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Abstract

This paper studies debiased machine learning (DML) under a novel asymptotic
framework, providing insights that inform applied practice and explain simulation find-
ings. DML is a two-step estimation method applicable to many econometric models
where the parameter of interest depends on unknown nuisance functions. It uses K-fold
sample splitting to estimate the nuisance functions and attains standard asymptotic
properties under weaker conditions than classical semiparametric methods, accommo-
dating flexible machine-learning estimators in the first step. Practitioners implement-
ing DML confront two main decisions: whether to use DML1 or DML2 (the two variants
of DML estimators), and how to choose K? Existing practice favors DML2 with large
K based on simulation evidence, but these recommendations lack theoretical justifi-
cation, as existing theory shows both variants are asymptotically equivalent for any
fixed K. Under an asymptotic framework in which K grows with the sample size n,
we demonstrate that DML2 offers theoretical advantanges over DMLI in terms of bias,
mean squared error, and inference. We provide conditions under which increasing K
reduces DML2’s second-order asymptotic bias and MSE. These results support using
DML2 with K as large as feasible, and in particular with K = n, for which we propose

a computationally simple procedure.
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1 Introduction

Debiased machine learning (DML) has become a popular estimation method for econo-
metric settings where the parameter of interest depends on unknown nuisance functions
(Chernozhukov et al., 2018; Ahrens et al., 2025). DML attains standard asymptotic proper-
ties under milder conditions than classical semiparametric methods (Newey, 1994; Andrews,
1994; Newey and McFadden, 1994), accommodating machine-learning estimators for nui-
sance functions. In practice, two DML estimators can be used: DML1 and DML2. Both
randomly divide the data into K equal-sized folds to estimate nuisance functions, but dif-
fer in how these estimates are combined. Practitioners implementing DML face two key
questions: whether to use DML1 or DML2, and how to choose K? Existing recommenda-
tions favor DML2 with large K based on simulation evidence (Chernozhukov et al., 2018;
Ahrens et al., 2024a, 2025). However, these recommendations lack theoretical justification,
as existing asymptotic theory establishes that DML1 and DML2 have identical limiting dis-
tributions for any fixed K, providing no guidance for choosing between methods or selecting
K. To address these questions, this paper studies the properties of DML1 and DML2 under
a novel asymptotic framework in which K may grow with the sample size n. Under this
framework, we demonstrate that DML2 weakly dominates DML1 in terms of bias, MSE,
and inference. We also characterize when this dominance is strict and thereby explain sim-
ulation patterns that fixed-K theory cannot. We provide conditions under which increasing
K reduces DML2’s second-order asymptotic bias and MSE. These results support using
DML2 with K as large as feasible, and in particular with K = n, for which we propose a
computationally simple procedure.

DML is an estimation method applicable to econometric models in which the parameter

of interest 6 is finite dimensional and satisfies a moment condition of the following form:
E[m(W,600,m)] =0, (1.1)

where m is a known moment function, W is an observed random vector, and 7y is an
unknown nuisance function. Examples of a parameter 6, that can be identified by the
moment condition (1.1) include several treatment effect parameters, such as the average
treatment effect (ATE), average treatment effect on the treated in difference-in-differences
designs (ATT-DID), local average treatment effect (LATE), weighted average treatment
effects (w-ATE), average treatment effect on the treated (ATT), treatment effect coefficient in
the partial linear model (PLM), among others, all of which have been studied in the literature
on semiparametric models (e.g., Robinson (1988), Robins et al. (1994), Hahn (1998), Hirano
et al. (2003), Frolich (2007), Farrell (2015), Chernozhukov et al. (2017), Sant’Anna and Zhao



(2020), and Chang (2020)). In all these examples, the moment function m is linear in the
parameter 6, and the nuisance function 7, is based on conditional expectations, such as the
propensity score. This paper considers a setup that includes all these examples.

DML relies on two ingredients to attain standard asymptotic properties (e.g., asymptotic
normality with parametric rates) for the DML estimator of §y. The first one is the Neyman
orthogonality, a necessary condition on the moment function m to guarantee that the esti-
mation of 6y is as accurate as if the true 79 had been used; see Remarks 3.1 and 3.2. The
second ingredient is cross-fitting, a form of sample splitting used in the nuisance function
estimation, that complements the orthogonality condition to accommodate for a larger class
of flexible nuisance functions estimators, including machine-learning methods.

Two versions of the DML estimator for 8, were proposed by Chernozhukov et al. (2018),
namely DML1 and DML2. Both versions randomly divide the data into K equal-sized folds,
denoted as Z for k = 1,..., K. For each fold Z;, an estimator 7, of 7y is constructed
using all the data except the data in fold Zp. Then, DMLI1 first calculates preliminary
estimators ), by solving the moment condition (1.1) within each fold Zj, using the estima-
tor 7z. It then combines the information across the folds by averaging the 6)’s to obtain
the proposed estimator for 6y. In contrast, DML2 first combines the information across
the folds by averaging moment conditions based on (1.1), where each fold uses estimates
Mk, and then 6y is estimated as the solution in 6 of the average of moment conditions,
K150 ((n/K)™ S g, m(W3, 0, 7)) = 0.

Practitioners implementing DML confront two main decisions: whether to use DML1 or
DML2, and how to choose K? The literature already recommends DML2 over DML1, and
suggests using a large K for DML2 based on simulation evidence (Chernozhukov et al., 2018;
Ahrens et al., 2024a, 2025). However, these recommendations lack theoretical justification,
since existing asymptotic theory predicts that DML1 and DML2 have the same limiting
distribution when the number of folds K remains fixed as the sample size n tends to infinity.

To address these questions, this paper studies the properties of DML1 and DML2 under
a novel asymptotic framework in which K may grow with the sample size n. This asymptotic
framework captures finite-sample situations in which practitioners desire to use a large K to
improve the precision of the estimators 7;,’s, which use a fraction (K —1)/K of the data. This
approach follows a tradition in econometrics of using refined asymptotic approximations to
study finite-sample behavior, as in Cattaneo and Jansson (2018), Bugni and Canay (2021),
and Cai (2022). Under this framework, we can distinguish between DML1 and DML2 and
characterize how K affects their performance, thereby explaining simulation patterns that
fixed-K asymptotic theory cannot and providing formal guidance for implementation.

We make three contributions. First, we provide an asymptotic result that explains the



discrepancy found in simulations between DML1 and DML2. Formally, we demonstrate
that DML2 weakly dominates DMLI1 in terms of bias, MSE, and inference. We also charac-
terize when this dominance is strict, and thereby explain simulation patterns that fixed-K
asymptotic theory cannot.

Second, we show that the existing estimation and inference results for DML2—based on
fixed- K asymptotic theory—continue to apply for any K € {2,...,n}. Formally, we provide
conditions under which the finite-sample distribution of DML2 is approximated by the same
limiting distribution uniformly in K. This implies that we can use DML2 with K = n, i.e.,
the leave-one-out estimator, which ensures replicability.

Third, we derive a second-order asymptotic approximation for scalar DML2 estimators
that we use to explain observed patterns in DML2’s finite-sample bias and MSE. Under the
conditions we provide, we conclude that increasing K decreases the second-order asymptotic
bias and MSE, implying that an optimal choice for DML2 is K = n. In particular, commonly
recommended choices such as K =5 or K = 10 are suboptimal. Furthermore, we use our
approximation to quantify the relatively efficiency loss from suboptimal choices.

Finally, we use our theoretical results to provide three recommendations for the imple-
mentation of DML. First, practitioners should prefer DML2 over DML1, because DML2 offers
theoretical advantages over DML1, and DML2 is robust to the choice of K for a large class
of first-step estimators. Second, practitioners should use DML2 with K = n. This choice
of K is optimal and ensures replicability of the estimator. We propose a computationally
simple procedure to implement DML2 with K = n in Section 5.2. Lastly, if practitioners
must choose a small value of K such as K =5 or K = 10, they should prefer K = 10 since
this choice guarantees substantially lower efficiency losses than K = 5.

Related Literature: This paper contributes to the growing DML literature, where
estimators have been developed for semiparametric problems without requiring strong con-
ditions on nuisance estimators (e.g., without Donsker class assumptions). Examples include
Chernozhukov et al. (2017), Chernozhukov et al. (2018), Chernozhukov et al. (2022a), Cher-
nozhukov et al. (2022b,c), Semenova and Chernozhukov (2021), Semenova (2023a,b), Es-
canciano and Terschuur (2023), Rafi (2023), Cheng et al. (2023), Ji et al. (2023), Noack
et al. (2024), Fava (2024), Kennedy et al. (2024), and Jin and Syrgkanis (2024). Most of
these papers use DML2, with exceptions such as Chernozhukov et al. (2017), Ji et al. (2023),
and Cheng et al. (2023), which use DML1.! With the exception of Kennedy et al. (2024)
and Jin and Syrgkanis (2024), these papers derive first-order asymptotic theory assuming
K remains fixed as n — oo. Kennedy et al. (2024) and Jin and Syrgkanis (2024) use a

In many of these papers, such as Rafi (2023) and Semenova (2023a), DML1 and DML2 are numerically
equivalent; see Remark 2.1.



structure-agnostic framework to establish optimality of DML estimators. In contrast, we
study DML1 and DML2 properties when K — oo as n — oo, demonstrating that DML2
offers theoretical advantages over DML1 and characterizing conditions under which DML2
with K = n (the leave-one-out estimator) is optimal in terms of second-order asymptotic
bias and MSE. To the best of our knowledge, this literature does not provide theoretical
guidance for selecting K, an issue we address here.

This paper also contributes to the literature on double-robust estimators, including
Robins et al. (1994), Robins and Rotnitzky (1995), Scharfstein et al. (1999), Farrell (2015),
Sant’Anna and Zhao (2020), Chang (2020), Callaway and Sant’Anna (2021), Rothe and
Firpo (2019), and Singh and Sun (2024). With the exception of Rothe and Firpo (2019),
these papers study first-order asymptotic theory for estimators that remain consistent even
when some components of 7y are misspecified. Rothe and Firpo (2019) studies higher-order
properties of double-robust estimators in a missing-data setting where 7 is estimated via a
leave-one-out approach. Our results complement that work in several ways. First, the DML
versions of double-robust estimators accommodate flexible estimation of 7y components. Sec-
ond, we present second-order properties of DML2 estimators more generally. Third, we show
that among DML2 estimators, the leave-one-out estimator is optimal in terms of bias and
MSE under certain conditions. Notably, this optimal estimator coincides with the estimator
studied in Rothe and Firpo (2019).

