Exploring global dynamics and blowup in some nonlinear PDEs

Jonathan Jaquette

Boston University $\rightarrow \rightarrow \rightarrow$ New Jersey Institute of Technology

BU SIAM Student Chapter

Collaborators

Jean-Philippe Lessard
McGill University

Akitoshi Takayasu
Tsukuba University

Outline

- Part 1: Introduction
- Part 2: What is a computer assisted proof?
- Part 3: A toy model for fluid dynamics
- Part 4: Global dynamics and blowup

Which dynamical features are important?

Which dynamical features persist?

- Numerical approximations converge in the limit
- How accurate is a particular computation?

Temperature field in 2D Rayleigh-Bénard convection simulations. Image Credit: Doering 2020

The Lorenz attractor, a 3-mode approx. of RayleighBénard convection. Image Credit: Weady et al. '18

Which dynamical features persist?

J. Fluid Mech. (1984), vol. 147, pp. 1-38
J. Fluid Mech. (1984), vol. 147, pp. 1-38
Printed in Great Britain
Order and disorder in two- and three-dimensional
Bénard convection
By JAMESH. CURRY,
University of Colorado, Boulder, CO 80309
JACKSON R. HERRING,
National Center for Atmospheric Research, Boulder, CO 80303
JOSIP LONCARIC \dagger AND STEVEN A. ORSZAG \ddagger
Massachusetts Institute of Technology, Cambridge, MA 02139
(Received 18 October 1983 and in revised form 27 July 1983)
The character of transition from laminar to chaotic Rayleigh-Bénard convection in a fluid layer bounded by free-slip walls is studied numerically in two and three space dimensions. While the behaviour of finite-mode, limited-spatial-resolution dynamical systems may indicate the existence of two-dimensional chaotic solutions, we find that, this chaos is a product of inadequate spatial resolution. It is shown that as the order of a finite-mode model increases from three (the Lorenz model) to the full Boussinesq system, the degree of chaos increases irregularly at first and then abruptly decreases; no strong chaos is observed with sufficiently high resolution.

Temperature field in 2D
Rayleigh-Bénard
convection simulations.
Image Credit: Doering 2020

The Lorenz attractor, a 3mode approx. of Rayleigh Bénard convection. Image Credit: Weady et al. '18

Outline

- Part 1: Introduction
- Part 2: What is a computer assisted proof?
- Part 3: A toy model for fluid dynamics
- Part 4: Global dynamics and blowup

What is a Computer Assisted Proof?

My Definition: A proof involving computations.

$$
\text { e.g. } 109 \text { is prime; } 9<\pi^{2}<10
$$

What is a Computer Assisted Proof?

My Definition: A proof involving computations.

$$
\text { e.g. } 109 \text { is prime; } 9<\pi^{2}<10
$$

```
Sieve of Eratosthenes
input: integer n
output: primes between 2 & n
S:= {2,3,4 ...n}
p:= 2
while p \leq \sqrt{ n}{n}
    remove 2p,3p,4p,\ldots. from S
    p\leftarrow smallest }x\inS,x>
return S
```

| | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Prime numbers |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | |
| 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | |

What is a Computer Assisted Proof?

My Definition: A proof involving computations. e.g. 109 is prime; $9<\pi^{2}<10$

Numerics gone awry

- In 1963 Edward Lorenz was studying following model for atmospheric convection

$$
\begin{aligned}
& x^{\prime}=\sigma(y-x) \\
& y^{\prime}=x(\rho-z)-y \\
& z^{\prime}=x y-\beta z
\end{aligned}
$$

- Origin of the term 'Butterfly Effect'
- Sensitive dependance to initial conditions
- Under modern conventions, Ellen Fetter would have been a co-author
- https://www.quantamagazine.org/the-hidden-heroines-of-chaos-20190520/

Mathematicians welcome computer-assisted proof in 'grand unification' theory

Proof-assistant software handles an abstract concept at the cutting edge of research, revealing a bigger role for software in mathematics.

