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Interference-enhanced wide-field nanoparticle imaging is a highly sensitive technique that has found numerous
applications in labeled and label-free subdiffraction-limited pathogen detection. It also provides unique oppor-
tunities for nanoparticle classification upon detection. More specifically, the nanoparticle defocus images result in
a particle-specific response that can be of great utility for nanoparticle classification, particularly based on type
and size. In this work, we combine a model-based supervised learning algorithm with a wide-field common-path
interferometric microscopy method to achieve accurate nanoparticle classification. We verify our classification
schemes experimentally by blindly detecting gold and polystyrene nanospheres, and then classifying them in
terms of type and size. © 2017 Optical Society of America

OCIS codes: (180.3170) Interference microscopy; (150.1135) Algorithms.
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1. INTRODUCTION

Interferometric nanoparticle imaging in a common-path con-
figuration has gained significant attention for its ability to de-
tect subdiffraction-limited low-index biological nanoparticles,
and its simple, cost-effective, and high-throughput setup [1].
It enables highly sensitive detection of nanoscale particles by
providing means to enhance the signal through the interference
between the scattered and reflected reference fields. To do so, it
uses a layered sensor typically comprised of a thin layer of SiO2

atop a Si substrate in a common-path interferometry configu-
ration. It achieves enhanced scattering of nanoparticles in the
light collection direction given the optimized thickness of this
glass layer, similar to engineering a dipole antenna directivity
[2–4]. Its signal is also affected by the polarizability of the par-
ticle, amplitude of the reference field, and the phase lag
between them, as discussed in more detail in [2].

The common-path interferometric nanoparticle imaging has
been mainly demonstrated for label-free virus detection and siz-
ing [5,6]. In these earlier studies, the particle detection and sub-
sequent sizing relied on the intensity reading at a single focal
plane. Under ideal circumstances, where the sample only con-
tains a certain kind of nanoparticles (i.e., optical properties
known a priori), this type of blind digital detection and sizing
of nanoparticles based on a single focal plane image could yield
reliable and repeatable results. However, polydispersity in
nanoparticles and morphological variations on the sensor

surface can lead to inaccurate detection and sizing in a single
focal plane image. In such a case, a more robust detection and
particle characterization is deemed necessary, and can be real-
ized by the defocus data stack acquisition strategy [2]. In fact,
interferometric nanoparticle imaging can provide unique
opportunities for the detection and visualization of weakly scat-
tering subdiffraction-limited particles, as well as for their clas-
sification upon detection. Recently, with the development of a
rigorous physical model [2], it has been suggested that a more
robust approach toward nanoparticle detection and discrimina-
tion can be achieved [7]. In particular, the distinctive defocus
signature of the interferometric signal can be of great utility for
classifying nanoparticles, as the additional phase introduced by
the axial shift results in a particle-specific signature of nanopar-
ticle response, as shown in Fig. 1(b) [2]. Here, the defocus is
defined as the axial shift of the top sensor surface from the focal
plane of the objective lens, as illustrated in Fig. 1(a).

A robust nanoparticle classification can especially be of great
significance for high-throughput interferometric biological-par-
ticle imaging, where thousands of particles are detected simul-
taneously within a single field-of-view in a labeled and/or label-
free fashion. For instance, when a multiplex detection of
label-free viruses and antigens labeled with metallic particles
takes place on the same sensor surface [8], an accurate classi-
fication of the particles in the image becomes extremely
important for accurate quantitative measurements. In another
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case, an accurate size discrimination of a polydisperse pathogen
captured on the sensor surface can be of great importance in
certain diagnostic applications. Therefore, it is clear that upon
detecting the target nanoparticles with interferometric micros-
copy, there is a need for a reliable nanoparticle classification,
particularly in terms of type and size. In the light of this need,
we propose a way to classify interferometrically detected nano-
particles based on size and type using an experimentally
obtained interferometric signal and the physical model detailed
in [2]. A direct fit approach using the analytical model might, at
first, seem to be the way for this type of classification; however,
doing so quickly becomes computationally expensive given the
large parameter space and the high throughput of our optical
system, where up to 106 nanoparticles can be detected simul-
taneously. The computational burden of having to fit each
particle response for every single detection event can be circum-
vented by adapting a machine learning approach, where a
simulation-based data set can be used as a training set in ad-
vance (offline). One advantage of using a simulation-based
training data set is that large training data sets can be generated,
eliminating the need for manual effort for a training data set
and the “human error” that comes with it. The defocus signa-
tures for nanoparticles of different types and sizes are utilized to
realize a machine-learning-based nanoparticle classification