More broadly, this paper contributes to the literature on semiparametric models, which
has a long tradition in econometrics and statistics (e.g., Bickel (1982), Robinson (1988),
Newey (1990), Andrews (1994), Newey and McFadden (1994), Newey (1994), Linton (1995),
and Bickel and Ritov (2003)). Many papers in this literature provide conditions for studying
estimators based on a plug-in approach (i.e., the same data are used to estimate 1y and 6p).
In contrast, we provide conditions for studying the second-order properties of DML2, which
uses sample splitting.

Outline: Section 2 presents notation and summarizes existing results. Section 3 presents
the limiting distributions of DML1 and DML2 for large K values. Section 4 derives the
second-order asymptotic approximation for DML2 allowing for large K values. Section 5
presents recommendations based on our theoretical results. Section 6 shows simulation
evidence that motivate the problem. Section 7 concludes. Appendix contains the proofs
of main results, auxiliary results, and well-know examples in the literature. Supplemental
Appendix contain additional simulations and proofs.

Notation: We use: [K| ={1,...,K}, [n] ={1,...,n}, [p] ={1,...,p}, || - || denotes the
euclidean distance for vectors and the Ls-operator norm for matrices, and || - || denotes the

element-wise supremum norm for vectors and matrices.



2 Setup and Previous Results

The parameter of interest is #y € © C R? and satisfies the following moment condition:
Elm(W, 6o, 1m0(X))] = Oax1 (2.1)

where m : W x © x & — R% is a known moment function and (W, X) € W x X C R%wtde
is a random vector with distribution F,. The nuisance function 7y : X C R% — & C RP is
an unknown function of the covariates X.

This paper considers moment functions m that are linear in the parameter of interest:

m(W,0,n) = "(W,n) — *(W,n)8 , (2.2)

where ¢* and 1* are functions that satisfy conditions specified in Assumption 3.1, which
includes the identification condition, E[¢)*(W,ny(X))] € R%*? is invertible, and guarantees

a Neyman orthogonality condition,
B [0,m(W, 00, m(X)) | X] =0, ae.

where 0,m denotes the matrix of partial derivatives m with respect to the values of n and
Oym(W, 6y, m0(X)) is the 9,m evaluated at n = ny(X).

A wide range of parameters of interest can be identified through moment conditions such
as (2.1) using a moment function like (2.2). Examples of 6, include the average treatment
effect (Example C.1), the average treatment effect on the treated in difference-in-differences
designs (Example C.2), and the local average treatment effect (Example C.3), among others.
All these examples are presented in Appendix C and additional examples appear in Ahrens
et al. (2025).

Consider the goal of estimating 6y using a random sample {(W;, X;) : 1 <i < n} drawn
from the distribution Fy. The parameter 6y based on (2.1) and (2.2) can be identified as

follows,
0o = E[*(W,0(X))] ™" B[¥* (W, 1m0(X))] - (2.3)

Accordingly, an ideal estimator for 6 is defined by replacing the expected values in (2.3)

with sample analogs. That is,

0; = (”_1Z¢G(Wum)> (”_1Z¢b(Wiam)) ; (2.4)



where 7; = 19(X;) denotes the value of the nuisance function 7, evaluated at the covariate
X, for observation i. However, the values of the 7;’s are unknown. As a result, the oracle
estimator éj; is infeasible. For this reason, it is common to calculate first estimates 7); of
7; that can be used later to compute an estimator of #,. Remark 2.4 discusses the plug-in
approach used in classical semiparametric methods. In what follows, we formally explain

how DML estimates 7 and 6.

2.1 First-Step DML: Nuisance Function Estimation

DML proposes to calculate the estimates 7; of 7; using a cross-fitting procedure, which is a
form of sample-splitting. This procedure has two steps and implicitly assumes that n can be
divided by K:?

1. Sample splitting: Randomly split the indices into K equal-sized folds Zy, i.e., UK T, =
[n]. The number of observations in fold Z is denoted by ny = n/K.

2. Nuisance Function Estimates: For each fold Zy, the estimates 7; of 7; are defined by
ni=Mm(Xi) , Vi€, (2.5)

where 7, () is an estimator of the nuisance function 7y(-) using {W; : ¢ ¢ Zy}, which
is all the data except the ones with indices on the fold Z,. All the estimates 7); are
calculated by repeating the process for all the k € [K].

Both DML estimators use the same estimates 7);, but they differ in how they combine

information across the different folds defined above. We explain this next.

2.2 Second-Step DML: Parameter-of-Interest Estimation

Definition 2.1 (DML1). The DMLI estimator first calculates preliminary estimators 6, by

solving the moment condition (2.1) within each fold Zj using the estimates 7;,

0, solve n; ! Zm(Wi,H,ﬁi) =0,

1€Ly

When n is not divisible by K, the number of observations in some folds will be [n/K | while in others
[n/K| + 1, where |n/K| is the greatest integer less than or equal to n/K.



it then combines the information across the folds by averaging the 8,’s to obtain the proposed

estimator for 6,

K
O =K1Y 0. (2.6)
k=1

Explicit expressions for 6, can be obtained since the moment function m is as in (2.2),

O = (nik ZW(%@)) (nik Z@Db(Wuﬁi)) , VkelK].

i€Ty, i€Ty,

Note that 6, is similar to (2.4) but using only observations in the fold Z;, and the estimates

7); instead of ;.

Definition 2.2 (DML2). The DML2 estimator first combines the information across the
folds Z, by averaging the sample analog of moment conditions like (2.1) using the estimates

7;, and then estimates 6y by solving the average of moment conditions,

K
. 1 1
97(12}{ solve ? E (n—k E m(Wl,H,ﬁl)) =0.

k=1 1€Ly,

An explicit expression for 97(12}% is obtained by using that the moment function m is as in
(2.2),

-1
) 1 a 5 1 ¢ X
0% = (5 > (W, m)) (5 > bW, m)) . (2.7)
j i=1
Note that 97(3( is similar to (2.4) but using the estimates 7; instead of 7.

Remark 2.1. The DML1 and DML2 estimators can be equal under certain conditions. If
»*(W;,7;) has zero variance (e.g., ¥ is a constant ¢)¢ as in Example C.1) and the K-fold
partition {I} : 1 < k < K} divides the data into exactly K subsets with equal size, then
both DML1 and DML2 estimators defined in (2.6) and (2.7) are equal. In particular,

K
0 =K () (n S v, fm)

€Ty



Therefore, the DML1 and DML2 estimators for the ATE (Example C.1) are numerically the
same when the data are divided in exactly K folds. In contrast, if ¢*(W;,7;) has positive

variance, then é,‘}}( #* éfk in general. This occurs in all the other examples. O]

Remark 2.2. It has been recommended to use DML2 based on simulation evidence. More
concretely, Remark 3.1 in Chernozhukov et al. (2018) state that for some moment functions
there is no difference between DML1 and DML2, but for some other moment functions
DML2 is better behaved than DML1. The theoretical reasons explaining this difference are

unknown. Section 3 will provide an explanation. O]

Remark 2.3. Simulation evidence shows that increasing the number of folds K reduces
DML2’s finite-sample bias and MSE (Ahrens et al., 2024a,b; Chernozhukov et al., 2018)).
An intuitive explanation is that more accurate first-step estimators should imply better
estimators for the parameter of interest. One way to obtain more data in the first-step is to
increase K, since the nuisance function estimators use 50%, 80%, and 90% of the data when
K is 2, 5, and 10, respectively. However, it is theoretically unknown if the improvement in
the accuracy of the estimation of 7y translated into more precise estimates for #,. Section 4

will provide conditions that formalize this intuition. O]

Remark 2.4. An estimator 7 of 7, can be obtained by using all the data, and then an
estimator of §, can be defined by replacing 7; by the estimates 7; in (2.4), where 7; = 7(X;).
An estimator of fy based on this approach is known as the plug-in estimator, and the con-
ditions under which it has standard properties (e.g., asymptotic normality and parametric
convergence rates) have been studied in the literature on semiparametric models (e.g., An-
drews (1994), Newey (1994), Newey and McFadden (1994)). However, this approach is
sensitive to the “own observation” bias, which arises when the same data are used to esti-
mate both 7y and §, (Newey and Robins (2018)). Stronger conditions are often required on
the class of nuisance functions to attenuate the own observation bias on the analysis of the
plug-in estimator. In contrast, DML—the approach considered in this paper to construct
estimators—removes this bias by relying on cross-fitting, which is a form of sample splitting,
that allocates one part of the data to estimate the nuisance function and other to estimate

the parameter of interest.

]



2.3 Previous Results

Under some conditions (including K fixed as n — o0), Chernozhukov et al. (2018) showed
that both DML estimators éfj}{ and éﬁf}( have the same asymptotic distribution,

where the variance of the asymptotic distribution is given by
S = B[ (W,no(X))] ™" E [m(W, 60, 10(X))m(W. 6o, no(X)T E [*(W,o(X))] , (2.9)

which only depends on the moment function m, the true nuisance function 7y, and the
data distribution Fy. This result implies that the existing theoretical framework cannot
distinguish between estimators based on DML1 and DML2, as discussed in the introduction.
Moreover, this asymptotic theory provides no direct guidance to select K for DML2.

The proof of (2.8) relies on a first-order equivalent condition, which is the central idea
in DML. More concretely, both DML estimators QAS}( and éf}{ are first-order equivalent to
the oracle estimator é;j,

ﬁ(ég}{—éjl)&o, j=12. (2.10)
This result is the central idea since it implies that the estimation of 6y using DML is as
accurate as if the true 7y had been used.

Although the existing asymptotic theory shows that DML1 and DML2 are asymptotically
equivalent, it has been conjectured that (1) DML2 can outperform DML1, as suggested by
simulation evidence on their relative performance, and (2) increasing the number of folds
K improves DML2 in terms of bias and mean-squared error (MSE). To investigate these
conjectures, we consider an asymptotic framework in which K depends on the sample size
n, i.e.,, K = K, allowing K, — 0o as n — oo. We show that the accuracy (bias and MSE)
and inference of DMLI1 are sensitive to the choice of K, whereas DML2 is not, implying
that DML2 offers theoretical advantage over DML1 in terms of bias, MSE, and inference.
Moreover, we provide conditions under which increasing K reduces the magnitude of the
second-order asymptotic bias and the second-order asymptotic MSE of DML2, leading to the
practical recommendation of K,, = n as an asymptotically optimal choice. Finally, Section

5.2 proposes a computationally simple procedure for implementing DML2 with K,, = n.



3 Asymptotic Theory for DML1 and DML2 when K

increases

We show that DML2 offers theoretical advantages over DML1 when K = K, increases with
the sample size n (Theorem 3.1). We also prove that DML2 is robust to the choice of K = K,
for a large class of first-step estimators (Theorem 3.2). Finally, Section 3.1 explains why and
when DML is sensitive to the choice of K. In what follows, we first present and discuss the
assumptions, and we then establish the results.