Famous Computer Assisted Proofs

- Four Color Theorem
- How many colors are needed so adjacent countries have different colors on a map? (1852)
- C.A.P. by Appel \& Haken (1976)
- Reduced to ${ }^{\sim} 1,500$ possible counter-examples

- The Lorenz system
- Standard model of chaos
- C.A.P. by Mischaikow \& Mrozek (1995)
- Smale's $14^{\text {th }}$ problem for the $21^{\text {st }}$ century
- Does the Lorenz attractor match the geometric model?
- C.A.P. by Tucker (2002)

Easy Part: living with rounding error

- Computers have finite memory
- Interval arithmetic
- Define real intervals as

$$
\mathbb{I} \mathbb{R}=\{[a, b] \subseteq \mathbb{R}: a \leq b\}
$$

- Define operations $\star \in\{+,-, \times, /\}$ as $A \star B=\{\alpha \star \beta: \alpha \in A, \beta \in B\}$

Examples

$$
\begin{aligned}
& {[1,2]+[3,4]=[4,6]} \\
& {[1,2]-[3,4]=[-3,-1]}
\end{aligned}
$$

$$
[1] /[3] \in[0.33,0.34]
$$

$$
\pi \in[3.1,3.2]
$$

$$
\pi^{2} \in[9.61,10.24]
$$

$$
f(x)=x^{5}-x+1
$$

- Goal: Solve $f(x)=0$

Jheoresmalwitheromputer ass,isted

$$
=[-30,2]
$$

- Use intermediate value theorem to show that a solution exists
- $f(-2)=-29<0$
- $f(-1)=+1>0$
- Uniqueness
- $f^{\prime}(I)=[4,79]>0$

$$
f(x)=x^{5}-x+1
$$

Theorem (with computer assisted proof): There exists a unique $\tilde{x} \in$ $[-2,-1]$ such that $f(\tilde{x})=0$.

Corollary: There exists a unique $\tilde{x} \in \mathbb{R}$ such that $f(\tilde{x})=0$. Proof: Divide and conquer

Newton's method: $\quad x_{n+1}=x_{n}-f^{\prime}\left(x_{n}\right)^{-1} f\left(x_{n}\right)$

How to prove $f(x)=0$

- Define: Newton map

$$
T(x)=x-f^{\prime}(x)^{-1} f(x)
$$

- Define: $B_{r}(\bar{x})$, a closed ball about \bar{x} of radius r
- Goal: Show that T is a contraction mapping:
- T maps $B_{r}(\bar{x})$ into itself
- points get closer together
- Th'm: If T is a contraction, then $B_{r}(\bar{x})$ contains a unique fixed point \tilde{x}

$$
T(\tilde{x})=\tilde{x} \quad \Leftrightarrow \quad f(\tilde{x})=0
$$

- How to choose the right value of r ?

Newton's method in higher dimensions

- There are complex roots to

$$
f(x)=x^{5}-x+1
$$

- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ define Newton map

$$
T(x)=x-D f(x)^{-1} f(x)
$$

- Newton Fractal
- The colors represent basins of attraction
- Black means Newton's method did not converge

Hard Part: ∞-dimensional problems

Poincare section of the Duffing equation with $\alpha=1, \beta=5, \epsilon=0.02, \gamma=8, \omega=0.5$. Image Credit: Wikipedia

Consider the Duffing equation for a damped driven oscillator

$$
x^{\prime \prime}+\epsilon x^{\prime}+\alpha x+\beta x^{3}=\gamma \cos \omega t
$$

To look for 2π periodic solution ($\omega=1$), expand $x(t)$ as a Fourier series

$$
x(t)=\sum_{k \in \mathbb{Z}} a_{k} e^{i k t}
$$

where $a_{-k}=\left(a_{k}\right)^{*}$. Inserting into the ODE, we obtain

$$
\sum_{k \in \mathbb{Z}}\left(-k^{2}+i \epsilon k+\alpha\right) a_{k} e^{i k t}+\beta\left(\sum_{k \in \mathbb{Z}} a_{k} e^{i k t}\right)^{3}=\gamma\left(e^{i t}+e^{-i t}\right) / 2
$$

