt,t

)
− 1 .

Here, Λ = [Λt]t and Σ = [Σt,s]t,s. Furthermore, P(Kn) is a decreasing function on Kn if and

only if Λt ̸= 0. In particular, P(0) = 1− α > P(Kn) if Kn > 1 and Λt ̸= 0.

Theorem 3.1 shows that the finite-sample distribution of DML2 can be approximated

by the limiting distribution implied by the existing fixed-K asymptotic theory, regardless of

the choice of K = Kn, provided that Kn = O(
√
n). In particular, this suggests that DML2

inference is robust to the choice of K, which we formalize in the next corollary.

Corollary 3.2. Under the conditions of Theorem 3.1, we then have

P
(
θ0,t ∈ CI(2)α

)
= 1− α + o(1) ,

where CI
(2)
α is the standard recommended DML2 confidence interval for θ0,t (t-th component

of θ0),

CI(1)α = [θ̂
(1)
n,Kn

− z1−α/2
ŝt,n√

n
, θ̂

(1)
n,Kn

+ z1−α/2
ŝt,n√

n
] ,

where ŝ2t,n is a consistent estimator for Σt,t (t-th diagonal term of Σ). Furthermore, the

standard DML2 estimator ŝ2t,n for Σt,t defined in Chernozhukov et al. (2018, Theorem 3.2)

is consistent under the conditions of Theorem 3.1.

Theorem 3.1 has shown that DML2 asymptotically dominates DML1 and is robust to the

choice of K, provided that K = Kn = O(
√
n). The next assumption is proposed to extend

the robustness of DML2 to the choice of K from Kn = O(
√
n) to Kn = O(n). Let η̂ℓk(·) be

the same estimator as η̂k(·) except in the use of observation ℓ: η̂k(·) uses (Wℓ, Xℓ), whereas

η̂ℓk(·) uses (W̃ℓ, X̃ℓ), where the random vector (W̃ℓ, X̃ℓ) is draw from F0 and independent of

the data (i.e., (W̃ℓ, X̃ℓ) and (Wℓ, Xℓ) are i.i.d.).

Assumption 3.3. For any sequence Kn ≤ n,

sup
1≤k≤Kn

max
ℓ/∈Ik

E[||η̂k(X)− η̂ℓk(X)||2]1/2 = o(n−1/2)

Assumption 3.3 is an algorithm stability condition similar to the one in Chen et al. (2022,

Corollary 4). This condition measure the stability of first-step estimators to replacement

of exactly one observation in L2-norm. The study of this type of conditions has received

considerable attention in the statistical machine learning and generalization theory literature;

see Bousquet and Elisseeff (2002) and Hardt et al. (2016). This condition can be verified for

kernel and series estimators after appropriate trimming to ensure bounded inverse density
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weights for kernel estimators, or well-conditioned Gram matrices for series estimators. It is

unknown if this condition can be verified for deep neural networks or other machine learning

methods, which is an interesting research direction outside the scope of this paper.

The next theorem guarantees that DML2 is robust to the choice of K, provided that the

first-step estimators are stable to replacing a single observation with another i.i.d. draw.

Theorem 3.2. Let Assumptions 3.1, 3.2, and 3.3 hold and let Kn be such that Kn ≤ n.

Then,
√
n
(
θ̂
(2)
n,Kn

− θ0

)
d→ N(0,Σ) ,

where θ̂
(2)
n,Kn

and Σ are as in (2.7) and (2.9), respectively.

Theorem 3.2 shows that the existing asymptotic theory for DML2, where K was fixed

as n → ∞, continues to be valid for any K in {2, . . . , n}. In particular, we can use DML2

with Kn = n, which is exactly the leave-one-out estimator commonly use in semiparametric

models as in Robinson (1988), Linton (1995), Rothe and Firpo (2019), among others. In

contrast, we cannot use DML1 with Kn = n since the estimator will not be consistent, with

some exceptions; see Remark 2.1.

One of the main benefits of using DML2 with Kn = n is that it ensures replicability.

DML2 with Kn = n is uniquely determined by the data and therefore eliminates the random-

split variability that exists when Kn < n, where different random splits yield different

DML2 estimates. However, its implementation in practice may appear challenging due

to the computational burden of estimating n first-step estimators. Section 5.2 proposes

a computationally simple procedure for implementing DML2 with Kn = n.

An important caveat is that our results so far do not yet provide guidelines for the choice

of K. Our first-order asymptotic theory demonstrates that K does not matter for approxi-

mating the finite-sample distribution of DML2 under our assumptions. Therefore, in Section

4, we derive a second-order asymptotic approximation to explain DML2’s finite-sample bias

and MSE, following a long tradition in econometrics of using second-order asymptotic approx-

imations to compare estimators that are first-order asymptotically equivalent (Rothenberg,

1984; Linton, 1995; Donald and Newey, 2001; Newey and Smith, 2004).

Remark 3.1. A Neyman orthogonality condition of the moment function is necessary to

guarantee a first-order equivalent condition between a feasible estimator and its oracle version

(as in (2.10)). To see this, consider the following example. Suppose ψa(W, η) = 1 and

ψb(W, η) is a linear function in η. In addition, assume that the nuisance parameter η0 is

an unknown finite-dimensional parameter. Consider the estimator θ̂n = n−1
∑n

i=1 ψ
b(Wi, η̂)

and its oracle version θ̂∗n = n−1
∑n

i=1 ψ
b(Wi, η0), where η̂ is an estimator of η0 such that
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n1/2(η̂ − η0)
d→ N(0, Vη) and Vη is an invertible matrix. It can be shown that

n1/2(θ̂n − θ̂∗n) = n1/2(η̂ − η0)
⊺E[∂ηm(Wi, θ0, η0)] + op(1) ,

which implies n1/2(θ̂n− θ̂∗n) is op(1) if and only if E[∂ηm(Wi, θ0, η0)] = 0. In other words, the

first-order equivalence condition in this example holds if and only if a Neyman orthogonality

condition as in part (c) of Assumption 3.1 holds. See also Andrews (1994, Eq. (2.12)).

Remark 3.2. Moment functions satisfying a Neyman orthogonality condition can be ob-

tained by adding adjustment terms to the original moment functions. The adjustment terms

are constructed using first-order influence functions, as developed in Newey (1994), Hahn

and Ridder (2013), Ichimura and Newey (2022), and Farrell et al. (2025), among others.

Since the analytical construction can be tedious, recent work has focused on automatic con-

struction of orthogonal moments—that is, procedures that take the original moment function

as input and automatically return the orthogonalized version needed for DML2 estimation.

Examples include Chernozhukov et al. (2022a), Escanciano and Pérez-Izquierdo (2023), and

Argañaraz (2025).

Remark 3.3. Beyond smooth moment conditions, DML methods have been successfully

applied to non-smooth econometric models. Chernozhukov et al. (2022a) develop DML

estimators for quantile regression coefficients, while Semenova (2023b) propose methods for

support functions in set-identified models. Related approaches have been used to study

algorithmic fairness (Liu and Molinari, 2025; Liu et al., 2026) and to conduct inference on

welfare under optimal treatment rules (Park, 2024).

3.1 Why and When DML1 is Sensitive to K Increasing

We now provide a high-level explanation for DML1’s sensitivity to large K values. The main

reason is that the oracle version of DML1 is already sensitive to large K values when the

discrepancy measure Λ ̸= 0. Therefore, the discussion that we provided for smooth moment

conditions continues to apply for non-smooth econometric models as long as DML1 and its

oracle version are asymptotically equivalent.

The oracle version of DML1 is defined as the calculation of DML1 using the true values

for ηi’s instead of η̂i, that is, assuming perfect knowledge of η0,

θ̂
∗,(1)
n,K = K−1

K∑
k=1

θ̃∗k . (3.2)
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where

θ̃∗k =

(
n−1
k

∑
i∈Ik

ψa(Wi, ηi)

)−1(
n−1
k

∑
i∈Ik

ψb(Wi, ηi)

)
, ∀ k ∈ [K].

Note that θ̃∗k is similar to the ideal estimator (2.4) but using only observations in the fold

Ik.

The next lemma presents the limiting distribution of the oracle DML1 under our new

asymptotic framework, in which K = Kn → ∞ as n→ ∞.

Lemma 3.1. Let Assumption 3.1 (a)–(b) hold and let Kn be such that Kn ≤ n and

Kn/
√
n→ c ∈ [0,∞) as n→ ∞. Then,

√
n
(
θ̂
∗,(1)
n,Kn

− θ0

)
d→ N(cΛ,Σ) ,

where Σ and Λ are defined in (2.9) and (3.1), respectively.

Lemma 3.1 continue to hold for non-smooth econometric models for two reasons. First,

we use mild regularity conditions to derive the limiting distribution of the oracle DML1.