Let G = E[¢*(W,n0(X))] € R and Q = E[m(W, 0y, n0(X)) m(W, by, no(X))T] € R4,
We write $4(W, ) = [, (W, m)]es and m(W, 0,7) = [me(W,0, ). Recall 5 = 5o(X,). Let
ca, c1, and ¢y be positive constants. The next assumption restricts the class of econometric

models through conditions on the moment function m and function °.

Assumption 3.1. m(W, 0,n) and y)*(W,n) are twice continuously differentiable with respect
ton e & C RP and satisfy

(a) G and Q are non-singular and ||G™|| < cg.
(b) Ellme(Wi, b0, m)"] < c1 and B[l (Wi, mi)['] < 1 for all't,s € [p].

(¢) Eldym(Wi, 00, m)| X)) = 0, ||B[(Dym(Wi, 6o, 1))@y (Wi, B, 1)) Xil oo < ez, and
sup,ce ||05me (Wi, 0o, 1|0 < o for t € [p].

(d) Bof,(Wim) | X)) = 0, |[BU808(Wi,m)) @it s(Win))T | Xil| < co, and
SUPyeg ||872;¢§S(Wi777)||oo < ¢y for allt,s € [p)].

Parts (a) and (b) of Assumption 3.1 are standard conditions that guarantee identifica-
tion of the parameter of interest and stochastic expansions for the oracle estimator, similar
to Newey and Smith (2004, Assumptions 2 and 3). Part (c) of Assumption 3.1 presents
a Neyman-orthogonality condition, E[0,m:(W;,0,1:;)|X;] = 0, involving standard partial
derivatives as in Belloni et al. (2017) and Farrell et al. (2025) rather than functional deriva-
tives as in Chernozhukov et al. (2018). This type of condition is necessary to guarantee
that feasible estimators are as accurate as if the true values of the nuisance functions were
used; see Remark 3.1 for an explanation. It is possible to transform a moment function into
one that satisfies a Neyman-orthogonality condition under certain conditions; see Remark
3.2 for comments on existing methods. Part (c¢) of Assumption 3.1 also includes standard
conditions ensuring that nonlinear effects of first-step estimation error are negligible when
the nuisance estimators are sufficiently accurate (e.g., when their Lo-convergence rates are

faster than n=/%). Finally, part (d) of Assumption 3.1 implies that we can construct a DML

10



estimator for each component of G = E[¢*(W;,n;)]. It holds automatically when 1 does
not depend on 7. Further discussion of part (d) of Assumption 3.1 appears in Section 3.1.

Assumption 3.1 holds in many common econometric models studied in the literature; see
Appendix C and Ahrens et al. (2025) for several examples. However, it excludes settings in
which the moment function is not differentiable in n; see Remark 3.3 for examples of such
non-smooth models where DML estimators have been proposed.

We next present conditions on the class of first-step estimators.

Assumption 3.2. For any sequence K, <n,

s B[ X) = m(X)FPE = o)

Assumption 3.2 holds for several firs-step estimators considered in the DML literature.
For instance, it holds for deep neural networks as in Farrell et al. (2021) and Schmidt-Hieber
(2020). Under certain conditions, it holds for LASSO and related penalized estimators
of linear models (Tibshirani (1996), Van de Geer (2008), Belloni et al. (2011)). Kernel
estimators and series estimators (Newey (1997), Belloni et al. (2015), Chen (2007)) can
verify this assumption after appropriate trimming to ensure bounded inverse density weights
for kernel estimators, or well-conditioned Gram matrices for series estimators. It is unknown
if this assumption holds for random forest; see Chi et al. (2022).

As is common in DML, a Neyman orthogonality condition on the moment function (As-
sumption 3.1) and sufficiently accurate first-step estimators (Assumption 3.2) are enough
to derive the limiting distribution of DML estimators. The next theorem presents the lim-
iting distributions of DML1 and DML2 under our new asymptotic framework, in which
K=K, — ooasn— oo.

Theorem 3.1. Let Assumptions 3.1 and 5.2 hold and let K, be such that K, < n and
K,/v/n— c€[0,00) as n — oo. Then,

Jn (é;{}(n - eo) 4 N(eA, X)
and
Vi (0%, = 60) 5 N(0,%)
where ég}{n, ég%ﬂ, and ¥ are defined in (2.6), (2.7), and (2.9), respectively, and
A= —G B [0 (W,no(X)) G~ m(W, by, m(X))] - (3.1)
Theorem 3.1 provides an asymptotic result that explains the discrepancy found in sim-

11



ulations between DML1 and DML2. As we mentioned in Remark 2.2, DML2 has been
recommended over DML1 based on simulation evidence. This theorem now provides the
theoretical explanation. It shows that DML2 is asymptotically better than DML1 in terms
of bias and MSE when ¢ > 0 and A # 0, otherwise both share the same limiting distribution.
Our explanation through A emerges under the proposed asymptotic framework, providing
insights not captured by the existing asymptotic theory or simulation-based evidence.

The distinction between DML1 and DML2 relies on the discrepancy measure A that
depends on the econometric model (m, 6y, and 79) and not on the first-step estimator 7).
Therefore, the relative performance between DML1 and DML2 can be obtained by calculat-
ing A without using finite data. In particular, for several econometric models—such as ATE,
ATT-DID, ATT, and PLM—A = 0, but for others like LATE and w-ATE, it is typically
nonzero. Note that this discrepancy measure can be computed also for econometric models
where the moment function is not differentiable in 7. We argue that if for those models
A # 0, then DML2 should be preferred over DML1 even if those models are outside the
scope of our setup. We postpone our explanation to Section 3.1.

When A # 0, DML1 becomes increasingly sensitive to large K, values regarding bias,
MSE, and coverage probability of its associated confidence interval. In contrast, DML2
remains unaffected by the choice of K. By setting ¢ = K, /y/n and using the limiting
distribution of DML1 in Theorem 3.1, we can approximate the finite sample distribution of
DML1, /n (ég}{n - 90>, by N((K,/v/n)A, %) which is sensitive to the choice of K,, when n
is small and A # 0. Intuitively, this suggest that the distribution of DMLI is not centered
at the origin and the gap is increasing on K,,. This implies that the standard recommended
DML1 confidence interval is not valid when A # 0 and, furthermore, its coverage decrease
as K, increases, explaining their simulation performance. We formalize this intuition in the

next corollary.

Corollary 3.1. Let CIY be the standard recommended DML1 confidence interval for O,
(t-th component of 0, ),

crV = [éff}( - zlfa/z‘e't—ﬁﬁle}g + zl*a/ﬁ_ﬁ] '

»Ain

where éfn is a consistent estimator for ¥, (t-th diagonal term of ¥). Under the conditions

of Theorem 3.1, we then have

P (0y, € CIV) = P(K,,) +o(1) ,
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where

P(Kn> = <Zl—a/2 + I\j—%\/[;?) + P <Zl—a/2 — I\;—%\//;?) —1.

Here, A = [A¢]y and ¥ =[S 5]t 5. Furthermore, P(K,,) is a decreasing function on K, if and
only if Ay # 0. In particular, P(0) =1—«a > P(K,) if K, > 1 and Ay #0.

Theorem 3.1 shows that the finite-sample distribution of DML2 can be approximated
by the limiting distribution implied by the existing fixed-K asymptotic theory, regardless of
the choice of K = K,,, provided that K, = O(y/n). In particular, this suggests that DML2

inference is robust to the choice of K, which we formalize in the next corollary.

Corollary 3.2. Under the conditions of Theorem 3.1, we then have
POy eCIP)=1-a+o(l),

where CI? is the standard recommended DML2 confidence interval for 0y, (t-th component

Of 90),
crV = [éﬁj}(n - Zlfa/2&_fgv Sf)m + Zl*a/ﬁ_ﬁ] ’

where 3,52771 is a consistent estimator for ¥, (t-th diagonal term of ¥). Furthermore, the
standard DML2 estimator 57, for Xy, defined in Chernozhukov et al. (2018, Theorem 3.2)

is consistent under the conditions of Theorem 3.1.

Theorem 3.1 has shown that DML2 asymptotically dominates DML1 and is robust to the
choice of K, provided that K = K,, = O(y/n). The next assumption is proposed to extend
the robustness of DML2 to the choice of K from K, = O(y/n) to K,, = O(n). Let 7(-) be
the same estimator as 7 () except in the use of observation £: 7g(-) uses (Wy, X;), whereas
fit(+) uses (Wg, X,), where the random vector (Wg, X,) is draw from F, and independent of
the data (i.e., (W, X;) and (W, X,) are i.i.d.).

Assumption 3.3. For any sequence K, <n,

sup max B (X) = 70|12 = o)

Assumption 3.3 is an algorithm stability condition similar to the one in Chen et al. (2022,
Corollary 4). This condition measure the stability of first-step estimators to replacement
of exactly one observation in Le-norm. The study of this type of conditions has received
considerable attention in the statistical machine learning and generalization theory literature;
see Bousquet and Elisseeff (2002) and Hardt et al. (2016). This condition can be verified for

kernel and series estimators after appropriate trimming to ensure bounded inverse density
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weights for kernel estimators, or well-conditioned Gram matrices for series estimators. It is
unknown if this condition can be verified for deep neural networks or other machine learning
methods, which is an interesting research direction outside the scope of this paper.

The next theorem guarantees that DML2 is robust to the choice of K, provided that the

first-step estimators are stable to replacing a single observation with another i.i.d. draw.

Theorem 3.2. Let Assumptions 3.1, 3.2, and 3.3 hold and let K, be such that K, < n.
Then,

Jn (é}j}gl - 90) 4 N(0,D)
where 91(12}% and ¥ are as in (2.7) and (2.9), respectively.

Theorem 3.2 shows that the existing asymptotic theory for DML2, where K was fixed
as n — 00, continues to be valid for any K in {2,...,n}. In particular, we can use DML2
with K, = n, which is exactly the leave-one-out estimator commonly use in semiparametric
models as in Robinson (1988), Linton (1995), Rothe and Firpo (2019), among others. In
contrast, we cannot use DML1 with K,, = n since the estimator will not be consistent, with
some exceptions; see Remark 2.1.

One of the main benefits of using DML2 with K,, = n is that it ensures replicability.
DML2 with K, = n is uniquely determined by the data and therefore eliminates the random-
split variability that exists when K, < n, where different random splits yield different
DML2 estimates. However, its implementation in practice may appear challenging due
to the computational burden of estimating n first-step estimators. Section 5.2 proposes
a computationally simple procedure for implementing DML2 with K, = n.