Matching the $e^{i k t}$ terms, we obtain equations $\forall k \in \mathbb{Z}$

$$
\begin{aligned}
& 0=\left(-k^{2}+i \epsilon k+\alpha\right) a_{k}+\beta \sum_{\substack{k_{1}+k_{2}+k_{3}=k ; \\
k_{1}, k_{2}, k_{3} \in \mathbb{Z}}} a_{k_{1}} a_{k_{2}} a_{k_{3}}-\gamma \delta_{1, k} / 2 \\
& \stackrel{\text { def }}{=} f_{k}(a)
\end{aligned}
$$

Hard Part: ∞-dimensional problems

Poincare section of the Duffing equation x
with $\alpha=1, \beta=5, \epsilon=0.02, \gamma=8, \omega=0.5$.
Image Credit: Wikipedia

- Theorem: A periodic orbit $x(t)$ is equivalent to a solution $f(a)=0$
- Define: Galerkin truncation
$f^{N}: \mathbb{R}^{2 N+1} \rightarrow \mathbb{R}^{2 N+1}$
- Find approximate solution
$\hat{a} \in \mathbb{R}^{2 N+1}$ such that $f^{N}(\hat{a}) \approx 0$
- Define: Quasi-Newton map on the whole ∞-dimensional space

$$
\begin{aligned}
T(a) & =a-A f(a) \\
A & \approx D f(\hat{a})^{-1}
\end{aligned}
$$

- Goal: Show that T is a contraction mapping*

Outline

- Part 1: Introduction
- Part 2: What is a computer assisted proof?
- Part 3: A toy model for fluid dynamics
- Part 4: Global dynamics and blowup

Incompressible Navier-Stokes equation

- Hydrodynamic model of viscous fluids
- u is the velocity of the fluid
- p is the pressure
- $E=\int|u|^{2}$ is kinetic energy
- Millennium Prize Problem
- "If u_{0} is nice, will the solution blowup?"
- Blowup in ordinary differential equations
- Consider $\frac{d z}{d t}=z^{2}$
- If $z(0)=z_{0}$, this has solution

$$
z(t)=\frac{z_{0}}{1-z_{0} t}
$$

$$
\begin{aligned}
u_{t}+(u \cdot \nabla) u+\nabla p & =v \Delta u \\
\nabla \cdot u & =0 \\
\left.u\right|_{t=0} & =u_{0}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
\end{aligned}
$$

Incompressible Navier-Stokes equation

Vorticity formulation

- Viscosity/

Diffusion

- Vortex Stretching
- Convection
- Incompressibility/ Nonlocality

$$
\begin{aligned}
\omega_{t}+(u \cdot \nabla) \omega & =v \Delta \omega+(\omega \cdot \nabla) u \\
\omega & =\nabla \times u \\
\left.\omega\right|_{t=0} & =\omega_{0}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
\end{aligned}
$$

Toy Models: Burgers, Fujita, etc

- Let $u(t, x):[0, T) \times \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& u_{t}+u u_{x}=0 \\
& u_{t}+u u_{x}=u_{x x}
\end{aligned}
$$

Blow-up!
No blow-up

- Let $v=u_{x}\left(\right.$ or $\left.u=\int v d x\right)$

$$
\begin{aligned}
v_{t}+v^{2} & =v_{x x} \\
v_{t}+u v_{x}+v^{2} & =v_{x x} \\
v_{t}-u v_{x}+v^{2} & =v_{x x}
\end{aligned}
$$

Viscosity alone is not enough to suppress the blow-up.

But perhaps blow-up can be prevented by viscosity and/or an appropriate nonlinear convection.

Vortex stretching: $\omega \cdot \nabla u$

- Using $\omega \mapsto H \omega$ to model $\omega=\nabla \times u \mapsto \nabla u$ Constantin-Lax-Majda (1985) proposed the inviscid 1D equation

$$
\partial_{t} \omega=\omega H(\omega)
$$

- The Hilbert transform
- $H(\omega)(x)=\frac{1}{\pi} p \cdot v \cdot \int_{-\infty}^{+\infty} \frac{\omega(y)}{x-y} d y$
- Skew-symmetric: $H^{2}=-I d$
- For $z=H \omega+i \omega$ we obtain complex diff. eq.

$$
\partial_{t} z=\frac{1}{2} z^{2}
$$

- Blowup $\Leftrightarrow \mathrm{z}(\mathrm{x}) \in(0,+\infty)$ for any x

For $z=U+i V$, this yields the real ODE:

$$
\begin{aligned}
& 2 \dot{U}=U^{2}-V^{2} \\
& 2 \dot{V}=2 U V
\end{aligned}
$$

Constantin-Lax-Majda type models

- To incorporate convection and dissipation, de Gregorio (1990), proposed the following model

$$
\begin{aligned}
& \omega_{t}+v \omega_{x}=\epsilon \omega_{x x}+\omega v_{x} \\
& v_{x}=H \omega
\end{aligned}
$$

- Model studied (and modified) by many mathematicians
- Neither convection nor dissipation alone is sufficient to prevent blowup!