Second, we don’t rely on the smoothness of the moment function m with respect to η.

Lemma 3.1 shows that the oracle DML1 has the same limiting distribution that we derive

for DML1 in Theorem 3.1. This last result occurs because the proof of Theorem 3.1 uses

that the DML1 and its oracle version are asymptotically equivalent,

√
n
(
θ̂
(1)
n,Kn

− θ̂
∗,(1)
n,Kn

)
p→ 0 as n→ ∞ . (3.3)

Part (d) of Assumption 3.1 is key in our proof of Theorem 3.1 to guarantee that (3.3) holds.

The asymptotic equivalence in (3.3) and Assumption 3.1 (a)-(b) are sufficient to conclude

that DML1 is sensitive for large K values when Λ ̸= 0. We show in part (a) of Lemma A.1

that Assumptions 3.1 and 3.2 are sufficient to verify the high-level condition (3.3).

In a similar way, we can define the oracle version of DML2:

θ̂
∗,(2)
n,K =

(
1

n

n∑
i=1

ψa(Wi, ηi)

)−1(
1

n

n∑
i=1

ψb(Wi, ηi)

)
. (3.4)

Note that the oracle version of the DML2 is the same as the ideal estimator defined in (2.4).

Therefore, the oracle version of DML2 does not depend on the choice of K.

The asymptotic equivalence in (3.5) between DML2 and its oracle version is sufficient to
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conclude the robustness of DML2 to the choice of K,

√
n
(
θ̂
(2)
n,Kn

− θ̂
∗,(2)
n,Kn

)
p→ 0 as n→ ∞ . (3.5)

We show in part (b) of Lemma A.1 that Assumptions 3.1 (a)–(c) and 3.2 are sufficient to

verify the high-level condition (3.5), provided that Kn = O(
√
n). To guarantee that (3.5)

holds for Kn = O(n) we additionally use Assumption 3.3 (Lemma A.2). Importantly, we do

not require part (d) of Assumption 3.1 for the analysis of DML2.

Finally, notice that the oracle version of DML1 depends on random splitting, while the

oracle version of DML2 does not. Therefore, even if we use the oracle DML1, it lacks

replicability due to sample splitting, whereas the oracle DML2 does not. Furthermore, we

cannot use oracle DML1 with K = n since this estimator is inconsistent, except in special

cases where oracle DML1 coincides with oracle DML2; see Remark 2.1.

4 Second-Order Asymptotic Approximation for DML2

when K increases

This section derives a second-order asymptotic approximation to the scalar DML2 estimator

when K = Kn can depend on the sample size n (Theorem 4.1). We use this approximation to

explain observed patterns in DML2’s finite-sample bias and MSE (Remark 2.3), characterize

the optimal choice of K, and quantify the relative efficiency loss from any suboptimal choice

of K. Under the conditions we provide, the magnitude of the second-order asymptotic bias

and the second-order asymptotic MSE of DML2 decrease in K, implying that Kn = n is

an optimal choice. In other words, the leave-one-out estimator is optimal among DML2

estimators; its implementation is discussed in Section 5.2.

Let n−φ
0 be the L2-convergence rate of the estimator η̂k, where n0 = ((K − 1)/K)n is the

number of observations in the sample {Wi : i /∈ Ik} used by η̂k to estimate η0. Let M1, M2,

cδ, and cb be positive constants, and let τn be a sequence of positive numbers converging to

zero. To derive the second-order asymptotic approximation for DML2, the next assumption

restricts the class of nuisance estimators relative to that considered in Section 3, in the sense

that it can be verified that Assumption 4.1 implies Assumptions 3.2 and 3.3.

Assumption 4.1. There exist δn0 : W ×X → Rp and bn0 : X × X → Rp, such that

(a) For any k ∈ [Kn], E[||η̂k(Xi)− η0(Xi)−∆k,i||2]1/2 ≤ n−2φ
0 M1, where

∆k,i = n
−1/2
0

∑
j /∈Ik

n−φ
0 δn0(Wj, Xi) + n−1

0

∑
j /∈Ik

n−φ
0 bn0(Xj, Xi) . (4.1)
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(b) φ ∈ (1/4, 1/2).

(c) For any i ̸= j, E [||δn0(Wj, Xi)||2] ∈ (cδ,M1), E [||δn0(Wj, Xi)||4] < n1−2φ
0 M2 for s =

1, 2, E [E[||δn0(Wj, Xi)||2 | Xi]
2] ≤M2, and E[δn0(Wj, Xi) | Xj] = 0.

(d) For any i ̸= j, E [||E [bn0(Xj, Xi) | Xi] ||4] ∈ (cb,M2), E
[
||n−φ

0 bn0(Xj, Xi)||2s
]
< n

(2s−1)(1−2φ)
0 τn0

for s = 1, 2, and E
[
E [||bn0(Xj, Xi)||2 | Xi]

2
]
≤ n2

0τn0.

Assumption 4.1 holds for kernel regression estimators under mild regularity conditions,

with trimming to ensure bounded inverse density weights. It captures settings in which the

nuisance estimator achieves the usual bias–variance trade-off. For instance, it holds for the

Nadaraya–Watson estimator with an MSE-optimal bandwidth.

Part (a) of Assumption 4.1 is a high-level condition that presents a stochastic expansion

for the nuisance function estimator η̂k, with variance and bias contributions given by δn0

and bn0 , respectively. The accuracy of the stochastic expansion is measured in L2-norm to

address the technical challenges that arise when Kn → ∞ as n→ ∞; it can be relaxed when

Kn is fixed. Part (b) of Assumption 3.1 is a standard requirement in the semiparametric

literature (Andrews, 1994); it guarantees that nonlinear effects of first-step estimator error

are negligible for the estimator of θ0 whenever part (c) of Assumption 3.1 also holds. Parts

(c) and (d) impose regularity conditions on δn0 and bn0 that imply n−2φ
0 is the convergence

rate of both the squared bias and variance of η̂k.

Assumption 4.1 provides additional structure on the estimators η̂k that we can use to de-

rive a second-order asymptotic approximation for the scalar DML2 estimator. Nevertheless,

conducting an appropriate analysis of the leading terms of the second-order bias and MSE of

DML2 requires additional conditions on the functions δn0 and bn0 and the higher-order partial

derivatives of the moment functionm. We formalize those conditions in the next assumption.

To simplify notaton, let b̃n0(Xi) = E [bn0(Xj, Xi) | Xi] for j ̸= i, let ∂2ηmi = ∂2ηm(Wi, θ0, ηi),

and recall that ηi = η0(Xi) and G = E[ψa(Wi, ηi)].

Assumption 4.2. (a) m is three-times continuously differentiable on η ∈ E ⊆ Rp and

supη∈E ||∂3ηm(Wi, θ0, η)||∞ ≤ c2, (b) the next limits exist and are finite,

V = lim
n0→∞

E
[
E
[
δn0(Wj, Xi)

⊺
(
G−1∂2ηmi

)
δn0(Wℓ, Xi) | Wj,Wℓ

]2]
, (4.2)

B = lim
n0→∞

1
2
E
[
(δn0(Wj, Xi) + b̃n0(Xi))

⊺
(
G−1∂2ηmi

)
(δn0(Wj, Xi) + b̃n0(Xi))

]
(4.3)

C = lim
n0→∞

E
[
G−1m(Wj, θ0, ηj)δn0(Wj, Xi)

⊺
(
G−1∂2ηmi

)
b̃n0(Xi)

]
, (4.4)

where j ̸= i, and (c) V > 0, B ̸= 0, and C > 0.
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Part (a) of Assumption 4.2 is satisfied in several examples, including ATE (Example C.1),

ATT-DID (Example C.2), and LATE (Example C.3). In all these examples, the moment

function is a quadratic polynomial in η. Part (b) requires that the limits in (4.2)–(4.4)

exist; this is a mild regularity condition since Assumptions 3.1 and 4.1 already ensure these

sequences are bounded. Part (c) assumes that the quantities V , B and C are non-zero to

ensure the second-order approximation is non-degenerate. A necessary condition for part

(c) is that the moment function m is nonlinear in η, i.e., its matrix of second-order partial

derivatives with respect to η is nonzero.

Let T ∗
n = n−1/2

∑n
n=1G

−1mi and T nl
n,K = 1

2
n−1/2

∑K
k=1

∑
i∈Ik ∆

⊺
k,i

(
G−1∂2ηmi

)
∆k,i, where

we use mi = m(Wi, θ0, ηi) to simplify notation. Recall that ∆k,i is defined in (4.1). We refer

T ∗
n as the first-order asymptotic approximation of DML2 since T ∗

n
d→ N(0,Σ), which is the

limiting distribution of DML2. Let Tn,Kn ≡ T ∗
n + T nl

n,Kn
. The next theorem shows that T ∗

n

and Tn,Kn are, respectively, the first- and second-order asymptotic approximations to the

scalar DML2 estimator.