An important caveat is that our results so far do not yet provide guidelines for the choice
of K. Our first-order asymptotic theory demonstrates that K does not matter for approxi-
mating the finite-sample distribution of DML2 under our assumptions. Therefore, in Section
4, we derive a second-order asymptotic approximation to explain DML2’s finite-sample bias
and MSE, following a long tradition in econometrics of using second-order asymptotic approx-
imations to compare estimators that are first-order asymptotically equivalent (Rothenberg,
1984; Linton, 1995; Donald and Newey, 2001; Newey and Smith, 2004).

Remark 3.1. A Neyman orthogonality condition of the moment function is necessary to
guarantee a first-order equivalent condition between a feasible estimator and its oracle version
(as in (2.10)). To see this, consider the following example. Suppose ¥*(W,n) = 1 and
Y*(W,n) is a linear function in 7. In addition, assume that the nuisance parameter 7y is
an unknown finite-dimensional parameter. Consider the estimator 8, = n=' 37 ¢*(W;, 1)

and its oracle version 6% = n~! S (Wi, mo), where 7 is an estimator of 7y such that
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n'/2(5 — no) % N(0,V,) and V,, is an invertible matrix. It can be shown that
n1/2(én - é:) = n1/2(ﬁ - nO)TE[anm(VVi’ 0o, 770)] + OP(1> )

which implies n'/2(6,, — 6%) is 0,(1) if and only if E[d,m(W;, 6y, 7m0)] = 0. In other words, the
first-order equivalence condition in this example holds if and only if a Neyman orthogonality
condition as in part (c¢) of Assumption 3.1 holds. See also Andrews (1994, Eq. (2.12)). O

Remark 3.2. Moment functions satisfying a Neyman orthogonality condition can be ob-
tained by adding adjustment terms to the original moment functions. The adjustment terms
are constructed using first-order influence functions, as developed in Newey (1994), Hahn
and Ridder (2013), Ichimura and Newey (2022), and Farrell et al. (2025), among others.
Since the analytical construction can be tedious, recent work has focused on automatic con-
struction of orthogonal moments—that is, procedures that take the original moment function
as input and automatically return the orthogonalized version needed for DML2 estimation.
Examples include Chernozhukov et al. (2022a), Escanciano and Pérez-Izquierdo (2023), and
Arganaraz (2025). O

Remark 3.3. Beyond smooth moment conditions, DML methods have been successfully
applied to non-smooth econometric models. Chernozhukov et al. (2022a) develop DML
estimators for quantile regression coefficients, while Semenova (2023b) propose methods for
support functions in set-identified models. Related approaches have been used to study
algorithmic fairness (Liu and Molinari, 2025; Liu et al., 2026) and to conduct inference on

welfare under optimal treatment rules (Park, 2024). O

3.1 Why and When DML1 is Sensitive to K Increasing

We now provide a high-level explanation for DML1’s sensitivity to large K values. The main
reason is that the oracle version of DML1 is already sensitive to large K values when the
discrepancy measure A # 0. Therefore, the discussion that we provided for smooth moment
conditions continues to apply for non-smooth econometric models as long as DML1 and its
oracle version are asymptotically equivalent.

The oracle version of DML1 is defined as the calculation of DML1 using the true values

for n;’s instead of 7);, that is, assuming perfect knowledge of 7y,

K
0 =K1 6 (3.2)
k=1
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where

-1
92 = (nkl ZW(W%)) (”kl ZW(‘MW%’)) , VkelK]
1€y, 1€Ly,
Note that 5,’; is similar to the ideal estimator (2.4) but using only observations in the fold
Ty.
The next lemma presents the limiting distribution of the oracle DML1 under our new

asymptotic framework, in which K = K,, — oo as n — o0.

Lemma 3.1. Let Assumption 3.1 (a)-(b) hold and let K, be such that K, < n and
K,/v/n—c€[0,00) as n — oo. Then,

N (éj;ﬁl _ 90> 4 N(eA, )
where ¥ and A are defined in (2.9) and (3.1), respectively.

Lemma 3.1 continue to hold for non-smooth econometric models for two reasons. First,
we use mild regularity conditions to derive the limiting distribution of the oracle DMLI.
Second, we don’t rely on the smoothness of the moment function m with respect to 7.

Lemma 3.1 shows that the oracle DML1 has the same limiting distribution that we derive
for DML1 in Theorem 3.1. This last result occurs because the proof of Theorem 3.1 uses

that the DML1 and its oracle version are asymptotically equivalent,
vn (éle}(n — é;%) 50 as n—oo. (3.3)

Part (d) of Assumption 3.1 is key in our proof of Theorem 3.1 to guarantee that (3.3) holds.

The asymptotic equivalence in (3.3) and Assumption 3.1 (a)-(b) are sufficient to conclude
that DML1 is sensitive for large K values when A # 0. We show in part (a) of Lemma A.1
that Assumptions 3.1 and 3.2 are sufficient to verify the high-level condition (3.3).

In a similar way, we can define the oracle version of DML2:

-1
N* 1 " 1 "
en:([? = (E Zwa(mﬂ’h)) (ﬁ Zwb(WZanz)> . (34)
=1 i=1

Note that the oracle version of the DML2 is the same as the ideal estimator defined in (2.4).
Therefore, the oracle version of DML2 does not depend on the choice of K.

The asymptotic equivalence in (3.5) between DML2 and its oracle version is sufficient to
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conclude the robustness of DML2 to the choice of K,
vn (éﬁ(n — HAZ(%) %0 as n—oo. (3.5)

We show in part (b) of Lemma A.1 that Assumptions 3.1 (a)—(c) and 3.2 are sufficient to
verify the high-level condition (3.5), provided that K, = O(y/n). To guarantee that (3.5)
holds for K,, = O(n) we additionally use Assumption 3.3 (Lemma A.2). Importantly, we do
not require part (d) of Assumption 3.1 for the analysis of DML2.

Finally, notice that the oracle version of DML1 depends on random splitting, while the
oracle version of DML2 does not. Therefore, even if we use the oracle DMLI1, it lacks
replicability due to sample splitting, whereas the oracle DML2 does not. Furthermore, we
cannot use oracle DML1 with K = n since this estimator is inconsistent, except in special

cases where oracle DMLI1 coincides with oracle DML2; see Remark 2.1.

4 Second-Order Asymptotic Approximation for DML2

when K increases

This section derives a second-order asymptotic approximation to the scalar DML2 estimator
when K = K, can depend on the sample size n (Theorem 4.1). We use this approximation to
explain observed patterns in DML2’s finite-sample bias and MSE (Remark 2.3), characterize
the optimal choice of K, and quantify the relative efficiency loss from any suboptimal choice
of K. Under the conditions we provide, the magnitude of the second-order asymptotic bias
and the second-order asymptotic MSE of DML2 decrease in K, implying that K,, = n is
an optimal choice. In other words, the leave-one-out estimator is optimal among DML2
estimators; its implementation is discussed in Section 5.2.

Let ny ¥ be the Lo-convergence rate of the estimator 7, where ng = ((K —1)/K)n is the
number of observations in the sample {W; : i ¢ Z,.} used by 7. to estimate 7. Let My, Ms,
¢s, and ¢, be positive constants, and let 7,, be a sequence of positive numbers converging to
zero. To derive the second-order asymptotic approximation for DML2, the next assumption
restricts the class of nuisance estimators relative to that considered in Section 3, in the sense

that it can be verified that Assumption 4.1 implies Assumptions 3.2 and 3.3.
Assumption 4.1. There ezist 0, : W x X = R? and b,, : X x X = RP, such that
(a) For any k € [K,), Bll|Ak(X:) — mo(X:) — Al [!]M? < ng** My, where
A =102 1g %00 (Wi, Xo) + 05" > 1g ¥hag (X5, X) (4.1)
JELk J¢Ly
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(b) ¢ € (1/4,1/2).

(¢) For any i # j, E |18, (W;, X0)|2] € (c5, My), B (|15 (Wy, X)II*) < mb2#My for s =
1,2, BE[||d0, (W, X)II2 | XiJ2) < My, and E[5,,(W;, X,) | X,] = 0.

(&) Foranyi £ j, E1IE by (X3, X0) | X1 € (03, My), E [[lng b (X5, X)) < 00207,
for s =1,2, and E [E (1B (X5, X)) | XZ-]Q} < N3Tng -

Assumption 4.1 holds for kernel regression estimators under mild regularity conditions,
with trimming to ensure bounded inverse density weights. It captures settings in which the
nuisance estimator achieves the usual bias—variance trade-off. For instance, it holds for the
Nadaraya—Watson estimator with an MSE-optimal bandwidth.

Part (a) of Assumption 4.1 is a high-level condition that presents a stochastic expansion
for the nuisance function estimator 7y, with variance and bias contributions given by d,,
and b,,, respectively. The accuracy of the stochastic expansion is measured in Ly-norm to
address the technical challenges that arise when K,, — oo as n — oo; it can be relaxed when
K, is fixed. Part (b) of Assumption 3.1 is a standard requirement in the semiparametric
literature (Andrews, 1994); it guarantees that nonlinear effects of first-step estimator error
are negligible for the estimator of §, whenever part (c) of Assumption 3.1 also holds. Parts
(¢) and (d) impose regularity conditions on 6,, and by, that imply ny > is the convergence
rate of both the squared bias and variance of 7.

Assumption 4.1 provides additional structure on the estimators 7j;, that we can use to de-
rive a second-order asymptotic approximation for the scalar DML2 estimator. Nevertheless,
conducting an appropriate analysis of the leading terms of the second-order bias and MSE of
DML2 requires additional conditions on the functions d,,, and b,, and the higher-order partial
derivatives of the moment function m. We formalize those conditions in the next assumption.
To simplify notaton, let by, (X;) = E [ba,(X;, X;) | Xi] for j # 4, let 92m; = 92m(W;, 6o, m;),
and recall that 1, = n9(X;) and G = E[Y*(W;, n;)].

Assumption 4.2. (a) m is three-times continuously differentiable on n € € C RP and

sup, e [|02m (Wi, 00,1)|loe < ca, (b) the next limits exist and are finite,

V= lim E|E [6,,(W;, X;)T (G™'0%m:) 6, (W, X5) | Wj,Wg]z], (4.2)
B= lim 3B |(5ug(W), X0) +buo (XO)T (G710me) (0 (W), X0) + B (X)) (43)
C= lim E [G™'m(W;,600,1;)00(W;, X))T (G~ 02m;) Bno(xi)], (4.4)

where j # 1, and (¢)V >0, B#0, and C > 0.
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Part (a) of Assumption 4.2 is satisfied in several examples, including ATE (Example C.1),
ATT-DID (Example C.2), and LATE (Example C.3). In all these examples, the moment
function is a quadratic polynomial in 7. Part (b) requires that the limits in (4.2)—(4.4)
exist; this is a mild regularity condition since Assumptions 3.1 and 4.1 already ensure these
sequences are bounded. Part (c) assumes that the quantities V, B and C are non-zero to
ensure the second-order approximation is non-degenerate. A necessary condition for part
(c) is that the moment function m is nonlinear in 7, i.e., its matrix of second-order partial
derivatives with respect to n is nonzero.