scheme using a support vector machine classifier (SVM).
While there exist many supervised learning classifiers (e.g.,
bagging decision trees, boosted trees, k-nearest neighbors
algorithm, etc.,) that can be applied to the problem at hand,
we choose SVM as our classification algorithm, owing to its
well-established utility in various aspects of image classification,
ranging from face recognition to cell sorting [9–14]. SVM clas-
sifiers essentially construct hyperplanes that linearly separate
the labeled feature vectors in the training data set.

The training data set in this technique is provided by the
simulated interferometric signals for different type and size
nanoparticles. Once the supervised learning with simulated
data is carried out, the experimental observations are fed into
the algorithm, where classification takes place in two steps: first
the nanoparticle type is determined in terms of its dielectric
characteristics, i.e., resonant (e.g., gold) or nonresonant
(e.g., polystyrene), and second, given the type, the nanoparticle
size is determined. We experimentally validate our technique
by imaging a sample that has a mixture of gold and polystyrene
nanospheres, and then classifying the detected nanoparticles in
terms of type and size. Our method has a potential application
in multiplexed interferometric microscopy experiments, where
classification of nanoparticles can not only provide further in-
formation about the target, but also eliminate the false count of
spurious signal (noise) due to nonspecific binding events.

2. CLASSIFICATION ALGORITHM

A support vector machine (SVM), a supervised learning algo-
rithm, can realize the hyperplane with the largest margin that
optimizes the separation of a given labeled training data set of
�xi ; yi�, with xi being a vector with N features and yi being its
label, resulting in the classification function f �x� � y [13].
The hyperplane is in the N -dimensional vector space (i.e.,
RN ) of N features, which is the total number of the data points
of the vector xi. Moreover, the hyperplane in an SVM classifier
realizes the linear separation of the corresponding labels of the
input vectors. In this context, we employ an SVM on nanopar-
ticle classification in terms of type and size distribution.

As discussed previously, in wide-field common-path inter-
ferometric microscopy, particles exhibit unique defocus signa-
tures that help us realize their size and type. This study relies on
the characteristics of those defocus signatures to propose a clas-
sification scheme in terms of nanoparticle type and size by
learning from the simulations, making use of an SVM classifier.
The training data set contains 41 features corresponding to the
interferometric nanoparticle response at 41 defocus points
whose range is determined by the depth of field of the optical
system. The simulations span the following parameter space for
gold and polystyrene nanoparticles: 15 nm ≤ r ≤ 75 nm,
520 nm ≤ λ ≤ 530 nm, where r is the nanoparticle radius
and λ is the illumination wavelength.

For sake of convenience, we use the built-in Matlab SVM
classification functions, fitcsvm and fitcecoc, which can support
binary and multiple classes, respectively. The SVM classifier is
set to a nonlinear kernel function (e.g., Gaussian) to handle the
complexity due to the nonlinear features of the vectors [14],
providing more accurate predictions with the test data set
on the trained classifier. The supervised learning for particle
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Fig. 1. Defocus in common-path wide-field interferometric nano-
particle imaging: (a) schematic of the setup illustrating the case when
sensor surface is in the same plane as the focal plane of the objective
(z � 0) (adapted from [2]); the defocus takes place by moving this
layered substrate in the axial direction (z), (b) the simulated interfero-
metric signal for gold nanosphere in 30 nm radius and polystyrene
nanosphere in 37 nm radius.
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type determination considers only the dielectric characteristics
of the nanoparticle as a class label, whereas the supervised learn-
ing for particle size determination considers only the radius (r)
as a class label for a given type. We compartmentalize the
classification into two steps: we first classify the type, and then
proceed with size determination for each population. This two-
step approach provides more accuracy as opposed to training
and classifying the type and the size in one step.