Theorem 4.1. Let Assumptions 3.1, 4.1, and 4.2 hold and let Kn be such that Kn ≤ n.

Then,

n1/2(θ̂
(2)
n,Kn

− θ0)− Tn,Kn = op(n
1/2−2φ) . (4.5)

Furthermore, limn→∞ V ar[n2φ−1/2T nl
n,Kn

] > 0 and limn→∞E
[(
n2φ−1/2T nl

n,Kn

)2]
< ∞. In par-

ticular,

n1/2(θ̂
(2)
n,Kn

− θ0)− T ∗
n = Op(n

1/2−2φ) .

Theorem 4.1 demonstrates that Tn,Kn provides a better asymptotic approximation than

T ∗
n . We obtain this improvement by including T nl

n,Kn
to account for the nonlinear effects of

nuisance estimation error in the estimator of θ0. More concretely, the theorem guarantees

that T nl
n,Kn

has stochastic order Op(n
1/2−2φ) and is the leading term in the scaled difference

between the feasible estimator θ̂
(2)
n,Kn

and the oracle estimator θ̂
∗,(2)
n,Kn

defined in (3.4):

n1/2
(
θ̂
(2)
n,Kn

− θ̂
∗,(2)
n,Kn

)
= T nl

n,Kn
+ op(n

1/2−2φ).

We next use the asymptotic approximation Tn,Kn to explain how the choice of Kn affects

the finite-sample bias and MSE of DML2. Recall that all DML2 estimators share the same

limiting distribution regardless of Kn (Theorem 3.2), making second-order analysis necessary

to understand the simulation patterns of the bias and MSE of DML2 that first-order asymp-

totic theory cannot capture. This use of second-order approximations to compare first-order

equivalent estimators has a long history in econometrics (Rothenberg, 1984; Linton, 1995;

Newey and Smith, 2004; Graham et al., 2012).
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Remark 4.1. When Kn is fixed as n → ∞, a similar stochastic expansion can be derived

for DML1,

n1/2(θ̂
(1)
n,Kn

− θ0) = T ∗
n + T nl

n,Kn
+ op(n

1/2−2φ) .

This expression and (4.5) show that the asymptotic approximations are identical when Kn is

fixed. Consequently, DML1 and DML2 have identical second-order asymptotic bias and MSE

in the K-fixed asymptotic regime, making it impossible to distinguish them using second-

order asymptotic analysis. Thus, distinguishing DML1 from DML2 requires an asymptotic

framework where Kn → ∞ as n→ ∞, as we develop in Section 3.

4.1 Second-order Asymptotic bias and MSE for DML2

We define the second-order asymptotic bias and MSE of DML2 as the mean and second mo-

ment of Tn,Kn , respectively. These definitions follow a long tradition in econometrics of using

second-order approximations to compare estimators with identical first-order asymptotic

properties (Rothenberg, 1984; Linton, 1995; Newey and Smith, 2004). Under suitable regu-

larity conditions, the distribution of Tn,Kn approximates the distribution of n1/2(θ̂
(2)
n,Kn

−θ0) up
to an error of order o(n1/2−2φ); therefore, the moments of Tn,Kn provide valid approximations

to the bias and variance of θ̂
(2)
n,Kn

. Recall that φ ∈ (1/4, 1/2) by Assumption 4.1.

Theorem 4.2. Let Assumptions 3.1, 4.1, and 4.2 hold and let Kn be such that Kn ≤ n.

Then,

E[Tn,Kn ] = B
(
1 +

1

Kn − 1

)2φ

n1/2−2φ + o(n1/2−2φ) , (4.6)

and

E[T 2
n,Kn

] = Σ + C
(
1 +

1

Kn − 1

)2φ−1/2

n1/2−2φ + o(n1/2−2φ) , (4.7)

where B and C are defined in (4.2) and (4.4), respectively.

This theorem presents the second-order asymptotic bias and MSE of DML2. Henceforth,

by second-order asymptotic bias and MSE we refer to the leading-order terms in (4.6) and

(4.7), omitting the o(n1/2−2φ) terms, which are negligible for our analysis. This simplification

focuses our analysis on the dominant terms that vary with Kn.

Theorem 4.2 provides an asymptotic result that explains the observed patterns in DML2’s

finite-sample bias and MSE (Remark 2.3). Since B ≠ 0 and C > 0, we see that the mag-

nitude of the second-order asymptotic bias and the second-order asymptotic MSE decrease

in Kn, consistent with the simulations findings reported in Ahrens et al. (2024a,b) and

Chernozhukov et al. (2018), and our simulation results in Section 6. Importantly, the sim-

ulation results in Section 6 show that for K ≥ 10, DML2’s finite-sample bias and MSE
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appear approximately constant. This plateau is consistent with the fact that the terms

(1− 1/(Kn − 1))2φ and (1− 1/(Kn − 1))2φ−1/2 in (4.6)–(4.7) change little when Kn ≥ 10 for

typical values φ ∈ (1/4, 1/2).

We now use Theorem 4.2 to characterize the optimal choice ofK = Kn, which can depend

on the sample size n. We consider the minimization of the second-order asymptotic MSE

of DML2 as our optimality criterion, following the literature on higher-order asymptotics

(Donald and Newey, 2001; Linton, 1995; Newey and Smith, 2004). Let MSE[θ̂
(2)
n,Kn

] be the

second-order MSE of DML2 with K = Kn. Using this notation and since C > 0, we conclude

MSE[θ̂(2)n,n] ≥MSE[θ̂
(2)
n,Kn

] (4.8)

for any sequence Kn such that Kn ≤ n.

From (4.8), we conclude that K = n is an optimal choice for DML2 in terms of second-

order asymptotic MSE. When Kn is constant, the inequality (4.8) is strict, implying that

K = n strictly dominates any fixed choice of K. In contrast, when Kn → ∞ as n → ∞,

the difference between MSE[θ̂
(2)
n,n] and MSE[θ̂

(2)
n,Kn

] is of order o(n1/2−2φ), which we omit in

our analysis. Thus, any choice Kn with Kn → ∞ as n→ ∞ is asymptotically equivalent to

K = n under the second-order asymptotic MSE criterion.

The previous result demonstrate that the leave-one-out estimator, which is DML2 with

K = n, is optimal among DML2’s in terms of second-order asymptotic MSE. A similar

analysis can be done using the magnitude of the second-order asymptotic bias of DML2 as

our optimality criterion, with analog results, in the sense that the choice K = n is also

an optimal choice as long as B ≠ 0. Therefore, the leave-one-out estimator is also optimal

among DML2’s in terms of second-order asymptotic bias.

Remark 4.2. Under our conditions (including B ̸= 0 and C > 0), we prove that Kn = n is

optimal in terms of second-order asymptotic bias and MSE criteria. If instead C < 0, then

Kn = 2 becomes optimal under the second-order asymptotic MSE criterion. In either case,

commonly recommended choices as K = 5 or K = 10 are suboptimal.

Remark 4.3. When Kn = K is fixed as n → ∞, explicit expressions for the second-

order asymptotic MSE of the oracle estimators θ̂
∗,(1)
n,K and θ̂

∗,(2)
n,K defined in (3.2) and (3.4),

respectively, can be derived using standard arguments (e.g., Newey and Smith (2004)):

MSE[θ̂
∗,(1)
n,K ] = Σ +

(
K2Λ2 +KΛ1

)
/n+ o(n−1)

MSE[θ̂
∗,(2)
n,K ] = Σ +

(
Λ2 + Λ1

)
/n+ o(n−1)
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where Σ and Λ are defined in (2.9) and (3.1), respectively, and

Λ1 = 5Λ2 + σ2

{
3
E [ψa(W, η0(X))2]

E [ψa(W, η0(X))]2
− 1

}
− 2

E [m(W, θ0, η0(X))2ψa(W, η0(X))]

E [ψa(W, η0(X))]3
.

Two key differences from Theorem 4.2 merit discussion. First, the oracle estimators have

remainder terms of order o(n−1) and second-order terms of order n−1. Since φ ∈ (1/4, 1/2)

implies n−1 = o(n1/2−2φ), these oracle second-order terms are negligible relative to the feasible

estimator’s second-order MSE term in (4.7). Second, the second-order term for DML1,

(K2Λ2 +KΛ1) /n, increases in K, implying that for large K, the oracle DML1 estimator

θ̂
∗,(1)
n,K has worse second-order accuracy than the oracle DML2 estimator θ̂

∗,(2)
n,K .

Remark 4.4. Theorem 4.2 illustrates that a first-step estimator optimal for nuisance es-

timation may be suboptimal for estimating θ0 in terms of second-order asymptotic MSE.