For $z=H \omega+i \omega$, the CLM equation can be written as $z_{t}=\frac{1}{2} z^{2}$
A Toy Model: For $u: \mathbb{T} \rightarrow \mathbb{C}$, consider

$$
u_{t}=e^{i \phi}\left(u_{x x}+u^{2}\right)
$$

ϕ	Type	Fluid
0	Heat	High Viscosity
$\pi / 4$	Complex Ginzberg Landau	Med. Viscosity
$\pi / 2$	Nonlinear Schrodinger Eq	No Viscosity

Outline

- Part 1: Introduction
- Part 2: What is a computer assisted proof?
- Part 3: A toy model for fluid dynamics
- Part 4: Global dynamics and blowup

Global dynamics of $u_{t}=i\left(\triangle u+u^{2}\right)$

JJ, Lessard, Takayasu; Adv. Math (2022)

Nontrivial Equilibrium

Cartoon phase space of ∞-dimensional PDE dynamics

Global dynamics of $u_{t}=i\left(\triangle u+u^{2}\right)$

JJ, Lessard, Takayasu; Adv. Math (2022)

Global dynamics of $u_{t}=i\left(\triangle u+u^{2}\right)$

JJ, Lessard, Takayasu; Adv. Math (2022)
JJ; J. Dynam. Differential Equations (2022)

Periodic Orbit

Cartoon phase space of ∞-dimensional PDE dynamics

Global dynamics of $u_{t}=e^{i \phi}\left(\triangle u+u^{2}\right)$

JJ, Lessard, Takayasu; Adv. Math (2022)
JJ; J. Dynam. Differential Equations (2022)
JJ, Lessard, Takayasu; Commun. Nonlinear Sci. Numer. Simul. (2022)

Cartoon phase space of ∞-dimensional PDE dynamics

$$
\phi=0, \frac{\pi}{4}
$$

The NLS $u_{t}=i\left(\Delta u+u^{2}\right)$ is non-conservative

- Theorem: There exists an open set of homoclinics orbits (converging to 0 in forward \& backward time)
- Corollary: Any analytic conserved quantity must be constant
- If F is continuous and conserved, then $F(u(t))=F\left(\lim _{t \rightarrow \pm \infty} u(t)\right)=F(0)$
- $F\left(u_{0}\right)$ must be constant on the open set of homoclinics
- Constant on open set \Rightarrow globally constant for analytic functionals

Spatially constant dynamics $\dot{z}=i z^{2}$

- At least two families of equilibria
- Homogeneous nonlinearity
- If $u(t, x)$ is a solution then $n^{2} u\left(n^{2} t, n x\right)$ is a solution
- Computer Assisted Proof
- Cast as a $F(x)=0$ problem in Fourier space
- Use Newton-Kantorovich method
- Linearization about \tilde{u} is unstable

$$
e^{i \phi}\left(h_{x x}+2 \tilde{u} h\right)=\lambda h
$$

Imaginary

Eigenvalues

Heat $\phi=0$
$u_{t}=e^{i \phi}\left(u_{x x}+u^{2}\right)$

- At least two families of equilibria
- Homogeneous nonlinearity
- If $u(t, x)$ is a solution then $n^{2} u\left(n^{2} t, n x\right)$ is a solution
- Computer Assisted Proof
- Cast as a $F(x)=0$ problem in Fourier space
- Use Newton-Kantorovich method
- Linearization about \tilde{u} is unstable

$$
e^{i \phi}\left(h_{x x}+2 \tilde{u} h\right)=\lambda h
$$

Computer Assisted Proof of Heteroclinic Orbits
a) Parameterization of unstable manifold
b) Validated integration of the initial value problem
c) Explicit trapping region of solutions converging to the 0 solution