A. Particle Type Classification
In common-path interferometric microscopy, the resonant par-
ticles (e.g., gold nanoparticles) differ from the low-index ones
(e.g., polystyrene nanoparticles) by exhibiting an equally strong
positive and negative peaks in their defocus signals, owing to
their negative dielectric characteristics [2]. This nanoparticle
signature difference between resonant gold and nonresonant
polystyrene nanoparticles can be observed from Figs. 2(a)
and 2(c). This phenomenon, in turn, renders resonant nano-
particles distinguishable from the low-index nanoparticles in
common-path interferometric microscopy. Therefore, we are
able to identify the particle types by using the built-in
Matlab SVM function (fitcsvm), associated with binary-class
model classification upon training with the simulated defocus
curves that are single-labeled according to the particle type.

B. Particle Size Classification
For a given particle type, size distribution of the particle can be
determined owing to its radius-dependent defocus signal. The
amplitude of the defocus signal is size dependent such that it
scales with the particle polarizability, which is a function of

particle volume. For instance, the peak-to-peak normalized
intensities for polystyrene spheres of radius 25, 30, and
35 nm are 2.5%, 3.4%, and 6.5%, respectively. Thus, SVM
can realize the size distribution of a given particle population
from the size-dependent peak-to-peak intensity value of the de-
focus signal. The built-in Matlab SVM function, fitcecoc, is
capable of multiclass model training. We use this function
to train the classifier with the simulated data set for a particular
type of nanoparticles of various sizes (15 nm ≤ r ≤ 75 nm)
with the labels corresponding to the particle size.

3. EXPERIMENTAL RESULTS

In this section, we experimentally verify our nanoparticle clas-
sification algorithm. The experiment uses a sample that consists
of gold nanospheres of 29 nm nominal radius and polystyrene
nanospheres of 37 nm nominal radius spin-coated on a
SiO2∕Si sensor chip with 100 nm thick silicon dioxide. The
experimental defocus scan (consisting of 41 defocus planes)
of the sample data is taken using the wide-field interferometric
microscopy setup detailed in [3], and the data is processed with
a custom Matlab code that performs the difference of Gaussian
spatial filtering to find nanoparticles in the image [7]. It is im-
portant to note that the code finds the locations of the diffrac-
tion-limited nanoparticles in the images regardless of their type
and signal strength. The exposure time and number of frames
averaged for each defocus image is set to 100 ms and 10, re-
spectively, to ensure data acquisition in the shot-noise-limited
regime. Following this initial step of nanoparticle detection in
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Fig. 2. (a) Experimentally obtained defocus curves of gold nanospheres upon supervised-learning-based type classification. (b) Image of gold and
polystyrene nanospheres circled in yellow and blue, respectively. (c) Experimentally obtained defocus curves of polystyrene nanospheres upon
supervised-learning-based type classification. (d) and (e) Nanoparticle size histograms of the type-classified gold and polystyrene nanospheres,
respectively.
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the images, for each nanoparticle, we obtain its defocus re-
sponse. A total of 200 particles are detected from a single
field-of-view. Each defocus datum is then first processed
with the classification algorithm for the type determination.
Figure 2(b) shows a zoomed-in cropped image from a single
field-of-view, where gold and polystyrene nanospheres are dis-
tinguished from one another using this classification algorithm.
Notice that the type classification works well due to the unique
defocus curves that gold and polystyrene nanospheres exhibit.
That is to say, resonant metallic nanoparticles exhibit an inter-
ferometric defocus signal that has strong positive and negative
peaks within an approximately micron defocus range, whereas
the nonresonant low-index nanoparticles only exhibit a strong
positive peak, as illustrated in Fig. 1(b). Based on its assigned
type, each detected nanosphere defocus response is demon-
strated in Figs. 2(a) and 2(c), showcasing the discrimination
performance with 100% accuracy using the artificial sample
that only contains gold and polystyrene nanoparticles for the
reader’s reference.