The theorem shows that the second-order asymptotic MSE of DML2 is dominated by the

variance component since the squared second-order bias is of order O(n1−4φ), which is a

negligible relative to the variance. Therefore, a different class of first-step estimators that

induces larger second-order bias but lower second-order variance could improve the con-

vergence rate of DML2’s second-order MSE. In work in progress, we show that when the

first-step estimator uses Nadaraya-Watson regression, the bandwidth hn ∝ n−2/7 optimizes

the second-order MSE of θ̂
(2)
n,Kn

, yielding a convergence rate of n−3/7, which is faster than the

rate n−3/10 obtained in (4.7) using the MSE-optimal bandwidth hn ∝ n−1/5.

4.2 Relative efficiency loss from suboptimal choice of K

In the remainder of this section, we quantify the relative efficiency loss from any suboptimal

choice of K using Theorem 4.2. The main motivation is to evaluate the performance of

commonly recommended choices such as K = 5 or K = 10 relative to the optimal choice.

We first use the second-order asymptotic MSE as our performance metric, then present

results using the second-order asymptotic bias.

We define the relative efficiency loss of the choice K in terms of the second-order asymp-

totic MSE as

RLMSE(K) ≡ MSE[θ̂
(2)
n,K ]

MSE[θ̂
(2)
n,n]

− 1 .

This measures the percentage loss in second-order asymptotic MSE from choosing K instead

of the optimal K = n. By construction, RLMSE(n) = 0 and RLMSE(K) ≥ 0 for all K ≤ n.

The next corollary provides an upper bound for RLMSE(K) depending only on K, n, and

φ. This bound is sufficiently tight for practical guidance and avoids the need to estimate

the ratio C/Σ required in the exact expression.

22



Corollary 4.1. Under the conditions of Theorem 4.2, we have

RLMSE(K) ≤ (1+ 1
K−1)

2φ−1/2

(1+ 1
n−1)

2φ−1/2 − 1 .

In particular, if φ ∈ (1/4, 1/2), we have RLMSE(5) ≤ 11.8% and RLMSE(10) ≤ 5.4% for

n ≥ 1000. If we know φ = 2/5, we have RLMSE(5) ≤ 6.9% and RLMSE(10) ≤ 3.2%.

This corollary shows that the relative efficiency loss from commonly recommended choices

such as K = 5 or K = 10 is small. Moreover, these relative losses decrease as the first-step

estimator becomes less accurate (i.e., as φ decreases), indicating that optimal choice of K is

less critical when nuisance estimation is slower.

We now define the relative efficiency loss of the choice K in terms of the second-order

asymptotic bias as

RLbias(K) ≡
(

1+ 1
K−1

1+ 1
n−1

)2φ
− 1 . (4.9)

This measures the percentage loss in second-order asymptotic bias from choosing K instead

of the optimal one. By construction, RLbias(n) = 0 and RLbias(K) ≥ 0 for all K ≤ n. Recall

that we are referring to the second-order asymptotic bias to the leading-order term in (4.6),

since the terms of order o(n1/2−2φ) are negligible for our analysis.

From (4.9), we conclude that RLbias(5) ∈ (11.7%, 24.9%) and RLbias(10) ∈ (5.4%, 11%)

when φ ∈ (1/4, 1/2) and n ≥ 1000; therefore, the relative efficiency loss from commonly

recommended choices such as K = 5 or K = 10 may be significative in terms of second-

order asymptotic bias. Furthermore, these relative losses increases as the first-step estimator

becomes more accurate (i.e., as φ increases), showing that optimal choice of K is critical

when nuisance estimation is faster.

5 Recommendations for Practitioners

We now provide three recommendations for the implementation of DML. In contrast to

existing guidance, which relies on simulation evidence that necessarily cannot cover the full

range of econometric models and first-step estimators, our recommendations are based on

the theoretical results presented in Sections 3 and 4.

Before presenting our recommendations, we recall that DML offers practitioners multiple

implementation choices. These include the choice between DML1 and DML2, as well as the

number of folds K used to split the data for first-step estimation. Our recommendations

focus on these two key decisions: DML1 versus DML2, and the choice of K.
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5.1 Prefer DML2 over DML1

Our first recommendation for practitioners is to use DML2 over DML1. While this is consis-

tent with existing practice, we provide theoretical justification that was previously lacking.

We offer two supporting reasons. First, DML2 asymptotically dominates DML1 in terms

of both bias and MSE (Theorem 3.1). Moreover, standard inference based on DML1 is

invalid when Λ ̸= 0 (Corollary 3.1), where Λ is the discrepancy measure defined in (3.1)—a

quantity that can be computed without data. In contrast, DML2-based inference remains

valid (Corollary 3.2). Second, DML2 is robust to the choice of K for a large class of first-step

estimators (Theorem 3.2). In other words, estimation and inference using DML2 are reliable

for any choice of K ∈ {2, . . . , n}.
Importantly, DML1 can still be used when Λ = 0 and K ∝

√
n, since under these con-

ditions DML1 achieves the same first-order asymptotic properties as DML2. However, this

requires first calculating Λ and verifying whether it equals zero. In practice, it is simpler to

use DML2 directly. Moreover, implementations of DML2 are available for many econometric

models in Stata (ddml ; Ahrens et al. (2024a)), Python (DoubleML; Bach et al. (2022)), and

R (DoubleML; Bach et al. (2024)).

5.2 Use K = n for DML2

Our second recommendation for practitioners is to use DML2 with K = n. There are two

reasons supporting this choice. First, K = n is optimal for DML2 in terms of second-order

asymptotic bias and MSE, as we show in Section 4.1. Second, K = n ensures replicability

by eliminating random-split variability. DML2 with K = n is uniquely determined by the

data. In contrast, for any K < n, different random splits yield different DML2 estimates, so

researchers analyzing the same data with the same K could obtain different conclusions.

We now propose a computationally simple procedure to implement DML2 with K =

n. We start by recognizing that the standard practice in DML is to repeat the tuning

of the first-step estimator K times. Here, by tuning, we refer to the procedure in which

hyperparameters are selected—such as the bandwidth in kernel regression or penalization

parameters in LASSO—before estimation. Tuning is often implemented via cross-validation

(Hastie et al., 2009), which is computationally demanding and uses the same data that will

later be used for estimation.

Instead of following the standard practice, we propose to tune the first-step estimator

only once using all the data. This will result in a unique set of hyperparameters that we

use to estimate all the first-step estimators. This procedure relies on the assumption that

a single observation has negligible influence on the selected hyperparameters—an assump-
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tion that seems reasonable in practice. Under this assumption, the tuning procedures for

different first-step estimators—each using n− 1 observations since K = n—will yield nearly

identical hyperparameters, as they differ by only one observation. Moreover, these hyper-

parameters will be close to those obtained using the full dataset. Therefore, our proposed

procedure provides a computationally simpler alternative to the standard practice, though

formal verification of this assumption remains for future work.

5.3 If K must be small, use K = 10 over K = 5

When practitioners must choose a small value of K for DML2, they should use K = 10 over

K = 5. The reason is that DML2 with K = 10 achieves better second-order asymptotic

accuracy than K = 5, as we show in Section 4.1. Moreover, the relative efficiency loss from

choosing K = 5 versus the optimal K = n can be as high as 11.8% in terms of second-

order MSE, while choosing K = 10 reduces this to at most 5.4% (Corollary 4.1). Therefore,

K = 10 guarantees substantially lower efficiency losses than K = 5.

Finally, Section 4.2 presents simple formulas to calculate the relative efficiency loss from

suboptimal choices of K. See (4.9) and Corollary 4.1 for the relative efficiency loss in terms

of second-order asymptotic bias and MSE, respectively.

6 Simulations

This section examines how well the asymptotic approximations from Sections 3 and 4 capture

finite-sample behavior for two econometric models: (i) ATT-DID (Sant’Anna and Zhao,

2020) and (ii) LATE (Hong and Nekipelov, 2010). We calculate the bias, MSE, and coverage

probability of confidence intervals associated with DML1 and DML2 for several values of

K. We use the confidence intervals defined in Chernozhukov et al. (2018, Theorem 3.2). In

what follows, we first present the designs and then the simulation results.

6.1 Design: LATE and ATT-DID

6.1.1 ATT-DID

This section is based on Example C.2. We built on the simulation design presented in

Sant’Anna and Zhao (2020). The observed outcome in the pre-treatment period and the

potential outcomes in the post-period treatment are defined by

Y0,i = freg(Xi) + v(Xi, Ai) + ε0,i
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Y1,i(a) = 2freg(Xi) + v(Xi, Ai) + ε1,i(a) , a = 0, 1

where freg(X) = 210 + 6.85X1 + 3.425(X2 + X3 + X4) and v(Xi, Ai) = Aifreg(X) + εv,i,

and (ε0,i, ε1,i(0), ε1,i(1), εv,i) is distributed as N(0, I4), I4 is the 4 × 4 identity matrix. The

treatment assignment is defined by Ai ∼ Bernoulli(p(Xi)), where

p(Xi) =
exp(fps(Xi))

1 + exp(fps(Xi))

fps(X) = 0.25(−X1 + 0.5X2 − 0.25X3 − 0.1X4) .