(a)

(b)

(c)

Computer Assisted Proof of Heteroclinic Orbits

a) Parameterization of unstable manifold
b) Validated integration of the initial value problem
c) Explicit trapping region of solutions converging to the 0 solution

- Look for a chart $P: \mathbb{D} \rightarrow W_{\text {loc }}^{u}(\tilde{x})$ such that

$$
P(0)=\tilde{x} ; \quad D P(0)=\xi ; \quad \varphi(t, P(\theta))=P\left(e^{\lambda t} \theta\right)
$$

- Write P as a power series:

$$
P(\theta)=\sum_{n=0}^{\infty} p_{n} \theta^{n}, \quad p_{n} \in X
$$

- Solve for p_{n} order-by-order using the parameterization method

Computer Assisted Proof of Heteroclinic Orbits
a) Parameterization of unstable manifold
b) Validated integration of the initial value problem
c) Explicit trapping region of solutions converging to the 0 solution

Takayasu, et al., 2022
JJ, Lessard, Takayasu, 2022

- C_{0}-semigroup approach to validated integration
- Compute approximate solution $\tilde{a}(t)$ to IVP
- Solve linearized problem about $\tilde{a}(t)$
- Show Picard-like operator is a contraction
- Propagate errors

Computer Assisted Proof of Heteroclinic Orbits

a) Parameterization of unstable manifold
b) Validated integration of the initial value problem
c) Explicit trapping region of solutions converging to the 0 solution

- Center dynamics of the 0-equilibrium
- Spatially constant solutions have explicit solution $z(t) \sim \mathcal{O}\left(t^{-1}\right)$
- Blowup coordinates about $z(t)$
- Make ansatz:

$$
u(t)=z(t)+z(t)^{2} \tilde{u}(t)
$$

- The $\tilde{u}(t)$ equation becomes:

$$
i \tilde{u}_{t}=\tilde{u}_{x x}+z(t)^{2} \tilde{u}^{2}
$$

- Suffices to show $\tilde{u}(t)$ is bounded

- The (strong) unstable manifold has \mathbb{C} dim. 1
- Shoot out of different angles $\psi \in \mathbb{S}^{1}$

Figure for $\phi=0$ (Heat) eq.
x - inconclusive / C.A.P. failed no $x-C . A . P$. of heteroclinic!

$$
u_{t}=e^{i \phi}\left(u_{x x}+u^{2}\right)
$$

- For $\phi \in\{0, \pi / 4, \pi / 2\}$ we have computer assisted proofs of

$\operatorname{Re}\left(u_{a}\right)$ many connecting orbits
- Theorem: Let $\phi \in\left\{0, \frac{\pi}{4}\right\}$
- The unstable manifold of tht 아아 nontrivial equilibri sont मi shan en unbounded trajectory

Theorem: The space of positive Fourier modes of the PDE $i u_{t}=\Delta u+u^{2}$ on \mathbb{T}^{d} has two types of solutions: periodic and blowup

Cartoon family of periodic solutions limiting to blowup solutions

Theorem: Fix initial data $u_{0}(x)=$ $\sum_{n \in \mathbb{N}_{*}^{d}} \gamma_{n} e^{i n x}$

- The solution is given as
$u(t, x)=\sum_{n \in \mathbb{N}_{*}^{d}} a_{n}(t) e^{i n x}$ where the functions a_{n} are 2π periodic, and recursively defined
- If $\sum_{n \in \mathbb{N}_{*}^{d}}\left|\gamma_{n}\right|<\frac{1}{4}$, then $u(t)$ is bounded and 2π periodic

Theorem: The space of positive Fourier modes of the PDE $i u_{t}=\Delta u+u^{2}$ on \mathbb{T}^{d} has two types of solutions: periodic and blowup

If $d=1$ and $a_{k}=0 \forall k \leq 0$, then

$$
\begin{aligned}
& \dot{a}_{1}=i \omega^{2} a_{1} \\
& \dot{a}_{2}=i \omega^{2} 2^{2} a_{2}-i a_{1}^{2} \\
& \dot{a}_{3}=i \omega^{2} 3^{2} a_{3}-2 i a_{1} a_{2} \\
& \dot{a}_{4}=i \omega^{2} 4^{2} a_{4}-i\left(2 a_{1} a_{3}+a_{2}^{2}\right)
\end{aligned}
$$

If we take monochromatic initial data
$u_{0}(x)=A e^{i \omega x}$ then..