The second part of the classification algorithm focuses on
the size determination of the particles, taking into account their
previously determined types. Since the normalized signal
strength in the defocus data is size dependent, different sized
nanoparticles of the same type can easily be distinguished
among themselves. Therefore, by dividing the classification al-
gorithm in two steps, not only do we simplify the classification
problem that is normally nonlinear, but also ensure high accu-
racy. We experimentally verify the second step of this algorithm
by further processing the previously detected and type-classified
gold and polystyrene nanoparticle signals. We obtain the
size histograms of the detected nanoparticles as presented in
Figs. 2(d) and 2(e), which are in reasonable agreement with
their nominal sizes provided by their manufacturers. Apart
from the innate variations in size and shape during the nano-
particle synthesis, perhaps the slight deviations from the nomi-
nal sizes of each particle type can also be attributed to the
spectral width of the light source (Δλ ≈ 40 nm), and imperfec-
tions in the experimental setup such as misalignments, back
reflections, and vibrations.

4. DISCUSSION AND CONCLUSION

In this study, we have demonstrated nanoparticle classification
in a wide-field interferometric microscopy scheme by combin-
ing its powerful nanoparticle imaging capability with a model-
based supervised learning algorithm. The proposed classifica-
tion method accomplishes high accuracy, as experimentally
verified in Fig. 2. It is imperative to note that the nanoparticle
signal in common-path interferometric microscopy depends on
various parameters, as examined in [2]. The multivariable
dependency of the interferometric signal poses a challenging
problem to decipher its constituents. However, this multi-
parameter-dependent nanoparticle signal also opens up pos-
sibilities in terms of target particle analysis, following its
detection. Certain a priori information/assumptions are there-
fore necessary, not only to simplify this inverse classification
problem, but also to maintain accuracy. One of the limitations
imposed by this particle classification scheme is its size range
and shape.

In the scope of this study, we only assume particles of spheri-
cal shape, although the polarizability calculations can be ex-
tended to incorporate the classification of prolate particles.
The size constraint, on the other hand, stems from the fact that
the dipole approximation that is used in the physical model
starts to break down as the particle size gets closer to the
illumination wavelength—i.e., the electric dipole model to re-
present the scattering from nanoparticles holds true only when
the size is much smaller than the wavelength. It is imperative to
note that the dielectric characteristics of the particles are pre-
determined when carrying out the size classifications. Typically,
the biological particles that are of great interest in biomedical
studies exhibit similar nonresonant dielectric characteristics as
polystyrene nanoparticles.

In conclusion, we have successfully demonstrated a nano-
particle classification scheme in two steps: first determining
the particle type, and then realizing its size distribution. We
have shown the utility of our model-based classification method
in differentiating resonant gold nanoparticles from nonreso-
nant polystyrene nanoparticles, as well as in sizing of the
type-classified gold and polystyrene particles whose nominal
radiuses are given as 29 nm and 37 nm, respectively. Our clas-
sification model has a potential impact in nanoparticle detec-
tion using interferometric microscopy, where it allows for
simultaneous use of labeled (e.g., with gold nanoparticles)
and label-free detection modalities, as well as sensitivity im-
provements by accurately eliminating the count of nonspecifi-
cally bound particles, revealing further information about target
particles in terms of their type and size.
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