Finally, the vector of covariates is Xi = (X1,i, X2,i, X3,i, X4,i) ∈ [0, 1]4 and all its coordinates

are independent uniform random variables (e.g., X1,i ∼ Uniform[0, 1]).

6.1.2 LATE

This section is based on Example C.3. We built on the simulation design presented in Hong

and Nekipelov (2010). The potential treatment decisions are defined as

Di(1) = I{Xi + 0.5 ≥ Vi} ,

Di(0) = I{Xi − 0.5 ≥ Vi} ,

where Xi ∼ Uniform[0, 1] and Vi ∼ N(0, 1) are independent random variables. The potential

outcomes are defined by

Yi(1) = ξ1,i + ξ3,iI{Di(1) = 1, Di(0) = 1}+ ξ4,iI{Di(1) = 0, Di(0) = 0} ,

Yi(0) = ξ2,i + ξ3,iI{Di(1) = 1, Di(0) = 1}+ ξ4,iI{Di(1) = 0, Di(0) = 0} ,

where ξ1,i ∼ Poisson(exp(Xi/2)), ξ2,i ∼ Poisson(exp(Xi/2)), ξ3,i ∼ Poisson(2), and ξ4,i ∼
Poisson(1), and all these random variables are independent conditional onXi. The treatment

assignment is defined by Zi ∼ Bernoulli(Φ(Xi − 0.5)). As in Example C.3, the observed

treatment decision and the observed outcome are defined by Di = ZiDi(1) + (1 − Zi)Di(0)

and by Yi = DiYi(1) + (1−Di)Yi(0), respectively.

6.2 Results: LATE is sensitive to K increasing, while ATT-DID

is not

This section provides simulation evidence showing that DML2 strictly dominates DML1 in

the case of LATE, but performs similarly for the case of ATT-DID. This is consistent with
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(a) ATT-DID (Λ = 0) (b) LATE (Λ ̸= 0)

Figure 1: Bias of DML1 and DML2 for ATT-DID and LATE. Sample size n = 3, 000 and
5,000 simulations.

our results in Section 3 since LATE has Λ ̸= 0, while ATT-DID has Λ = 0. Below we provide

additional details on the construction of the DML estimators.

The estimators for the ATT-DID and LATE are defined as in (2.6) and (2.7) using ψa

and ψb presented in Examples C.2 and C.3, respectively. They are calculate for different

values of K ∈ {2, 5, 10, 15, 20, 25, 30}. The nuisance function η0 for the ATT-DID and LATE

are presented in Examples C.2 and C.3, respectively.

We estimate each component of the nuisance function η0 using Nadaraya-Watson estima-

tors and the cross-fitting procedure described in Section 2.1, where each first-step estimator

uses sample size n0 = ((K− 1)/K)n. For the ATT-DID, we use a 6th-order Gaussian kernel

and common bandwidth hj = cn
−1/16
0 for all coordinates.3 For the LATE, we use a 2nd-order

Gaussian kernel and common bandwidth hj = cn
−1/5
0 .

6.2.1 Bias

Figure 1 presents the bias of DML1 and DML2 for several values of K and two econometric

models: ATT-DID in panel (a) and LATE in panel (b). Panel (a) shows that DML1 and

3We also considered a 2nd order Gaussian Kernel in the simulations. The results are presented in Figures
D.1 and D.2 in Appendix D, and they are similar to the ones presented using a 6th order Gaussian kernel.
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(a) ATT-DID (Λ = 0) (b) LATE (Λ ̸= 0)

Figure 2: MSE of DML1 and DML2 for ATT-DID and LATE. Sample size n = 3, 000; 5,000
simulations.

DML2 perform similarly in terms of bias, while panel (b) shows that the bias of DML1 grows

almost linearly in K. Theorem 3.1 explains this finite-sample behavior since Λ = 0 for panel

(a) and Λ ̸= 0 for panel (b). Importantly, in both panels, the bias of DML2 decreases in K

and remains approximately constant for K ≥ 10, consistent with the explanation provided

after Theorem 4.2.

6.2.2 MSE

Figure 2 presents MSE results for DML1 and DML2 across several values of K for two

econometric models: ATT-DID in panel (a) and LATE in panel (b). Panel (a) shows that

DML1 and DML2 perform similarly in terms of MSE, consistent with Theorem 3.1 since Λ =

0 in this case. Panel (b) shows that the MSE of DML1 increases approximately quadratically

in K. This finding aligns with the expressions in Remark 4.3 for the oracle version of DML1.

Additional simulation results in Figure D.3 (Appendix D) show that the DML1 estimator

and its oracle version exhibit similar MSE values. Importantly, in both panels, the MSE of

DML2 decreases in K and remains approximately constant for K ≥ 10, consistent with our

explanation provided after Theorem 4.2.
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(a) ATT-DID (Λ = 0) (b) LATE (Λ ̸= 0)

Figure 3: Coverage probability of 95%-confidence intervals based on DML1 and DML2 for
ATT-DID and LATE. Sample size n = 3, 000 and 5,000 simulations.

6.2.3 Coverage probability

Figure 3 presents coverage probability results for 95% confidence intervals based on DML1

and DML2 across several values of K for two econometric models: ATT-DID in panel (a)

and LATE in panel (b). Panel (a) shows that both DML1 and DML2 confidence intervals

have similar coverage probabilities, while panel (b) shows that the coverage distortion of

the DML1-based confidence interval increases in K. Corollaries 3.1 and 3.2 explain the

finite-sample behavior observed in both panels.

Remark 6.1. Figures D.5 and D.6 in Appendix D report results for the ATT-DID and the

LATE, respectively, for different choices of bandwidths. They show that the bias and MSE

are sensitive to the choice of bandwidth, and that non-monotonic behavior of the bias can

occur.

7 Concluding remarks

This paper studies the properties of debiased machine learning (DML) estimators under

a novel asymptotic framework. DML is an estimation method suited to economic models
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in which the parameter of interest depends on unknown nuisance functions that must be

estimated. In practice, two versions of DML—introduced by Chernozhukov et al. (2018)—

can be used, that is, DML1 and DML2. Both versions randomly divide data into K equal-

sized folds for estimating the nuisance function, but they differ in how these estimates are

combined to estimate the parameters of interest. In this paper, we consider an asymptotic

framework in which K can increase to infinity as n diverges to infinity.

This paper makes several contributions within this new framework. First, it shows that

DML2 asymptotically outperforms DML1 in terms of bias, mean squared error, and in-

ference. Additionally, it characterizes the first-order asymptotic difference between DML1

and DML2 using a discrepancy measure, Λ, which can be calculated for many econometric

models. Second, it provides conditions under which all DML2 estimators, regardless of K,

are asymptotically valid and share the same limiting distribution. To differentiate among

them, we derive a second-order asymptotic approximations that lead to the following final

contribution: setting K = n for DML2 implementation is asymptotically optimal in terms

of second-order asymptotic bias and MSE within the class of DML2 estimators under the

conditions we provide.

A Proof of Main Results

We rely on the next two lemmas:

Lemma A.1. Let Assumptions 3.1 and 3.2 hold and let Kn be such Kn = O(
√
n) and

Kn ≤ n.

(a) Then, equation (3.3) holds.

(b) Then, equation (3.5) holds.

Lemma A.2. Let Assumptions 3.1 (a)–(c), 3.2, and 3.3 hold and let Kn be such that

Kn ≤ n. Then, equation (3.5) holds.

A.1 Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.1. First, note that

√
n
(
θ̂
(j)
n,Kn

− θ̂
∗,(j)
n,Kn

)
p→ 0 ,

as n→ ∞ for j = 1, 2 due to Lemma A.1 in Appendix B. Second, θ̂
∗,(2)
n,Kn

and θ̂∗n are the same

to conclude that
√
n(θ̂

∗,(2)
n,Kn

− θ0)
d→ N(0,Σ) by standard arguments. Finally, Lemma 3.1 in
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Section 3.1 demonstrate that
√
n(θ̂

∗,(1)
n,Kn

− θ0)
d→ N(cΛ,Σ).

Proof of Theorem 3.2. By Lemma A.2,
√
n
(
θ̂
(2)
n,Kn

− θ̂
∗,(2)
n,Kn

)
p→ 0 , for Kn = O(n), which is

sufficient to conclude the theorem since
√
n(θ̂

∗,(2)
n,Kn

− θ0)
d→ N(0,Σ).

A.2 Proof of Lemma A.1

Proof. We use notation and auxiliary results presented in Appendix B.