Let 7, = n 123" G7'm, and 7,7 = in 712300 >ier, AL; (G7102m;) Ay, where
we use m; = m(W;, 6y, n;) to simplify notation. Recall that Ay ; is defined in (4.1). We refer
7.5 as the first-order asymptotic approximation of DML2 since 7.* AN (0,3), which is the
limiting distribution of DML2. Let Tk, = 7,7 + 7%, . The next theorem shows that 7,*
and 7, k, are, respectively, the first- and second-order asymptotic approximations to the
scalar DML2 estimator.

Theorem 4.1. Let Assumptions 5.1, 4.1, and 4.2 hold and let K, be such that K, < n.
Then,
n 207 —00) = Tox, = 0p(n/*72) . (4.5)

n

Furthermore, limy, o0 Varn® =27 1> 0 and lim, o E [(nQ‘p_l/Q?;L’f}(n)z} < o0o. In par-
ticular,
(00, = b0) = T = Op(n**7%) |

Theorem 4.1 demonstrates that 7, g, provides a better asymptotic approximation than
7. We obtain this improvement by including 7"} to account for the nonlinear effects of
nuisance estimation error in the estimator of #,. More concretely, the theorem guarantees
that 7" has stochastic order O,(n'/*72¢) and is the leading term in the scaled difference

between the feasible estimator ér(f}{n and the oracle estimator QAZ% defined in (3.4):
nt2 (0%, =002, ) = Tik, + op(n'/*72).

We next use the asymptotic approximation 7, g, to explain how the choice of K, affects
the finite-sample bias and MSE of DML2. Recall that all DML2 estimators share the same
limiting distribution regardless of K, (Theorem 3.2), making second-order analysis necessary
to understand the simulation patterns of the bias and MSE of DML2 that first-order asymp-
totic theory cannot capture. This use of second-order approximations to compare first-order
equivalent estimators has a long history in econometrics (Rothenberg, 1984; Linton, 1995;
Newey and Smith, 2004; Graham et al., 2012).
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Remark 4.1. When K, is fixed as n — 0o, a similar stochastic expansion can be derived
for DML1,
20,5, = 00) = T+ Tk, + 0 (n'/*7%%)

This expression and (4.5) show that the asymptotic approximations are identical when K, is
fixed. Consequently, DML1 and DML2 have identical second-order asymptotic bias and MSE
in the K-fixed asymptotic regime, making it impossible to distinguish them using second-
order asymptotic analysis. Thus, distinguishing DML1 from DML2 requires an asymptotic

framework where K,, — 0o as n — 00, as we develop in Section 3. O

4.1 Second-order Asymptotic bias and MSE for DML2

We define the second-order asymptotic bias and MSE of DML2 as the mean and second mo-
ment of 7, ,, respectively. These definitions follow a long tradition in econometrics of using
second-order approximations to compare estimators with identical first-order asymptotic
properties (Rothenberg, 1984; Linton, 1995; Newey and Smith, 2004). Under suitable regu-
larity conditions, the distribution of 7, g, approximates the distribution of nt/ Q(éff}{n —6p) up
to an error of order o(n'/27%#); therefore, the moments of Tn. K, provide valid approximations
to the bias and variance of éﬁf}(n Recall that ¢ € (1/4,1/2) by Assumption 4.1.

Theorem 4.2. Let Assumptions 5.1, 4.1, and 4.2 hold and let K, be such that K, < n.
Then,

1\
BTl =B (14 1 ) 02 o) (4.6)

and

20—1/2
E[Tlc]=%+C (1 + ) nt/272 4 o(nt/27%) | (4.7)

K,—1
where B and C are defined in (4.2) and (4.4), respectively.

This theorem presents the second-order asymptotic bias and MSE of DML2. Henceforth,
by second-order asymptotic bias and MSE we refer to the leading-order terms in (4.6) and
(4.7), omitting the o(n'/2~2#) terms, which are negligible for our analysis. This simplification
focuses our analysis on the dominant terms that vary with K.

Theorem 4.2 provides an asymptotic result that explains the observed patterns in DML2’s
finite-sample bias and MSE (Remark 2.3). Since B # 0 and C > 0, we see that the mag-
nitude of the second-order asymptotic bias and the second-order asymptotic MSE decrease
in K,, consistent with the simulations findings reported in Ahrens et al. (2024a,b) and
Chernozhukov et al. (2018), and our simulation results in Section 6. Importantly, the sim-
ulation results in Section 6 show that for K > 10, DML2’s finite-sample bias and MSE
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appear approximately constant. This plateau is consistent with the fact that the terms
(1—1/(K,—1))* and (1 —1/(K, —1))>*7Y2 in (4.6)-(4.7) change little when K,, > 10 for
typical values ¢ € (1/4,1/2).

We now use Theorem 4.2 to characterize the optimal choice of K = K,,, which can depend
on the sample size n. We consider the minimization of the second-order asymptotic MSE
of DML2 as our optimality criterion, following the literature on higher-order asymptotics
(Donald and Newey, 2001; Linton, 1995; Newey and Smith, 2004). Let MSE[QA;Q}{H] be the
second-order MSE of DML2 with K = K,,. Using this notation and since C > 0, we conclude

MSE[0®)] > MSE[IF) | (4.8)

for any sequence K, such that K, <n.

From (4.8), we conclude that K = n is an optimal choice for DML2 in terms of second-
order asymptotic MSE. When K, is constant, the inequality (4.8) is strict, implying that
K = n strictly dominates any fixed choice of K. In contrast, when K, — oo as n — oo,
the difference between MSE[0)] and MSE [éff}(n} is of order o(n'/?~%%), which we omit in
our analysis. Thus, any choice K, with K, — oo as n — oo is asymptotically equivalent to
K = n under the second-order asymptotic MSE criterion.

The previous result demonstrate that the leave-one-out estimator, which is DML2 with
K = n, is optimal among DML2’s in terms of second-order asymptotic MSE. A similar
analysis can be done using the magnitude of the second-order asymptotic bias of DML2 as
our optimality criterion, with analog results, in the sense that the choice K = n is also
an optimal choice as long as B # 0. Therefore, the leave-one-out estimator is also optimal

among DML2’s in terms of second-order asymptotic bias.

Remark 4.2. Under our conditions (including B # 0 and C > 0), we prove that K,, = n is
optimal in terms of second-order asymptotic bias and MSE criteria. If instead C < 0, then
K,, = 2 becomes optimal under the second-order asymptotic MSE criterion. In either case,

commonly recommended choices as K = 5 or K = 10 are suboptimal. O

Remark 4.3. When K, = K is fixed as n — oo, explicit expressions for the second-
order asymptotic MSE of the oracle estimators éz([? and éz(,? defined in (3.2) and (3.4),
respectively, can be derived using standard arguments (e.g., Newey and Smith (2004)):

MSEG Y] =%+ (K*A? + KA,) /n+o(n™h)
2 R—

MSEG:P] =%+ (A2 4+ Ay) /n+o(n™h)
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where 3 and A are defined in (2.9) and (3.1), respectively, and

Ay = 5A? + 02 {3E [ (W, mo(X))?] B 1} B 2E [m(W, 09, 1o (X)) 2 (W, no(X))] |

E [ (W, no(X))]? E [a(W, no(X))]?

Two key differences from Theorem 4.2 merit discussion. First, the oracle estimators have
remainder terms of order o(n™!) and second-order terms of order n™!. Since ¢ € (1/4,1/2)
implies n~! = o(n'/?72#), these oracle second-order terms are negligible relative to the feasible
estimator’s second-order MSE term in (4.7). Second, the second-order term for DMLI,
(K?A? + KAy) /n, increases in K, implying that for large K, the oracle DMLI estimator

é;(l? has worse second-order accuracy than the oracle DML2 estimator é:;(l? O

Remark 4.4. Theorem 4.2 illustrates that a first-step estimator optimal for nuisance es-
timation may be suboptimal for estimating 6y in terms of second-order asymptotic MSE.
The theorem shows that the second-order asymptotic MSE of DML2 is dominated by the
variance component since the squared second-order bias is of order O(n'~%), which is a
negligible relative to the variance. Therefore, a different class of first-step estimators that
induces larger second-order bias but lower second-order variance could improve the con-
vergence rate of DML2’s second-order MSE. In work in progress, we show that when the
first-step estimator uses Nadaraya-Watson regression, the bandwidth h, o n=%/7 optimizes
the second-order MSE of éf}(n, yielding a convergence rate of n=%/7, which is faster than the
rate n /1 obtained in (4.7) using the MSE-optimal bandwidth h,, oc n='/%, O

4.2 Relative efficiency loss from suboptimal choice of K

In the remainder of this section, we quantify the relative efficiency loss from any suboptimal
choice of K using Theorem 4.2. The main motivation is to evaluate the performance of
commonly recommended choices such as K = 5 or K = 10 relative to the optimal choice.
We first use the second-order asymptotic MSE as our performance metric, then present
results using the second-order asymptotic bias.
We define the relative efficiency loss of the choice K in terms of the second-order asymp-
totic MSE as R
R Lase(K) = MSE—[M] —
This measures the percentage loss in second-order asymptotic MSE from choosing K instead
of the optimal K = n. By construction, RLysg(n) = 0 and RLyse(K) > 0 for all K <n.
The next corollary provides an upper bound for R Lysg(K) depending only on K, n, and
. This bound is sufficiently tight for practical guidance and avoids the need to estimate

the ratio C/X required in the exact expression.
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Corollary 4.1. Under the conditions of Theorem 4.2, we have

In particular, if p € (1/4,1/2), we have RL ysp(5

) < 11.8% and RLysp(10) < 5.4% for
n > 1000. If we know ¢ = 2/5, we have RL ysp(5) < 6.

This corollary shows that the relative efficiency loss from commonly recommended choices
such as K =5 or K = 10 is small. Moreover, these relative losses decrease as the first-step
estimator becomes less accurate (i.e., as ¢ decreases), indicating that optimal choice of K is
less critical when nuisance estimation is slower.

We now define the relative efficiency loss of the choice K in terms of the second-order

asymptotic bias as

R Lys (K) = (”19—1)2@ 1. (4.9)

1+
This measures the percentage loss in second-order asymptotic bias from choosing K instead
of the optimal one. By construction, R Lyi.s(n) = 0 and R Lypias(K) > 0 for all K < n. Recall
that we are referring to the second-order asymptotic bias to the leading-order term in (4.6),
since the terms of order o(n'/?272#) are negligible for our analysis.