- $a_{1}(t)=A e^{i \omega^{2} t}$
- $a_{2}(t)=\frac{A^{2}}{\omega^{2}}\left(\frac{e^{2 i \omega^{2} t}}{2}-\frac{e^{4 i \omega^{2} t}}{2}\right)$
- $a_{3}(t)=\frac{A^{3}}{\omega^{4}}\left(\frac{e^{3 i \omega^{2} t}}{6}-\frac{e^{5 i \omega^{2} t}}{4}+\frac{e^{9 i \omega^{2} t}}{12}\right)$
- $a_{4}(t)=\frac{A^{4}}{\omega^{6}}\left(\frac{7 e^{4 i \omega^{2} t}}{144}-\frac{e^{6 i \omega^{2} t}}{10}+\frac{e^{8 i \omega^{2} t}}{22}+\frac{e^{10 i \omega^{2} t}}{36}-\frac{11 e^{16 i \omega^{2} t}}{1440}\right)$

Theorem: The space of positive Fourier modes of the PDE $i u_{t}=\Delta u+u^{2}$ on \mathbb{T}^{d} has two types of solutions: periodic and blowup

Theorem: Consider the initial data $u_{0}(x)=A e^{i x}$

- If $|A| \leq 3$ then the solution is 2π periodic
- If $|A| \geq 6$ then the solution blows up in finite time in the L^{2} norm, with $T^{*}<2 \pi$
- The solution exists for all time (and is periodic) if and only if $|A|<A^{*}$

Conclusions

- Summary
- Found new dynamics in

$$
u_{t}=e^{i \phi}\left(\triangle u+u^{2}\right)
$$

- Equilibria, connecting orbits, periodic orbits, blowup-solutions
- Developed new methodologies

Cartoon phase space of ∞-dimensional PDE dynamics

(Left) Norm of solutions exiting the equilibrium's unstable manifold

(Right) Cartoon drawing of unstable manifold

References \& Related Work

- Chen, J, and Hou T. (2022) "Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data." arXiv preprint arXiv:2210.07191.
- Cho, C. H., Okamoto, H., \& Shōji, M. (2016). A blow-up problem for a nonlinear heat equation in the complex plane of time. Japan Journal of Industrial and Applied Mathematics, 33(1), 145-166.
- Constantin, P., Lax, P. D., \& Majda, A. (1985). A simple one-dimensional model for the three-dimensional vorticity equation. Communications on pure and applied mathematics, 38(6), 715-724.
- Curry, J. H., Herring, J. R., Loncaric, J., \& Orszag, S. A. (1984). Order and disorder in two-and three-dimensional Bénard convection. Journal of Fluid Mechanics, 147, 1-38.
- De Gregorio, S. (1990). On a one-dimensional model for the three-dimensional vorticity equation. Journal of statistical physics, 59(5), 1251-1263.
- JJ (2022). Quasiperiodicity and blowup in integrable subsystems of nonconservative nonlinear Schrödinger equations. Journal of Dynamics and Differential Equations, 1-25.
- JJ, Lessard, JP., and Takayasu, A. (2022a) Global dynamics in nonconservative nonlinear Schrödinger equations. Advances in Mathematics, 398, 108234.
- JJ, Lessard, JP., and Takayasu, A. (2022b) Singularities and heteroclinic connections in complex-valued evolutionary equations with a quadratic nonlinearity. Communications in Nonlinear Science and Numerical Simulation, 107, 106188.
- Okamoto, H., Sakajo, T., \& Wunsch, M. (2008). On a generalization of the Constantin-Lax-Majda equation. Nonlinearity, 21(10), 2447.
- Takayasu, A., Lessard, JP., JJ, and Okamoto H. (2022) Rigorous numerics for nonlinear heat equations in the complex plane of time. Numerische Mathematik, 1-58.