Proof of part (a): We write

√
n
(
θ̂
(1)
n,Kn

− θ̂
∗,(1)
n,Kn

)
= A+B

where

A = K−1/2
n

Kn∑
k=1

(
Id + n

−1/2
k b̂k

)−1

(âk − ak)

B = K−1/2
n

Kn∑
k=1

{(
Id + n

−1/2
k b̂k

)−1

−
(
Id + n

−1/2
k bk

)−1
}
ak

and âk, b̂k, ak, and bk are defined in Appendix B.

We obtain

||A|| ≤ ||I1||+ max
1≤k≤Kn

∣∣∣∣∣∣(Id + n
−1/2
k b̂k)

−1
∣∣∣∣∣∣× I2

by using the identity (B.1) presented in Appendix B and the triangle inequality, and

||B|| ≤ max
1≤k≤Kn

∣∣∣∣∣∣(Id + n
−1/2
k bk)

−1
∣∣∣∣∣∣× max

1≤k≤Kn

∣∣∣∣∣∣(Id + n
−1/2
k b̂k)

−1
∣∣∣∣∣∣× I3 ,

by using the triangle inequality and the inequality (B.2) presented in Appendix B, where

I1 = K−1/2
n

Kn∑
k=1

âk − ak (A.1)

I2 = n−1/2

Kn∑
k=1

∣∣∣∣∣∣b̂k − bk

∣∣∣∣∣∣× ||âk − ak||

I3 = n−1/2

Kn∑
k=1

||bk|| × ||âk − ak||

I4 = n−1/2

Kn∑
k=1

∣∣∣∣∣∣b̂k − bk

∣∣∣∣∣∣× ||ak||
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We next show that Ij = op(1) for j = 1, 2, 3, which is sufficient to complete the proof

of part (a) for DML1 since Lemma B.2 guarantees that both max1≤k≤Kn

∣∣∣∣∣∣(Id + n
−1/2
k bk)

−1
∣∣∣∣∣∣

and max1≤k≤Kn

∣∣∣∣∣∣(Id + n
−1/2
k b̂k)

−1
∣∣∣∣∣∣ are Op(1) when Kn = O(n1/2).

Claim 1: I1 = op(1). We use Taylor expansion to write I1 = I1,1 + I1,2, where

I1,1 = n−1/2

Kn∑
k=1

∑
i∈Ik

Dηmi[η̂i − ηi] (A.2)

I1,2 = n−1/2

Kn∑
k=1

∑
i∈Ik

1

2
D2

ηm̃i[η̂i − ηi, η̂i − ηi] . (A.3)

By the Law of Iterated Expectations and part (c) of Assumption 3.1, E[I1,1] = 0. Let ej be

the j-th column of the identity matrix Id. To conclude that I1,1 = op(1), it is sufficient to

show E[(e⊤j I1,1)
2] → 0. To see this, consider the following derivations,

E[(e⊤j I1,1)
2]

(1)

≤ n−1Kn

Kn∑
k=1

E

(∑
i∈Ik

e⊤j (Dηmi[η̂i − ηi])

)2


(2)
= n−1Kn

Kn∑
k=1

E

[∑
i∈Ik

(
e⊤j (Dηmi[η̂i − ηi])

)2]
(3)

≤ C(n−1/2Kn)n
−1/2

Kn∑
k=1

∑
i∈Ik

E
[
||η̂k(Xi)− η0(Xi)||2

]
(4)
= O(1)× o(1)

where (1) holds by Jensen’s inequality, (2) holds because {e⊤j (Dηmi[η̂i − ηi]) : i ∈ Ik} are

uncorrelated random variables, (3) holds by Lemma B.1, and (4) holds since Kn = O(n1/2)

and by Assumption 3.2.

The next derivations shows that I1,2 = op(1),

E[||I1,2||]
(1)

≤ Cn−1/2

Kn∑
k=1

∑
i∈Ik

E
[
||η̂k(Xi)− η0(Xi)||2

]
(2)
= o(1) (A.4)

where (1) holds by the triangle inequality and Lemma B.1, and (2) holds by Assumption

3.2.
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Claim 2: I2 = op(1). We first use the Taylor expansion to write

âk − ak = n
−1/2
k

∑
i∈Ik

Dηmi[η̂i − ηi] +
1

2
D2

ηm̃i[η̂i − ηi, η̂i − ηi]

and

b̂k − bk = n
−1/2
k

∑
i∈Ik

Dηψ
a
i [η̂i − ηi] +

1

2
D2

ηψ̃
a
i[η̂i − ηi, η̂i − ηi] .

Let Dmn and Dψa
n be as in Appendix B. Then,

I2
(1)

≤ (n−1/2Kn)×Dmn ×Dψa
n + C (Dmn +Dψa

n)× n−1/2

Kn∑
k=1

(
n
−1/2
k

∑
i∈Ik

||η̂i − ηi||2
)

+ C2n−1/2

Kn∑
k=1

(
n
−1/2
k

∑
i∈Ik

||η̂i − ηi||2
)2

(2)

≤ O(1)op(1) +
(
K1/2

n n−1/2
)
× op(1) +O(1)×

(
n−1/2

n∑
i=1

||η̂i − ηi||2
)2

(3)
= op(1) ,

where (1) holds by the triangle inequality and Lemma B.1, (2) and (3) hold by Lemmas B.2

and B.3 and since Kn = O(n1/2). This completes proof of claim 2.

Claim 3: I3 = op(1). As in the proof of Claim 2, we use the Taylor expansion and Dmn

defined in Appendix B to obtain,

I3
(1)

≤ (Dmn)× n−1/2

Kn∑
k=1

||bk||+ Cn−1/2

Kn∑
k=1

||bk|| ×

(
n
−1/2
k

∑
i∈Ik

||η̂i − ηi||2
)

(2)

≤ op(1)×

(
n−1/2

Kn∑
k=1

||bk||

)

+ Cn−1K1/2
n

(
Kn∑
k=1

||bk||2
)1/2

×

 Kn∑
k=1

(∑
i∈Ik

||η̂i − ηi||2
)2
1/2

(3)

≤ op(1)×Op(1) + n−1Kn ×Op(1)×

(
Kn∑
k=1

∑
i∈Ik

||η̂i − ηi||2
)

(4)
= op(1) ,

where (1) holds by the triangle inequality and Lemma B.1, (2) holds by Lemma B.2 and the

Cauchy-Schwarz inequality, (3) holds by part (b) of Assumption 3.1, using the definition of
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bk, and since Kn = O(n1/2), and (4) holds by Assumption 3.2 and since Kn = O(n1/2).

Claim 4: I4 = op(1). The proof is similar to Claim 4 but using Dψa
n instead of Dmn;

therefore, omitted.

Proof of part (b): We write

√
n
(
θ̂
(2)
n,Kn

− θ̂
∗,(2)
n,Kn

)
= A+B ,

where

A =

(
Id + n

−1/2
k K−1

n

Kn∑
k=1

b̂k

)−1(
K−1/2

n

Kn∑
k=1

âk − ak

)

B =


(
Id + n

−1/2
k K−1

n

Kn∑
k=1

b̂k

)−1

−

(
Id + n

−1/2
k K−1

n

Kn∑
k=1

bk

)−1

(
K−1/2

n

Kn∑
k=1

ak

)

and âk, b̂k, ak, and bk are defined in Appendix B.

A is op(1) due to two results. First,
(
Id + n

−1/2
k K−1

n

∑Kn

k=1 b̂k

)−1

is Op(1) by Lemma B.3.

Second, K
−1/2
n

∑Kn

k=1 âk − ak is op(1) by claim 1 in the proof of part (a).

To show that B is op(1), we consider the following derivations

||B||
(1)

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
(
Id + n

−1/2
k K−1

n

Kn∑
k=1

b̂k

)−1
∣∣∣∣∣∣
∣∣∣∣∣∣×
∣∣∣∣∣∣
∣∣∣∣∣∣
(
Id + n

−1/2
k K−1

n

Kn∑
k=1

bk

)−1
∣∣∣∣∣∣
∣∣∣∣∣∣

×

∣∣∣∣∣
∣∣∣∣∣n−1/2K−1/2

n

Kn∑
k=1

b̂k − bk

∣∣∣∣∣
∣∣∣∣∣×
∣∣∣∣∣
∣∣∣∣∣K−1/2

n

Kn∑
k=1

ak

∣∣∣∣∣
∣∣∣∣∣

(2)

≤ Op(1)× n−1/2

∣∣∣∣∣
∣∣∣∣∣K−1/2

n

Kn∑
k=1

b̂k − bk

∣∣∣∣∣
∣∣∣∣∣

(3)
= op(1) ,

where (1) holds by the inequality (B.2) in Appendix B, (2) holds by Lemma B.3 and the

Central Limit Theorem, and (3) holds since
∣∣∣∣∣∣K−1/2

n

∑Kn

k=1 b̂k − bk

∣∣∣∣∣∣ is op(1) due to the same

arguments we used to prove that I1 = op(1) in claim 1 in the proof of part (a) for DML1.