From (4.9), we conclude that RLyias(5) € (11.7%, 24.9%) and R Ly;as(10) € (5.4%, 11%)
when ¢ € (1/4,1/2) and n > 1000; therefore, the relative efficiency loss from commonly
recommended choices such as K = 5 or K = 10 may be significative in terms of second-
order asymptotic bias. Furthermore, these relative losses increases as the first-step estimator
becomes more accurate (i.e., as ¢ increases), showing that optimal choice of K is critical

when nuisance estimation is faster.

5 Recommendations for Practitioners

We now provide three recommendations for the implementation of DML. In contrast to
existing guidance, which relies on simulation evidence that necessarily cannot cover the full
range of econometric models and first-step estimators, our recommendations are based on
the theoretical results presented in Sections 3 and 4.

Before presenting our recommendations, we recall that DML offers practitioners multiple
implementation choices. These include the choice between DML1 and DML2, as well as the
number of folds K used to split the data for first-step estimation. Our recommendations
focus on these two key decisions: DML1 versus DML2, and the choice of K.
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5.1 Prefer DML2 over DML1

Our first recommendation for practitioners is to use DML2 over DML1. While this is consis-
tent with existing practice, we provide theoretical justification that was previously lacking.

We offer two supporting reasons. First, DML2 asymptotically dominates DML1 in terms
of both bias and MSE (Theorem 3.1). Moreover, standard inference based on DMLI is
invalid when A # 0 (Corollary 3.1), where A is the discrepancy measure defined in (3.1)—a
quantity that can be computed without data. In contrast, DML2-based inference remains
valid (Corollary 3.2). Second, DML2 is robust to the choice of K for a large class of first-step
estimators (Theorem 3.2). In other words, estimation and inference using DML2 are reliable
for any choice of K € {2,...,n}.

Importantly, DML1 can still be used when A = 0 and K o /n, since under these con-
ditions DML1 achieves the same first-order asymptotic properties as DML2. However, this
requires first calculating A and verifying whether it equals zero. In practice, it is simpler to
use DML2 directly. Moreover, implementations of DML2 are available for many econometric
models in Stata (ddml; Ahrens et al. (2024a)), Python (DoubleML; Bach et al. (2022)), and
R (DoubleML; Bach et al. (2024)).

5.2 Use K =n for DML2

Our second recommendation for practitioners is to use DML2 with K = n. There are two
reasons supporting this choice. First, K = n is optimal for DML2 in terms of second-order
asymptotic bias and MSE, as we show in Section 4.1. Second, K = n ensures replicability
by eliminating random-split variability. DML2 with K = n is uniquely determined by the
data. In contrast, for any K < n, different random splits yield different DML2 estimates, so
researchers analyzing the same data with the same K could obtain different conclusions.

We now propose a computationally simple procedure to implement DML2 with K =
n. We start by recognizing that the standard practice in DML is to repeat the tuning
of the first-step estimator K times. Here, by tuning, we refer to the procedure in which
hyperparameters are selected—such as the bandwidth in kernel regression or penalization
parameters in LASSO—Dbefore estimation. Tuning is often implemented via cross-validation
(Hastie et al., 2009), which is computationally demanding and uses the same data that will
later be used for estimation.

Instead of following the standard practice, we propose to tune the first-step estimator
only once using all the data. This will result in a unique set of hyperparameters that we
use to estimate all the first-step estimators. This procedure relies on the assumption that

a single observation has negligible influence on the selected hyperparameters—an assump-
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tion that seems reasonable in practice. Under this assumption, the tuning procedures for
different first-step estimators—each using n — 1 observations since K = n—will yield nearly
identical hyperparameters, as they differ by only one observation. Moreover, these hyper-
parameters will be close to those obtained using the full dataset. Therefore, our proposed
procedure provides a computationally simpler alternative to the standard practice, though

formal verification of this assumption remains for future work.

5.3 If K must be small, use K = 10 over K =5

When practitioners must choose a small value of K for DML2, they should use K = 10 over
K = 5. The reason is that DML2 with K = 10 achieves better second-order asymptotic
accuracy than K = 5, as we show in Section 4.1. Moreover, the relative efficiency loss from
choosing K = 5 versus the optimal K = n can be as high as 11.8% in terms of second-
order MSE, while choosing K = 10 reduces this to at most 5.4% (Corollary 4.1). Therefore,
K = 10 guarantees substantially lower efficiency losses than K = 5.

Finally, Section 4.2 presents simple formulas to calculate the relative efficiency loss from
suboptimal choices of K. See (4.9) and Corollary 4.1 for the relative efficiency loss in terms

of second-order asymptotic bias and MSE, respectively.

6 Simulations

This section examines how well the asymptotic approximations from Sections 3 and 4 capture
finite-sample behavior for two econometric models: (i) ATT-DID (Sant’Anna and Zhao,
2020) and (ii) LATE (Hong and Nekipelov, 2010). We calculate the bias, MSE, and coverage
probability of confidence intervals associated with DML1 and DML2 for several values of
K. We use the confidence intervals defined in Chernozhukov et al. (2018, Theorem 3.2). In

what follows, we first present the designs and then the simulation results.

6.1 Design: LATE and ATT-DID
6.1.1 ATT-DID

This section is based on Example C.2. We built on the simulation design presented in
Sant’Anna and Zhao (2020). The observed outcome in the pre-treatment period and the

potential outcomes in the post-period treatment are defined by

Yo = freg(Xi) +v(Xi, A;) + €0,
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Yii(a) = 2freg(Xi) +v(X;, Ai) +e1i(a), a=0,1

where freg(X) = 210 + 685X1 + 3425(X2 + X3 + X4) and U(XZ,AZ) = Aifreg(X) + Eviy
and (£04,€1,4(0),€1,4(1),e,,) is distributed as N(0,14), I is the 4 x 4 identity matrix. The
treatment assignment is defined by A; ~ Bernoulli(p(X;)), where

R exp(fps(Xi))
P = T exp (o (X0)
fos(X) = 0.25(=X; + 05Xy — 0.25X3 — 0.1Xy) .

Finally, the vector of covariates is X; = (X1, Xa,, X34, X4:) € [0,1]* and all its coordinates
are independent uniform random variables (e.g., X;; ~ Uniform|0, 1]).
6.1.2 LATE

This section is based on Example C.3. We built on the simulation design presented in Hong

and Nekipelov (2010). The potential treatment decisions are defined as

where X; ~ Uniform[0, 1] and V; ~ N(0, 1) are independent random variables. The potential

outcomes are defined by

}7
I

Yi(1) = &1 + & I{Di(1) = 1, D;(0) = 1} + &4 I{D;(1) = 0, D;(0) = 0
Yi(0) = & + &3, 0{D;(1) = 1, D;(0) = 1} + &4, I{D;(1) = 0, D;(0) = 0

where &;; ~ Poisson(exp(X;/2)), &, ~ Poisson(exp(X;/2)), &, ~ Poisson(2), and &; ~
Poisson(1), and all these random variables are independent conditional on X;. The treatment
assignment is defined by Z; ~ Bernoulli(®(X; — 0.5)). As in Example C.3, the observed
treatment decision and the observed outcome are defined by D; = Z;D;(1) + (1 — Z;) D;(0)
and by Y; = D;Yi(1) + (1 — D,)Y;(0), respectively.

6.2 Results: LATE is sensitive to K increasing, while ATT-DID

is not

This section provides simulation evidence showing that DML2 strictly dominates DMLI1 in
the case of LATE, but performs similarly for the case of ATT-DID. This is consistent with
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Figure 1: Bias of DML1 and DML2 for ATT-DID and LATE. Sample size n = 3,000 and

5,000 simulations.
our results in Section 3 since LATE has A # 0, while ATT-DID has A = 0. Below we provide
additional details on the construction of the DML estimators.
The estimators for the ATT-DID and LATE are defined as in (2.6) and (2.7) using ¢*
and v presented in Examples C.2 and C.3, respectively. They are calculate for different
values of K € {2,5,10,15,20,25,30}. The nuisance function 7y for the ATT-DID and LATE

are presented in Examples C.2 and C.3, respectively.
tors and the cross-fitting procedure described in Section 2.1, where each first-step estimator
uses sample size ng = ((K —1)/K)n. For the ATT-DID, we use a 6th-order Gaussian kernel

We estimate each component of the nuisance function 7y using Nadaraya-Watson estima-
and common bandwidth h; = cn, Y16 for all coordinates.? For the LATE, we use a 2nd-order

~1/5
O .

Gaussian kernel and common bandwidth h; = cn

Panel (a) shows that DML1 and

6.2.1 Bias
Figure 1 presents the bias of DML1 and DML2 for several values of K and two econometric

models: ATT-DID in panel (a) and LATE in panel (b)

3We also considered a 2nd order Gaussian Kernel in the simulations. The results are presented in Figures
D.1 and D.2 in Appendix D, and they are similar to the ones presented using a 6th order Gaussian kernel.
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Figure 2: MSE of DML1 and DML2 for ATT-DID and LATE. Sample size n = 3, 000; 5,000
simulations.

DML2 perform similarly in terms of bias, while panel (b) shows that the bias of DML1 grows
almost linearly in K. Theorem 3.1 explains this finite-sample behavior since A = 0 for panel
(a) and A # 0 for panel (b). Importantly, in both panels, the bias of DML2 decreases in K
and remains approximately constant for K > 10, consistent with the explanation provided
after Theorem 4.2.

6.2.2 MSE

Figure 2 presents MSE results for DML1 and DML2 across several values of K for two
econometric models: ATT-DID in panel (a) and LATE in panel (b). Panel (a) shows that
DML1 and DML2 perform similarly in terms of MSE, consistent with Theorem 3.1 since A =
0 in this case. Panel (b) shows that the MSE of DML1 increases approximately quadratically
in K. This finding aligns with the expressions in Remark 4.3 for the oracle version of DML1.
Additional simulation results in Figure D.3 (Appendix D) show that the DML1 estimator
and its oracle version exhibit similar MSE values. Importantly, in both panels, the MSE of
DML2 decreases in K and remains approximately constant for K > 10, consistent with our

explanation provided after Theorem 4.2.
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Figure 3: Coverage probability of 95%-confidence intervals based on DML1 and DML2 for
ATT-DID and LATE. Sample size n = 3,000 and 5,000 simulations.

6.2.3 Coverage probability

Figure 3 presents coverage probability results for 95% confidence intervals based on DML1
and DML2 across several values of K for two econometric models: ATT-DID in panel (a)
and LATE in panel (b). Panel (a) shows that both DML1 and DML2 confidence intervals
have similar coverage probabilities, while panel (b) shows that the coverage distortion of
the DML1-based confidence interval increases in K. Corollaries 3.1 and 3.2 explain the

finite-sample behavior observed in both panels.