A.3 Proof of Lemma A.2

Proof. The proof of part (b) in Lemma A.1 relies on Lemma B.3 and I1 = op(1), where I1

is defined in (A.1). Lemma B.3 holds for Kn = O(n), but the proof of I1 = op(1) relies
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on Kn = O(n1/2). Therefore, the validity of the previous proof does not apply to the case

Kn = O(n). To adapt the proof of part (b) in Lemma B.3, we show that I1 = op(1) also

holds when Kn = O(n), provided we add Assumption 3.3.

Recall that I1 = I1,1+I1,2, where I1,1 and I1,2 are defined in (A.2) and (A.3), respectively.

Note that the proof of I1,2 = op(1) also applies when Kn = O(n); see derivations in (A.4).

Therefore, it is sufficient to show that I1,1 = op(1). Since E[I1,1] = 0, it is sufficient to

show that E[(e⊤j I1,1)
2] = o(1), where ej is the j-th column of Id. Consider the following

derivations,

E[(e⊤j I1,1)
2] = E

(n−1/2

Kn∑
k=1

∑
i∈Ik

e⊤j (Dηmi[η̂i − ηi])

)2


= n−1

Kn∑
k1=1

Kn∑
k2=1

∑
i1∈Ik1

∑
i2∈Ik2

E[e⊤j (Dηmi1 [η̂i1 − ηi1 ])e
⊤
j (Dηmi2 [η̂i2 − ηi2 ])]

= I1,1,1 + I1,1,2 + I1,1,3

where

I1,1,1 = n−1

Kn∑
k=1

∑
i∈Ik

E
[(
e⊤j (Dηmi[η̂i − ηi])

)2]
I1,1,2 = n−1

Kn∑
k=1

∑
i1,i2∈Ik

E[e⊤j (Dηmi1 [η̂i1 − ηi1 ])e
⊤
j (Dηmi2 [η̂i2 − ηi2 ])]I{i1 ̸= i2}

I1,1,3 = n−1

Kn∑
k1,k2=1

∑
i1∈Ik1

∑
i2∈Ik2

E[e⊤j (Dηmi1 [η̂i1 − ηi1 ])e
⊤
j (Dηmi2 [η̂i2 − ηi2 ])]I{k1 ̸= k2}

Note that I1,1,1 = o(1) and I1,1,2 = 0. The former holds by Assumption 3.2 and |I1,1,1| ≤
Cn−1

∑n
i=1E

[
||η̂i − ηi||2

]
, while the latter by part (c) of Assumption 3.1 and the Law of

Iterated Expectations.

We now show that I1,1,3 = o(1) using Assumption 3.3. We proceed in three steps. First,

for i1 ∈ Ik1 , i2 ∈ Ik2 , and k1 ̸= k2, let η̂
i2
i1
= η̂i2k1(Xi1) and η̂

i1
i2
= η̂i1k2(Xi2). We have

E[e⊤j (Dηmi1 [η̂
i2
i1
− ηi1 ])e

⊤
j (Dηmi2 [η̂i2 − ηi2 ])] = 0 ,

which holds by the Law of Iterated Expectations (conditional on Xi2 and {Wi : 1 ≤ i ≤
n, i ̸= i2}), part (c) of Assumption 3.1, and the definition of η̂i2k1(Xi1). Second, we use that

Dηmi1 is a linear operator (i.e., Dηmi1 [η̂i1 − ηi1 ] = Dηmi1 [η̂i1 − η̂i2i1 ] +Dηmi1 [η̂
i2
i1
− ηi1 ]) and
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the previous step to write

I1,1,3 = n−1

Kn∑
k1,k2=1

∑
i1∈Ik1

∑
i2∈Ik2

E[e⊤j (Dηmi1 [η̂i1 − η̂i2i1 ])e
⊤
j (Dηmi2 [η̂i2 − η̂i1i2 ])]I{k1 ̸= k2} .

Finally, we use the previous step, the Cauchy-Schwarz inequality, and Lemma B.1 to obtain

I1,1,3 ≤ Cn−1

Kn∑
k1,k2=1

∑
i1∈Ik1

∑
i2∈Ik2

E
[∣∣∣∣η̂i1 − η̂i2i1

∣∣∣∣2]1/2E [∣∣∣∣η̂i2 − η̂i2i1
∣∣∣∣2]1/2

(1)
= o(1) ,

where (1) holds by Assumption 3.3. This completes the proof of I1 = op(1).

A.4 Proof of Lemma 3.1

Proof. We use the definition of θ̂
∗,(1)
n,Kn

to write

√
n
(
θ̂
∗,(1)
n,Kn

− θ0

)
= K−1/2

n

Kn∑
k=1

(
Id + n

−1/2
k bk

)−1

ak ,

where

ak = n
−1/2
k

∑
i∈Ik

G−1mi

bk = n
−1/2
k

∑
i∈Ik

(
G−1ψa

i − Id
)
.

We now use the identity

(Ik + n
−1/2
k bk)

−1ak = ak − n
−1/2
k bkak + n−1

k (Id + n
−1/2
k bk)

−1b2kak

to write

√
n
(
θ̂
∗,(1)
n,Kn

− θ0

)
− (Kn/

√
n)Λ = I1 − I2 + I3

where

I1 = K−1/2
n

Kn∑
k=1

ak = n−1/2

n∑
i=1

G−1mi
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I2 = K−1/2
n

Kn∑
k=1

n
−1/2
k bkak + (Kn/

√
n)Λ

I3 = K−1/2
n

Kn∑
k=1

n−1
k (Id + n

−1/2
k bk)

−1b2kak

Claims 1 and 2 below show that I2 = op(1) and I3 = op(1), which is sufficient to complete

the proof of this lemma since I1
d→ N(0,Σ) by the Central Limit Theorem.

Claim 1: I2 = op(1). To show this, we first note that E[I2] = 0 since E[bkak] = −Λ. It is

sufficient to show that E[||I2||2] → 0. Algebra shows

E[||I2||2]
(1)
= E

∣∣∣∣∣
∣∣∣∣∣n−1/2

Kn∑
k=1

(bkak − E[bkak])

∣∣∣∣∣
∣∣∣∣∣
2


(2)
= n−1

Kn∑
k=1

E
[
||(bkak − E[bkak])||2

]
(3)

≤ n−1KnE
[
||bkak||2

]
(4)

≤ n−1KnE
[
||bk||4

]1/2
E
[
||ak||4

]1/2
(5)
= n−1Kn ×O(1)×O(1) ,

where (1) holds since E[bkak] = −Λ, (2) and (3) hold because {(bkak−E[bkak]) : 1 ≤ k ≤ Kn}
are i.i.d. zero mean random vectors, (4) holds by CS inequality, and (5) holds by part (b)

Assumption 3.1 and using the definition of ak and bk. Therefore, E[||I2||2] = O(n−1/2) since

Kn = O(n1/2).

Claim 2: I3 = op(1). To show this, first note that

||I3|| ≤ max
k=1,...,Kn

∣∣∣∣∣∣(Id + n
−1/2
k bk)

−1
∣∣∣∣∣∣×K−1/2

n

Kn∑
k=1

n−1
k ||b2kak|| ,

where maxk=1,...,Kn

∣∣∣∣∣∣(Id + n
−1/2
k bk)

−1
∣∣∣∣∣∣ = Op(1) due to Lemma B.2. Therefore, it is sufficient

to show that K
−1/2
n

∑Kn

k=1 n
−1
k ||b2kak|| = op(1), which holds by the following derivations

E[K−1/2
n

Kn∑
k=1

n−1
k ||b2kak||]

(1)

≤ K3/2
n n−1E[||bk||4]1/2E[||ak||2]1/2

(2)

≤ K3/2
n n−1 ×O(1)×O(1)

(3)
= O(n−1/4) ,
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where (1) holds because {b2kak : 1 ≤ k ≤ Kn} are i.i.d. random vectors and Cauchy-Schwarz

inequality, (2) holds by part (b) of Assumption 3.1 and using the definition of ak and bk, and

(3) holds since Kn = O(n1/2). This completes the proof of claim 2.

B Auxiliary Results

We use the following notation in the proofs of the main results in Appendix A.

âk = n
−1/2
k

∑
i∈Ik

G−1m̂i

b̂k = n
−1/2
k

∑
i∈Ik

(
G−1ψ̂a

i − Id
)

ak = n
−1/2
k

∑
i∈Ik

G−1mi

bk = n
−1/2
k

∑
i∈Ik

(
G−1ψa

i − Id
)

Dmn = max
1≤k≤Kn

∣∣∣∣∣
∣∣∣∣∣n−1/2

k

∑
i∈Ik

Dηmi[η̂i − ηi]

∣∣∣∣∣
∣∣∣∣∣

Dψa
n = max

1≤k≤Kn

∣∣∣∣∣
∣∣∣∣∣n−1/2

k

∑
i∈Ik

Dηψ
a
i [η̂i − ηi]

∣∣∣∣∣
∣∣∣∣∣

We also use the following identity

(Id +M)−1 = Id − (Id +M)−1M (B.1)

and inequality

∣∣∣∣(Id +M1)
−1 − (Id +M2)

−1
∣∣∣∣ ≤ ∣∣∣∣(Id +M1)

−1
∣∣∣∣ · ||M1 −M2|| ·

∣∣∣∣(Id +M2)
−1
∣∣∣∣ (B.2)

The next lemmas are used in the proof of the main results in Appendix A.

Lemma B.1. Let Assumption 3.1 holds. Then, there exists a constant C > 0 such that

1. E[(e⊤j (Dηmi1 [η̂i1 − ηi1 ]))] ≤ CE[||η̂i − ηi||2]

2. E[(e⊤j (Dηmi1 [η̂i1 − η̂i2i1 ]))] ≤ CE[
∣∣∣∣η̂i − η̂i2i1

∣∣∣∣2]
3. 1

2

∣∣∣∣D2
ηm̃i[η̂i − ηi, η̂i − ηi]

∣∣∣∣ ≤ C ||η̂i − ηi||2

4. 1
2

∣∣∣∣∣∣D2
ηψ̃

a
i[η̂i − ηi, η̂i − ηi]

∣∣∣∣∣∣ ≤ C ||η̂i − ηi||2
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for any k ≤ Kn and i ∈ Ik.

Lemma B.2. Let Assumptions 3.1 and 3.2 hold and let Kn be such that Kn ≤ n and

Kn = O(
√
n). Then,

1. max1≤k≤Kn

∣∣∣∣∣∣(Id + n
−1/2
k bk)

−1
∣∣∣∣∣∣ = Op(1)

2. max1≤k≤Kn

∣∣∣∣∣∣(Id + n
−1/2
k b̂k)

−1
∣∣∣∣∣∣ = Op(1)

3. Dmn = max1≤k≤Kn

∣∣∣∣∣∣n−1/2
k

∑
i∈Ik Dηmi[η̂i − ηi]

∣∣∣∣∣∣ = op(1)

4. Dψa
n = max1≤k≤Kn

∣∣∣∣∣∣n−1/2
k

∑
i∈Ik Dηψ

a
i [η̂i − ηi]

∣∣∣∣∣∣ = op(1)

Lemma B.3. Let Assumptions 3.1 and 3.2 hold and let Kn be such that Kn ≤ n. Then,

1.
(
Id + n

−1/2
k K−1

n

∑Kn

k=1 bk

)−1

= Op(1)

2.
(
Id + n

−1/2
k K−1

n

∑Kn

k=1 b̂k

)−1

= Op(1)

3. n−1/2
∑n

i=1 ||η̂i − ηi||2 = op(1)

C Examples

Example C.1 (Average Treatment Effect). Let A ∈ {0, 1} denote a binary treatment sta-

tus, Y (a) denote the potential outcome under treatment a ∈ {0, 1}, X denote a vector of

covariates, and

Y = AY (1) + (1− A)Y (0)

denote the observed outcome. The available data is modeled by the vector W = (Y,A,X).

The parameter of interest is

θ0 = E[Y (1)− Y (0)] ,

which is the expectation of the treatment effect when the treatment is mandated across the

entire population, also known as the ATE. A standard assumption used to identify θ0 is the

selection-on-observables assumption,

(Y (1), Y (0)) ⊥ A | X .

Under the selection-on-observables assumption, the ATE can be identified by a moment

condition such as (2.1) using a moment function like (2.2), which is defined by

ψb(W, η) = η1 − η2 + A(Y − η1)η3 − (1− A)(Y − η2)η4 ,
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ψa(W, η) = 1 ,

for η ∈ R4, and where the nuisance parameter η0(X) has four components:

η0,1(X) = E[Y | X,A = 1] ,

η0,2(X) = E[Y | X,A = 0] ,

η0,3(X) = (E[A | X])−1 ,

η0,4(X) = (E[1− A | X])−1 .

This moment function corresponds to the augmented inverse propensity weighted (AIPW)

estimator (Robins et al. (1994), Scharfstein et al. (1999)). It also appears as the efficient

influence function for the ATE in Hahn (1998) and Hirano et al. (2003).

Example C.2 (Difference-in-Differences). This example considers the average treatment

effect on the treated in difference-in-differences research designs with two periods and panel

data, as studied in Sant’Anna and Zhao (2020). Let A ∈ {0, 1} denote a binary treat-

ment status on the post-treatment period, Y1(a) denote the potential outcome on the post-

treatment period under treatment status a ∈ {0, 1}, Y0 denote the outcome of interest in a

pre-treatment period, X denote a vector of covariates, and

Y1 = AY1(1) + (1− A)Y1(0)

denote the observed outcome in the post-treatment period. The available data is modeled

by the vector W = (Y0, Y1, A,X). The parameter of interest is

θ0 = E[Y1(1)− Y1(0) | A = 1] ,

which represents the treatment effect for the treated group in the post-treatment period,

also known as ATT-DID. Sant’Anna and Zhao (2020) used the following conditional parallel

trend assumption,

E[Y1(0)− Y0 | X,A = 1] = E[Y1(0)− Y0 | X,A = 0] ,

to identify the ATT-DID by a moment condition, such as (2.1), using a moment function

like (2.2), which is defined by

ψb(W, η) = A(Y1 − Y0 − η1) + (1− A)(1− η2)(Y1 − Y0 − η1) ,

ψa(W, η) = A ,
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for η ∈ R2, and where the nuisance parameter η0(X) has two components:

η0,1(X) = E[Y1 − Y0 | X,A = 0]

η0,2(X) = (E[1− A | X])−1 .

This moment function is the efficient influence function for the ATT-DID under the condi-

tions in Sant’Anna and Zhao (2020).

Example C.3 (Local Average Treatment Effect). This example considers a framework where

individuals can decide their treatment status as in Imbens and Angrist (1994) and Frölich

(2007). Let Z ∈ {0, 1} denote a binary instrumental variable (e.g., treatment assignment),

D(z) denote potential treatment decisions under the intervention z ∈ {0, 1}, and assume the

observed treatment decision is given by

D = ZD(1) + (1− Z)D(0) .

Let X denote a vector of covariates, Y (d) denote the potential outcome under treatment

decision d ∈ {0, 1}, and Y = DY (1) + (1 − D)Y (0) denote the observed outcome. The

available data is modeled by the vector W = (Y, Z,D,X). The parameter of interest is

θ0 = E[Y (1)− Y (0) | D(1) > D(0)] ,

which is the expected treatment effect for the sub-population that complies with the assigned

treatment, also known as LATE. A sufficient assumption for identification is the following

selection-on-observables assumption,

(Y (1), Y (0), D(1), D(0)) ⊥ Z | X .

Using this assumption and similar assumptions as in Frölich (2007), Singh and Sun (2024)

identified the LATE by a moment condition, such as (2.1), using a moment function like

(2.2), which is defined by

ψb(W, η) = η1 − η2 + Z(Y − η1)η5 − (1− Z)(Y − η2)η6

ψa(W, η) = η3 − η4 + Z(D − η3)η5 − (1− Z)(D − η4)η6

for η ∈ R6, and where the nuisance parameter η0(X) has six components:

η0,1(X) = E[Y | X,Z = 1] ,
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η0,2(X) = E[Y | X,Z = 0] ,

η0,3(X) = E[D | X,Z = 1] ,

η0,4(X) = E[D | X,Z = 0] ,

η0,5(X) = (E[Z | X])−1 ,

η0,6(X) = (E[1− Z | X])−1 .

This moment function appears in Frölich (2007) as the efficient influence function for the

LATE. This moment function corresponds to the estimators proposed in Tan (2006).
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D Additional Simulation Results

(a) Bias (b) MSE (c) Coverage probability (%)

Figure D.1: Bias and MSE of estimators for the ATT-DID based on DML1 for different
values of c in h = cn

−1/5
0 . It uses a Second Order Gaussian Kernel Coverage probability of

95%-confidence intervals for the ATT-DID. Sample size n = 3, 000 and 5,000 simulations.

(a) Bias (b) MSE (c) Coverage probability (%)

Figure D.2: Bias and MSE of estimators for the ATT-DID based on DML2 for different
values of c in h = cn

−1/5
0 . It uses a Second Order Gaussian Kernel. Coverage probability of

95%-confidence intervals for the ATT-DID. Sample size n = 3, 000 and 5,000 simulations.
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