Remark 6.1. Figures D.5 and D.6 in Appendix D report results for the ATT-DID and the
LATE, respectively, for different choices of bandwidths. They show that the bias and MSE
are sensitive to the choice of bandwidth, and that non-monotonic behavior of the bias can

oCCur. O

7 Concluding remarks

This paper studies the properties of debiased machine learning (DML) estimators under

a novel asymptotic framework. DML is an estimation method suited to economic models
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in which the parameter of interest depends on unknown nuisance functions that must be
estimated. In practice, two versions of DML—introduced by Chernozhukov et al. (2018)—
can be used, that is, DML1 and DML2. Both versions randomly divide data into K equal-
sized folds for estimating the nuisance function, but they differ in how these estimates are
combined to estimate the parameters of interest. In this paper, we consider an asymptotic
framework in which K can increase to infinity as n diverges to infinity.

This paper makes several contributions within this new framework. First, it shows that
DML2 asymptotically outperforms DML1 in terms of bias, mean squared error, and in-
ference. Additionally, it characterizes the first-order asymptotic difference between DML1
and DML2 using a discrepancy measure, A, which can be calculated for many econometric
models. Second, it provides conditions under which all DML2 estimators, regardless of K,
are asymptotically valid and share the same limiting distribution. To differentiate among
them, we derive a second-order asymptotic approximations that lead to the following final
contribution: setting K = n for DML2 implementation is asymptotically optimal in terms
of second-order asymptotic bias and MSE within the class of DML2 estimators under the

conditions we provide.

A  Proof of Main Results

We rely on the next two lemmas:

Lemma A.l. Let Assumptions 5.1 and 3.2 hold and let K,, be such K, = O(y/n) and
K, <n.

(a) Then, equation (3.3) holds.
(b) Then, equation (3.5) holds.

Lemma A.2. Let Assumptions 3.1 (a)-(c), 3.2, and 3.3 hold and let K, be such that
K, <n. Then, equation (3.5) holds.

A.1 Proof of Theorems 3.1 and 3.2
Proof of Theorem 3.1. First, note that
as n — oo for j = 1,2 due to Lemma A.1 in Appendix B. Second, éj;(;l and é;: are the same

to conclude that \/ﬁ(éz(& — 6o) 4N (0,%) by standard arguments. Finally, Lemma 3.1 in
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Section 3.1 demonstrate that \/ﬁ(éz(,a —6p) < N(cA,%). O

Proof of Theorem 3.2. By Lemma A.2, \/n <A(2) — 0 g?) = 0, for K,, = O(n), which is
sufficient to conclude the theorem since v/n (6" n K —6p) 4N N(0,%). O

A.2 Proof of Lemma A.1

Proof. We use notation and auxiliary results presented in Appendix B.
Proof of part (a): We write

Vi (0, —0:0) = A+ B

where

Ky 1

A= K3 (Lo ) (@ — o)

k=1

Kn N —1 —1
B=K;'? Z { (]Id + n;1/2bk> — (Hd + ngl/Qbk> } ay
=1

and ay, by, ax, and by are defined in Appendix B.
We obtain
AN < T+ mmax ||+ m V20072 || < 1

by using the identity (B.1) presented in Appendix B and the triangle inequality, and

(]Id + n,;l 2bk)

X max x I3,

1<k<Kp,

||B|] < max H(]Id—i-nflpbk)*l
1<k<K,

by using the triangle inequality and the inequality (B.2) presented in Appendix B, where
Ky
_Kgl/QZCALk—ak (Al)

k=1
Ky

[2 = nil/QZ Hi)k — ka X H&k — akH
k=1
Kn

Iy =72 7 |lbel| x ||k — axl|
k=1

]4 = n_1/2 Z
k=1

by — b || o
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We next show that I; = o,(1) for j = 1,2,3, which is sufficient to complete the proof
(Ly + ny, b))~

of part (a) for DML1 since Lemma B.2 guarantees that both max; <<k,

are O,(1) when K,, = O(n'/?).

Claim 1: [; = 0,(1). We use Taylor expansion to write I; = I 1 + I 5, where

and maxjy<g<k, ‘ ‘(Hd —+ n,;l/%k)_l

Kn
Ly =n""2Y "% Dyl — ] (A.2)

k=1 i€l

K,
_ n 1 B . .
Lia=n 1/2 Z Z éngi[m — i T — i - (A.3)

k=1 i€y,
By the Law of Iterated Expectations and part (c) of Assumption 3.1, E[; 1] = 0. Let e; be

the j-th column of the identity matrix I;. To conclude that I ; = 0,(1), it is sufficient to

show E|(e] I11)?] — 0. To see this, consider the following derivations,

El(e] I11)%] %) n 'K, Zn: E (Z e; (Dymi[ij; — Ui]))

€Ty

215,326 [5 ot

Li€Ly

< KIS S B (X0 — X))

k=1 1i€ly

Do) x o(1)

where (1) holds by Jensen’s inequality, (2) holds because {e] (Dym;[i; —n;]) : i € Ii} are
uncorrelated random variables, (3) holds by Lemma B.1, and (4) holds since K,, = O(n'/?)
and by Assumption 3.2.

The next derivations shows that I 2 = 0,(1),

BTl € 0n 2SS B (X — (X))

k=1 i€}

@ (1) (A.4)

where (1) holds by the triangle inequality and Lemma B.1, and (2) holds by Assumption
3.2.
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Claim 2: [, = 0,(1). We first use the Taylor expansion to write
ap — ap = Ny, 1/2 ZD m[1; — ni] + D mz[ i — N> i — N
€Ty

and

- —1/2 aps Lo~ s X
by — b = ny, > Dyl — i) + §D72,¢“i 7 =m0 1 — i) -

1€Ly,

Let Dm,, and Dy be as in Appendix B. Then,
v o no1/2
I, < (n'°K,) x Dmiy, x DY + C (Dmy, + D) x n=2 ) > i = il

k=1
S ()

k=1 ’LeIk

€Ty

< O(1)oy(1) + (KY*n7Y?) x 0,(1) + O(1) x (n 1/22\!?72 | )

where (1) holds by the triangle inequality and Lemma B.1, (2) and (3) hold by Lemmas B.2
and B.3 and since K,, = O(n'/?). This completes proof of claim 2.

Claim 3: I3 = 0,(1). As in the proof of Claim 2, we use the Taylor expansion and Dm,,
defined in Appendix B to obtain,

(1

Iy < (Dmy) X n 1/QZkuH+Cn WZkuH X <nk1/22|\m il >
€Ty
(2) -
< op(1) x (H_WZ HM)
k=1

\_/

K. 1/2 K. 2\ /2
b Cn R (znw) y (ZHﬁi—mHQ)
k=1 k=1 i€Ly
(3)
D o0 (1) X O1) & 1 K x Oy (ZZH% ml!)
k=1 i€}

where (1) holds by the triangle inequality and Lemma B.1, (2) holds by Lemma B.2 and the
Cauchy-Schwarz inequality, (3) holds by part (b) of Assumption 3.1, using the definition of
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by, and since K,, = O(n'/?), and (4) holds by Assumption 3.2 and since K,, = O(n'/?).
Claim 4: I; = o0,(1). The proof is similar to Claim 4 but using Dy? instead of Dmy;
therefore, omitted.

Proof of part (b): We write

Vi (00, - 02) = A+ B,

where
Kn -1 Kn
A= (]Id 4 PRy Bk> (K,;W > i — ak)
k=1 k=1
Kn -1 Kn -1 Kn
B <]Id n n,?lngl Z Bk) B <]Id i n;Zl/QKJl Z bk) <K51/2 Z ak>
k=1 k=1

= = k=1

and ay, l;k, ay, and by, are defined in Appendix B.
N1
A is 0,(1) due to two results. First, <]Id + n;1/2K;1 ZkKjl bk) is O,(1) by Lemma B.3.
Second, K, '/* K Gy, — ag is 0,(1) by claim 1 in the proof of part (a).

To show that B is 0,(1), we consider the following derivations

-1

Kn -1 Kn
1B ¢ <1[d +n, PRy sz) x (]Id +n, PR Zbk>
k=1 k=1
Ky
K;1/2 Z a
k=1

Kn
K2 by — by
k=1

X X

Ky
n*l/ZKT?l/Q Z [;k . bk

k=1

(2)
< 0,(1) x n~1/?

(3)
= 0p<1) )

where (1) holds by the inequality (B.2) in Appendix B, (2) holds by Lemma B.3 and the
Central Limit Theorem, and (3) holds since HK{I/Z ZkKjl b — ka is 0,(1) due to the same
arguments we used to prove that I; = 0,(1) in claim 1 in the proof of part (a) for DML1. [

A.3 Proof of Lemma A.2

Proof. The proof of part (b) in Lemma A.1 relies on Lemma B.3 and I; = 0,(1), where [,
is defined in (A.1). Lemma B.3 holds for K, = O(n), but the proof of I} = 0,(1) relies
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on K, = O(n'/?). Therefore, the validity of the previous proof does not apply to the case
K,, = O(n). To adapt the proof of part (b) in Lemma B.3, we show that I; = 0,(1) also
holds when K,, = O(n), provided we add Assumption 3.3.

Recall that Iy = Iy 1 + I 2, where [ ; and I » are defined in (A.2) and (A.3), respectively.
Note that the proof of I; 5 = 0,(1) also applies when K, = O(n); see derivations in (A.4).
Therefore, it is sufficient to show that I;; = o0,(1). Since E[l;;] = 0, it is sufficient to
show that E[(e]I11)?] = o(1), where e; is the j-th column of I;. Consider the following

derivations,

El(e/111)"] = E <n1/2 i Z e; (Dymili; — Wi]))

k=1 i€},

S SS S S B (Dl — el Dyl — )

k1=1 ko=111€Ty, i2€Lk,

=haa+hao+1iags

where
2
s =0 S5 B[ (Dl — )]
k=1 i€}
Il 1,2 — =n Z Z E D mn [7711 7711]) (Dnmm [77%2 7722])]]{21 7é Z2}
k=1 i1,i2€Z},

has=n" Z > > Ele] (Dymi, [, — ni))e) (Dymiy i, — ni,)) T{k # ka}

k1,ko=1 ’L1€Ik1 lQEZkQ
Note that ;11 = o(1) and [; 12 = 0. The former holds by Assumption 3.2 and |} ]| <

Cn 'S0 E |0 — 772-|]2}, while the latter by part (c¢) of Assumption 3.1 and the Law of

Iterated Expectations.
We now show that I; ;35 = o(1) using Assumption 3.3. We proceed in three steps. First,
for iy € Iy, , is € Iy,, and ki # ko, let ﬁ;f = ﬁ;fl (X;,) and 7712 = 77,212 (Xi,). We have

E[e;(Dﬁmil [ﬁzlf - nil])e;r(Dﬂmm [ﬁw - 7]12])] =0,

which holds by the Law of Iterated Expectations (conditional on X;, and {W; : 1 < i <
n,i # is}), part (c) of Assumption 3.1, and the definition of ﬁ,’fl (Xi,). Second, we use that
Dym;, is a linear operator (i.e., Dymy, [fi, — 0] = Dym, [, — 9] + Dymy, [0 — m;,]) and
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the previous step to write

Lig=n"" Z > > Ele] (Dymi, [, — 02))e] (Dymiy [, — i) I {k1 # ka} .

k1,ko=1141€Tk, i2€TLk,

Finally, we use the previous step, the Cauchy-Schwarz inequality, and Lemma B.1 to obtain

. K 2112 A 2]l
Lag <Ot 30 S0 S Bl —azll’] " B[l )]
k1,ko=1141€Ly, i2€Lk,
= o(1).
where (1) holds by Assumption 3.3. This completes the proof of I} = 0,(1). [

A.4 Proof of Lemma 3.1

Proof. We use the definition of HAZ(IQL to write

K
N n -1
(- 0) = 5 () o
k=1
where

Y G,

1E€T),

b =mn;, 2 (Gher — 1)

1€LL

We now use the identity

(]Ik + n,;l/Qbk)*lak = Qp — ngl/Qbkak + nk (]Id + n71/2bk) bkak

to write
ﬁﬂ@%—%)%&ﬁmm:h—b+g
where
Ky,
L =K, 1/2Za =n 1/2ZG m;
k=1
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Kn
L= K7y n Phgay, + (Ko /v/n)A

k=1

Ko
Iy = K2 ng o+ ny ) 7 B
k=1

Claims 1 and 2 below show that Iy = 0,(1) and I3 = 0,(1), which is sufficient to complete
the proof of this lemma since I % N (0,%) by the Central Limit Theorem.
Claim 1: I; = 0,(1). To show this, we first note that E[l5] = 0 since E[byay] = —A. It is
sufficient to show that E[||I1||*] — 0. Algebra shows

Kn
1 _
El|LIA Y E ‘ n?> " (bray — Elba))
k=1
Ky
n™ > E[||(bsar — Elbrax))||’]
k=1

®3)
< n 'K, E [||bga||’]
_ 02 g 1/2
0 KB [[[0n]["] B [l |"]

® 1K, x O(1) x O(1) ,
where (1) holds since E[byar] = —A, (2) and (3) hold because {(brar—E[brag]) : 1 < k < K,,}
are i.i.d. zero mean random vectors, (4) holds by CS inequality, and (5) holds by part (b)
Assumption 3.1 and using the definition of a; and by. Therefore, E[||I5|[*] = O(n~'/?) since

K, = O(n'/?).
Claim 2: I3 = 0,(1). To show this, first note that

Kn
< K2y ngtIojax ]

,,,,, | ‘(]Id + g 2!
to show that KEI/Q S i |b2ak|] = 0,(1), which holds by the following derivations

where max—

= 0,(1) due to Lemma B.2. Therefore, it is sufficient

Wanle aill] € K32 B be] |12 Ellayl [

)
< K3Pp7t % 0(1) x 0(1)

2o,
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where (1) holds because {bia;, : 1 < k < K, } are i.i.d. random vectors and Cauchy-Schwarz
inequality, (2) holds by part (b) of Assumption 3.1 and using the definition of a; and by, and
(3) holds since K,, = O(n'/?). This completes the proof of claim 2. O

B Auxiliary Results

We use the following notation in the proofs of the main results in Appendix A.

. —1/2 1.
ak:nk/ E Gt

1€y,

by =n, *Y (G—%g - ]Id>

1€y

ar =n 71/226’ m;

1€y

be =m0 (G~ L)

1€Ty

71 2
Dm,, = max / E Dym;[n; — ni
1<k<K,
1€Ty

Dyt = max ||n;"?> " Dyl

1<k<K,
1€Ty

We also use the following identity
(I +M) =1, — (Iy + M)"'M (B.1)
and inequality
[ (T + M) ™ = (Tg + M) 7| < [T + M) 7| - My — M| - [T +Mo) Y| (B.2)

The next lemmas are used in the proof of the main results in Appendix A.
Lemma B.1. Let Assumption 3.1 holds. Then, there exists a constant C' > 0 such that
A ~ 2
1. El(ej (Dymiy [, — ni])] < CE[l: — mil[']

2. El(e] (Dymy, [7;, —712)))] < CE[|| I’

J

A12

7721

3%HD%M@—mﬁr”MHSCHm—mW

D%lﬁ%[fh — iy — mi] || < C |1 = il

Jl
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forany k < K,, and i € Z,.

Lemma B.2. Let Assumptions 3.1 and 3.2 hold and let K, be such that K, < n and
K, =0(y/n). Then,

(L + ny, 2by) ! H = 0p(1)

1. max)<kg<k,

2. maxlngKn

L+ n; 50| = 0,(1)

3. D, = maxicuer, || > ez, Dymilii — nil|| = 0,(1)

4. Dy, = maxi<k<k,

—1/2 ala
’”k g Zielk Dyp [ — mi] || = 0p(1)
Lemma B.3. Let Assumptions 3.1 and 3.2 hold and let K, be such that K, <n. Then,

—1

1 (Hd+n;1/2Kglzf;1bk) = 0,(1)
N -1

2 (Lo R S b) T = 0,

8. n 2 i = mill” = 0p(1)

C Examples

Example C.1 (Average Treatment Effect). Let A € {0,1} denote a binary treatment sta-
tus, Y(a) denote the potential outcome under treatment a € {0,1}, X denote a vector of

covariates, and

Y = AY (1) + (1 — A)Y(0)

denote the observed outcome. The available data is modeled by the vector W = (Y, A, X).

The parameter of interest is
6 = E[Y (1) - Y(0)] .

which is the expectation of the treatment effect when the treatment is mandated across the
entire population, also known as the ATE. A standard assumption used to identify 6, is the

selection-on-observables assumption,
(Y(1),Y(0) LA| X .

Under the selection-on-observables assumption, the ATE can be identified by a moment

condition such as (2.1) using a moment function like (2.2), which is defined by

VW) = —m+AY —m)ns — (1= A)Y —n2)ma
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Vv (W,m) =1,

for n € R*, and where the nuisance parameter 7y(X) has four components:

na(X)=EY | X,A=1],
m2(X) =ElY | X,A=0],
ma(X) = (E[A] X)),

ma(X) = (B[l —A|X])™".

This moment function corresponds to the augmented inverse propensity weighted (AIPW)
estimator (Robins et al. (1994), Scharfstein et al. (1999)). It also appears as the efficient
influence function for the ATE in Hahn (1998) and Hirano et al. (2003). O

Example C.2 (Difference-in-Differences). This example considers the average treatment
effect on the treated in difference-in-differences research designs with two periods and panel
data, as studied in Sant’Anna and Zhao (2020). Let A € {0,1} denote a binary treat-
ment status on the post-treatment period, Y;(a) denote the potential outcome on the post-
treatment period under treatment status a € {0, 1}, Yy denote the outcome of interest in a

pre-treatment period, X denote a vector of covariates, and
Yy = Avi(1) + (1 — A)Y1(0)

denote the observed outcome in the post-treatment period. The available data is modeled
by the vector W = (Yp, Y1, A, X). The parameter of interest is

0o = E[Y1(1) = Y1(0) [ A=1]

which represents the treatment effect for the treated group in the post-treatment period,
also known as ATT-DID. Sant’Anna and Zhao (2020) used the following conditional parallel

trend assumption,
E[Yi(0) = Yo | X, A =1] = E[}y(0) - Yo | X, A=10],

to identify the ATT-DID by a moment condition, such as (2.1), using a moment function
like (2.2), which is defined by

WP Won) =AY —Yo—m) + (1 — A) (1L —m) (Y1 — Yo —m) .
P (W) =4,
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for n € R?, and where the nuisance parameter 7,(X) has two components:

n1(X) =E[Y1 —Yy | X,A =0
no2(X) = (E[1l—-A|X])™".

This moment function is the efficient influence function for the ATT-DID under the condi-
tions in Sant’Anna and Zhao (2020). O

Example C.3 (Local Average Treatment Effect). This example considers a framework where
individuals can decide their treatment status as in Imbens and Angrist (1994) and Frolich
(2007). Let Z € {0,1} denote a binary instrumental variable (e.g., treatment assignment),
D(z) denote potential treatment decisions under the intervention z € {0, 1}, and assume the

observed treatment decision is given by
D=ZD(1)+(1—-2)D(0) .

Let X denote a vector of covariates, Y (d) denote the potential outcome under treatment
decision d € {0,1}, and Y = DY (1) + (1 — D)Y(0) denote the observed outcome. The
available data is modeled by the vector W = (Y, Z, D, X). The parameter of interest is

0y = E[Y(1) = Y(0) | D(1) > D(0)] ,

which is the expected treatment effect for the sub-population that complies with the assigned
treatment, also known as LATE. A sufficient assumption for identification is the following

selection-on-observables assumption,
(Y(1),Y(0),D(1),D(0)) L Z | X .

Using this assumption and similar assumptions as in Frolich (2007), Singh and Sun (2024)
identified the LATE by a moment condition, such as (2.1), using a moment function like
(2.2), which is defined by

VW) =m —ne+ Z(Y —n)ns — (L= Z)(Y — n2)ng
Y Wom) =n3 —na+ Z(D —n3)ns — (1 = Z)(D —na)ns

for n € R®, and where the nuisance parameter 79(X) has six components:

T]O’l(X) = E[Y | X,Z = ]_] s
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This moment function appears in Frélich (2007) as the efficient influence function for the

LATE. This moment function corresponds to the estimators proposed in Tan (2006). O
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D Additional Simulation Results
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Figure D.1: Bias and MSE of estimators for the ATT-DID based on DML1 for different
values of ¢ in h = cng Y5 1t uses a Second Order Gaussian Kernel Coverage probability of
95%-confidence intervals for the ATT-DID. Sample size n = 3,000 and 5,000 simulations.
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Figure D.2: Bias and MSE of estimators for the ATT-DID based on DML2 for different
values of ¢ in h = cn, /5 1t uses a Second Order Gaussian Kernel. Coverage probability of
95%-confidence intervals for the ATT-DID. Sample size n = 3,000 and 5,000 simulations.
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